[go: up one dir, main page]

CN107546357A - Lithium-sulfur cell and its component, and application of the functional material layer in lithium-sulfur cell - Google Patents

Lithium-sulfur cell and its component, and application of the functional material layer in lithium-sulfur cell Download PDF

Info

Publication number
CN107546357A
CN107546357A CN201710656252.3A CN201710656252A CN107546357A CN 107546357 A CN107546357 A CN 107546357A CN 201710656252 A CN201710656252 A CN 201710656252A CN 107546357 A CN107546357 A CN 107546357A
Authority
CN
China
Prior art keywords
lithium
material layer
sulfur
functional material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710656252.3A
Other languages
Chinese (zh)
Other versions
CN107546357B (en
Inventor
唐子龙
王诗童
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710656252.3A priority Critical patent/CN107546357B/en
Priority to PCT/CN2017/110639 priority patent/WO2019024313A1/en
Publication of CN107546357A publication Critical patent/CN107546357A/en
Application granted granted Critical
Publication of CN107546357B publication Critical patent/CN107546357B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种锂硫电池,包括硫基正极、锂基负极、设置在所述硫基正极与所述锂基负极之间的隔膜,以及设置在所述硫基正极与所述锂基负极之间的功能性材料层,所述功能性材料层的材料包括具有Li、H、M及O元素的Li‑H‑M‑O体系化合物,其中M为过渡金属元素。本发明还提供一种复合隔膜、锂硫电池电极组件、复合硫基正极、复合锂基负极及功能性材料层在锂硫电池中的应用。

The present invention provides a lithium-sulfur battery, comprising a sulfur-based positive electrode, a lithium-based negative electrode, a diaphragm arranged between the sulfur-based positive electrode and the lithium-based negative electrode, and a diaphragm arranged between the sulfur-based positive electrode and the lithium-based negative electrode Between the functional material layer, the material of the functional material layer includes Li-H-M-O system compound with Li, H, M and O elements, wherein M is a transition metal element. The invention also provides the application of a composite diaphragm, an electrode assembly of a lithium-sulfur battery, a composite sulfur-based positive electrode, a composite lithium-based negative electrode and a functional material layer in a lithium-sulfur battery.

Description

锂硫电池及其组件,以及功能性材料层在锂硫电池中的应用Lithium-sulfur batteries and their components, and the application of functional material layers in lithium-sulfur batteries

技术领域technical field

本发明涉及锂电池领域,特别涉及锂硫电池、复合隔膜、锂硫电池电极组件、复合硫基正极、复合锂基负极及功能性材料层在锂硫电池中的应用。The invention relates to the field of lithium batteries, in particular to the application of lithium-sulfur batteries, composite separators, lithium-sulfur battery electrode assemblies, composite sulfur-based positive electrodes, composite lithium-based negative electrodes and functional material layers in lithium-sulfur batteries.

背景技术Background technique

随着新能源汽车行业的飞速发展,开发高能量密度的储能器件成为了目前研究和发展的重要方向。锂硫电池以其1675mAh/g的理论比容量和~2500Wh/kg的理论能量密度,成为替代传统锂离子电池,实现远程续航目标(>500Wh/kg)的最具发展前景的动力电池体系之一。但是,由于锂硫电池目前存在循环寿命低和安全稳定性差的问题,使其在实用化道路上仍面临阻碍。如何高效抑制多硫化锂的穿梭效应是提升锂硫电池电化学性能和安全性能的关键因素,也是近年来国际研究的热点。With the rapid development of the new energy automobile industry, the development of energy storage devices with high energy density has become an important direction of current research and development. With its theoretical specific capacity of 1675mAh/g and theoretical energy density of ~2500Wh/kg, lithium-sulfur batteries have become one of the most promising power battery systems to replace traditional lithium-ion batteries and achieve long-range battery life (>500Wh/kg). . However, due to the current problems of low cycle life and poor safety and stability of lithium-sulfur batteries, it still faces obstacles on the road to practical use. How to efficiently suppress the shuttle effect of lithium polysulfide is a key factor to improve the electrochemical performance and safety performance of lithium-sulfur batteries, and it is also a hot spot of international research in recent years.

多硫化锂的穿梭效应主要是由两方面所导致,一是热力学上不可避免的扩散,二是较慢的反应动力学导致多硫化锂在电解液中的积累。目前,抑制多硫化锂的穿梭的主要方法是物理阻隔、极性吸附和存储、促进多硫化锂转化,通过包覆硫正极或将硫束缚于纳米孔道中来抑制多硫化锂的穿梭。在硫表面形成保护层或保护网络虽然可一定程度上阻隔多硫化锂,但仍很难实现电池的长寿命循环。The shuttle effect of lithium polysulfide is mainly caused by two aspects, one is the inevitable diffusion in thermodynamics, and the other is the accumulation of lithium polysulfide in the electrolyte due to the slower reaction kinetics. At present, the main methods to inhibit the shuttling of lithium polysulfides are physical barriers, polar adsorption and storage, and the promotion of lithium polysulfide conversion, and inhibit the shuttling of lithium polysulfides by coating sulfur cathodes or trapping sulfur in nanopores. Although the formation of a protective layer or protective network on the surface of sulfur can block lithium polysulfides to a certain extent, it is still difficult to achieve a long life cycle of the battery.

已有大量研究将一些过渡金属氧化物(M-O)、过渡金属硫化物(M-S)以及锂过渡金属氧化物(Li-M-O)涂覆在隔膜上作为功能性材料层来提高锂硫电池的容量及循环性能。其中一些过渡金属化合物Co3O4、Ti4O7、NiO、V2O3、Li4Ti5O12等可以通过表面极性或者酸性位点来吸附存储多硫化锂;另外一些过渡金属化合物,如TiO2、MnO2、VO2还同时具有催化多硫化锂的作用。此外,由于纳米材料可以填充于隔膜的孔隙中,在保证锂离子的正常通过前提下,也可以从一定程度上起到物理阻隔多硫化锂的作用。然而,实际应用中经常发现,即使采用上述过渡金属化合物,在防止多硫化锂穿梭方面所达到效果仍然不理想。There have been a lot of researches on coating some transition metal oxides (MO), transition metal sulfides (MS) and lithium transition metal oxides (Li-MO) on the separator as functional material layers to improve the capacity and cycle performance. Some transition metal compounds Co 3 O 4 , Ti 4 O 7 , NiO, V 2 O 3 , Li 4 Ti 5 O 12 , etc. can adsorb and store lithium polysulfide through surface polar or acidic sites; other transition metal compounds , such as TiO 2 , MnO 2 , and VO 2 also have the function of catalyzing lithium polysulfide. In addition, since nanomaterials can be filled in the pores of the separator, it can also physically block lithium polysulfide to a certain extent under the premise of ensuring the normal passage of lithium ions. However, it is often found in practical applications that even if the above-mentioned transition metal compounds are used, the effect achieved in preventing lithium polysulfide shuttling is still unsatisfactory.

发明内容Contents of the invention

基于此,为更有效的防止多硫化锂的穿梭,有必要提供一种锂硫电池、复合隔膜、锂硫电池电极组件、复合硫基正极、复合锂基负极及功能性材料层在锂硫电池中的应用。Based on this, in order to prevent the shuttle of lithium polysulfide more effectively, it is necessary to provide a lithium-sulfur battery, a composite separator, a lithium-sulfur battery electrode assembly, a composite sulfur-based positive electrode, a composite lithium-based negative electrode, and a functional material layer in a lithium-sulfur battery. in the application.

一种锂硫电池,包括:A lithium-sulfur battery comprising:

硫基正极;Sulfur-based cathode;

锂基负极;Lithium-based negative electrode;

设置在所述硫基正极与所述锂基负极之间的隔膜;以及a separator disposed between the sulfur-based positive electrode and the lithium-based negative electrode; and

设置在所述硫基正极与所述锂基负极之间的功能性材料层,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。A functional material layer disposed between the sulfur-based positive electrode and the lithium-based negative electrode, the material of the functional material layer includes a Li-H-M-O system compound having Li, H, M and O elements, wherein M is a transition metal element.

在其中的一实施例中,所述Li-H-M-O体系化合物中H以结晶水或结构水形式存在。In one embodiment, H in the Li-H-M-O system compound exists in the form of crystal water or structural water.

在其中的一实施例中,所述过渡金属元素M选自钛、锰、钒、钨、钼、镍及钴中的至少一种。In one embodiment, the transition metal element M is selected from at least one of titanium, manganese, vanadium, tungsten, molybdenum, nickel and cobalt.

在其中的一实施例中,所述Li-H-M-O体系化合物的通式为Li(0.01~4)H(0.01~8)MO(1-σ~6-σ),且0≤σ≤1,其中σ为氧空位的量。In one embodiment, the general formula of the Li-HMO system compound is Li (0.01~4) H (0.01~8) MO (1-σ~6-σ) , and 0≤σ≤1, wherein σ is the amount of oxygen vacancies.

在其中的一实施例中,所述Li-H-M-O体系化合物的一次颗粒的粒径尺寸为1纳米至800纳米。In one embodiment, the primary particles of the Li-H-M-O system compound have a particle size ranging from 1 nm to 800 nm.

在其中的一实施例中,所述Li-H-M-O体系化合物的比表面积为1m2/g至600m2/g。In one embodiment, the specific surface area of the Li-HMO system compound is 1 m 2 /g to 600 m 2 /g.

在其中的一实施例中,所述Li-H-M-O体系化合物具有层状晶体结构。In one embodiment, the Li-H-M-O system compound has a layered crystal structure.

在其中的一实施例中,所述功能性材料层的厚度为10nm~200μm,面密度为0.1~30mg/cm2In one embodiment, the thickness of the functional material layer is 10 nm-200 μm, and the surface density is 0.1-30 mg/cm 2 .

在其中的一实施例中,所述功能性材料层的材料还包括电子导电材料和粘结剂,所述电子导电材料和粘结剂与所述Li-H-M-O体系化合物均匀混合。In one embodiment, the material of the functional material layer further includes an electronically conductive material and a binder, and the electronically conductive material and binder are uniformly mixed with the Li-H-M-O system compound.

在其中的一实施例中,所述功能性材料层设置在所述硫基正极面向所述锂基负极的表面,所述隔膜的至少一个表面,或者所述锂基负极面向所述硫基正极的表面。In one of the embodiments, the functional material layer is arranged on the surface of the sulfur-based positive electrode facing the lithium-based negative electrode, at least one surface of the separator, or the lithium-based negative electrode faces the sulfur-based positive electrode s surface.

在其中的一实施例中,所述功能性材料层设置在所述隔膜的两个表面。In one of the embodiments, the functional material layer is disposed on both surfaces of the diaphragm.

在其中的一实施例中,所述Li-H-M-O体系化合物在所述功能性材料层中的质量百分含量为5%~99%。In one embodiment, the mass percentage of the Li-H-M-O system compound in the functional material layer is 5%-99%.

一种复合隔膜,所述复合隔膜用于锂硫电池,所述复合隔膜包括隔膜及设置在所述隔膜至少一个表面的功能性材料层,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。A composite diaphragm, the composite diaphragm is used in lithium-sulfur batteries, the composite diaphragm includes a diaphragm and a functional material layer arranged on at least one surface of the diaphragm, and the material of the functional material layer includes Li, H, Li-H-M-O system compound of M and O elements, where M is a transition metal element.

一种锂硫电池电极组件,包括相互层叠设置的硫基正极、隔膜及功能性材料层,所述功能性材料层设置在所述硫基正极与所述隔膜之间,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。A lithium-sulfur battery electrode assembly, comprising a sulfur-based positive electrode, a separator, and a functional material layer stacked on each other, the functional material layer is arranged between the sulfur-based positive electrode and the separator, and the functional material layer The materials include Li-H-M-O system compounds with Li, H, M and O elements, wherein M is a transition metal element.

一种锂硫电池电极组件,包括相互层叠设置的锂基负极、隔膜及功能性材料层,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。A lithium-sulfur battery electrode assembly, comprising a lithium-based negative electrode, a separator, and a functional material layer stacked on each other, the material of the functional material layer includes a Li-H-M-O system compound having Li, H, M and O elements, wherein M is a transition metal element.

一种复合硫基正极,包括相互层叠设置的正极材料层、正极集流体及功能性材料层,所述正极材料层设置在所述功能性材料层与所述正极集流体之间,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。A composite sulfur-based positive electrode, comprising a positive electrode material layer, a positive electrode current collector, and a functional material layer stacked on each other, the positive electrode material layer is arranged between the functional material layer and the positive electrode current collector, the functional The material of the permanent material layer includes a Li-H-M-O system compound having Li, H, M and O elements, wherein M is a transition metal element.

一种复合锂基负极,包括相互层叠设置的金属锂及功能性材料层,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。A composite lithium-based negative electrode, comprising metal lithium and functional material layers stacked on each other, the material of the functional material layer includes a Li-H-M-O system compound having Li, H, M and O elements, wherein M is a transition metal element.

一种功能性材料层在锂硫电池中的应用,包括:An application of a functional material layer in a lithium-sulfur battery, comprising:

将具有Li、H、M及O元素的Li-H-M-O体系化合物的固液混合物涂覆于所述硫基正极、锂基负极和隔膜中至少一者的表面,从而在所述硫基正极与所述锂基负极之间形成所述功能性材料层。Coating a solid-liquid mixture of Li-H-M-O system compounds with Li, H, M and O elements on the surface of at least one of the sulfur-based positive electrode, lithium-based negative electrode and separator, so that the sulfur-based positive electrode and the The functional material layer is formed between the lithium-based negative electrodes.

在其中的一实施例中,进一步包括:In one of the embodiments, further comprising:

在温度为30~120℃下干燥去除所述固液混合物形成的涂层中的溶剂。Drying and removing the solvent in the coating formed by the solid-liquid mixture at a temperature of 30-120°C.

本发明将一种Li-H-M-O体系材料引入锂硫电池中,相比于经过高温煅烧去除氢组分的Li-M-O体系材料,Li-H-M-O体系材料具有更大的比表面积,从而提供更多的活性位点,更好的起到吸附存储和/或催化多硫化锂的作用,从而高效发挥抑制多硫化锂穿梭的作用,提升锂硫电池的电化学性能。In the present invention, a Li-H-M-O system material is introduced into the lithium-sulfur battery. Compared with the Li-M-O system material that has been calcined at a high temperature to remove the hydrogen component, the Li-H-M-O system material has a larger specific surface area, thereby providing more The active site can better play the role of adsorption storage and/or catalysis of lithium polysulfide, so as to effectively inhibit the shuttle of lithium polysulfide and improve the electrochemical performance of lithium-sulfur batteries.

附图说明Description of drawings

图1为本发明实施例锂硫电池的结构示意图;Fig. 1 is the structural representation of the lithium-sulfur battery of the embodiment of the present invention;

图2为本发明实施例锂硫电池电极组件的结构示意图;2 is a schematic structural view of an electrode assembly of a lithium-sulfur battery according to an embodiment of the present invention;

图3为实施例1中PP@C&LHTO-1中功能性材料层的SEM图;Fig. 3 is the SEM picture of the functional material layer in PP@C&LHTO-1 in embodiment 1;

图4为实施例1中使用PP@C&LHTO-1的锂硫电池及对比例中使用PP的锂硫电池在0.2C下的循环性能对比图;Figure 4 is a comparison chart of the cycle performance of the lithium-sulfur battery using PP@C&LHTO-1 in Example 1 and the lithium-sulfur battery using PP in the comparative example at 0.2C;

图5为实施例1中的为使用PP@C&LHTO-1的锂硫电池在1C下的循环性能与库伦效率图;Figure 5 is a diagram of cycle performance and Coulombic efficiency at 1C for a lithium-sulfur battery using PP@C&LHTO-1 in Example 1;

图6为实施例1中使用PP@C&LHTO-1及对比例使用PP@C&LTO-1的锂硫电池的倍率性能对比图。Fig. 6 is a comparison chart of the rate performance of the lithium-sulfur battery using PP@C&LHTO-1 in Example 1 and the comparative example using PP@C&LTO-1.

具体实施方式detailed description

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

请参阅图1及图2,本发明实施例提供锂硫电池,包括硫基正极10、锂基负极20及设置在硫基正极10与锂基负极20之间的隔膜30。所述锂硫电池还包括设置在硫基正极10与锂基负极20之间的功能性材料层32。所述功能性材料层32的材料包括Li-H-M-O体系化合物。所述Li-H-M-O体系化合物具有Li、H、M及O元素,其中M为一种或多种过渡金属元素。Referring to FIG. 1 and FIG. 2 , an embodiment of the present invention provides a lithium-sulfur battery, including a sulfur-based positive electrode 10 , a lithium-based negative electrode 20 , and a separator 30 disposed between the sulfur-based positive electrode 10 and the lithium-based negative electrode 20 . The lithium-sulfur battery also includes a functional material layer 32 disposed between the sulfur-based positive electrode 10 and the lithium-based negative electrode 20 . The material of the functional material layer 32 includes Li-H-M-O system compound. The Li-H-M-O system compound has Li, H, M and O elements, wherein M is one or more transition metal elements.

所述Li-H-M-O体系化合物可以吸附存储和/或催化多硫化锂,抑制多硫化锂穿梭。另外,由于化合物中具有氢组分,与锂离子可能存在一定程度的反应或通过表面极性调节锂离子均匀分布,从而起到抑制锂枝晶生长的作用。The Li-H-M-O system compound can absorb and store and/or catalyze lithium polysulfide, and inhibit lithium polysulfide shuttling. In addition, due to the hydrogen component in the compound, there may be a certain degree of reaction with lithium ions or the uniform distribution of lithium ions can be adjusted through the surface polarity, thereby inhibiting the growth of lithium dendrites.

优选的,所述Li-H-M-O体系化合物具有层状晶体结构,在抑制多硫化锂穿梭的同时不影响锂离子的传输,为锂离子提供快速传导通道。可以理解,此处的“层状”晶体结构与化合物一次颗粒表观形貌的纳米片形状相区别,此处的层状晶体结构为原子在晶胞中的排列方式。Preferably, the Li-H-M-O system compound has a layered crystal structure, which does not affect the transmission of lithium ions while inhibiting lithium polysulfide shuttle, and provides fast conduction channels for lithium ions. It can be understood that the "layered" crystal structure here is different from the nanosheet shape of the compound's primary particle appearance, and the layered crystal structure here is the arrangement of atoms in the unit cell.

所述过渡金属可以选自钛(Ti)、钼(Mo)、钒(V)、钨(W)、锰(Mn)、镍(Ni)及钴(Co)中的至少一种。The transition metal may be at least one selected from titanium (Ti), molybdenum (Mo), vanadium (V), tungsten (W), manganese (Mn), nickel (Ni) and cobalt (Co).

所述Li-H-M-O体系化合物中H可以以结晶水的形式存在,或者以化合物分子中的结构水的形式存在。另外,所述Li-H-M-O体系化合物还可以具有氧空位。所述Li-H-M-O体系化合物优选的通式可以为Li(0.01~4)H(0.01~8)MO(1-σ~6-σ),0≤σ≤1,其中σ为氧空位的量。所述Li-H-M-O体系化合物优选为纳米级材料,一次颗粒的粒径优选为1纳米至800纳米,更优选为1纳米至100纳米。当材料的颗粒尺寸为纳米级时,可以有效填充于隔膜的孔隙中,在一定程度上还可以起到物理阻隔多硫化锂穿梭的作用。H in the Li-HMO system compound can exist in the form of crystal water, or in the form of structural water in the compound molecule. In addition, the Li-HMO system compound may also have oxygen vacancies. The preferred general formula of the Li-HMO system compound may be Li (0.01~4) H (0.01~8) MO (1-σ~6-σ) , 0≤σ≤1, where σ is the amount of oxygen vacancies. The Li-HMO system compound is preferably a nanoscale material, and the particle size of the primary particles is preferably 1 nm to 800 nm, more preferably 1 nm to 100 nm. When the particle size of the material is nanoscale, it can be effectively filled in the pores of the separator, and to a certain extent, it can also physically block lithium polysulfide shuttle.

所述Li-H-M-O体系化合物和去除氢组分后得到的Li-M-O体系材料相比具有更大的比表面积,Li-H-M-O体系化合物的比表面积值优选为1m2/g至600m2/g,更优选为100m2/g至600m2/g。The Li-HMO system compound has a larger specific surface area than the Li-MO system material obtained after removing the hydrogen component, and the specific surface area of the Li-HMO system compound is preferably 1m 2 /g to 600m 2 /g, More preferably, it is 100 m 2 /g to 600 m 2 /g.

所述Li-H-M-O体系化合物中M优选为Ti。在Li-H-Ti-O化合物中,Li的质量分数优选为3%~10%,H的质量分数优选为0.3%~8%,Ti的质量分数优选为46%~53%,O的质量分数优选为30%~50%。Li-H-Ti-O化合物的通式可以为Li(0.43~1.44)H(0.29~7.93)Ti(0.96~1.11)O(1.88-σ~3.13-σ),其中0≤σ≤1.81。该Li-H-Ti-O化合物中存在足够的结晶水和/或结构水,使Li-H-Ti-O化合物能够维持层状晶体结构。M in the Li-HMO system compound is preferably Ti. In the Li-H-Ti-O compound, the mass fraction of Li is preferably 3% to 10%, the mass fraction of H is preferably 0.3% to 8%, the mass fraction of Ti is preferably 46% to 53%, and the mass fraction of O The fraction is preferably 30% to 50%. The general formula of Li-H-Ti-O compound can be Li (0.43~1.44) H (0.29~7.93) Ti (0.96~1.11) O (1.88-σ~3.13-σ) , where 0≤σ≤1.81. There is enough crystal water and/or structural water in the Li-H-Ti-O compound, so that the Li-H-Ti-O compound can maintain a layered crystal structure.

在更为优选的实施例中,Li-H-Ti-O化合物中,Li的质量分数优选为4%~12%,H的质量分数优选为0.1%~5%,Ti的质量分数优选为48%~56%,O的质量分数优选为28%~47%。Li-H-Ti-O化合物的通式可以为Li(0.58~1.73)H(0.10~4.96)Ti(1.00~1.17)O(1.75-σ~2.93-σ),其中0≤σ≤1.73。在该实施例中,一部分Li、Ti和O元素可以以纳米结构的Li4Ti5O12和TiO2的形式存在,这些纳米结构均匀分散在Li-H-Ti-O层状晶体结构中。In a more preferred embodiment, in the Li-H-Ti-O compound, the mass fraction of Li is preferably 4% to 12%, the mass fraction of H is preferably 0.1% to 5%, and the mass fraction of Ti is preferably 48%. % to 56%, and the mass fraction of O is preferably 28% to 47%. The general formula of the Li-H-Ti-O compound may be Li (0.58˜1.73) H (0.10˜4.96) Ti (1.00˜1.17) O (1.75-σ˜2.93-σ) , where 0≤σ≤1.73. In this embodiment, a part of Li, Ti and O elements may exist in the form of nanostructured Li 4 Ti 5 O 12 and TiO 2 uniformly dispersed in the Li-H-Ti-O layered crystal structure.

在一实施例中,所述Li-H-M-O体系化合物可通过将Li-M-O纳米材料与酸性水溶液进行反应得到。所述Li-M-O纳米材料例如可以是Li4Ti5O12、LiMn2O4、LiMnO2、LiCoO2、LiNiO2、Li2MoO4及Li3VO4中的至少一种。所述Li-M-O纳米材料可以在常温常压下与酸的水溶液进行反应,也可以在80~200℃与酸进行水热反应。酸可以是硝酸、盐酸、硫酸、醋酸、磷酸、草酸及氢氟酸中的至少一种,浓度可以为0.1~0.8mol/L。反应后得到粉体可进一步经过分离提纯,干燥得到Li-H-M-O纳米材料粉体,干燥温度优选为120℃以下。所述功能性材料层32的厚度优选为10nm~200μm,面密度优选为0.1~30mg/cm2In one embodiment, the Li-HMO system compound can be obtained by reacting Li-MO nanomaterials with an acidic aqueous solution. The Li-MO nanomaterial may be, for example, at least one of Li 4 Ti 5 O 12 , LiMn 2 O 4 , LiMnO 2 , LiCoO 2 , LiNiO 2 , Li 2 MoO 4 and Li 3 VO 4 . The Li-MO nanometer material can be reacted with an acid aqueous solution at normal temperature and pressure, or can be hydrothermally reacted with an acid at 80-200°C. The acid may be at least one of nitric acid, hydrochloric acid, sulfuric acid, acetic acid, phosphoric acid, oxalic acid and hydrofluoric acid, and the concentration may be 0.1-0.8 mol/L. The powder obtained after the reaction can be further separated and purified, and dried to obtain the Li-HMO nanomaterial powder. The drying temperature is preferably below 120°C. The thickness of the functional material layer 32 is preferably 10 nm-200 μm, and the surface density is preferably 0.1-30 mg/cm 2 .

优选的,所述功能性材料层32的材料进一步包括电子导电材料和粘结剂,所述电子导电材料和粘结剂与所述Li-H-M-O体系化合物均匀混合。所述Li-H-M-O体系化合物在所述功能性材料层32中的质量百分含量优选为5%~99%。所述电子导电材料与粘结剂的质量比优选为1:9~9:1。Preferably, the material of the functional material layer 32 further includes an electronically conductive material and a binder, and the electronically conductive material and binder are uniformly mixed with the Li-H-M-O system compound. The mass percent content of the Li-H-M-O system compound in the functional material layer 32 is preferably 5%-99%. The mass ratio of the electronically conductive material to the binder is preferably 1:9˜9:1.

优选的,所述电子导电材料选自活性炭、石墨烯、碳纳米管、科琴黑、Super P、乙炔黑及石墨中的至少一种。Preferably, the electronically conductive material is at least one selected from activated carbon, graphene, carbon nanotubes, Ketjen black, Super P, acetylene black and graphite.

优选的,所述粘结剂选自聚偏二氟乙烯(PVDF)、聚氧化乙烯(PEO)、偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)、月桂酸丙烯酸酯(LA)、聚四氟乙烯(PTFE)、聚乙烯醇(PVA)、环氧树脂、聚丙烯酸(PAA)及羧甲基纤维素钠(CMC)中的至少一种。Preferably, the binder is selected from polyvinylidene fluoride (PVDF), polyethylene oxide (PEO), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), lauric acid acrylate (LA), poly At least one of tetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), epoxy resin, polyacrylic acid (PAA) and sodium carboxymethylcellulose (CMC).

所述功能性材料层32可以设置在所述硫基正极10面向锂基负极20(也就是面向隔膜30)的表面,所述隔膜30的至少一个表面,或者所述锂基负极20面向所述硫基正极10(也就是面向隔膜30)的表面。在优选的实施例中,所述功能性材料层32至少设置在所述隔膜30面向所述硫基正极10的表面。在一实施例中,所述功能性材料层32设置在所述隔膜30的两个表面。The functional material layer 32 can be arranged on the surface of the sulfur-based positive electrode 10 facing the lithium-based negative electrode 20 (that is, facing the separator 30), at least one surface of the separator 30, or the lithium-based negative electrode 20 faces the The surface of the sulfur-based positive electrode 10 (that is, facing the separator 30). In a preferred embodiment, the functional material layer 32 is at least disposed on the surface of the separator 30 facing the sulfur-based positive electrode 10 . In one embodiment, the functional material layer 32 is disposed on both surfaces of the membrane 30 .

所述硫基正极10包括正极材料层12及正极集流体14,所述正极集流体14用于担载所述正极材料层12并传导电流,形状可以为箔片或网状。所述正极集流体14的材料可以选自铝、钛或不锈钢。所述正极材料层12设置在所述正极集流体14至少一表面。所述正极材料层12的材料包括含硫正极活性材料,进一步可选择的包括导电剂以及粘结剂。所述导电剂以及粘结剂可以与所述含硫正极活性材料均匀混合。所述含硫正极活性材料为具有电化学储锂能力的硫基材料,例如硫单质、硫基复合材料及硫化导电聚合物中的至少一种。所述硫基复合材料例如可以是将硫单质颗粒表面包覆导电碳层而得到的核壳结构复合材料,或者将硫单质颗粒设置在多孔碳材料中而得到的多孔复合材料。所述硫基导电聚合物例如可以选自硫化聚并吡啶、硫化聚苯乙烯、硫化聚氧化乙烯、硫化聚乙烯醇、硫化聚偏二氯乙烯、硫化聚偏二氟乙烯、硫化聚氯乙烯、硫化聚氟乙烯、硫化聚1,2-二氯乙烯、硫化聚1,2-二氟乙烯、硫化聚甲基丙烯酸甲酯及硫化酚醛树脂中的一种或多种。The sulfur-based positive electrode 10 includes a positive electrode material layer 12 and a positive electrode current collector 14, the positive electrode current collector 14 is used to support the positive electrode material layer 12 and conduct current, and the shape can be foil or mesh. The material of the positive current collector 14 can be selected from aluminum, titanium or stainless steel. The positive electrode material layer 12 is disposed on at least one surface of the positive electrode current collector 14 . The material of the positive electrode material layer 12 includes a sulfur-containing positive electrode active material, and further optionally includes a conductive agent and a binder. The conductive agent and the binder may be uniformly mixed with the sulfur-containing positive electrode active material. The sulfur-containing positive electrode active material is a sulfur-based material with electrochemical lithium storage capacity, such as at least one of sulfur element, sulfur-based composite material, and sulfurized conductive polymer. The sulfur-based composite material may be, for example, a core-shell composite material obtained by coating the surface of sulfur element particles with a conductive carbon layer, or a porous composite material obtained by disposing sulfur element particles in a porous carbon material. The sulfur-based conductive polymer, for example, can be selected from sulfurized polypyridine, sulfurized polystyrene, sulfurized polyethylene oxide, sulfurized polyvinyl alcohol, sulfurized polyvinylidene chloride, sulfurized polyvinylidene fluoride, sulfurized polyvinyl chloride, One or more of vulcanized polyvinyl fluoride, vulcanized polyvinyl dichloride, vulcanized polyvinylidene fluoride, vulcanized polymethyl methacrylate and vulcanized phenolic resin.

所述功能性材料层32可以设置在所述正极材料层12面向所述锂基负极20(也就是面向所述隔膜30)的表面。所述正极材料层12设置在所述功能性材料层32与所述正极集流体14之间。The functional material layer 32 may be disposed on the surface of the positive electrode material layer 12 facing the lithium-based negative electrode 20 (that is, facing the separator 30 ). The positive electrode material layer 12 is disposed between the functional material layer 32 and the positive electrode current collector 14 .

所述功能性材料层32优选是直接与所述正极材料层12接触,或者直接与所述隔膜30接触。更优选为所述功能性材料层32的两个表面分别与所述正极材料层12和所述隔膜30直接接触设置。但在一些实施例中,所述功能性材料层32与所述正极材料层12之间,或者所述功能性材料层32与所述隔膜30之间可以插入其它材料层,例如粘结层、导电层或导离子层,只要不影响功能性材料层32实现上述功能(1)至(3)中至少一种即可。The functional material layer 32 is preferably in direct contact with the positive electrode material layer 12 , or directly in contact with the separator 30 . More preferably, the two surfaces of the functional material layer 32 are arranged in direct contact with the positive electrode material layer 12 and the separator 30 respectively. However, in some embodiments, other material layers, such as adhesive layers, The conductive layer or the ion-conducting layer can be used as long as it does not affect the functional material layer 32 to realize at least one of the above-mentioned functions (1) to (3).

所述锂基负极20可包括负极活性层22,如金属锂层或锂合金层,例如锂锡合金层或锂铝合金层,并可进一步包括负极集流体24。所述负极集流体24用于担载所述负极活性层22并传导电流,形状可以为箔片或网状。该负极集流体24的材料可以选自铜、镍或不锈钢。The lithium-based negative electrode 20 may include a negative electrode active layer 22 , such as a lithium metal layer or a lithium alloy layer, such as a lithium tin alloy layer or a lithium aluminum alloy layer, and may further include a negative electrode current collector 24 . The negative electrode current collector 24 is used to support the negative electrode active layer 22 and conduct current, and the shape may be foil or mesh. The material of the negative electrode current collector 24 can be selected from copper, nickel or stainless steel.

所述隔膜30可以是传统的锂电池隔膜,能够在所述硫基正极10与所述锂基负极20之间隔绝电子并使锂离子通过,可以为有机聚合物隔膜或者无机隔膜中的任意一种,例如可以选自但不限于聚乙烯多孔膜、聚丙烯多孔膜、聚乙烯-聚丙烯双层多孔膜、聚丙烯-聚乙烯-聚丙烯三层多孔膜、玻璃纤维多孔膜、无纺布多孔膜、电纺丝多孔膜、PVDF-HFP多孔膜及聚丙烯腈多孔膜中的任意一种。所述无纺布隔膜可以列举如聚酰亚胺纳米纤维无纺布、聚对苯二甲酸乙二酯(PET)纳米纤维无纺布、纤维素纳米纤维无纺布、芳纶纳米纤维无纺布、尼龙纳米纤维无纺布及聚偏氟乙烯(PVDF)纳米纤维无纺布。所述电纺丝多孔膜可以列举如聚酰亚胺电纺丝膜、聚对苯二甲酸乙二酯电纺丝膜及聚偏氟乙烯电纺丝膜。The separator 30 can be a traditional lithium battery separator, capable of isolating electrons and allowing lithium ions to pass between the sulfur-based positive electrode 10 and the lithium-based negative electrode 20, and can be any one of an organic polymer separator or an inorganic separator. For example, it can be selected from but not limited to polyethylene porous membrane, polypropylene porous membrane, polyethylene-polypropylene double-layer porous membrane, polypropylene-polyethylene-polypropylene three-layer porous membrane, glass fiber porous membrane, non-woven fabric Any one of porous membrane, electrospun porous membrane, PVDF-HFP porous membrane and polyacrylonitrile porous membrane. The non-woven fabric separator can include polyimide nanofiber nonwoven fabric, polyethylene terephthalate (PET) nanofiber nonwoven fabric, cellulose nanofiber nonwoven fabric, aramid nanofiber nonwoven fabric, etc. Cloth, nylon nanofiber non-woven fabric and polyvinylidene fluoride (PVDF) nanofiber non-woven fabric. The electrospun porous membrane includes, for example, a polyimide electrospun membrane, a polyethylene terephthalate electrospun membrane, and a polyvinylidene fluoride electrospun membrane.

所述锂硫电池还包括非水电解液40,所述非水电解液40设置在所述硫基正极10与所述锂基负极20之间,例如可以渗透于所述隔膜30中。该非水电解液40包括溶剂及溶于所述溶剂的锂盐溶质,该溶剂可选自但不限于环状碳酸酯、链状碳酸酯、环状醚类、链状醚类、腈类及酰胺类中的一种或多种,如碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、二乙醚、乙腈、丙腈、苯甲醚、丁酸酯、戊二腈、已二腈、γ-丁内酯、γ-戊内酯、四氢呋喃、1,2-二甲氧基乙烷及乙腈及二甲基甲酰胺中的一种或多种。该锂盐溶质可选自但不限于氯化锂(LiCl)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、甲磺酸锂(LiCH3SO3)、三氟甲磺酸锂(LiCF3SO3)、六氟砷酸锂(LiAsF6)、高氯酸锂(LiClO4)及双草酸硼酸锂(LiBOB)中的一种或多种。The lithium-sulfur battery further includes a non-aqueous electrolyte 40 disposed between the sulfur-based positive electrode 10 and the lithium-based negative electrode 20 , for example, may permeate the separator 30 . The non-aqueous electrolytic solution 40 includes a solvent and a lithium salt solute dissolved in the solvent, the solvent may be selected from but not limited to cyclic carbonates, chain carbonates, cyclic ethers, chain ethers, nitriles and One or more of amides, such as ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate , ethyl propionate, diethyl ether, acetonitrile, propionitrile, anisole, butyrate, glutaronitrile, adiponitrile, γ-butyrolactone, γ-valerolactone, tetrahydrofuran, 1,2-dimethyl One or more of oxyethane, acetonitrile and dimethylformamide. The lithium salt solute can be selected from but not limited to lithium chloride (LiCl), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate ( One or more of LiCF 3 SO 3 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium perchlorate (LiClO 4 ) and lithium bisoxalate borate (LiBOB).

所述锂硫电池还包括密封壳体50,所述硫基正极10、锂基负极20、隔膜30、功能性材料层32及非水电解液40设置在所述密封壳体50中。The lithium-sulfur battery also includes a sealed case 50 , and the sulfur-based positive electrode 10 , lithium-based negative electrode 20 , separator 30 , functional material layer 32 and non-aqueous electrolyte 40 are arranged in the sealed case 50 .

本发明实施例还提供一复合隔膜,所述复合隔膜用于所述锂硫电池,所述复合隔膜包括所述隔膜30及设置在所述隔膜30至少一个表面的功能性材料层32。在优选的实施例中,功能性材料层32设置在隔膜30面向锂硫电池中的硫基正极10的表面。The embodiment of the present invention also provides a composite diaphragm, which is used in the lithium-sulfur battery, and the composite diaphragm includes the diaphragm 30 and a functional material layer 32 disposed on at least one surface of the diaphragm 30 . In a preferred embodiment, the functional material layer 32 is disposed on the surface of the separator 30 facing the sulfur-based positive electrode 10 in the lithium-sulfur battery.

本发明实施例还提供一锂硫电池电极组件,包括相互层叠设置的所述硫基正极10、隔膜30及所述功能性材料层32,功能性材料层32设置在所述硫基正极10与所述隔膜30之间。The embodiment of the present invention also provides a lithium-sulfur battery electrode assembly, including the sulfur-based positive electrode 10, the separator 30 and the functional material layer 32 stacked on each other, and the functional material layer 32 is arranged on the sulfur-based positive electrode 10 and the between the diaphragms 30 .

本发明实施例还提供一锂硫电池电极组件,包括相互层叠设置的锂基负极20、隔膜30及功能性材料层32,功能性材料层32设置在锂基负极20与隔膜30之间。The embodiment of the present invention also provides a lithium-sulfur battery electrode assembly, including a lithium-based negative electrode 20 , a separator 30 , and a functional material layer 32 stacked on top of each other. The functional material layer 32 is arranged between the lithium-based negative electrode 20 and the separator 30 .

本发明实施例还提供一种复合硫基正极,包括相互层叠设置的正极材料层12、正极集流体14及功能性材料层32,所述正极材料层12设置在所述功能性材料层32与所述正极集流体14之间。An embodiment of the present invention also provides a composite sulfur-based positive electrode, including a positive electrode material layer 12, a positive electrode current collector 14, and a functional material layer 32 stacked on each other, and the positive electrode material layer 12 is arranged between the functional material layer 32 and the functional material layer 32. Between the positive electrode collectors 14 .

本发明实施例还提供一种复合锂基负极,包括相互层叠设置的金属锂22及功能性材料层32。The embodiment of the present invention also provides a composite lithium-based negative electrode, including metallic lithium 22 and functional material layers 32 stacked on each other.

本发明实施例提供所述功能性材料层32在所述锂硫电池中的应用,包括将含有所述Li-H-M-O体系化合物的固液混合物涂覆于所述硫基正极10、锂基负极20和隔膜30中至少一者的表面,从而在所述硫基正极10与所述锂基负极20之间形成所述功能性材料层32。The embodiment of the present invention provides the application of the functional material layer 32 in the lithium-sulfur battery, including coating the solid-liquid mixture containing the Li-H-M-O system compound on the sulfur-based positive electrode 10 and lithium-based negative electrode 20 and the surface of at least one of the separators 30 , so that the functional material layer 32 is formed between the sulfur-based positive electrode 10 and the lithium-based negative electrode 20 .

在所述固液混合物中固相包括所述Li-H-M-O体系化合物,并可进一步包括所述电子导电材料和所述粘结剂。所述固液混合物中固相液相优选为溶剂,所述Li-H-M-O体系化合物、电子导电材料、粘结剂和溶剂均匀混合。所述溶剂的作用是作为所述Li-H-M-O体系化合物的载体,因此需要选择不能溶解所述Li-H-M-O体系化合物,不与所述Li-H-M-O体系化合物发生化学反应,且能够在较低温度(如30~120℃)下完全去除的溶剂,例如水或低分子量易挥发有机溶剂,可以选自N-甲基毗咯烷酮、水、甲醇、乙醇、丙醇、异丙醇、乙睛、丙酮及乙醚中的一种或一种以上。The solid phase in the solid-liquid mixture includes the Li-H-M-O system compound, and may further include the electronic conductive material and the binder. The solid-liquid phase in the solid-liquid mixture is preferably a solvent, and the Li-H-M-O system compound, electronically conductive material, binder and solvent are uniformly mixed. The function of the solvent is as the carrier of the Li-H-M-O system compound, so it needs to be selected to be unable to dissolve the Li-H-M-O system compound, not to react chemically with the Li-H-M-O system compound, and to be able to dissolve the Li-H-M-O system compound at a lower temperature ( Such as 30 ~ 120 DEG C), solvents that are completely removed, such as water or low molecular weight volatile organic solvents, can be selected from N-methylpyrrolidone, water, methanol, ethanol, propanol, isopropanol, acetonitrile, One or more of acetone and ether.

所述固液混合物可以为混合液或浆料,混合液与浆料的区别仅在固液两相的比例,当固相较多时为浆料,当液相较多时为混合液。选用浆料与混合液,以及固液两项的比例的选取可根据实际需要进行,例如依据涂覆的方式决定。当然,为使涂覆容易进行,浆料优选具有合适的流动性;而为使涂覆更有效率,混合液中固相优选具有合适的比例。所述涂覆的方式例如可以为浸渍法、旋转涂覆法、刮刀涂覆法、流延涂覆法、抽滤(过滤)涂覆法、单向拉伸法和双向拉伸法中的任意一种。将所述固液混合物通过所述涂覆的步骤形成涂层后,仅需将涂层中的溶剂去除,即可得到所述功能性材料层32。因此,可以将所述固液混合物涂覆在需要的元件表面。当将所述固液混合物涂覆于所述硫基正极10时,可以涂覆于所述正极材料层12面向所述隔膜30的表面。当将所述固液混合物涂覆于所述隔膜30时,可以涂覆于所述隔膜30的单面或双面。The solid-liquid mixture can be a mixed liquid or a slurry. The difference between the mixed liquid and the slurry is only in the ratio of the solid and liquid phases. When the solid phase is more, it is a slurry, and when the liquid phase is more, it is a mixed liquid. The selection of slurry and mixed liquid, and the ratio of solid to liquid can be selected according to actual needs, for example, according to the method of coating. Of course, in order to facilitate the coating, the slurry preferably has proper fluidity; and in order to make the coating more efficient, the solid phase in the mixed solution preferably has a proper ratio. The coating method can be, for example, any one of the dipping method, spin coating method, doctor blade coating method, casting coating method, suction filtration (filtering) coating method, uniaxial stretching method and biaxial stretching method. A sort of. After the solid-liquid mixture is formed into a coating through the step of coating, the functional material layer 32 can be obtained only by removing the solvent in the coating. Therefore, the solid-liquid mixture can be coated on the desired component surface. When the solid-liquid mixture is applied to the sulfur-based positive electrode 10 , it may be applied to the surface of the positive electrode material layer 12 facing the separator 30 . When the solid-liquid mixture is applied to the separator 30 , it may be applied to one or both surfaces of the separator 30 .

在将所述固液混合物涂覆于所述硫基正极10和隔膜30中至少一者的表面之后,可进一步包括干燥去除所述涂层中的溶剂。所述干燥方法例如是在温度为30~120℃环境中真空干燥4~24小时。可以理解,所述干燥的步骤只是为了去除所述涂层中的液相溶剂和吸附水,干燥步骤的温度较低,从而保持干燥后所述功能性材料层32中Li-H-M-O体系化合物仍具有氢组分。After coating the solid-liquid mixture on the surface of at least one of the sulfur-based positive electrode 10 and the separator 30 , drying may be further included to remove the solvent in the coating. The drying method is, for example, vacuum drying in an environment with a temperature of 30-120° C. for 4-24 hours. It can be understood that the drying step is only to remove the liquid phase solvent and adsorbed water in the coating, and the temperature of the drying step is relatively low, so as to keep the Li-H-M-O system compound in the functional material layer 32 after drying. hydrogen component.

在需要的表面,例如硫基正极10的正极材料层12表面和/或隔膜30的至少一表面形成所述功能性材料层32后,进一步包括将所述硫基正极10与所述隔膜30层叠设置的步骤。After forming the functional material layer 32 on the required surface, such as the surface of the positive electrode material layer 12 of the sulfur-based positive electrode 10 and/or at least one surface of the separator 30, it further includes laminating the sulfur-based positive electrode 10 and the separator 30 Steps to set up.

在一实施例中,所述层叠设置的步骤使所述功能性材料层32层叠在所述硫基正极10与所述隔膜30之间。例如,在所述硫基正极10的正极材料层12表面形成所述功能性材料层32后,可将所述隔膜30铺设在所述功能性材料层32表面。或者在所述隔膜30的至少一表面形成所述功能性材料层32后,可将所述隔膜30具有所述功能性材料层32一面面向所述正极材料层12,并铺设在所述正极材料层12表面。In one embodiment, the step of stacking is to stack the functional material layer 32 between the sulfur-based positive electrode 10 and the separator 30 . For example, after the functional material layer 32 is formed on the surface of the positive electrode material layer 12 of the sulfur-based positive electrode 10 , the separator 30 may be paved on the surface of the functional material layer 32 . Or after the functional material layer 32 is formed on at least one surface of the separator 30, the separator 30 with the functional material layer 32 can face the positive electrode material layer 12 and be laid on the positive electrode material layer. Layer 12 surface.

在另一实施例中,所述层叠设置的步骤使所述功能性材料层32层叠在所述隔膜30远离所述硫基正极10的表面。在该实施例中,通过进一步在具有所述功能性材料层32的隔膜30表面层叠锂基负极20,同样可以将所述功能性材料层32设置在所述硫基正极10与所述锂基负极20之间。In another embodiment, in the step of stacking, the functional material layer 32 is stacked on the surface of the separator 30 away from the sulfur-based positive electrode 10 . In this embodiment, by further laminating the lithium-based negative electrode 20 on the surface of the separator 30 having the functional material layer 32, the functional material layer 32 can also be arranged between the sulfur-based positive electrode 10 and the lithium-based Between negative poles 20.

将所述硫基正极10、功能性材料层32、隔膜30及锂基负极20相互层叠后,可按照传统的锂硫电池制备工艺将所述层叠结构封装在所述密封壳体50中;以及在所述密封壳体50中注入所述电解液40。After stacking the sulfur-based positive electrode 10, the functional material layer 32, the separator 30 and the lithium-based negative electrode 20, the stacked structure can be packaged in the sealed case 50 according to the traditional lithium-sulfur battery manufacturing process; and The electrolyte solution 40 is injected into the sealed case 50 .

所述以Li-H-M-O体系化合物为基础的功能性材料层32在锂硫电池中具有吸附存储和/或催化多硫化锂的作用,并且通过氢组分的引入,提高功能性材料层32中Li-H-M-O体系化合物的晶体结构和纳米维度的多样性,提高了功能性材料层32的离子电导率。通过氢组分的引入可以提高材料的比表面积,更大的比表面积可以提供更多的活性位点,进而高效发挥抑制多硫化锂穿梭的作用,提升锂硫电池的电化学性能和安全性能。The functional material layer 32 based on the Li-H-M-O system compound has the function of absorbing and storing and/or catalyzing lithium polysulfide in the lithium-sulfur battery, and through the introduction of the hydrogen component, the Li in the functional material layer 32 is increased. -The variety of crystal structures and nanometer dimensions of the H-M-O system compound improves the ion conductivity of the functional material layer 32 . The specific surface area of the material can be increased by the introduction of the hydrogen component, and a larger specific surface area can provide more active sites, thereby effectively inhibiting the lithium polysulfide shuttle, and improving the electrochemical performance and safety performance of the lithium-sulfur battery.

本申请的技术方案打破了传统中认为水会对锂硫电池的电化学性能和安全性产生危害的观念,发现并通过实验证明了在功能性材料层32中引入氢组分不但不会影响锂硫电池的性能,同时还可以使锂硫电池具有优异的倍率容量及循环稳定性能。应用所述功能性材料层32的锂硫电池在电动汽车、储能电站及大容量电子产品中的锂硫电池等储能领域具有广阔的应用前景。The technical solution of the present application breaks the traditional notion that water will cause harm to the electrochemical performance and safety of lithium-sulfur batteries, and it is found and proved through experiments that the introduction of hydrogen components into the functional material layer 32 will not only not affect lithium The performance of sulfur batteries can also make lithium-sulfur batteries have excellent rate capacity and cycle stability. The lithium-sulfur battery using the functional material layer 32 has broad application prospects in energy storage fields such as electric vehicles, energy storage power stations, and lithium-sulfur batteries in large-capacity electronic products.

另外,制备Li-H-M-O体系化合物的大多数方法是湿法化学法(如水热合成法或者溶胶凝胶法),这些方法得到的产物往往是水合物,传统中都要经过的中高温热处理除去产物中的氢组分。而直接将Li-H-M-O体系化合物用于功能性材料层32省去了所述热处理除水的步骤,有效减少传统方法中的能耗与污染,材料制备过程温和可控,在新能源、新材料以及节能环保产业领域均具有重要的影响和意义。In addition, most of the methods for preparing Li-H-M-O system compounds are wet chemical methods (such as hydrothermal synthesis or sol-gel method), and the products obtained by these methods are often hydrates, which are traditionally removed by medium and high temperature heat treatment. the hydrogen component in. However, directly using the Li-H-M-O system compound for the functional material layer 32 omits the step of heat treatment to remove water, effectively reducing energy consumption and pollution in traditional methods, and the material preparation process is mild and controllable. As well as energy-saving and environmental protection industries have important influence and significance.

实施例1Example 1

1)Li-H-M-O体系化合物基功能性材料层的制备:将Li1.81H0.19Ti2O5-σ(σ表示氧空位)、Super P以及PVDF按照8:1:1的质量比加入到N-甲基毗咯烷酮中混合成浆料,随后使用流延法在聚丙烯隔膜上单面涂覆上述浆料,再将浆料在60℃下真空干燥10小时,即得到具有Li-H-Ti-O体系化合物基功能性材料层的复合隔膜(以下简称PP@C&LHTO-1)。PP@C&LHTO-1中功能性材料层的扫描电子显微镜(SEM)图如图3所示。1) Preparation of Li-HMO system compound-based functional material layer: Li 1.81 H 0.19 Ti 2 O 5-σ (σ represents oxygen vacancy), Super P and PVDF were added to N- Methylpyrrolidone was mixed to form a slurry, and then the slurry was coated on one side of the polypropylene separator by casting method, and then the slurry was vacuum-dried at 60°C for 10 hours to obtain a Li-H- Composite separator with Ti-O system compound-based functional material layer (hereinafter referred to as PP@C&LHTO-1). The scanning electron microscope (SEM) image of the functional material layer in PP@C&LHTO-1 is shown in Fig. 3.

2)锂硫电池的组装:以升华硫制备硫正极,金属锂片为负极,PP@C&LHTO-1为隔膜,电解液为LiTFSI和LiNO3在DME与DOL的混合溶剂中形成的混合溶液(DME与DOL体积比为1:1,LiTFSI的浓度为1mol/L,LiNO3的浓度为0.2mol/L)。在水和氧含量均低于1ppm的高纯氩气气氛的手套箱中组装2032型扣式电池。2) Assembly of lithium-sulfur battery: Sublimed sulfur is used to prepare sulfur positive electrode, metal lithium sheet is used as negative electrode, PP@C&LHTO-1 is used as separator, and electrolyte is a mixed solution of LiTFSI and LiNO 3 in a mixed solvent of DME and DOL (DME The volume ratio to DOL is 1:1, the concentration of LiTFSI is 1mol/L, and the concentration of LiNO3 is 0.2mol/L). A 2032-type coin cell was assembled in a glove box with a high-purity argon atmosphere with both water and oxygen content below 1 ppm.

对比例1Comparative example 1

与实施例1相同,区别仅在将实施例1中的PP@C&LHTO-1替换为商品化锂电池用聚丙烯隔膜(以下简称PP),组装与实施例1相同的2032型扣式电池,区别仅在将PP@C&LHTO-1替换为PP。Same as Example 1, the only difference is that the PP@C&LHTO-1 in Example 1 is replaced by a commercial lithium battery polypropylene separator (hereinafter referred to as PP), and the same 2032-type button battery as in Example 1 is assembled, the difference Only replace PP@C&LHTO-1 with PP.

对比例2Comparative example 2

与实施例1相同,区别仅在将实施例1中的Li1.81H0.19Ti2O5-σ经过350℃加热脱水后得到Li4Ti5O12-TiO2(以下简称LTO-1)材料,并将实施例1中功能性材料层制备步骤中的Li1.81H0.19Ti2O5-σ替换成LTO-1,得到具有Li-Ti-O体系材料涂层的复合隔膜(以下简称PP@C&LTO-1),组装与实施例1相同的2032型扣式电池,区别仅在将PP@C&LHTO-1替换为PP@C&LTO-1。Same as Example 1, except that the Li 1.81 H 0.19 Ti 2 O 5-σ in Example 1 was heated and dehydrated at 350°C to obtain Li 4 Ti 5 O 12 -TiO 2 (hereinafter referred to as LTO-1) material, And Li 1.81 H 0.19 Ti 2 O 5-σ in the preparation step of the functional material layer in Example 1 was replaced with LTO-1 to obtain a composite separator with a Li-Ti-O system material coating (hereinafter referred to as PP@C&LTO -1), assemble the same 2032-type button battery as in Example 1, the only difference is that PP@C&LHTO-1 is replaced with PP@C&LTO-1.

电池电化学性能的测试Testing of battery electrochemical performance

采用LAND电池测试系统在充放电截止电压分别为2.7V和1.8V的电压范围内进行恒流充放电循环,测试实施例1和对比例1-2的扣式电池的电化学循环特性,电池的测试数据如表1和表2所示。图4为实施例1中使用PP@C&LHTO-1及对比例1使用PP的锂硫电池在0.2C下的循环性能对比图。图5为实施例1使用PP@C&LHTO-1的锂硫电池在1C下的循环性能与库伦效率图。图6为实施例1中使用PP@C&LHTO-1及对比例2使用PP@C&LTO-1的锂硫电池的倍率性能对比图。Adopt LAND battery test system to carry out constant current charge-discharge cycle in the voltage range of 2.7V and 1.8V respectively in charge-discharge cut-off voltage, test the electrochemical cycle characteristics of the button cell of Example 1 and Comparative Example 1-2, the battery The test data are shown in Table 1 and Table 2. Figure 4 is a comparison chart of the cycle performance of lithium-sulfur batteries using PP@C&LHTO-1 in Example 1 and PP in Comparative Example 1 at 0.2C. Figure 5 is a diagram of the cycle performance and Coulombic efficiency of the lithium-sulfur battery using PP@C&LHTO-1 in Example 1 at 1C. Fig. 6 is a comparison chart of the rate performance of lithium-sulfur batteries using PP@C&LHTO-1 in Example 1 and PP@C&LTO-1 in Comparative Example 2.

表1Table 1

电流倍率Current rate 首次放电比容量First discharge specific capacity 第N次循环的放点比容量The discharge point specific capacity of the Nth cycle 实施例1Example 1 0.2C0.2C 1714mAh/g1714mAh/g 823mAh/g,N=200823mAh/g, N=200 实施例1Example 1 1C1C 765mAh/g765mAh/g 300mAh/g,N=2400300mAh/g, N=2400 对比例1Comparative example 1 0.2C0.2C 979mAh/g979mAh/g 285mAh/g,N=200285mAh/g, N=200

表2Table 2

电流倍率Current rate 实施例1放电比容量Embodiment 1 discharge specific capacity 对比例2放电比容量Comparative example 2 discharge specific capacity 0.1C0.1C 1212mAh/g1212mAh/g 1062mAh/g1062mAh/g 0.2C0.2C 1066mAh/g1066mAh/g 886mAh/g886mAh/g 0.5C0.5C 786mAh/g786mAh/g 593mAh/g593mAh/g 1C1C 646mAh/g646mAh/g 454mAh/g454mAh/g 2C2C 527mAh/g527mAh/g 333mAh/g333mAh/g 5C5C 358mAh/g358mAh/g 202mAh/g202mAh/g

通过图4的循环性能对比可以看出,使用PP@C&LHTO-1的锂硫电池首次放电容量高达1714mAh/g,而使用PP的对照组电池首次放电容量仅为979mAh/g。在200次循环之后,使用PP@C&LHTO-1的锂硫电池仍能保持823mAh/g的稳定比容量,是使用PP的对照组电池比容量的2.9倍。通过图5可以看出,在1C的大倍率下,使用PP@C&LHTO-1的锂硫电池在长达2400次的循环后仍有300mAh/g的可逆比容量,库伦效率接近100%,多硫化锂的“穿梭效应”明显减弱,电池展现出非常优异的大倍率容量和循环稳定性。From the cycle performance comparison in Figure 4, it can be seen that the initial discharge capacity of the lithium-sulfur battery using PP@C&LHTO-1 is as high as 1714mAh/g, while the initial discharge capacity of the control battery using PP is only 979mAh/g. After 200 cycles, the lithium-sulfur battery using PP@C&LHTO-1 can still maintain a stable specific capacity of 823mAh/g, which is 2.9 times the specific capacity of the control battery using PP. It can be seen from Figure 5 that at a large rate of 1C, the lithium-sulfur battery using PP@C&LHTO-1 still has a reversible specific capacity of 300mAh/g after up to 2400 cycles, and the Coulombic efficiency is close to 100%. The "shuttle effect" of lithium is significantly weakened, and the battery exhibits excellent high-rate capacity and cycle stability.

用PP@C&LTO-1和PP@C&LHTO-1对比考察含氢组分在锂硫电池中的优势。通过图6可以看出,相比于PP@C&LTO-1,PP@C&LHTO-1可使电池比容量分别提升14.1%(0.1C)、20.3%(0.2C)、32.5%(0.5C)、42.3%(1C)、58.3%(2C),特别在5C的大倍率下仍保持有358mAh g-1的比容量,是PP@C&LTO-1的近2倍。这是由于纳米Li1.81H0.19Ti2O5-σ晶体结构在高温脱水的过程往往要发生粗化和团聚,材料颗粒的尺寸变大,比表面积大幅降低,进而降低了材料中活性位点对多硫化锂的吸附存储和催化作用;此外,Li1.81H0.19Ti2O5-σ的二维层状结构也随时消失,转变为三维结构,材料的离子迁移能力降低,最终导致电化学性能不尽人意。Using PP@C&LTO-1 and PP@C&LHTO-1 to compare the advantages of hydrogen-containing components in lithium-sulfur batteries. It can be seen from Figure 6 that compared with PP@C&LTO-1, PP@C&LHTO-1 can increase the specific capacity of the battery by 14.1% (0.1C), 20.3% (0.2C), 32.5% (0.5C), 42.3% %(1C), 58.3%(2C), especially at a high rate of 5C, it still maintains a specific capacity of 358mAh g -1 , which is nearly twice that of PP@C&LTO-1. This is because the nano-Li 1.81 H 0.19 Ti 2 O 5-σ crystal structure tends to coarsen and agglomerate in the process of dehydration at high temperature, the particle size of the material becomes larger, and the specific surface area is greatly reduced, which in turn reduces the pair of active sites in the material. Adsorption, storage and catalysis of lithium polysulfide; in addition, the two-dimensional layered structure of Li 1.81 H 0.19 Ti 2 O 5-σ also disappears at any time, transforming into a three-dimensional structure, and the ion migration ability of the material is reduced, which eventually leads to poor electrochemical performance. As you wish.

实施例2Example 2

1)具有Li-H-M-O体系化合物的功能性材料层的制备:将Li0.71H0.49Mn1.73O3.88、科琴黑以及PVDF按照7:2:1的质量比加入到乙醇溶剂中混合成浆料,随后使用旋转涂覆在聚乙烯隔膜上双面涂覆上述浆料,再将浆料在80℃下真空干燥10小时,即得到具有Li-H-Mn-O体系化合物基功能性材料层的复合隔膜(以下简称PE@C&LHMO-2)。1) Preparation of a functional material layer with a Li-HMO system compound: Li 0.71 H 0.49 Mn 1.73 O 3.88 , Ketjen Black and PVDF were added to an ethanol solvent at a mass ratio of 7:2:1 and mixed to form a slurry, Then use spin coating to coat the above slurry on both sides of the polyethylene diaphragm, and then dry the slurry at 80°C for 10 hours in vacuum to obtain a composite with a Li-H-Mn-O system compound-based functional material layer. Diaphragm (hereinafter referred to as PE@C&LHMO-2).

2)锂硫电池的组装:与实施例1相同,区别仅在将PP@C&LHTO-1替换为PE@C&LHMO-2。2) Assembly of lithium-sulfur battery: the same as in Example 1, the only difference is that PP@C&LHTO-1 is replaced by PE@C&LHMO-2.

实施例3Example 3

1)具有Li-H-M-O体系化合物的功能性材料层的制备:将7Li2WO4·4H2O、乙炔黑以及LA按照85:15:5的质量比加入到去离子水中混合成浆料,随后使用抽滤(过滤)涂覆法在聚乙烯-聚丙烯双层隔膜上单面涂覆上述浆料,再将浆料在80℃下真空干燥10小时,即得到具有Li-H-W-O体系化合物基功能性材料层的复合隔膜(以下简称PE/PP@C&LHWO-3)。1) Preparation of functional material layer with Li-HMO system compound: 7Li 2 WO 4 4H 2 O, acetylene black and LA were added into deionized water at a mass ratio of 85:15:5 to form a slurry, and then Use the suction filtration (filtration) coating method to coat the above slurry on one side of the polyethylene-polypropylene double-layer separator, and then dry the slurry at 80°C for 10 hours in a vacuum to obtain a Li-HWO system compound-based functional compound. Composite separator with permanent material layer (hereinafter referred to as PE/PP@C&LHWO-3).

2)锂硫电池的组装:与实施例1相同,区别仅在将升华硫替换为硫碳复合材料,将PP@C&LHTO-1替换为PE/PP@C&LHWO-3。2) Lithium-sulfur battery assembly: the same as in Example 1, the only difference is that the sublimated sulfur is replaced by a sulfur-carbon composite material, and PP@C&LHTO-1 is replaced by PE/PP@C&LHWO-3.

实施例4Example 4

1)具有Li-H-M-O体系化合物的功能性材料层的制备:将LiVO3·0.5H2O、碳纳米管以及PTFE按照6:3:1的质量比加入到甲醇中混合成浆料,随后使用流延法在升华硫制成的正极材料层表面涂覆上述浆料,再将浆料在80℃下真空干燥10小时,即得到具有Li-H-V-O体系化合物基功能性材料层的复合硫基正极(以下简称S@C&LHVO-4)。1) Preparation of functional material layer with Li-HMO system compound: LiVO 3 0.5H 2 O, carbon nanotubes and PTFE were added to methanol at a mass ratio of 6:3:1 to form a slurry, and then used The above-mentioned slurry is coated on the surface of the positive electrode material layer made of sublimated sulfur by casting method, and then the slurry is vacuum-dried at 80°C for 10 hours to obtain a composite sulfur-based positive electrode with a Li-HVO system compound-based functional material layer (hereinafter referred to as S@C&LHVO-4).

2)锂硫电池的组装:以S@C&LHVO-4作为正极,金属锂片为负极,隔膜为商品化的锂电池用聚丙烯-聚乙烯-聚丙烯隔膜,电解液为LiTFSI在DME与DOL的混合溶剂中形成的溶液(DME与DOL体积比为1:1,LiTFSI的浓度为1mol/L)。在水和氧含量均低于1ppm的高纯氩气气氛的手套箱中组装2032型扣式电池。2) Lithium-sulfur battery assembly: S@C&LHVO-4 is used as the positive electrode, metal lithium sheet is used as the negative electrode, the separator is commercial lithium battery polypropylene-polyethylene-polypropylene separator, and the electrolyte is LiTFSI in DME and DOL A solution formed in a mixed solvent (the volume ratio of DME to DOL is 1:1, and the concentration of LiTFSI is 1mol/L). A 2032-type coin cell was assembled in a glove box with a high-purity argon atmosphere with both water and oxygen content below 1 ppm.

实施例5Example 5

1)具有Li-H-M-O体系化合物的功能性材料层的制备:将LiMoO3·H2O、石墨烯以及聚偏氟乙烯按照70:15:15的质量比加入到乙醇中混合成浆料,随后使用刮刀法在PAN多孔膜单面涂覆上述浆料,再将浆料在60℃下真空干燥10小时,即得到具有Li-H-Mo-O体系化合物基功能性材料层的复合隔膜(以下简称PAN@C&LHMO-5)。1) Preparation of functional material layer with Li-HMO system compound: LiMoO 3 ·H 2 O, graphene, and polyvinylidene fluoride were added to ethanol at a mass ratio of 70:15:15 to form a slurry, and then Use the doctor blade method to coat the above slurry on one side of the PAN porous membrane, and then dry the slurry in vacuum at 60°C for 10 hours to obtain a composite diaphragm with a Li-H-Mo-O system compound-based functional material layer (hereinafter Abbreviated as PAN@C&LHMO-5).

2)锂硫电池的组装:与实施例1相同,区别仅在将升华硫替换为硫碳复合材料,将PP@C&LHTO-1替换为PAN@C&LHMO-5。2) Assembly of lithium-sulfur battery: the same as in Example 1, the only difference is that the sublimated sulfur is replaced by a sulfur-carbon composite material, and PP@C&LHTO-1 is replaced by PAN@C&LHMO-5.

通过上述实验可以得知,在纳米氧化物的制备方法中,湿法化学法(如水热反应或者溶胶凝胶反应)制备得到的前驱体往往具有氢组分(结晶水或结构水)。而传统认为带有结晶水的化合物需要通过高温煅烧除水才能用于高电压有机电解液体系的锂离子电池或锂硫电池。但本申请发明人发现,高温除水之后的材料对于用于锂硫电池的功能性材料层来说是并非理想的状态。在本申请中,本申请发明人通过避免高温煅烧,保留材料中的氢组分,避免了纳米晶体结构在高温脱水的过程中的粗化和团聚,使Li-H-M-O体系化合物具有大量的活性位点,通过大量活性位点来吸附存储和(或)催化多硫化锂,抑制锂硫电池多硫化锂穿梭。氢元素的引入不仅可以促进材料微观形貌的多样性(如2D纳米片、1D纳米管/线和0D纳米颗粒),还可以在离子快速嵌入/脱出过程中保持其较为“松散”的晶体结构(晶体结构中离子密堆程度低,有利于离子扩散),Li-H-M-O体系化合物微观形貌的多样性(如二维层状)可以大幅提高材料的离子电导,进而有效改善锂硫电池的电化学性能。此外,当化合物具有较小的晶粒尺寸时,可以更容易的填充于有机隔膜孔隙来物理阻隔多硫化锂,达到更好的抑制锂硫电池多硫化锂穿梭的效果。It can be known from the above experiments that in the preparation of nano-oxides, the precursors prepared by wet chemical methods (such as hydrothermal reaction or sol-gel reaction) often have hydrogen components (crystallization water or structural water). Traditionally, it is believed that compounds with crystal water need to be calcined at high temperature to remove water before they can be used in lithium-ion batteries or lithium-sulfur batteries with high-voltage organic electrolyte systems. However, the inventors of the present application found that the material after high-temperature water removal is not ideal for the functional material layer used in lithium-sulfur batteries. In this application, the inventors of the present application avoided the high-temperature calcination, retained the hydrogen component in the material, and avoided the coarsening and agglomeration of the nanocrystalline structure during the high-temperature dehydration process, so that the Li-H-M-O system compound has a large number of active sites Points, through a large number of active sites to adsorb and store and/or catalyze lithium polysulfides, and inhibit lithium polysulfide shuttles in lithium-sulfur batteries. The introduction of hydrogen can not only promote the diversity of the microscopic morphology of the material (such as 2D nanosheets, 1D nanotubes/wires, and 0D nanoparticles), but also maintain its relatively "loose" crystal structure during the rapid intercalation/extraction of ions. (The degree of close packing of ions in the crystal structure is low, which is conducive to ion diffusion), and the diversity of microscopic morphology (such as two-dimensional layered) of Li-H-M-O system compounds can greatly improve the ionic conductivity of the material, thereby effectively improving the lithium-sulfur battery. chemical properties. In addition, when the compound has a smaller grain size, it can be more easily filled in the pores of the organic separator to physically block lithium polysulfide, and achieve a better effect of inhibiting lithium polysulfide shuttling in lithium-sulfur batteries.

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.

Claims (19)

1.一种锂硫电池,包括:1. A lithium-sulfur battery, comprising: 硫基正极;Sulfur-based cathode; 锂基负极;Lithium-based negative electrode; 设置在所述硫基正极与所述锂基负极之间的隔膜;以及a separator disposed between the sulfur-based positive electrode and the lithium-based negative electrode; and 设置在所述硫基正极与所述锂基负极之间的功能性材料层,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。A functional material layer disposed between the sulfur-based positive electrode and the lithium-based negative electrode, the material of the functional material layer includes a Li-H-M-O system compound having Li, H, M and O elements, wherein M is a transition metal element. 2.根据权利要求1所述的锂硫电池,其特征在于,所述Li-H-M-O体系化合物中H以结晶水或结构水形式存在。2. The lithium-sulfur battery according to claim 1, wherein H in the Li-H-M-O system compound exists in the form of crystal water or structural water. 3.根据权利要求1所述的锂硫电池,其特征在于,所述过渡金属元素M选自钛、锰、钒、钨、钼、镍及钴中的至少一种。3. The lithium-sulfur battery according to claim 1, wherein the transition metal element M is at least one selected from titanium, manganese, vanadium, tungsten, molybdenum, nickel and cobalt. 4.根据权利要求1所述的锂硫电池,其特征在于,所述Li-H-M-O体系化合物的通式为Li(0.01~4)H(0.01~8)MO(1-σ~6-σ),且0≤σ≤1,其中σ为氧空位的量。4. The lithium-sulfur battery according to claim 1, wherein the general formula of the Li-HMO system compound is Li (0.01~4) H (0.01~8) MO (1-σ~6-σ) , and 0≤σ≤1, where σ is the amount of oxygen vacancies. 5.根据权利要求1所述的锂硫电池,其特征在于,所述Li-H-M-O体系化合物的一次颗粒的粒径尺寸为1纳米至800纳米。5 . The lithium-sulfur battery according to claim 1 , wherein the particle size of the primary particles of the Li-H-M-O system compound is 1 nanometer to 800 nanometers. 6.根据权利要求1所述的锂硫电池,其特征在于,所述Li-H-M-O体系化合物的比表面积为1m2/g至600m2/g。6 . The lithium-sulfur battery according to claim 1 , wherein the specific surface area of the Li-HMO system compound is 1 m 2 /g to 600 m 2 /g. 7.根据权利要求1所述的锂硫电池,其特征在于,所述Li-H-M-O体系化合物具有层状晶体结构。7. The lithium-sulfur battery according to claim 1, wherein the Li-H-M-O system compound has a layered crystal structure. 8.根据权利要求1所述的锂硫电池,其特征在于,所述功能性材料层的厚度为10nm~200μm,面密度为0.1~30mg/cm28 . The lithium-sulfur battery according to claim 1 , wherein the thickness of the functional material layer is 10 nm-200 μm, and the surface density is 0.1-30 mg/cm 2 . 9.根据权利要求1所述的锂硫电池,其特征在于,所述功能性材料层的材料还包括电子导电材料和粘结剂,所述电子导电材料和粘结剂与所述Li-H-M-O体系化合物均匀混合。9. The lithium-sulfur battery according to claim 1, wherein the material of the functional material layer also includes an electronically conductive material and a binder, and the electronically conductive material and the binder are combined with the Li-H-M-O System compounds are mixed evenly. 10.根据权利要求1所述的锂硫电池,其特征在于,所述功能性材料层设置在所述硫基正极面向所述锂基负极的表面,所述隔膜的至少一个表面,或者所述锂基负极面向所述硫基正极的表面。10. The lithium-sulfur battery according to claim 1, wherein the functional material layer is arranged on the surface of the sulfur-based positive electrode facing the lithium-based negative electrode, at least one surface of the separator, or the The lithium-based negative electrode faces the surface of the sulfur-based positive electrode. 11.根据权利要求1所述的锂硫电池,其特征在于,所述功能性材料层设置在所述隔膜的两个表面。11. The lithium-sulfur battery according to claim 1, wherein the functional material layer is disposed on both surfaces of the separator. 12.根据权利要求1所述的锂硫电池,其特征在于,所述Li-H-M-O体系化合物在所述功能性材料层中的质量百分含量为5%~99%。12. The lithium-sulfur battery according to claim 1, characterized in that, the mass percentage of the Li-H-M-O system compound in the functional material layer is 5%-99%. 13.一种复合隔膜,所述复合隔膜用于锂硫电池,其特征在于,所述复合隔膜包括隔膜及设置在所述隔膜至少一个表面的功能性材料层,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。13. A composite diaphragm, which is used for lithium-sulfur batteries, characterized in that, the composite diaphragm includes a diaphragm and a functional material layer arranged on at least one surface of the diaphragm, and the material of the functional material layer Including Li-H-M-O system compounds with Li, H, M and O elements, wherein M is a transition metal element. 14.一种锂硫电池电极组件,其特征在于,包括相互层叠设置的硫基正极、隔膜及功能性材料层,所述功能性材料层设置在所述硫基正极与所述隔膜之间,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。14. A lithium-sulfur battery electrode assembly, characterized in that it comprises a sulfur-based positive electrode, a separator, and a functional material layer stacked on top of each other, and the functional material layer is arranged between the sulfur-based positive electrode and the separator, The material of the functional material layer includes a Li-H-M-O system compound having Li, H, M and O elements, wherein M is a transition metal element. 15.一种锂硫电池电极组件,其特征在于,包括相互层叠设置的锂基负极、隔膜及功能性材料层,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。15. A lithium-sulfur battery electrode assembly, characterized in that it comprises a lithium-based negative electrode, a diaphragm, and a functional material layer stacked on each other, and the material of the functional material layer includes Li, H, M and O elements. -H-M-O system compound, wherein M is a transition metal element. 16.一种复合硫基正极,其特征在于,包括相互层叠设置的正极材料层、正极集流体及功能性材料层,所述正极材料层设置在所述功能性材料层与所述正极集流体之间,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。16. A composite sulfur-based positive electrode, characterized in that it includes a positive electrode material layer, a positive electrode current collector, and a functional material layer stacked on each other, and the positive electrode material layer is arranged between the functional material layer and the positive electrode current collector. Between, the material of the functional material layer includes a Li-H-M-O system compound having Li, H, M and O elements, wherein M is a transition metal element. 17.一种复合锂基负极,其特征在于,包括相互层叠设置的金属锂及功能性材料层,所述功能性材料层的材料包括具有Li、H、M及O元素的Li-H-M-O体系化合物,其中M为过渡金属元素。17. A composite lithium-based negative electrode, characterized in that it includes metal lithium and functional material layers stacked on each other, and the material of the functional material layer includes Li-H-M-O system compounds with Li, H, M and O elements , where M is a transition metal element. 18.一种功能性材料层在锂硫电池中的应用,其特征在于,包括:18. An application of a functional material layer in a lithium-sulfur battery, characterized in that it comprises: 将具有Li、H、M及O元素的Li-H-M-O体系化合物的固液混合物涂覆于所述硫基正极、锂基负极和隔膜中至少一者的表面,从而在所述硫基正极与所述锂基负极之间形成所述功能性材料层。Coating a solid-liquid mixture of Li-H-M-O system compounds with Li, H, M and O elements on the surface of at least one of the sulfur-based positive electrode, lithium-based negative electrode and separator, so that the sulfur-based positive electrode and the The functional material layer is formed between the lithium-based negative electrodes. 19.根据权利要求18所述的功能性材料层在锂硫电池中的应用,其特征在于,进一步包括:19. The application of the functional material layer in a lithium-sulfur battery according to claim 18, further comprising: 在温度为30~120℃下干燥去除所述固液混合物形成的涂层中的溶剂。Drying and removing the solvent in the coating formed by the solid-liquid mixture at a temperature of 30-120°C.
CN201710656252.3A 2017-08-03 2017-08-03 Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery Expired - Fee Related CN107546357B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710656252.3A CN107546357B (en) 2017-08-03 2017-08-03 Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery
PCT/CN2017/110639 WO2019024313A1 (en) 2017-08-03 2017-11-27 Lithium sulfur battery and assembly thereof, and application of functional material layer in lithium sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710656252.3A CN107546357B (en) 2017-08-03 2017-08-03 Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery

Publications (2)

Publication Number Publication Date
CN107546357A true CN107546357A (en) 2018-01-05
CN107546357B CN107546357B (en) 2020-04-24

Family

ID=60971404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710656252.3A Expired - Fee Related CN107546357B (en) 2017-08-03 2017-08-03 Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery

Country Status (2)

Country Link
CN (1) CN107546357B (en)
WO (1) WO2019024313A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346646A (en) * 2018-09-30 2019-02-15 肇庆市华师大光电产业研究院 A kind of novel lithium sulphur battery diaphragm material, preparation method and application
CN111463414A (en) * 2020-04-09 2020-07-28 中科院过程工程研究所南京绿色制造产业创新研究院 A kind of interlayer material, preparation method and application thereof
CN113422153A (en) * 2021-05-19 2021-09-21 大连理工大学 Preparation method of positive electrode side interlayer material for lithium-sulfur battery
CN113471402A (en) * 2021-07-03 2021-10-01 江西理工大学 Preparation method of carbon nanotube/lithium vanadate composite membrane with multiple polarization centers and application of composite membrane in catalysis of lithium-sulfur battery reaction
CN115411262A (en) * 2022-09-13 2022-11-29 江苏正力新能电池技术有限公司 Preparation method of positive electrode material and battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028162B (en) * 2022-05-13 2023-09-29 河南农业大学 Preparation method and application of manganese-doped tantalum trisulfide reduced graphene oxide composite material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292579A (en) * 1999-09-09 2001-04-25 佳能株式会社 Alkaline charging battery and method for making said charging battery
US20140038026A1 (en) * 2012-08-01 2014-02-06 Robert Bosch Gmbh Energy store with separator
CN103633288A (en) * 2012-08-28 2014-03-12 华为技术有限公司 Lithium ion battery composite negative electrode material and preparation method thereof, lithium ion battery negative electrode sheet and lithium ion battery
US20150024248A1 (en) * 2013-07-22 2015-01-22 Hui He Non-flammable quasi-solid electrolyte-separator layer product for lithium battery applications
CN104733775A (en) * 2013-12-19 2015-06-24 索尼公司 Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN104900861A (en) * 2015-04-02 2015-09-09 清华大学 Hydrogen lithium titanate Li-H-Ti-O material and preparation method thereof
CN105140447A (en) * 2015-07-23 2015-12-09 中国科学院上海硅酸盐研究所 Functional composite membrane for lithium-sulfur battery and preparation method of functional composite membrane
CN106099102A (en) * 2016-07-04 2016-11-09 大连博融新材料有限公司 A kind of production method of lithium ion battery electrode active material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292579A (en) * 1999-09-09 2001-04-25 佳能株式会社 Alkaline charging battery and method for making said charging battery
US20140038026A1 (en) * 2012-08-01 2014-02-06 Robert Bosch Gmbh Energy store with separator
CN103633288A (en) * 2012-08-28 2014-03-12 华为技术有限公司 Lithium ion battery composite negative electrode material and preparation method thereof, lithium ion battery negative electrode sheet and lithium ion battery
US20150024248A1 (en) * 2013-07-22 2015-01-22 Hui He Non-flammable quasi-solid electrolyte-separator layer product for lithium battery applications
CN104733775A (en) * 2013-12-19 2015-06-24 索尼公司 Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN104900861A (en) * 2015-04-02 2015-09-09 清华大学 Hydrogen lithium titanate Li-H-Ti-O material and preparation method thereof
CN105140447A (en) * 2015-07-23 2015-12-09 中国科学院上海硅酸盐研究所 Functional composite membrane for lithium-sulfur battery and preparation method of functional composite membrane
CN106099102A (en) * 2016-07-04 2016-11-09 大连博融新材料有限公司 A kind of production method of lithium ion battery electrode active material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346646A (en) * 2018-09-30 2019-02-15 肇庆市华师大光电产业研究院 A kind of novel lithium sulphur battery diaphragm material, preparation method and application
CN109346646B (en) * 2018-09-30 2021-12-28 肇庆市华师大光电产业研究院 Novel lithium-sulfur battery diaphragm material, preparation method and application
CN111463414A (en) * 2020-04-09 2020-07-28 中科院过程工程研究所南京绿色制造产业创新研究院 A kind of interlayer material, preparation method and application thereof
CN111463414B (en) * 2020-04-09 2021-06-15 中科院过程工程研究所南京绿色制造产业创新研究院 Interlayer material and preparation method and application thereof
CN113422153A (en) * 2021-05-19 2021-09-21 大连理工大学 Preparation method of positive electrode side interlayer material for lithium-sulfur battery
CN113422153B (en) * 2021-05-19 2022-07-29 大连理工大学 Preparation method of anode side interlayer material for lithium-sulfur battery
CN113471402A (en) * 2021-07-03 2021-10-01 江西理工大学 Preparation method of carbon nanotube/lithium vanadate composite membrane with multiple polarization centers and application of composite membrane in catalysis of lithium-sulfur battery reaction
CN115411262A (en) * 2022-09-13 2022-11-29 江苏正力新能电池技术有限公司 Preparation method of positive electrode material and battery

Also Published As

Publication number Publication date
CN107546357B (en) 2020-04-24
WO2019024313A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
CN107275551B (en) Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery
CN107546357B (en) Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery
CN107623103B (en) Lithium-sulfur battery cell electrode
CN104916802B (en) A kind of composite diaphragm and its application
Liao et al. Novel flower-like hierarchical carbon sphere with multi-scale pores coated on PP separator for high-performance lithium-sulfur batteries
US20090191458A1 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
CN104733677A (en) Lithium-selenium battery and preparation technology thereof
CN105914369B (en) A nanoscale carbon-coated lithium sulfide composite material and its preparation method and application
CN104600233A (en) Thermal shutdown composite diaphragm and application thereof
CN106784538A (en) The spraying preparation method of poly-dopamine ceramic diaphragm and its application in lithium ion battery
JP6622819B2 (en) Lithium secondary battery with improved output characteristics
CN113793980A (en) Rechargeable organic calcium ion battery and preparation method thereof
CN105609687B (en) By C/Ti4O7Lithium-sulfur battery with composite fiber non-woven fabric as intercalation
CN109961967A (en) Lithium ion capacitor and preparation method thereof
KR102415160B1 (en) Positive electrode active material for lithium secondary battery including vanadium oxide coated with carbon and method for preparing the same
TWI600195B (en) Nonaqueous electrolyte secondary battery and battery module using the same
JP2014022321A (en) Nonaqueous electrolyte secondary battery including scavenger
CN112573531B (en) Preparation method of negative electrode active material
CN109524719B (en) Double-layer solid electrolyte composite membrane with polyacrylonitrile as main body and preparation method and application thereof
KR102639667B1 (en) Cathode for lithium secondary battery comprising molybdenum disulfide, and lithium secondary battery comprising thereof
JP2012084554A (en) Anode, secondary battery, and method for manufacturing anode
CN111137902B (en) H-Si-O system material, negative electrode active material and preparation method thereof, electrochemical battery negative electrode material and electrochemical battery
JP7515631B2 (en) Binder composition for manufacturing a positive electrode of a lithium-sulfur battery, and a positive electrode of a lithium-sulfur battery manufactured using the binder composition
KR102727675B1 (en) Manufacturing method of carbon-based material and current collector for lithium secondary battery coated with the same
CN111137924B (en) Negative electrode active material, preparation method thereof, electrochemical cell negative electrode material and electrochemical cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200424

Termination date: 20200803