CN107601624B - Preparation and application of electro-Fenton cathode material based on supported activated carbon fibers - Google Patents
Preparation and application of electro-Fenton cathode material based on supported activated carbon fibers Download PDFInfo
- Publication number
- CN107601624B CN107601624B CN201711019400.7A CN201711019400A CN107601624B CN 107601624 B CN107601624 B CN 107601624B CN 201711019400 A CN201711019400 A CN 201711019400A CN 107601624 B CN107601624 B CN 107601624B
- Authority
- CN
- China
- Prior art keywords
- activated carbon
- carbon fiber
- electro
- fenton
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 239000010406 cathode material Substances 0.000 title claims abstract description 15
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 56
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 54
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- 239000001301 oxygen Substances 0.000 claims abstract description 21
- 239000002957 persistent organic pollutant Substances 0.000 claims abstract description 8
- 238000011065 in-situ storage Methods 0.000 claims abstract description 7
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 claims description 20
- 229960001680 ibuprofen Drugs 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 239000008139 complexing agent Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 239000012266 salt solution Substances 0.000 claims description 5
- 238000005868 electrolysis reaction Methods 0.000 claims description 4
- 230000007613 environmental effect Effects 0.000 claims description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical group OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 229920000297 Rayon Polymers 0.000 claims description 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 3
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910021645 metal ion Inorganic materials 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 235000006408 oxalic acid Nutrition 0.000 claims description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 150000002505 iron Chemical class 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 230000003068 static effect Effects 0.000 claims description 2
- 239000003570 air Substances 0.000 claims 1
- 239000004917 carbon fiber Substances 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 11
- 229910052742 iron Inorganic materials 0.000 abstract description 7
- -1 iron ion Chemical class 0.000 abstract description 5
- 230000007935 neutral effect Effects 0.000 abstract description 5
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 abstract description 4
- 239000010802 sludge Substances 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 4
- 239000003054 catalyst Substances 0.000 abstract description 3
- 239000007800 oxidant agent Substances 0.000 abstract description 3
- 230000001590 oxidative effect Effects 0.000 abstract description 3
- 238000006722 reduction reaction Methods 0.000 abstract description 3
- 229910001431 copper ion Inorganic materials 0.000 abstract description 2
- 230000002349 favourable effect Effects 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 14
- NPFOYSMITVOQOS-UHFFFAOYSA-K iron(III) citrate Chemical compound [Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NPFOYSMITVOQOS-UHFFFAOYSA-K 0.000 description 12
- 229960002413 ferric citrate Drugs 0.000 description 11
- 230000000694 effects Effects 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 235000003891 ferrous sulphate Nutrition 0.000 description 4
- 239000011790 ferrous sulphate Substances 0.000 description 4
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 4
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 159000000014 iron salts Chemical class 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 241000402754 Erythranthe moschata Species 0.000 description 1
- 239000012028 Fenton's reagent Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000002484 cyclic voltammetry Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000000118 hair dye Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000820 nonprescription drug Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000000955 prescription drug Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
本发明公开了一种基于负载型活性炭纤维的电芬顿阴极材料的制备及应用,溶解氧在活性炭纤维阴极表面通过发生两电子的氧还原反应产生过氧化氢,生成的过氧化氢与活性炭纤维表面负载的铁离子或铜离子络合物催化剂反应产生强氧化剂羟基自由基,可在pH中性条件下氧化去除难降解有机物。此活性炭纤维电芬顿阴极制备方法简单,条件温和,原位产生过氧化氢避免了其在运输、储存时可能产生的危险;处理过程清洁,无需外部持续投加Fe(II)药剂,减少了污泥产量,不产生二次污染。本发明原材料廉价易得,制备方法简单,处理周期短,易与其他处理方法结合,有利于大规模生产和综合治理有机污染物。
The invention discloses the preparation and application of an electro-Fenton cathode material based on loaded activated carbon fibers. Dissolved oxygen generates hydrogen peroxide through a two-electron oxygen reduction reaction on the cathode surface of the activated carbon fibers, and the generated hydrogen peroxide and activated carbon fibers The surface-supported iron ion or copper ion complex catalyst reacts to generate strong oxidant hydroxyl radicals, which can oxidatively remove refractory organics under neutral pH conditions. The activated carbon fiber electro-Fenton cathode has a simple preparation method, mild conditions, and in-situ generation of hydrogen peroxide to avoid possible dangers during transportation and storage. Sludge production, no secondary pollution. The raw materials of the invention are cheap and easy to obtain, the preparation method is simple, the treatment period is short, and it is easy to combine with other treatment methods, and is favorable for large-scale production and comprehensive treatment of organic pollutants.
Description
技术领域technical field
本发明属于环境功能材料和电化学水处理技术领域,涉及非均相电芬顿活性炭纤维阴极,特别涉及一种基于负载型活性炭纤维的电芬顿阴极材料的制备及应用。The invention belongs to the technical field of environmental functional materials and electrochemical water treatment, and relates to a heterogeneous electro-Fenton activated carbon fiber cathode, in particular to the preparation and application of an electro-Fenton cathode material based on loaded activated carbon fibers.
背景技术Background technique
随着经济发展和社会进步,种类繁多的药品和个人护理品(PPCPs),包括处方药与非处方药、兽医药剂、化妆品、人工合成麝香、染发剂和杀菌剂等被排入水环境,这类新型污染物通常易于生物富集,在低浓度下影响水生生物,进而影响到人类的健康。大多数的PPCPs以原始或被转化的形式排入到污水中进入污水处理厂。目前,对于这类含有微量难降解污染物的污水,国内外尚无可普遍推广的经济有效的方法。电芬顿法作为一种环境友好的水处理高级氧化技术,在处理难降解有机污染物方面引起越来越多的关注。由于其可以在原位产生H2O2,有效避免了其在运输、储存方面的危险。传统的均相电芬顿技术对pH要求比较严苛,目前仅适用于处理酸性废水(pH=2~4),对于中性和碱性废水,需在处理和排放前投加大量的酸、碱性药剂,大大增加了处理成本,反应后还会产生大量含铁污泥,造成二次污染。With economic development and social progress, a wide variety of pharmaceuticals and personal care products (PPCPs), including prescription and non-prescription drugs, veterinary medicines, cosmetics, synthetic musk, hair dyes and fungicides, are discharged into the water environment. This new type of pollution These substances are often prone to bioaccumulation, affecting aquatic organisms at low concentrations and, in turn, human health. Most of the PPCPs are discharged into the sewage in the raw or transformed form and enter the sewage treatment plant. At present, for this kind of sewage containing trace amount of refractory pollutants, there is no widely popularized economical and effective method at home and abroad. As an environmentally friendly advanced oxidation technology for water treatment, electro-Fenton process has attracted more and more attention in the treatment of refractory organic pollutants. Because it can generate H 2 O 2 in situ, it can effectively avoid the danger in transportation and storage. The traditional homogeneous electro-Fenton technology has strict pH requirements and is currently only suitable for the treatment of acidic wastewater (pH=2~4). For neutral and alkaline wastewater, a large amount of acid, Alkaline agents greatly increase the treatment cost, and a large amount of iron-containing sludge will be produced after the reaction, causing secondary pollution.
由于均相电芬顿体系存在的以上局限,目前非均电相芬顿催化剂的研发一直是国内外研究的重点。专利CN 105905985 A将去污的石墨毡材料作为阴极,铂丝作为阳极,饱和甘汞电极作为参比电极,氧化石墨烯悬浮液、3-4-乙烯二氧噻吩和聚对苯乙烯磺酸钠混合液为电解液,采用循环伏安电聚合方法制备改性石墨毡非均相电芬顿电极;专利CN103496764 A以高析氧过电位电极为阳极、空气扩散电极为阴极,聚四氟乙烯改性铁碳为非均相催化剂处理二氯酚,这里的PTFE-粘结式空气扩散电极在耐压性和放大实验效果还有待考察。Due to the above limitations of the homogeneous electro-Fenton system, the research and development of heterogeneous electro-Fenton catalysts has always been the focus of research at home and abroad. Patent CN 105905985 A uses decontaminated graphite felt material as cathode, platinum wire as anode, saturated calomel electrode as reference electrode, graphene oxide suspension, 3-4-ethylenedioxythiophene and sodium poly-p-styrenesulfonate The mixed solution is the electrolyte, and the modified graphite felt heterogeneous electro-Fenton electrode is prepared by the cyclic voltammetry electropolymerization method; the patent CN103496764 A uses the high oxygen evolution overpotential electrode as the anode, the air diffusion electrode as the cathode, and the polytetrafluoroethylene is modified. The PTFE-bonded air diffusion electrode here is still to be investigated in terms of pressure resistance and scale-up experiments.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的缺点,本发明的目的在于提供一种基于负载型活性炭纤维的电芬顿阴极材料的制备及应用,用该负载型活性炭纤维作为阴极,在pH中性条件下,利用水中的溶解氧在阴极表面电化学快速还原原位生成过氧化氢,过氧化氢与负载在碳阴极表面的铁离子或铜离子络合物激发反应生成羟基自由基,氧化降解布洛芬等有机污染物。In order to overcome the above-mentioned shortcomings of the prior art, the object of the present invention is to provide a preparation and application of an electro-Fenton cathode material based on supported activated carbon fibers, using the supported activated carbon fibers as a cathode, under neutral pH conditions, using Dissolved oxygen in water is electrochemically and rapidly reduced on the cathode surface to generate hydrogen peroxide in situ. Hydrogen peroxide reacts with iron ions or copper ion complexes supported on the carbon cathode surface to generate hydroxyl radicals, and oxidatively degrade organic compounds such as ibuprofen. pollutants.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种基于负载型活性炭纤维的电芬顿阴极材料的制备,包括如下步骤:A preparation of an electro-Fenton cathode material based on supported activated carbon fibers, comprising the following steps:
(1)取活性炭纤维阴极基底材料进行预处理;(1) take activated carbon fiber cathode base material for pretreatment;
(2)取预处理过的材料在络合剂和金属盐溶液中依次浸渍;(2) getting the pretreated material and immersing it in the complexing agent and the metal salt solution in turn;
(3)冲洗,干燥备用。(3) Rinse and dry for use.
所述活性炭纤维阴极基底材料为黏胶基活性炭纤维、酚醛基活性炭纤维、沥青基活性炭纤维或聚丙烯腈基活性炭纤维。The activated carbon fiber cathode base material is viscose-based activated carbon fiber, phenolic-based activated carbon fiber, pitch-based activated carbon fiber or polyacrylonitrile-based activated carbon fiber.
所述预处理是先用丙酮或无水乙醇超声浸泡10~30分钟,清洗后再用1~3mol/L的硝酸溶液超声浸泡10~30分钟,最后用去离子水清洗后,干燥备用。The pretreatment is to ultrasonically soak in acetone or absolute ethanol for 10-30 minutes, then ultrasonically soak in 1-3mol/L nitric acid solution for 10-30 minutes after cleaning, and finally rinse with deionized water, then dry for use.
所述络合剂为乙二胺四乙酸、琥珀酸、草酸、草酸盐、柠檬酸和柠檬酸盐中的一种或者几种;所述金属盐为铜盐和/或铁盐。The complexing agent is one or more of EDTA, succinic acid, oxalic acid, oxalate, citric acid and citrate; the metal salt is copper salt and/or iron salt.
所述预处理过的材料依次在络合剂中的浸渍1~6h,金属盐溶液中浸渍1~6h,均在常温下进行。The pretreated material is sequentially immersed in a complexing agent for 1-6 hours and in a metal salt solution for 1-6 hours, both at normal temperature.
在电芬顿体系中,以该电芬顿阴极材料为阴极,水中的溶解氧在活性炭纤维表面还原生成过氧化氢,所得过氧化氢与负载在活性炭纤维表面的金属离子络合物反应生成羟基自由基,氧化降解有机污染物。In the electro-Fenton system, the electro-Fenton cathode material is used as the cathode, the dissolved oxygen in the water is reduced on the surface of the activated carbon fiber to generate hydrogen peroxide, and the obtained hydrogen peroxide reacts with the metal ion complex supported on the surface of the activated carbon fiber to generate hydroxyl groups Free radicals, oxidative degradation of organic pollutants.
所述水中的溶解氧在活性炭纤维阴极表面还原生成过氧化氢环境条件:pH为2~10,温度为20~90℃。The dissolved oxygen in the water is reduced on the surface of the activated carbon fiber cathode to generate hydrogen peroxide. Environmental conditions: pH is 2-10, and temperature is 20-90°C.
所述电芬顿体系中,以铂、石墨、掺硼金刚石或金属氧化物(RuO2/Ti、IrO2/Ti、PbO2/Ti或SnO2/Ti)为阳极。In the electro-Fenton system, platinum, graphite, boron-doped diamond or metal oxides (RuO 2 /Ti, IrO 2 /Ti, PbO 2 /Ti or SnO 2 /Ti) are used as anodes.
还可将该电芬顿阴极材料与对电极组成电解池,水流状态为静态或流动态,在0~20mA/cm2且不包括0mA/cm2电流密度下进行电解反应。The electro-Fenton cathode material and the counter electrode can also form an electrolytic cell, the water flow state is static or flowing, and the electrolysis reaction is carried out at a current density of 0-20 mA/cm 2 excluding 0 mA/cm 2 .
本发明的应用体系中,阴极区有空气或氧气注入,或利用阳极电解水生成的氧气,原位产生过氧化氢。In the application system of the present invention, the cathode area is injected with air or oxygen, or the oxygen generated by the electrolysis of water at the anode is used to generate hydrogen peroxide in situ.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1、该方法与常规的非均相芬顿试剂相比,无需外部投加过氧化氢,有效避免了其在运输、储存方面的危险,并可以通过控制电流和电压控制过氧化氢的产量及有机物降解的速率。1. Compared with the conventional heterogeneous Fenton reagent, this method does not need to add hydrogen peroxide externally, which effectively avoids the danger in transportation and storage, and can control the output and output of hydrogen peroxide by controlling the current and voltage. rate of degradation of organic matter.
2、该方法采用活性炭纤维为阴极,具有吸附,导电,高比表面积等特点,具有准三维电极的性质,增加了单位槽体积的电极表面,提高了电流效率和处理效果。2. The method uses activated carbon fiber as the cathode, which has the characteristics of adsorption, conductivity, high specific surface area, etc., and has the properties of quasi-three-dimensional electrode, which increases the electrode surface per unit cell volume, and improves the current efficiency and treatment effect.
3、该方法将铁离子或铜离子络合物负载在碳材料阴极表面,可以在pH 2~10的范围内有效催化分解双氧水生成羟基自由基,改进了传统芬顿技术pH适用范围窄、产生铁污泥量大的缺点,具有良好的经济、环境和社会效益。3. This method loads iron ions or copper ion complexes on the surface of the carbon material cathode, which can effectively catalyze the decomposition of hydrogen peroxide to generate hydroxyl radicals in the range of pH 2 to 10, which improves the traditional Fenton technology. The disadvantage of large amount of iron sludge has good economic, environmental and social benefits.
附图说明Description of drawings
图1是本发明应用原理图。Fig. 1 is the application principle diagram of the present invention.
图2是本发明负载了柠檬酸铁后的活性炭纤维扫描电镜图片。Figure 2 is a scanning electron microscope picture of the activated carbon fiber loaded with ferric citrate according to the present invention.
图3是活性炭纤维吸附、活性炭纤维加电、活性炭纤维负载柠檬酸铁(非均相)、活性炭纤维+柠檬酸铁(均相)和活性炭纤维+硫酸亚铁(均相)对布洛芬去除的效果对比示意图。Figure 3 shows the removal of ibuprofen by activated carbon fiber adsorption, activated carbon fiber electrification, activated carbon fiber loaded with ferric citrate (heterogeneous), activated carbon fiber + ferric citrate (homogeneous), and activated carbon fiber + ferrous sulfate (homogeneous) Schematic diagram of the effect comparison.
具体实施方式Detailed ways
下面结合附图和实施例详细说明本发明的实施方式。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings and examples.
本发明一种基于负载型活性炭纤维的电芬顿阴极材料的制备,包括如下步骤:The preparation of an electro-Fenton cathode material based on a loaded activated carbon fiber of the present invention comprises the following steps:
(1)预处理:以黏胶基活性炭纤维、酚醛基活性炭纤维、沥青基活性炭纤维或聚丙烯腈基活性炭纤维为活性炭纤维阴极基底材料,先用丙酮或无水乙醇超声浸泡10~30分钟,清洗后再用1~3mol/L的硝酸溶液超声浸泡10~30分钟,最后用去离子水清洗后,干燥备用。(1) Pretreatment: use viscose-based activated carbon fiber, phenolic-based activated carbon fiber, pitch-based activated carbon fiber or polyacrylonitrile-based activated carbon fiber as the cathode base material of activated carbon fiber, first soak it with acetone or absolute ethanol ultrasonically for 10 to 30 minutes, After cleaning, ultrasonically soak with 1-3 mol/L nitric acid solution for 10-30 minutes, and finally wash with deionized water, and then dry for use.
(2)取预处理过的材料在络合剂和金属盐溶液中依次浸渍;络合剂可以为乙二胺四乙酸、琥珀酸、草酸、草酸盐、柠檬酸和柠檬酸盐中的一种或者几种;金属盐为铜盐和/或铁盐。活性炭纤维依次在络合剂中的浸渍1~6h,金属盐溶液中浸渍1~6h,这两步浸渍均在常温下进行。(2) get the pretreated material and immerse it in a complexing agent and a metal salt solution in turn; the complexing agent can be one of ethylenediaminetetraacetic acid, succinic acid, oxalic acid, oxalate, citric acid and citrate one or several species; the metal salts are copper salts and/or iron salts. The activated carbon fibers were immersed in the complexing agent for 1 to 6 hours, and then in the metal salt solution for 1 to 6 hours, both of which were carried out at room temperature.
(3)用去离子水冲洗,干燥备用。(3) Rinse with deionized water and dry for later use.
图1是本发明应用原理图。水中的溶解氧在阴极表面电化学快速还原原位生成过氧化氢,过氧化氢与负载在碳阴极表面的铁离子络合物激发反应生成羟基自由基,氧化降解布洛芬。Fig. 1 is the application principle diagram of the present invention. The dissolved oxygen in the water is electrochemically rapidly reduced on the surface of the cathode to generate hydrogen peroxide in situ, and the hydrogen peroxide reacts with the iron ion complex supported on the surface of the carbon cathode to generate hydroxyl radicals, which oxidatively degrade ibuprofen.
图2是负载了柠檬酸铁络合物后的活性炭纤维扫描电镜图片,在光滑的活性炭纤维表面分布着柠檬酸铁络合物颗粒。Figure 2 is a scanning electron microscope picture of the activated carbon fiber loaded with ferric citrate complex, and iron citrate complex particles are distributed on the surface of the smooth activated carbon fiber.
如图3所示,在电芬顿体系中使用本发明所得电芬顿阴极材料,以铂、石墨、掺硼金刚石或金属氧化物(RuO2/Ti、IrO2/Ti、PbO2/Ti或SnO2/Ti)为阳极,水中的溶解氧在活性炭纤维表面还原生成过氧化氢,所得过氧化氢与负载在活性炭纤维表面的金属离子络合物反应生成羟基自由基,氧化降解有机污染物。As shown in Fig. 3, the electro-Fenton cathode material obtained by the present invention is used in the electro-Fenton system, with platinum, graphite, boron-doped diamond or metal oxide (RuO 2 /Ti, IrO 2 /Ti, PbO 2 /Ti or SnO 2 /Ti) is the anode, the dissolved oxygen in the water is reduced on the surface of the activated carbon fiber to generate hydrogen peroxide, and the obtained hydrogen peroxide reacts with the metal ion complex supported on the surface of the activated carbon fiber to generate hydroxyl radicals, which oxidatively degrade organic pollutants.
图3给出了活性炭纤维吸附、活性炭纤维加电、活性炭纤维负载柠檬酸铁(非均相)、活性炭纤维+柠檬酸铁(均相)和活性炭纤维+硫酸亚铁(均相)对布洛芬去除的效果对比示意图。可以看出,活性炭纤维吸附和加电(氧气还原生成过氧化氢)对布洛芬的去除都不高,而在pH近中性条件下非均相电芬顿显示了良好的布洛芬去除率,和pH=3条件下均相电芬顿对布洛芬的去除率在120min相当。这里的活性炭纤维负载柠檬酸铁(非均相),是指柠檬酸铁络合物负载在活性炭纤维表面;活性炭纤维+柠檬酸铁(均相),是指柠檬酸铁溶解在所需处理的溶液中;活性炭纤维+硫酸亚铁(均相),是指硫酸亚铁溶解在所需处理的溶液中。Figure 3 presents the effects of activated carbon fiber adsorption, activated carbon fiber electrification, activated carbon fiber loaded with ferric citrate (heterogeneous), activated carbon fiber + ferric citrate (homogeneous), and activated carbon fiber + ferrous sulfate (homogeneous) versus Blot Schematic diagram of the comparison of the effect of fen removal. It can be seen that the removal of ibuprofen by activated carbon fiber adsorption and electrification (reduction of oxygen to hydrogen peroxide) is not high, while the heterogeneous electro-Fenton shows good ibuprofen removal under near-neutral pH conditions. The removal rate of homogeneous electro-Fenton to ibuprofen was equivalent to 120min under the condition of pH=3. The activated carbon fiber here is loaded with ferric citrate (heterogeneous), which means that the ferric citrate complex is loaded on the surface of the activated carbon fiber; activated carbon fiber + ferric citrate (homogeneous), which means that the ferric citrate is dissolved in the required treatment In solution; activated carbon fiber + ferrous sulfate (homogeneous), which means that ferrous sulfate is dissolved in the solution to be treated.
实施例1给出了电芬顿反应过程中过氧化氢和羟基自由基的生成规律:Embodiment 1 provides the generation rule of hydrogen peroxide and hydroxyl radicals in the electro-Fenton reaction process:
反应溶液体积:高纯水250mLReaction solution volume: high-purity water 250mL
反应溶液温度:30±2℃Reaction solution temperature: 30±2℃
反应溶液初始pH值:6.8Initial pH of the reaction solution: 6.8
电极面积:15cm2(2.5cm×6cm)Electrode area: 15cm 2 (2.5cm×6cm)
电解质浓度:0.05M Na2SO4 Electrolyte concentration: 0.05M Na 2 SO 4
氧气流速:100mL/minOxygen flow rate: 100mL/min
电流强度:0.05ACurrent intensity: 0.05A
反应时间:30min,60min,90min,120minReaction time: 30min, 60min, 90min, 120min
表1生成氧化物的浓度Table 1 Concentration of formed oxides
从实施例1可以看出,随着反应时间的增加,生成的过氧化氢和羟基自由基的浓度增加,表明这种方法在pH中性条件下可有效激发过氧化氢生成强氧化剂羟基自由基。It can be seen from Example 1 that with the increase of reaction time, the concentrations of generated hydrogen peroxide and hydroxyl radicals increase, indicating that this method can effectively stimulate hydrogen peroxide to generate strong oxidant hydroxyl radicals under neutral pH conditions .
实施例2说明了本发明对不同初始浓度布洛芬的去除效果Embodiment 2 illustrates the removal effect of the present invention to different initial concentrations of ibuprofen
反应溶液体积:高纯水250mLReaction solution volume: high-purity water 250mL
反应溶液温度:30±2℃Reaction solution temperature: 30±2℃
反应溶液初始pH值:6.8Initial pH of the reaction solution: 6.8
电极面积:15cm2(2.5cm×6cm)Electrode area: 15cm 2 (2.5cm×6cm)
电解质浓度:0.05M Na2SO4 Electrolyte concentration: 0.05M Na 2 SO 4
氧气流速:100mL/minOxygen flow rate: 100mL/min
电流强度:0.05ACurrent intensity: 0.05A
反应时间:120minResponse time: 120min
初始浓度:1mg/L,5mg/L,10mg/L,20mg/LInitial concentration: 1mg/L, 5mg/L, 10mg/L, 20mg/L
表2对不同初始浓度布洛芬的去除Table 2 Removal of different initial concentrations of ibuprofen
从实施例2可以看出,对低高浓度1mg/L~20mg/L的布洛芬均有比较好的去除,对于初始浓度小于10mg/L的布洛芬均有大于95%的去除。As can be seen from Example 2, the ibuprofen with low and high concentrations of 1 mg/L to 20 mg/L has a relatively good removal, and the ibuprofen with an initial concentration of less than 10 mg/L has more than 95% removal.
实施例3表明了不同电流密度对布洛芬的去除效果影响Example 3 shows the influence of different current densities on the removal effect of ibuprofen
反应溶液体积:高纯水250mLReaction solution volume: high-purity water 250mL
反应溶液温度:30±2℃Reaction solution temperature: 30±2℃
反应溶液初始pH值:6.8Initial pH of the reaction solution: 6.8
初始布洛芬浓度:10mg/LInitial ibuprofen concentration: 10mg/L
电极面积:15cm2(2.5cm×6cm)Electrode area: 15cm 2 (2.5cm×6cm)
电解质浓度:0.05M Na2SO4 Electrolyte concentration: 0.05M Na 2 SO 4
氧气流速:100mL/minOxygen flow rate: 100mL/min
电流强度:0.05ACurrent intensity: 0.05A
反应时间:120minResponse time: 120min
初始浓度:1mA/cm2,3mA/cm2,5mA/cm2,7mA/cm2 Initial concentration: 1mA/cm 2 , 3mA/cm 2 , 5mA/cm 2 , 7mA/cm 2
表3不同电流密度条件下对布洛芬去除Table 3 Removal of ibuprofen under different current densities
从实施例3可以看出,随着电流密度的增加,对布洛芬的去除有所增加,电流密度高于5mA/cm2对布洛芬的去除率相差不大。It can be seen from Example 3 that with the increase of the current density, the removal of ibuprofen has increased, and the removal rate of ibuprofen with a current density higher than 5 mA/cm 2 is not much different.
实施例4表明了不同运行周期对布洛芬的去除效果影响Example 4 shows the influence of different operation cycles on the removal effect of ibuprofen
反应溶液体积:高纯水250mLReaction solution volume: high-purity water 250mL
反应溶液温度:30±2℃Reaction solution temperature: 30±2℃
反应溶液初始pH值:6.8Initial pH of the reaction solution: 6.8
初始布洛芬浓度:10mg/LInitial ibuprofen concentration: 10mg/L
电极面积:15cm2(2.5cm×6cm)Electrode area: 15cm 2 (2.5cm×6cm)
电解质浓度:0.05M Na2SO4 Electrolyte concentration: 0.05M Na 2 SO 4
氧气流速:100mL/minOxygen flow rate: 100mL/min
电流强度:0.05ACurrent intensity: 0.05A
一个周期:120minOne cycle: 120min
表4不同运行周期对布洛芬去除Table 4 Removal of ibuprofen for different operating cycles
从实施例4可以看出,经过6个运行周期(12小时),对布洛芬的仍有较好的去除(大于85%),后续可通过柠檬酸铁的重新负载提高电极对有机污染物的去除效率,负载过程条件温和,时间短,有较好的应用前景。It can be seen from Example 4 that after 6 operating cycles (12 hours), the removal of ibuprofen is still good (greater than 85%), and the subsequent reloading of ferric citrate can improve the resistance of the electrode to organic pollutants The removal efficiency is high, the loading process conditions are mild, the time is short, and it has a good application prospect.
综上,本发明利用基于负载型活性炭纤维的电芬顿阴极材料,溶解氧在活性炭纤维阴极表面通过发生两电子的氧还原反应产生过氧化氢,生成的过氧化氢与活性炭纤维表面负载的铁离子或铜离子络合物催化剂反应产生强氧化剂羟基自由基,可在pH中性条件下氧化去除难降解有机物。此活性炭纤维电芬顿阴极制备方法简单,条件温和,原位产生过氧化氢避免了其在运输、储存时可能产生的危险;处理过程清洁,无需外部持续投加Fe(II)药剂,减少了污泥产量,不产生二次污染。本发明原材料廉价易得,制备方法简单,处理周期短,易与其他处理方法结合,有利于大规模生产和综合治理有机污染物。其应用,是一种可以持续投加铁盐,pH适用范围宽,尤其适合近中性条件下的电芬顿废水处理方法,具有很大应用前景。To sum up, the present invention utilizes the electro-Fenton cathode material based on the supported activated carbon fiber, and the dissolved oxygen generates hydrogen peroxide through a two-electron oxygen reduction reaction on the surface of the activated carbon fiber cathode, and the generated hydrogen peroxide and the iron supported on the surface of the activated carbon fiber. The ion or copper ion complex catalyst reacts to generate strong oxidant hydroxyl radicals, which can oxidize and remove refractory organics under neutral pH conditions. The activated carbon fiber electro-Fenton cathode has a simple preparation method, mild conditions, and in-situ generation of hydrogen peroxide to avoid possible dangers during transportation and storage. Sludge output, no secondary pollution. The raw materials of the invention are cheap and easy to obtain, the preparation method is simple, the treatment period is short, and it is easy to combine with other treatment methods, and is favorable for large-scale production and comprehensive treatment of organic pollutants. Its application is an electro-Fenton wastewater treatment method that can continuously add iron salts, has a wide pH range, and is especially suitable for near-neutral conditions, and has great application prospects.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711019400.7A CN107601624B (en) | 2017-10-26 | 2017-10-26 | Preparation and application of electro-Fenton cathode material based on supported activated carbon fibers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711019400.7A CN107601624B (en) | 2017-10-26 | 2017-10-26 | Preparation and application of electro-Fenton cathode material based on supported activated carbon fibers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107601624A CN107601624A (en) | 2018-01-19 |
CN107601624B true CN107601624B (en) | 2020-10-27 |
Family
ID=61080928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711019400.7A Active CN107601624B (en) | 2017-10-26 | 2017-10-26 | Preparation and application of electro-Fenton cathode material based on supported activated carbon fibers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107601624B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110282704B (en) * | 2019-05-07 | 2022-03-04 | 广东省测试分析研究所(中国广州分析测试中心) | Electrochemical modified filler for water treatment |
CN110240250A (en) * | 2019-06-06 | 2019-09-17 | 南京融众环境工程研究院有限公司 | A kind of method of degrading decabromodiphenyl ether |
CN110228838A (en) * | 2019-06-19 | 2019-09-13 | 南开大学 | A kind of RGO/MoS2/Ce0.75Zr0.25O2Cathode material and its preparation method and application |
CN110342615A (en) * | 2019-06-21 | 2019-10-18 | 同济大学 | A kind of electrode material suitable for electric Fenton degradation of contaminant, preparation method and application |
CN110963637A (en) * | 2019-10-27 | 2020-04-07 | 平湖石化有限责任公司 | Biochemical treatment method for acrylic acid and ester production wastewater |
CN111054341A (en) * | 2020-01-10 | 2020-04-24 | 北京工业大学 | A kind of preparation method and application of bimetallic oxide-supported activated carbon fiber composite electrode |
CN111422953A (en) * | 2020-04-01 | 2020-07-17 | 北京林业大学 | In-situ flocculation-Fenton coupling electrochemical method for advanced treatment of high-salinity wastewater |
CN112408555B (en) * | 2020-11-14 | 2022-11-15 | 北京工业大学 | Preparation and application of a cuprous oxide/carbon nanotube/copper foam composite electrode for heterogeneous electro-Fenton system |
CN112811529B (en) * | 2021-01-13 | 2023-01-10 | 中科南京绿色制造产业创新研究院 | A graphene-based heterogeneous electrocatalytic cathode and its preparation method and application |
CN113045063B (en) * | 2021-03-17 | 2022-07-22 | 清华大学 | Water purification device and method based on self-driven electrochemical Fenton-like flocculation reaction |
CN113149350A (en) * | 2021-04-15 | 2021-07-23 | 北京京华清源环保科技有限公司 | Chelated biological catalytic particles for in-situ restoration of water body and preparation method thereof |
CN113371892B (en) * | 2021-05-28 | 2022-05-17 | 广东工业大学 | Method for removing heavy metals in wastewater by electrochemical method |
CN114108009B (en) * | 2021-06-30 | 2024-02-23 | 中山大学 | Method for preparing and activating hydrogen peroxide in situ based on water oxidation and application thereof |
CN114534726B (en) * | 2022-03-09 | 2024-05-03 | 浙江工业大学 | Iron/oxygen doped carbon-based filtering type electro-Fenton cathode and preparation method and application thereof |
CN114832822A (en) * | 2022-03-29 | 2022-08-02 | 宁波职业技术学院 | Heterogeneous electro-Fenton catalyst and preparation method and application thereof |
CN115382530A (en) * | 2022-08-23 | 2022-11-25 | 南京工业大学 | Catalyst for enhanced homogeneous Fenton oxidation cooperative adsorption and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102092820A (en) * | 2011-01-04 | 2011-06-15 | 华中师范大学 | Method and device for removing organic matters from water by using double-pool double-effect visible light in response to photo-electro-Fenton reaction |
CN102909073A (en) * | 2012-10-12 | 2013-02-06 | 浙江理工大学 | Preparation method and application of heterogeneous Fenton-like catalyst |
CN104229949A (en) * | 2014-09-18 | 2014-12-24 | 西安建筑科技大学 | Preparation and application of iron ion and manganese ion loaded activated carbon fiber composite cathode |
CN104386784A (en) * | 2014-09-18 | 2015-03-04 | 西安建筑科技大学 | Iron ion loaded activated carbon fiber composite cathode, preparation method and application thereof |
-
2017
- 2017-10-26 CN CN201711019400.7A patent/CN107601624B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102092820A (en) * | 2011-01-04 | 2011-06-15 | 华中师范大学 | Method and device for removing organic matters from water by using double-pool double-effect visible light in response to photo-electro-Fenton reaction |
CN102909073A (en) * | 2012-10-12 | 2013-02-06 | 浙江理工大学 | Preparation method and application of heterogeneous Fenton-like catalyst |
CN104229949A (en) * | 2014-09-18 | 2014-12-24 | 西安建筑科技大学 | Preparation and application of iron ion and manganese ion loaded activated carbon fiber composite cathode |
CN104386784A (en) * | 2014-09-18 | 2015-03-04 | 西安建筑科技大学 | Iron ion loaded activated carbon fiber composite cathode, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN107601624A (en) | 2018-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107601624B (en) | Preparation and application of electro-Fenton cathode material based on supported activated carbon fibers | |
Tammam et al. | On the electrocatalytic urea oxidation on nickel oxide nanoparticles modified glassy carbon electrode | |
CN109896598B (en) | Preparation method of electro-Fenton cathode material based on carbon felt supported iron nanoparticles and application of electro-Fenton cathode material in degradation of organic pollutants in water | |
CN104671361B (en) | Method for removing PPCPs micropollutants in secondary sedimentation tank wastewater | |
CN103641212B (en) | A kind of preparation method processing the graphite felt cathode material of organic waste water | |
CN104310573A (en) | Combination electrode preparation method and application of combination electrode preparation method in bioelectricity Fenton system | |
CN102424465A (en) | Method for degrading phenol wastewater by cooperation of electrocatalytic oxidation and electro-Fenton technologies | |
CN102368559B (en) | Alkaline microbial fuel cell | |
Lei et al. | Linear attenuation current input mode: a novel power supply mode for electrochemical oxidation process | |
CN105036259A (en) | Modification method of double-metal-modified activated carbon fiber electrode by electrolytic deposition and application | |
CN108017120A (en) | A kind of method using Novel anode electrocatalytic oxidation processing phenol organic wastewater | |
CN111170417B (en) | Supported anode material, preparation method and application thereof | |
CN111167513A (en) | Flexible electro-catalytic membrane for removing nitrate in water and preparation method and application thereof | |
CN113896299A (en) | electro-Fenton reaction cathode material of ferromanganese layered double hydroxide loaded biochar and preparation method and application thereof | |
CN112520818B (en) | Preparation method and application of metal electrode for reducing nitrate nitrogen in wastewater | |
CN103041775B (en) | Graphene oxidation reactor based on graphene macro-body and application of graphene oxidation reactor | |
CN216614121U (en) | A new type of electrocatalytic ammonia nitrogen wastewater treatment device | |
CN102677091B (en) | Preparation method for palladium modified electrode with base body formed by para-toluenesulfonic acid mixed with polypyrole | |
CN113184951B (en) | Modification method and application of graphite felt cathode in electric over-ozonation system | |
CN108706689A (en) | A kind of method of the preparation method and wastewater treatment of electrode material | |
CN108751378B (en) | Fe3O4Ag @ Si three-dimensional composite electrode, preparation method thereof and advanced oxidation integration technology system | |
CN102208661A (en) | Surface modification method of carbon material and application thereof in microbial fuel cell | |
CN205387492U (en) | Organic pollutant's device in optical electro -Chemistry concerted catalysis degradation waste water | |
CN108358285A (en) | A kind of Fe3O4The method of cefotaxime in the electrically-degradable water of/biomass carbon cathode | |
CN107935127A (en) | A kind of composite cathode for being used for electric Fenton advanced oxidation processes and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |