[go: up one dir, main page]

CN107592148B - 无线通信系统中处理波束成型的方法和装置 - Google Patents

无线通信系统中处理波束成型的方法和装置 Download PDF

Info

Publication number
CN107592148B
CN107592148B CN201710541890.0A CN201710541890A CN107592148B CN 107592148 B CN107592148 B CN 107592148B CN 201710541890 A CN201710541890 A CN 201710541890A CN 107592148 B CN107592148 B CN 107592148B
Authority
CN
China
Prior art keywords
cell
network
signal
beam sweeps
network node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710541890.0A
Other languages
English (en)
Other versions
CN107592148A (zh
Inventor
郭宇轩
郭豊旗
欧孟晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asustek Computer Inc
Original Assignee
Asustek Computer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asustek Computer Inc filed Critical Asustek Computer Inc
Publication of CN107592148A publication Critical patent/CN107592148A/zh
Application granted granted Critical
Publication of CN107592148B publication Critical patent/CN107592148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种用户设备的方法,包括:从小区接收指示波束扫掠数量的第二信号,其中在所述小区中存在多个网络节点,并且所述小区的至少两个网络节点具有不同的波束成型能力;以及基于所述波束扫掠数量在多个时间间隔从所述小区的任一网络节点接收第一信号。本发明还提供一种网络方法、用户设备以及网络。

Description

无线通信系统中处理波束成型的方法和装置
技术领域
本申请是有关于无线通信网络,尤其是,有关于一种在无线通系统中处理波束成型的方法和装置。
背景技术
随着在移动通讯装置上进行大量数据通讯的需求迅速增加,传统移动语音通讯网络进化为通过因特网协议(Internet Protocol,IP)数据封包进行通讯的网络。IP数据封包通讯可提供因特网协议通话技术(voice over IP)、多媒体(multimedia)、组播传送(multicast)以及随选通讯服务(on-demand communication services)给移动通讯装置的用户。
举例的网络架构演进版通用陆地无线存取网络(Evolved UniversalTerrestrial Radio Access Network,E-UTRAN,以下简称E-UTRAN)。E-UTRAN系统可以提供高速传送以实现上述因特网协议通话技术及多媒体的服务。一种用于次世代(例如5G)的新无线技术目前正由第三代合作伙伴计划(3rd Generation Partnership Project,3GPP,以下简称3GPP)标准组织讨论中。为了进化和完善3GPP标准,提出及考量了许多3GPP标准现有骨干的改良。
发明内容
根据本发明的第一方面,本申请提供一种用户设备的方法,包括:从小区接收指示波束扫掠数量的第二信号,其中在所述小区中存在多个网络节点,并且所述小区的至少两个网络节点具有不同的波束成型能力;以及基于所述波束扫掠数量在多个时间间隔从所述小区的任一网络节点接收第一信号。
根据本发明的第二方面,本申请还提供一种网络方法,包括:自小区的每个网络节点传送指示相同的波束扫掠数量的第二信号,其中在所述小区中存在多个网络节点,并且所述小区的至少两个网络节点具有不同的波束成型能力。
根据本发明的第三方面,本申请还提供一种用户设备,所述用户设备包括:控制电路;处理器,安装在所述控制电路中的;以及存储器,安装在所述控制电路中并且可操作地耦接所述处理器;其中所述处理器被配置为执行储存在所述存储器中的程序代码以从小区接收指示波束扫掠数量的第二信号,其中在所述小区中存在多个网络节点并且所述小区的至少两个网络节点具有不同的波束成型能力;以及基于所述波束扫掠数量在多个时间间隔从所述小区的任一网络节点接收第一信号。
根据本发明的第四方面,本申请还提供一种网络,包括:控制电路;处理器,安装在所述控制电路中的;以及存储器,安装在所述控制电路中并且可操作地耦接所述处理器;其中所述处理器被配置为执行储存在所述存储器中的程序代码以自小区的每个网络节点传送指示相同波束扫掠数量的第二信号,其中在所述小区中存在多个网络节点并且所述小区的至少两个网络节点具有不同的波束成型能力。
为使本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图在下文中作出详细说明,应当理解的是上述一般描述和以下详细的描述仅为示例,旨在对所要求保护的本发明提供进一步的解释。
应当理解的是,发明内容中可能不包含本发明的所有方面和实施例,因此并不意味着以任何方式进行限制或限制。本发明的公开包括对本领域技术人员显而易见的各种改进和修改。
附图说明
为了更好地理解本发明,说明书包括附图并且附图构成说明书的一部分。附图例举说明了本发明的实施例,结合说明书的描述用来解释本发明的原理。
图1示出根据一个实施例的无线通信系统的示意图。
图2是根据一个实施例的发射器系统(也称为存取网络)和接收器系统(也称为用户设备或UE)的框图。
图3是根据一个实施例的通信系统的功能框图。
图4是根据一个实施例的图3的程序代码的功能框图。
图5是3GPP R2-162709的图1的复制图。
图6是根据一个实施例NR部署场景的图。
图7是根据一个实施例NR部署场景的图。
图8是3GPP R2-163879的图1的复制图。
图9是3GPP R2-163879的图1的复制图。
图10是3GPP R2-162210的图3的复制图。
图11是3GPP R2-163471的图1的复制图。
图12是3GPP R2-162251的图3的复制图。
图13是3GPP R2-162251的图4的复制图。
图14是根据一个实施例的初始存取的的流程图。
图15是3GPP R1-165364的图1的复制图。
图16是3GPP R1-165364的图2的复制图。
图17是根据一个实施例TRP波束扫掠的图。
图18是根据一个实施例从网络角度描述的流程图。
图19是根据一个实施例从网络角度描述的流程图。
图20是根据一个实施例从网络节点的角度描述的流程图。
图21是根据一个实施例从UE的角度描述的流程图。
图22是根据一个实施例从网络的角度描述的流程图。
图23是根据一个实施例从网络节点的角度描述的流程图。
图24是根据一个实施例从网络节点的角度描述的流程图。
具体实施方式
以下所举例的无线通信系统、装置和相关的方法是使用支持广播服务的无线通信系统。无线通信系统广泛地被用来提供不同类型的通讯,例如语音、数据等。这些无线通信系统可使用码分多址(Code Division Multiple Access,CDMA)、时分多址(Time DivisionMultiple Access,TDMA)、正交频分多址(Orthogonal Frequency Division MultipleAccess,OFDMA)、3GPP长程演进技术(3GPP Long Term Evolution,3GPP LTE)无线存取、3GPP进阶版长程演进技术(3GPP Long Term Evolution Advanced,LTE-A或LTE-Advanced)、3GPP2超移动宽带(3GPP2Ultra Mobile Broadband,3GPP2UMB)、全球微波互联接入(WiMax)或其他调变技术做为基础。
特别地,下面描述的示例性无线通信系统设备可设计为支持一个或多个标准,例如文中3GPP所指的名为“第三代合作伙伴计划”的联盟提供的标准,其包括:R2-162366,“波束成型影响”,诺基亚(Nokia)、阿尔卡特朗讯(Alcatel-Lucent);R2-163716,“基于波束成型的高频NR术语的讨论”,三星(Samsung);R2-162709,“NR中的波束支持”,英特尔(Intel);R2-162762,“NR中的主动模式移动性:在较高频率时SINR下降”,爱立信(Ericsson);R3-160947,“TR 38.801V0.1.0,新无线接入技术研究;无线电接入架构和接口”;R2-164306“电子邮件讨论概要[93bis#23][NR]部署场景”,NTTDOCOMO公司;3GPP RAN2#94会议记录;R2-163879,“高频NR中的RAN2影响”,联发科技(MediaTeK);R2-162210“波束级管理<->小区级移动性”,三星;R2-163471,“NR中的小区概念”,CATT公司;R2-164270“LTE-NR紧密互通性的一般考虑”,华为(Huawei);R2-162251,“高频新RAT的RAN2方面”,三星;R1-165364,“基于波束的共通控制平面的支持”,诺基亚、上海贝尔阿尔卡特朗讯(Alcatel-Lucent ShanghaiBell)。上文列出的标准和文件的全部内容列入本文的参考包括在本文中。
图1所示为本案一实施例的多重存取无线通信系统。存取网络(access network,AN)100包括多个天线群组,其中一群组包括天线104及天线106,另一群组包括天线108及天线110,而又另一群组包括天线112及天线114。在图1里,每一群组仅显示出两个天线,然而每一群组可使用更多或更少天线。存取终端(access terminal,AT)116是与天线112及114进行通讯,其中天线112及天线114通过前向链路(forward link)120传送信息至存取终端116,并通过反向链路(reverse link)118接收来自存取终端116的信息。存取终端122是与天线106及108进行通讯,其中天线106及天线108通过前向链路126传送信息至存取终端122,并通过反向链路124接收来自存取终端122的信息。在频分双工(Frequency DivisionDuplex,FDD)系统里,通讯链路118、120、124及126可使用不同频率进行通讯。举例来说,前向链路120与反向链路118可使用不同的频率。
每一天线群组或它们被设计以进行通讯的区域经常被称为存取网络的分支(sector)。在此实施例里,每一天线群组被设计为与存取网络100所涵盖区域的分支里的存取终端进行通讯。
在前向链路120及前向链路126上的通讯中,存取网络100的传送天线可利用波束成型来改善不同存取终端116、122的前向链路的信号噪声比。并且,相较于使用单个天线来与所有存取终端进行传送的存取网络,利用波束成型来与涵盖范围中随机分支的存取终端进行传送的存取网络将可以降低对邻近小区的存取终端的干扰。
存取网络可以是用来与终端进行通讯的固定基站(fixed station)或基站(basestation),其也可以指存取点、B节点(Node B)、基站、增强型基站(enhanced basestation)、进化型B节点(evolved Node B,eNB,以下简称eNB)、或其他术语。存取终端可以被称为用户设备(user equipment,UE)、无线通信装置、终端、存取终端或其他术语。
图2是多重输入多重输出(Multiple Input Multiple Output,MIMO)系统200里传送器系统210(也被称为存取网络)及接收器系统250(也被称为存取终端或用户设备)的一实施例的简化方块图。在传送器系统210里,多个数据串流的讯务数据(traffic data)自数据来源212提供给传送(transmit,TX)数据处理器214。
在一实施例里,每一数据串流通过各自的传送天线来传送。传送数据处理器214基于为数据串流所选用的特定编码机制,将每一数据串流的讯务数据进行格式化、编码及交错处理,藉此提供编码数据。
每一数据串流的编码数据可通过使用正交频分复用(Orthogonal FrequencyDivision Multiple,OFDM)技术而与导引数据(pilot data)进行多任务处理。典型地,导引数据是已知方法所处理过的已知的数据型态(data pattern),且可用于接收器系统中来预估信道响应(channel response)。每一数据串流经多任务处理过的导引及编码数据接着基于为数据串流所选用的特定调变型态(例如二进制相移键控(Binary Phase ShiftKeying,BPSK)、正交相移键控Quadrature Phase Shift Keying,QPSK)、多相移键控(Multiple-Phase Shift Keying,M-PSK)或多级正交振幅调制(Multiple-QuadratureAmplitude Modulation,M-QAM))而被调变,以提供调制符号(modulation symbols)。每一数据串流的数据传送速率(data rate)、编码及调变可由处理器230所执行的指令来决定。)
所有数据串流的调制符号接着被提供至传送多重输入多重输出处理器220,以进一步处理调制符号(例如使用OFDM)。传送多重输入多重输出处理器220接着提供NT个调制符号串流给NT个传送器(TMTR)222a至222t。在一些实施例里,传送多重输入多重输出处理器220会将波束成型权重施加于数据串流的符元及传送符元的天线。
每一传送器222a至222t接收及处理各自的符元串流来提供一或多个模拟信号,并进一步调整(例如放大、过滤及升频转换)这些模拟信号,以提供适合通过多重输入多重输出通道来传送的调变信号。接着,来自传送器222a至222t的NT个调变信号分别被传送至NT个天线224a至224t。
在接收器系统250里,NR个天线252a至252r接收传送来的调变信号,并将接收到的信号各自交给接收器(RCVR)254a至254r。每一接收器254a至254r调整(例如过滤、放大或降频转换)各自接收到的信号,并将调整后的信号数字化来提供样本,并进一步处理样本,以提供对应的“已接收”符元串流。
接收(RX)数据处理器260接着基于特定接收器处理技术来接收及处理来自NR个接收器254a至254r的NR个已接收符元串流,藉此提供NT个“已侦测”符元串流。接收数据处理器260接着解调、去交错及解码每一已侦测符元串流,以还原数据串流的讯务数据。接收数据处理器260的处理与传送器系统210的传送多重输入多重输出处理器220及传送数据处理器214的处理互补。
处理器270周期性地决定使用哪个预编码矩阵(pre-coding matrix)(此部分将于后续段落说明)。处理器270会制订(formulate)包含有矩阵索引(matrix index)部分及秩值(rank value)部分的反向链路讯息。
反向链路讯息可包含多种通讯链路或接收数据串流的相关信息。反向链路讯息接着由传送数据处理器238进行处理(传送数据处理器238亦接收来自数据来源236的多个数据串流的讯务数据),由调变器280进行调变,由传送器254a至254r进行调整,并被回传至传送器系统210。
在传送器系统210里,来自接收器系统250的调变信号是由天线224a至224t进行接收,由接收器222a至222t进行调整,由解调器240进行解调以及由接收数据处理器242进行处理,藉此撷取出接收器系统250所传送的反向链路讯息。处理器230接着决定使用哪个预编码矩阵来决定波束成型权重,并处理所撷取的讯息。
请参阅图3,图3所示为本案一实施例的通讯装置的另一简化功能方块图。如图3所示,无线通信系统中的通讯装置300可用来实现图1的用户设备(或存取终端)116及122,或图1的基站(或存取网络)100,且无线通信系统较佳为长程演进技术系统。通讯装置300可包括输入装置302、输出装置304、控制电路306、中央处理单元(central processing unit,以下简称CPU)308、内存310、程序代码312以及收发器314。控制电路306通过CPU 308来执行内存310里的程序代码312,藉此控制通讯装置300的运作。通讯装置300可通过输入装置302(例如键盘或数字键)接收用户所输入的信号,且可通过输出装置304(例如屏幕或喇叭)输出影像或声音。收发器314用以接收及传送无线信号、将接收到的信号传递至控制电路306以及将控制电路306所产生的信号以无线的方式输出。无线通信系统中的通讯装置300也可以用来实现图1的存取网络100。
图4为本案一实施例的图3的程序代码312的简化方块图。在此实施例里,程序代码312包括应用层(application layer)400、第三层(Layer 3)部402以及第二层(Layer 2)部404,并耦接至第一层(Layer 1)部406。第三层部402一般是执行无线资源控制(RadioSource Control,RRC)。第二层部404一般是执行链路控制(link control)。第一层部406一般是执行物理连接(physical connections)。
自2015年3月以来,针对次世代(即5G)存取技术的3GPP标准已经释出。一般而言,次世代存取技术聚焦于下列三种使用情境来满足迫切的市场需求以及ITU-R IMT-2020所设定的更多长程需求:
-增强移动宽带(enhanced Mobile Broadband,eMBB)
-海量机器类通信(massive Machine Type Communications,mMTC)
-超高可靠性与低延迟通信(Ultra-Reliable and Low LatencyCommunications,URLLC)。
对于新无线存取技术的5G研究项目的目的是识别及开发新无线系统所需的技术元件,它们必须适用于至少100GHz以上的任何波谱频带(spectrum band)。支持高于100GHz的载波频率将对无线传播的区域造成许多挑战。当载波频率增加时,路径损失(path loss)也会增加。
基于3GPP R2-162366,在较低频带(例如小于6GHz的现有LTE频带)时,所需的小区覆盖范围可通过形成宽分支波束(wide sector beam)来提供,以传送下行链路共通信道(downlink common channels)。然而,在较高频率(远大于6GHz)上使用宽分支波束时,相同天线增益所对应的小区覆盖范围会减少。因此,为了在较高频带上提供所需的小区覆盖范围,需要更高的天线增益来补偿增加的路径损失。为了提升宽分支波束的天线增益,需使用更大的天线数组(天线元件的数量为数十至数百个)来形成更高的增益波束。
由此可知,与宽分支波束相比,高增益波束较窄,故需要多个波束来传送下行链路共通信道,藉此覆盖所需的小区区域。存取点能够同时形成的高增益波束数量受限于所使用的收发器结构的成本及复杂度。在实务上,于较高频率时,同时形成的高增益波束的数量远少于覆盖小区区域所需的全部波束数量。换句话说,存取点在任何给定的时点上所使用的波束子集合仅能够覆盖一部分小区区域。
基于3GPP R2-163716,波束成型一般而言是一种信号处理技术,使用在天线数组上以进行指向性信号的传送/接收。通过波束成型,波束可通过将天线的相位数组里的元件加以组合来形成,使特定角度上的信号经历建设性干涉,而其余经历破坏性干涉。通过使用多个天线数组,不同波束可以同时被实现。
基于R2-162709,以及如图5所示,eNB可具有多个集中或分散的收发节点(Transmission/Reception Point,TRP)。每一收发节点可形成多个波束。波束的数量以及时域/频域上的同步波束的数量取决于天线数组元件的数量以及收发节点上的射频(radiofrequency,RF)。
新无线技术(new radio,NR)的潜在机动性型态(mobility type)可以列为:
-内部收发节点机动性(Intra-TRP mobility)
-跨收发节点机动性(Inter-TRP mobility)
-跨新无线技术eNB机动性(Inter-NR eNB mobility)。
基于3GPP R2-162762,纯粹依赖波束成型而在高频操作的系统的可靠性可能会面临挑战,因为其覆盖范围可能对时间及空间变化很敏感。因此,窄链路的信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)会比LTE在此情形下下降得更快。
在存取节点上使用具有数百个元件的天线数组,每一节点可形成具有数十或数百个候选波束的标准固定波束族(grid-of-beams,GOB)覆盖范围型态。此种矩阵的单一波束的覆盖区域可能很小,在某些情况下,宽度低到几十米的等级。因此,目前服务波束(serving beam)区域以外的信道质量的劣化将比宽区域覆盖范围的情形(例如LTE所提供者)更快。
基于3GPP R3-160947,图6及图7的情境可考虑由新无线存取技术(New RadioAccess Technology,NR)的无线网络架构来支持。
基于3GPP R2-164306,用于独立新无线技术(NR)的小区布局所相关的下列脚本收录于此以供研讨:
●纯大型小区配置(Macro cell only deployment)
●异质性配置(Heterogeneous deployment)
●纯小型小区配置(Small cell only deployment)。
基于3GPP RAN2#94会议记录,一个新无线技术的eNB对应一或多个收发节点。网络控制机动性的二层级如下所示:
●在“小区”层级驱动的无线资源控制(RRC driven at“cell”level)。
●零或最小值的无线资源控制参与(Zero/Minimum RRC involvement){例如,媒体接入控制(MAC)/物理层(PHY)}。
基于3GPP R2-162210,下列二层级机动性处理原则可能会保留至5G:
A)小区层级机动性(Cell level mobility)
a.闲置下的小区选择/小区重新选择,于连接(CONN)时进行换手(或称信号换手,handover)
b.连接状态(CONN)时由无线资源控制处理
B)波束层级管理
a.物理层(L1)处理适当的收发节点,以用于用户设备及最佳波束方向。
5G系统被预期会大量依赖“基于波束的机动性(beam based mobility)”来处理用户设备的机动性,及常规的基于换手的用户设备机动性。例如多重输入多重输出、去程技术(fronthauling)、云端无线存取网络(Cloud RAN,C-RAN)以及网络功能虚拟化(NetworkFunction Virtualization,NFV)等技术,将使“5G节点”所控制的覆盖范围增长,藉此增加波束层级管理的可能性以及减少小区层级机动性的需求。一个5G节点的覆盖范围内的所有机动性理论上可以基于波束层级管理来处理,可使得换手仅用于移动至另一个5G节点的覆盖范围时。
图8至图11显示5G新无线技术(5G NR)的小区概念的一些范例。图8主要是显示具有单一收发节点小区的配置。图9主要是显示具有多个收发节点小区的配置。图10主要是显示包含5G节点及具有多个收发节点的一个5G小区。图11主要是显示LTE小区及新无线技术小区之间的比较。
除了基于无线资源管理((Radio Resource Management,RRM)量测的换手以外,5G用户设备需使服务波束能够在受到波束质量波动(beam quality fluctuation)或用户设备内部小区机动性(UE intra-cell mobility)影响时维持5G连接性(connectivity)。为此,5G节点B及用户设备需正确地追踪及改变服务波束(以下称为波束追踪)。
基于3GPP R2-164270,新RAT的设计必须与II期规范及以后的(规范)前向兼容。考虑到前向兼容性并且避免重复的讨论,并不希望独立的NR和用于紧密互通的NR具有不同的低层设计,优选地,独立的NR的低层应当与用于紧密互通的NR的低层相同。
下列术语及假设将在后续段落中使用。
●基站(BS):新无线技术里的网络中央单元,用以控制与一或多个小区有关的一或多个收发节点。基站与(一或多个)收发节点之间是通过去程技术来进行通讯。基站亦可以视为中央单元(central unit,CU)、eNB或B节点。
●收发节点(TRP):收发节点提供网络覆盖范围并直接与用户设备进行通讯。收发节点也可以视为分散单元(distributed unit,DU)。
●小区(Cell):小区是由一或多个相关的收发节点所构成。换句话说,小区的覆盖范围是由所有相关的收发节点的覆盖范围所构成。一个小区是由一个基站来控制。小区亦可以视为收发节点群组(TRP Group,TRPG)。
●波束扫掠(Beam sweeping):为了覆盖所有可能的传送或接收方向,因此需要多个波束。由于这些波束不太可能同时产生,波束扫掠是指在一个时间间隔内所产生的这些波束的子集合,并在其他(一或多个)时间间隔内改变所产生的(一或多个)波束,也就是在时域上改变波束。因此,在多个时间间隔后,所有可能的方向均可被覆盖。
●波束扫掠数量(Beam sweeping number):其是指在所有可能的传送或接收方向上完成一次扫掠波束所需的时间间隔数量。换句话说,施用波束扫掠的信令(signaling)可能会在一个时间周期内传送“波束扫掠数量”次,例如,信令是在时间周期内的不同时间点,通过(至少一部分)不同波束来进行传送。
网络端的下述假设将在下文中使用:
●使用波束成型的新无线技术可以是独立的,即,用户设备可直接驻留或连接新无线技术(NR)。
■使用波束成型的新无线技术及不使用的波束成型的新无线技术是可以共存,例如,存在于不同小区。
●若可以且有益处的话,收发节点会在数据及控制信令的传送及接收上使用波束成型。
■收发节点(TRP)同时产生的波束数量取决于收发节点的能力,例如相同小区里不同收发节点同时产生的波束最大数量可能相同,而不同小区里的收发节点同时产生的波束最大数量可能不同。
■波束扫掠是必要的,例如用来在每个方向上提供控制信令。
●相同小区内的收发节点的下行链路时序是同步的。
●网络端的无线资源控制层位于基站。
●收发节点需支持具备用户设备波束成型(UE beamforming)及不具备用户波束成型的用户设备,例如因应不同用户设备的能力或用户设备版本(releases)。
用户设备端的下述假设将在下文中使用:
●若可以且有益处的话,用户设备可执行用于接收或传送的波束成型。
■用户设备同时产生的波束数量取决于用户设备的能力,例如有可能产生超过一个波束。
■用户设备所产生的(一或多个)波束比eNB所产生的(一或多个)波束宽。
■用户数据通常不需要用于传送或接收的波束扫掠,但其他信令可能需要它,例如用来执行量测。
■并非每一用户设备都支持用户设备波束成型,例如,因为用户设备能力或新无线技术在首个(几个)版本时尚未支持用户设备波束成型。
●一个用户设备可能被同一小区的一或多个收发节点的多个波束服务。
■相同或不同的下行链路(Down Link,DL)数据可根据分集(diversity)或增益流量(throughput)增益,通过不同服务波束,在相同无线资源上传送。
●在此提供至少两种用户设备(无线资源控制)状态:连接状态(或称为活动状态)以及非连接状态(或称为待用状态或闲置状态)。
基于3GPP R2-162251,为了在eNB端及用户设备端皆使用波束成型,特别地,eNB端的波束成型的天线考虑为15至30dBi,而用户设备的天线增益考虑为3至20dBi。3GPP R2-162251的图3是重绘于本案的图12,以显示波束成型所产生的增益补偿。
从信号干扰噪声比来看,尖锐的波束成型减少了邻近干扰(即在下行链路的例子里,邻近eNB或连接至邻近eNB的其他用户设备)的干扰能量。在传送端(Transmission,TX)波束成型的例子里,仅有来自其他传送端且目前波束以相同方向指向接收端(Reception,RX)的干扰会形成“有效”的干涉。“有效”的干涉意指干扰能量高于有效噪声能量。在接收端(RX)波束成型的例子里,仅有来自其他传送端且波束方向与用户设备目前接收波束方向相同的干扰会形成有效的干涉。3GPP R2-162251的图4被重绘于本案的图13,以显示波束成型所产生的弱化干扰。
当用户设备启动后,用户设备必须寻找小区来驻留。接着,用户设备可自行启动其与网络之间的连接建立(connection establishment),以进行注册或数据传送。例如为了要传送下行链路数据给用户设备,网络也可经由呼叫来要求用户设备启动与网络之间的连接建立。
初始存取的范例可具有下列步骤:
-小区搜寻(Cell search)–可能的载波频率被扫描以寻找出小区。小区利用波束扫掠来提供信令(例如同步信号)给用户设备,以让用户设备识别小区。相同小区的不同收发节点可在相同的(一或多个)时间间隔提供相同的信令。
-广播系统信息获取(Broadcasted system information acquisition)-用户设备从广播系统信息中获取必要参数(例如与小区选择有关的参数)。广播系统信息是通过波束扫掠来提供。
-小区量测及选择(Cell measurement&selection)-当用户设备找出可能可以驻留的小区后,用户设备必须量测小区的无线条件(radio condition)以及基于量测结果决定是否要驻留于小区。小区通过波束扫掠提供用于量测的信令(例如参考信号)。相同小区的不同收发节点可在相同(一或多个)时间间隔提供信令。
-呼叫(Paging)-当网络欲传送用户设备特定信令/数据(UE specificsignaling/data)且用户设备处于非连接状态时,可能会需要呼叫。当用户设备收到呼叫,用户设备必须启动连接建立以进入连接状态来进行接收。小区可通过波束扫掠来提供呼叫。
-連接建立(Connection establishment)-用户设备经由连接建立程序来建立与基站之间的连结。在程序期间,用户设备需执行随机存取程序(random accessprocedure),以让网络注意用户设备以及提供用于上行链路传送的资源给用户设备。
图14显示初始存取的范例流程图。
3GPP R1-165364建议将共通控制平面功能性(common control planefunctionality)集中扫掠至特定子讯框,特定子讯框称为扫掠子讯框。在扫掠子讯框传送的共通控制信令包括同步信号(下行链路)、参考信号(下行链路)、系统信息(下行链路)、随机存取信道(上行链路)等。3GPP R1-165364的图1被重绘于本案的图15,以显示扫掠子讯框的原理。
下行链路扫掠的一个主要使用例子是下行链路探索信令(downlink discoverysignaling),其包含了例如用于小区搜寻的信号、时间及频率同步获取(time andfrequency synchronization acquisition)、必要系统信息信令以及小区/波束量测(例如无线资源管理量测)。
对于上行链路物理随机存取信道(Physical Random Access Channel,PRACH,以下简称PRACH)而言,高层级的概念是实现基站的(一或多个)波束互惠(reciprocity)以及当基站正使用朝向传送端用户设备且具有高数组增益的(一或多个)波束来进行接收时,让用户设备可以传送PRACH前置符元(preamble)。这表示PRACH资源会与周期性地通过下行链路探索信令来进行推播(advertised)的基站波束有关,其中下行链路探索信令是传达波束特定参考信号(beam specific reference signals)。3GPP R1-165364的图2是重绘于本案的图16,以显示基站波束与PRACH资源之间的关联性。
由于高增益波束是窄的,并且可形成的并行的高增益波束的数量取决于所使用的收发器架构的成本和复杂性,需要进行多次波束扫掠,如波束扫掠数量,以覆盖传送或接收的所有可能的方向。例如,在图17中,TRP需要3个时间间隔来覆盖所有方向,并且TRP在每个时间间隔产生4个波束。
需要通过波束扫掠覆盖整个小区覆盖范围的用于传送或接收的信令可以包括同步信号、参考信号、系统信息、呼叫(paging)、启动随机存取程序的信号、随机存取程序信号(例如,随机接入前导、随机接入响应、争议解决方案)、用于下行链路(DL)/上行链路(UL)调度的信号等等。对于下行链路信令而言,波束扫掠由TRP执行以用于传送下行链路信令或由用户设备(UE)执行以用于接收下行链路信令。对于上行链路信令而言,波束扫掠由UE执行以用于传送上行链路信令或由TRP执行以用于接收上行链路信令。
基于小区或TRP的波束扫掠数量和一些其它可能的参数,接入小区或连接到TRP的UE可以理解TRP正在传送或接收信令的时间。如果UE不知道波束扫掠数量,那么UE不知道是否在特定时间间隔内接收或传送信令。例如,由于UE不会知道信令到底是网络不传送还是由于无线电状况不良而未能接收到,当TRP不传送信令时,UE会在时间间隔内保持测量参考信号或监测呼叫。或者当TRP不接收信令时,UE会在时间间隔内持续传送用于随机存取程序的信号。从而导致功耗的增加,并且测量结果的推导可能不正确(例如,并不反映实际的无线电状况)。
一种可能的方式是固定信令的波束扫掠数量。然而,波束扫掠数量取决于网络设备的性能。固定波束扫掠数量将限制网络供应商的实施并且限制调度的灵活性。或者,UE应当知道TRP或小区的波束成型能力。
可以考虑向UE指示波束扫掠数量的方法。指示波束扫掠数量的方式可以是显式的或隐式的。波束扫掠数量可以由以下信令中的一个或多个信令指示:(i)同步信号,(ii)参考信号,(iii)系统信息,或(iv)呼叫。系统信息,例如主信息块(MIB)或主系统信息,被广播。波束扫掠数量可以应用于下行链路或上行链路中需要波束扫掠的一些或全部信号/信令。
对于隐式的指示来说,信令(例如,同步信号或参考信号)不同的传送模式可对应不同的波束扫掠数量来定义。可以通过不同的传送时间或频率资源来区分该些模式。然后,UE可以通过检测TRP(或小区)使用了哪个模式来知道波束扫掠数量。对于显式的指示来说,可以从包括在信令中的信息来获得波束扫掠数量。需要N个比特来信号传送2N个可能的值。
在UE获取波束扫掠数量之前,如果UE需要获取应用波束扫掠处的信令,那么UE可以假设用于信令的默认的波束扫掠数量。例如,假设波束扫掠数量由系统信息指示。如果UE在获取系统信息之前需要接收参考信号,则UE基于默认的波束扫掠数量接收参考信号。此外,UE在获取了波束扫掠数量之后,基于由系统信息指示的波束扫掠数量来接收信令。
另外一方面,如果假设不同的RAT之间或使用波束扫掠的小区和不使用波束扫掠的小区之间形成互通(例如,经由双连接的互通),则UE可以连接到主小区(例如,LTE小区或不使用波束扫掠的小区),并且同时连接到一个或多个辅小区。辅小区的波束扫掠数量可以通过主小区来指示,例如,辅小区的波束扫掠数量被包括在将辅小区添加为UE的服务小区的配置中。然后,在连接到小区之前,UE可以知道小区的波束扫掠数量。
另一方面,由于是否需要波束扫掠(例如,较低频带中的小区也可以使用波束成型或波束扫掠来增加覆盖范围,或者数字波束成型不需要波束扫掠)取决于网络实现,UE需要知道TRP或小区是否使用波束扫掠以确定接收或传送的时间。类似地,UE需要知道TRP或小区是否使用波束成型。
上述方法可以明确或隐含地指示TRP或小区是否使用波束扫掠。类似地,上述方法可以明确或隐含地指示TRP或小区是否使用波束成型。或者,可以使用波束扫掠数量来告知UE小区或TRP是否使用了波束扫掠。类似地,可以使用波束扫掠数量来告知UE小区或TRP是否使用了波束成型。例如,不存在波束扫掠数量信息或者波束扫掠数量等于零或一可以用来表示未使用波束扫掠。类似地,不存在波束扫掠数量信息或波束扫掠数量等于零或一可以用来表示未使用波束成型。
从UE的角度来看,波束扫掠数量更像是指示时域中的信令传送的规模等级(scaling level)的标度数(scaling number)。传送的波束扫掠数量可被视为UE在一时间段内监测(或传送)特定信号所需的时间间隔的数量。UE(至少)基于波束扫掠数量来确定需多少个时间间隔以及在哪些个时间间隔来监测(或传送)特定信号。该些时间间隔可以是连续的或者交错的。还可以向UE提供其它参数以确定上述内容。例如,如果每x个传送时间间隔(TTI)传送呼叫并且传送的波束扫掠数量为y,则UE在UE的呼叫过程中每x个传送时间间隔监测y个传送时间间隔的呼叫。
此外,由于网络是否支持UE波束成型并且UE会否使用UE波束成型以用于传送或接收是取决于网络实现,所以UE还需要知道TRP或小区是否支持或启用UE波束成型以决定用于接收或传送的时间。上述方法可以明确或隐含地指示TRP或小区是否支持或启用UE波束成型。UE还需要知道UE同时生成的波束的数量。上述方法可以明确或隐含地指示UE生成的波束的数量。
在具有多个TRP的小区中(其中每个TRP使用多个波束进行操作),小区中的所有TRP在波束成型方面并非都具有相同的性能(例如,波束总数、可同时生成的最大波束数、最小波束扫掠数量等)。如以上所述,可通过波束扫掠来传送小区的信号以覆盖整个小区覆盖范围。信号可包括同步信号、参考信号、系统信息、或呼叫。如果TRP可同时生成的波束的数量小于TRP中的波束总数,并且如果小区的至少两个TRP具有不同的波束总数,则小区中的所有TRP间享有相同的波束扫掠数量是有利的,从而使得小区的每一个TRP可以以相同的波束扫掠数量以波束扫掠方式在多个时间间隔向小区中的UE传送同一信号。
保持同一小区内的TRP间的波束扫掠数量一致可以减少波束扫掠数量的信令开销。如果小区中的TRP的波束扫掠数量一致或小于向UE指示的波束扫掠数量,则小区不需要向不同的TRP传送不同的波束扫掠数量,或者UE不需要在改变小区内的TRP时重新获得波束扫掠数量。换句话说,由小区中的TRP执行的实际波束扫掠数量应该小于或等于指示的与小区相关的波束扫掠数量。此外,由于不同小区中的波束扫掠数量可以不同,仍可以实现一定程度的灵活性。
波束扫掠数量可以是对传送或接收的所有方向上的波束扫掠一次所需的时间间隔的数量。可以将波束扫掠数量指示给即将由小区服务的UE。由TRP执行的实际的波束扫掠数量不应当大于(例如,可以小于或等于)指示的波束扫掠数量。TRP可在多个时间间隔产生相同数量的波束以传送信号。
上述信息(例如,波束扫掠数量、网络波束扫掠的使用、UE波束成型的启用等等)可以由同一信令或不同的信令来指示。执行波束扫掠以提供小区或TRP的全部覆盖。基于由TRP或小区的其它TRP可同时生成的最大的波束数量以及TRP或小区的其它TRP中的波束总数来确定波束扫掠数量。时间间隔可以是时域上的单位(例如,传送时间间隔、子讯框或符号)。
图18是根据一个实施例的从网络角度进行描述的流程图1800。在步骤1805中,网络形成包括至少两个网络节点的小区,其中由小区的每个网络节点使用由相同的波束扫掠数量限定的波束扫掠来传送第一信号,并且其中两个网络节点具有不同的波束成型能力。
返回参考图3和图4,设备300包括储存在存储器310中的程序代码312。CPU308可以执行程序代码312以形成包括至少两个网络节点的小区,由小区的每个网络节点使用由相同的波束扫掠数量限定的波束扫掠来传送第一信号,并且其中两个网络节点具有不同的波束成型能力。此外,CPU308可以执行程序代码312以执行本文中所描述的所有上述动作和步骤。
图19是根据一个实施例的从网络角度描述的流程图1900。在步骤1905中,网络形成包括至少两个网络节点的小区,其中由小区的每个网络节点传送的第二信号来指示相同的波束扫掠数量,并且其中两个网络节点具有不同的波束成型能力。
返回参考图3和图4,设备300包括储存在存储器310中的程序代码312。CPU 308可以执行程序代码312以形成包括至少两个网络节点的小区,其中由小区的每个网络节点传送的第二信号来指示相同的波束扫掠数量,并且其中两个网络节点具有不同的波束成型能力。此外,CPU308可以执行程序代码312以执行本文所描述的所有上述动作和步骤。
图20是根据一个实施例的从网络角度来描述的流程图2000。在步骤2005中,网络自小区的每个网络节点传送第一信号,其中第一信号是由相同的波束扫掠数量限定的波束扫掠来传送,并且小区的至少两个网络节点具有不同的波束成型能力。
返回参考图3和图4,设备300包括储存在存储器310中的程序代码312。CPU308可以执行程序代码312以自小区的每个网络节点传送第一信号,其中第一信号是由相同的波束扫掠数量限定的波束扫掠来传送。并且小区的至少两个网络节点具有不同的波束成型能力。此外,CPU308可以执行程序代码312以执行本文所描述的所有上述动作和步骤。
图21是根据一个实施例的从UE的角度描述的流程图2100。步骤2105包括从小区接收指示波束扫掠数量的第二信号,其中在小区中存在多个网络节点,并且小区的至少两个网络节点具有不同的波束成型能力。步骤2110包括基于波束扫掠数量在多个时间间隔从小区的任一网络节点接收第一信号。由小区的任一网络节点使用波束扫掠来传送第一信号。
返回参考图3和图4,在UE的一个实施例中,设备300包括储存在存储器310中的程序代码312。CPU308可以执行程序代码312,以使UE能够(i)从小区接收指示波束扫掠数量的第二信号,其中小区中存在多个网络节点,并且小区的至少两个网络节点具有不同的波束成型能力,以及(ii)基于波束扫掠数量在多个时间间隔从小区的任一网络节点接收第一信号。此外,CPU308可以执行程序代码312以执行本文所描述的所有上述动作和步骤。
图22是根据一个实施例的从网络的角度描述的流程图2200。在步骤2205中,网络自小区的每个网络节点传送指示相同的波束扫掠数量的第二信号,其中小区中存在多个网络节点,并且小区的至少两个网络节点具有不同的波束成型能力。
返回参考图3和图4,设备300包括储存在存储器310中的程序代码312。CPU308可以执行程序代码312以自小区的每个网络节点传送指示相同的波束扫掠数量的第二信号,其中小区中存在多个网络节点并且小区的至少两个网络节点具有不同的波束成型能力。此外,CPU308可以执行程序代码312以执行本文所描述的所有上述动作和步骤。
图23是根据一个实施例的从网络节点的角度描述的流程图2300。在步骤2305中,小区的网络节点使用由波束扫掠数量限定的波束扫掠来传送第一信号,其中波束扫掠数量对于小区的每个TRP是相同的,并且小区的第一网络节点和第二网络节点具有不同的波束成型能力。返回参考图3和图4,设备300包括储存在存储器310中的程序代码312。CPU308可以执行程序代码312以使用由波束扫掠数量限定的波束扫掠来传送第一信号,其中波束扫掠数量对于小区的每个TRP是相同的,并且小区的第一网络节点和第二网络节点具有不同的波束成型能力。此外,CPU308可以执行程序代码312以执行本文所描述的所有上述动作和步骤。
图24是根据一个实施例的从网络节点的角度描述的流程图2400。在步骤2405中,小区的网络节点传送指示波束扫掠数量的第二信号,其中波束扫掠数量与小区的每个网络节点所指示的相同,小区的第一网络节点和第二网络节点具有不同的波束成型能力。
参考图3和图4,设备300包括储存在存储器310中的程序代码312。CPU308可以执行程序代码312以传送指示波束扫掠数量的第二信号,其中波束扫掠数量与小区的每个网络节点所指示的相同,并且小区的第一网络节点和第二网络节点具有不同的波束成型能力。此外,CPU308可以执行程序代码312以执行本文所描述的所有上述动作和步骤。
在图18至图24中公开的实施例的上下文中,在一个实施例中,网络节点(例如,第一网络节点或第二网络节点)可以使用多个波束进行操作。小区的每个网络节点可以使用多个波束进行操作。网络节点可同时生成的波束的数量小于网络节点中的波束总数。
在一个实施例中,波束成型能力可以包括波束总数、可同时生成的波束的数量,或波束扫掠数量。可由网络节点生成相同数量的波束以用于传送第一信号或第二信号,或由小区的每个网络节点生成相同数量的波束以传送第一信号或第二信号。
在一个实施例中,可以使用波束扫掠在多个时间间隔传送第一信号或第二信号。在一个实施例中,第一信号或第二信号可以是同步信号。或者,第一信号或第二信号可以是参考信号。或者,第一信号或第二信号可以是发现信号(discovery signal)。或者,第一信号或第二信号可以包括系统信息。或者,第一信号或第二信号可以包括呼叫。第一信号或第二信号可以经由信道传送。在一个实施例中,信道可以用于传送同步信号。或者,信道可用于传送参考信号。或者,信道可用于传送发现信号。或者,信道可用于传送系统信息。或者,信道可以用于传送呼叫。
在一个实施例中,时间间隔可以是传送时间间隔(TTI)、子讯框、符号或时域上的单元。
在一个实施例中,可以执行波束扫掠以提供小区或网络节点的全覆盖。波束扫掠数量可以是用于覆盖小区或网络节点的整个覆盖范围的时间间隔的数量,或者用于覆盖小区或网络节点的整个覆盖范围的波束子集的数量。可以基于可由网络节点同时生成的波束数量和网络节点中的波束总数来确定波束扫掠数量,或者可以基于由小区的其它网络节点同时生成的波束数量以及小区的其它网络节点中的波束总数来确定波束扫掠数量。将波束扫掠数量指示给即将由小区服务的UE。可同时生成的波束的数量可以是可在同一时间间隔中生成的波束的数量。
在一个实施例中,由波束扫掠数量限定的波束扫掠包括在一段时间内执行波束扫掠的次数不大于波束扫掠数量、在一段时间内执行波束扫掠的次数等于波束扫掠数量、或者在一段时间内执行波束扫掠的次数小于波束扫掠数量。
在一个实施例中,网络节点不能在一个时间间隔中使用多个波束来传送信号以覆盖网络节点的整个覆盖范围。此外,网络节点可以是TRP、基站(BS)或5G节点。信号包括公共信号(common signal)。
在一个实施例中,使用波束扫掠来传送第一信号是在一段时间内在不同的时间间隔使用不同的波束子集来传送同一第一信号。
基于上述方法或实施例,可以减少小区内波束扫掠数量的信令开销,同时仍可以使用不同数量的波束扫掠。
本案的多种实施例已于前文中进行说明。很明显地,这些说明可以用广泛的各种方式来呈现,且已揭示的任何特定架构或功能皆仅为代表性的情况。根据本文的说明,任何本领域技术人员应理解在本文所揭露的实施例皆可独立利用其他任何实施例来实现,或以多种方式结合两种或更多实施例。举例说明,可依照前文所提到任何方式以某种装置或某种方法实现。此外,装置的实现或方式的实施可用其他架构、功能性或架构及功能性来加入或取代前文所述的一或多种实施例。作为以上观点的范例,在某些情况下,并行的信道(concurrent channels)可基于脉冲重复频率(pulse repetition frequencies)来建立。又在某些实施例,并行的信道也可基于脉冲位置或位置的偏移来建立。在某些实施例,并行的信道可基于时间跳跃序列(time hopping sequences)来建立。在某些实施例,并行的信道可基于脉冲重复频率、脉冲位置或位置偏移以及时间跳跃序列来建立。
本领域技术人员可了解信息及信号可用多种不同技术及技巧来表示。举例来说,前文中所有可能引用到的数据、指令、命令、信息、信号、位、符元、以及芯片可以由电压、电流、电磁波、磁场或磁粒、光场或光粒、或以上任何组合来表示。
本领域技术人员能进一步地了解上述实施例所描述的多种说明性质的逻辑区块、模块、处理器、手段、电路以及演算步骤,可实施成电子硬件(例如,使用来源编码或其他技术来设计的数字实施、模拟实施或两者的组合)、各种形式的程序或结合指令的设计编码(在文中可能为了方便而称为“软件”或“软件模块”)、或两者的组合。为清楚地说明硬件与软件间的可互换性,多种说明性质的元件、方块、模块、电路及步骤,已在前文中主要依据它们的功能性而加以描述。这种功能性到底是实现成硬件或软件,取决于加诸在整体系统上的特别应用与设计限制。本领域技术人员可为每个特定应用以各种方式实现所述功能性,但此实现的决定不应被解读为超出本文所揭露的范围。
此外,上述实施例所描述的多种说明性质的逻辑区块、模块及电路可实施于集成电路(integrated circuit,IC)、存取终端或存取点中,或由集成电路、存取终端或存取点来执行。集成电路可包括一般用途的处理器、数字信号处理器(digital signalprocessor,DSP)、特定应用集成电路(application specific integrated circuit,ASIC)、现场可程序化门阵列(field programmable gate array,FPGA)或其他可程序化的逻辑设备、离散闸(discrete gate)或晶体管逻辑(transistor logic)、离散硬件元件、电子元件、光学元件、机械元件、或以上任何组合,设计成用以执行所描述的功能者,并可执行储存于集成电路内、集成电路外或两者皆有的编码或指令。一般用途的处理器可能是微处理器,但处理器也可能是任何常规处理器、控制器、微控制器、或状态机。处理器亦可实现为电脑装置的组合,例如:DSP与微处理器的组合、多个微处理器、一或多个微处理器连接DSP核心、或任何其他这种配置。
需理解的是,在所揭露的任何处理中的步骤的任何特定顺序或阶层,皆仅是范例式的举例。在处理中的步骤的任何特定顺序或阶层皆可维持在本案的范围内重新安排。相应的方法请求项是以范例的顺序来呈现多种步骤的元件,其不应被所呈现的特定顺序或阶层所限制。
本案的上述实施例所描述的方法或算法的步骤,可以直接实现在硬件、处理器所执行的软件或两者的组合中。软件模块(例如包括可执行的指令及相关数据)和其他数据可储存于数据内存中,例如随机存取内存(RAM)、闪存(flash memory)、只读存储器(ROM)、可抹除可程序化只读存储器(EPROM)、电子可抹除可程序化只读存储器(EEPROM)、缓存器、硬盘、可移除式磁盘、光盘只读存储器(CD-ROM)或此领域中已知的任何其他电脑可读取储存媒介的型式。举例的储存媒介可耦接至机器,例如电脑/处理器(为了方便说明,在此视为“处理器”),此处理器可从储存媒介读取出信息(如编码),并可将信息写入至储存媒介。举例的储存媒介可整合至处理器。处理器和储存媒介可存在于特定应用集成电路(ASIC)中。特定应用集成电路可存在于用户设备中。或者,处理器和储存媒介可以独立元件存在于用户设备中。此外,在一些实施例里,任何适合的电脑程序产品可包括具有编码的电脑可读取媒介,此编码与本案的一或多个实施例有关。而在一些实施例里,电脑程序产品可以包括封装材料。
虽然本案的技术内容已经以一些实施例来说明,需理解的是,本案可进一步修饰。本申请意图涵盖在广义上依照本案的原理,及包括本案的延伸,基于本案相关领域已知或习惯的实务所产生的本案的任何变化、使用或转用。
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视权利要求书所界定者为准。

Claims (20)

1.一种用户设备的方法,其特征在于,所述方法包括:
从小区接收指示波束扫掠数量的第二信号,其中在所述小区中存在多个网络节点,并且所述小区的至少两个网络节点具有不同的波束成型能力,并且所述波束扫掠数量包括用于覆盖所述小区或所述网络节点的整个覆盖范围的时间间隔的数量;以及
基于所述波束扫掠数量在多个时间间隔从所述小区的任一网络节点接收第一信号。
2.根据权利要求1所述的方法,其特征在于,所述第一信号是由所述小区的任一网络节点使用由所述波束扫掠数量限定的波束扫掠来传送。
3.根据权利要求1所述的方法,其特征在于,所述小区的网络节点的波束成型能力包括波束总数、同时生成的波束的数量和波束扫掠数量中的至少一个。
4.根据权利要求1所述的方法,其特征在于,所述第一信号包括同步信号、系统信息或呼叫。
5.根据权利要求1所述的方法,其特征在于,所述第二信号包括系统信息。
6.一种网络方法,其特征在于,所述方法包括:
自小区的每个网络节点传送指示相同的波束扫掠数量的第二信号,其中在所述小区中存在多个网络节点,并且所述小区的至少两个网络节点具有不同的波束成型能力,并且所述波束扫掠数量包括用于覆盖所述小区或所述网络节点的整个覆盖范围的时间间隔的数量。
7.根据权利要求6所述的网络方法,其特征在于,所述小区的网络节点的波束成型能力包括波束总数、同时生成的波束的数量和波束扫掠数量中的至少一个。
8.根据权利要求6所述的网络方法,其特征在于,所述第二信号包括系统信息。
9.根据权利要求6所述的网络方法,其特征在于,所述小区的每个网络节点使用由所述波束扫掠数量限定的波束扫掠来传送第一信号。
10.根据权利要求9所述的网络方法,其特征在于,所述第一信号包括同步信号、系统信息或呼叫。
11.一种用户设备,其特征在于,所述用户设备包括:
控制电路;
处理器,安装在所述控制电路中;以及
存储器,安装在所述控制电路中并且可操作地耦接所述处理器;
其中所述处理器被配置为执行储存在所述存储器中的程序代码以从小区接收指示波束扫掠数量的第二信号,其中在所述小区中存在多个网络节点并且所述小区的至少两个网络节点具有不同的波束成型能力,并且所述波束扫掠数量包括用于覆盖所述小区或所述网络节点的整个覆盖范围的时间间隔的数量;以及基于所述波束扫掠数量在多个时间间隔从所述小区的任一网络节点接收第一信号。
12.根据权利要求11所述的用户设备,其特征在于,所述第一信号是由所述小区的任一网络节点使用由所述波束扫掠数量限定的波束扫掠来传送。
13.根据权利要求11所述的用户设备,其特征在于,所述小区的网络节点的波束成型能力包括波束总数、同时生成的波束的数量和波束扫掠数量中的至少一个。
14.根据权利要求11所述的用户设备,其特征在于,所述第一信号包括同步信号、系统信息或呼叫。
15.根据权利要求11所述的用户设备,其特征在于,所述第二信号包括系统信息。
16.一种网络,其特征在于,所述网络包括:
控制电路;
处理器,安装在所述控制电路中;以及
存储器,安装在所述控制电路中并且可操作地耦接所述处理器;
其中所述处理器被配置为执行储存在所述存储器中的程序代码以自小区的每个网络节点传送指示相同波束扫掠数量的第二信号,其中在所述小区中存在多个网络节点并且所述小区的至少两个网络节点具有不同的波束成型能力,并且所述波束扫掠数量包括用于覆盖所述小区或所述网络节点的整个覆盖范围的时间间隔的数量。
17.根据权利要求16所述的网络,其特征在于,所述小区的网络节点的波束成型能力包括波束总数、同时生成的波束的数量和波束扫掠数量中的至少一个。
18.根据权利要求16所述的网络,其特征在于,所述第二信号包括系统信息。
19.根据权利要求16所述的网络,其特征在于,所述小区的每个网络节点使用由所述波束扫掠数量限定的波束扫掠来传送第一信号。
20.根据权利要求19所述的网络,其特征在于,所述第一信号包括同步信号、系统信息或呼叫。
CN201710541890.0A 2016-07-06 2017-07-05 无线通信系统中处理波束成型的方法和装置 Active CN107592148B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662359002P 2016-07-06 2016-07-06
US62/359,002 2016-07-06

Publications (2)

Publication Number Publication Date
CN107592148A CN107592148A (zh) 2018-01-16
CN107592148B true CN107592148B (zh) 2020-10-23

Family

ID=59337457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710541890.0A Active CN107592148B (zh) 2016-07-06 2017-07-05 无线通信系统中处理波束成型的方法和装置

Country Status (7)

Country Link
US (1) US10237755B2 (zh)
EP (1) EP3267594B1 (zh)
JP (1) JP6622259B2 (zh)
KR (1) KR101967051B1 (zh)
CN (1) CN107592148B (zh)
ES (1) ES3008103T3 (zh)
TW (1) TWI662804B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI752065B (zh) * 2016-07-28 2022-01-11 華碩電腦股份有限公司 在無線通訊系統中處理使用者設備波束成形的方法和設備
US10057881B2 (en) * 2016-09-15 2018-08-21 Futurewei Technologies, Inc. Scheduling of paging notifications supporting beam sweeping
EP3528530B1 (en) 2016-10-13 2021-09-08 Huawei Technologies Co., Ltd. Measurement reporting method and related device
US11044694B2 (en) * 2019-09-13 2021-06-22 Loon Llc User equipment location determination using different coverage types
TWI729566B (zh) 2019-11-15 2021-06-01 財團法人工業技術研究院 協調波束掃瞄排程的方法及智能控制器
CN111432332B (zh) * 2020-03-31 2021-04-27 广东中安金狮科创有限公司 行人交通安全信息的快速传输方法及系统
WO2023014547A1 (en) * 2021-08-05 2023-02-09 Qualcomm Incorporated Assistance information for beam mapping across different remote radio heads
US12068780B2 (en) * 2022-05-25 2024-08-20 Qualcomm Incorporated Beam management using an optical beacon

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6233466B1 (en) 1998-12-14 2001-05-15 Metawave Communications Corporation Downlink beamforming using beam sweeping and subscriber feedback
US9516460B2 (en) * 2008-03-28 2016-12-06 Securitypoint Holdings Llc Systems and methods for security checkpoint condition information and sharing
TWI595762B (zh) * 2011-12-08 2017-08-11 內數位專利控股公司 毫米波通訊系統方法及裝置
US9491755B2 (en) * 2012-03-09 2016-11-08 Samsung Electronics Co., Ltd. Methods and apparatus to transmit and receive synchronization signals in a mobile communication system
KR102026256B1 (ko) * 2013-05-21 2019-11-04 삼성전자주식회사 빔포밍 시스템에서의 rach 신호 송수신 기법
KR102180959B1 (ko) * 2013-12-09 2020-11-19 삼성전자주식회사 무선통신 시스템의 빔 스위핑 패턴 조정 방법 및 장치
US10512008B2 (en) * 2014-01-17 2019-12-17 Idac Holdings, Inc. 3GPP MMW access link system architecture
US9814068B2 (en) * 2014-03-25 2017-11-07 Telefonaktiebolaget Lm Ericsson (Publ) System and method for beam-based physical random-access
US10547418B2 (en) * 2014-06-10 2020-01-28 Qualcomm Incorporated Coordinated operations of millimeter wavelength wireless access networks
US20160099761A1 (en) * 2014-10-07 2016-04-07 Mediatek Inc. Beam Synchronization Methods for Beamforming Wireless Networks
US20160135090A1 (en) * 2014-11-07 2016-05-12 Qualcomm Incorporated Millimeter wavelength base station beamforming technique advertising and efficient user equipment transmission strategy
WO2016210302A1 (en) 2015-06-25 2016-12-29 Interdigital Patent Holdings, Inc. Methods and apparatus for initial cell search and selection using beamforming
US11088747B2 (en) * 2016-04-13 2021-08-10 Qualcomm Incorporated System and method for beam management
US10498406B2 (en) * 2016-05-26 2019-12-03 Qualcomm Incorporated System and method for beam switching and reporting

Also Published As

Publication number Publication date
KR101967051B1 (ko) 2019-04-09
US10237755B2 (en) 2019-03-19
TWI662804B (zh) 2019-06-11
US20180014208A1 (en) 2018-01-11
JP6622259B2 (ja) 2019-12-18
ES3008103T3 (en) 2025-03-21
JP2018007259A (ja) 2018-01-11
CN107592148A (zh) 2018-01-16
TW201803295A (zh) 2018-01-16
KR20180005616A (ko) 2018-01-16
EP3267594A1 (en) 2018-01-10
EP3267594B1 (en) 2024-12-25

Similar Documents

Publication Publication Date Title
JP7461421B2 (ja) ビーム変更命令受信の失敗中のフォールバックビーム選択手順
JP6957562B2 (ja) 指向性ワイヤレスシステムにおける初期同期、発見、および関連付け中の軽量メッセージングのための方法および装置
CN107592148B (zh) 无线通信系统中处理波束成型的方法和装置
KR102291675B1 (ko) 무선 통신 시스템에 있어서 다중 디바이스-대-디바이스 전송을 핸들링하는 방법 및 장치
JP6636587B2 (ja) 無線通信システムにおけるビームフォーミング送信を考慮したアンライセンススペクトルにおけるチャネル利用のための方法及び装置
US20210376905A1 (en) Techniques for autonomously determining candidate beams to support full-duplex communication
KR101761086B1 (ko) 지향성 무선 네트워크에서의 접속 포인트 발견 및 연관을 위한 방법 및 장치
CN107567051B (zh) 无线通信系统中处理测量的方法和设备
CN112335325A (zh) 无竞争并发物理随机接入信道传输
JP2022046507A (ja) 制御ビームとデータチャネルビームとの間のマッピング
JP2018129799A (ja) 無線通信システムにおいてビーム状態情報報告をトリガする方法及び装置
TW201743583A (zh) 向基地站通知關於使用者設備對波束改變指令的接收
CN107645324A (zh) 无线通信系统中使用波束成形的传送或接收方法和设备
CN110784922A (zh) 处置无线通信中的侧链路资源的波束感测的方法和设备
JP2019534605A (ja) ビームの切替え

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant