CN107541724A - A kind of preparation method of the controllable metal-oxide film of pattern and composition - Google Patents
A kind of preparation method of the controllable metal-oxide film of pattern and composition Download PDFInfo
- Publication number
- CN107541724A CN107541724A CN201610473674.2A CN201610473674A CN107541724A CN 107541724 A CN107541724 A CN 107541724A CN 201610473674 A CN201610473674 A CN 201610473674A CN 107541724 A CN107541724 A CN 107541724A
- Authority
- CN
- China
- Prior art keywords
- metal oxide
- composition
- metal
- heat treatment
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 51
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 51
- 239000000203 mixture Substances 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims description 8
- 239000010408 film Substances 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 30
- 238000010438 heat treatment Methods 0.000 claims abstract description 29
- 238000002425 crystallisation Methods 0.000 claims abstract description 27
- 230000008025 crystallization Effects 0.000 claims abstract description 27
- 239000010409 thin film Substances 0.000 claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000007797 corrosion Effects 0.000 claims abstract description 22
- 238000005260 corrosion Methods 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000001301 oxygen Substances 0.000 claims abstract description 22
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 22
- 239000000956 alloy Substances 0.000 claims abstract description 17
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 17
- 239000005300 metallic glass Substances 0.000 claims abstract description 14
- 230000003647 oxidation Effects 0.000 claims abstract description 13
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims abstract description 13
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910001362 Ta alloys Inorganic materials 0.000 claims description 3
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 3
- 238000006056 electrooxidation reaction Methods 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 19
- 238000011065 in-situ storage Methods 0.000 abstract description 13
- 239000012298 atmosphere Substances 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 51
- 229910010413 TiO 2 Inorganic materials 0.000 description 29
- 239000013078 crystal Substances 0.000 description 24
- 239000010936 titanium Substances 0.000 description 23
- 238000012360 testing method Methods 0.000 description 9
- 239000002071 nanotube Substances 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000002061 nanopillar Substances 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 3
- 229910017855 NH 4 F Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000002525 ultrasonication Methods 0.000 description 2
- 244000017020 Ipomoea batatas Species 0.000 description 1
- 235000002678 Ipomoea batatas Nutrition 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004098 selected area electron diffraction Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明涉及光电化学电池领域,具体为一种形貌和成分可控的金属氧化物薄膜的制备方法。以金属片或合金片为基体,利用化学腐蚀氧化在金属片或合金基片表面原位生成非晶金属氧化物;将获得的非晶金属氧化物薄膜在不同氧气分压下进行晶化热处理,通过调控热处理温度和时间获得形貌和成分可控的金属氧化物薄膜。本发明通过调控晶化热处理过程中的氧气分压,在金属基体上原位获得特定形貌以及组分可调金属氧化物薄膜的方法,金属氧化物薄膜的形貌和成分是光化学水分解电池用光电极材料的两个重要参数,直接影响光电化学电池的最终转化效率。本发明通过调控热处理过程中的气氛和分压,在金属基体上原位获得特定形貌以及成分可调金属氧化物薄膜。The invention relates to the field of photoelectrochemical cells, in particular to a method for preparing a metal oxide thin film with controllable morphology and composition. Using a metal sheet or an alloy sheet as a substrate, the amorphous metal oxide is generated in situ on the surface of the metal sheet or alloy substrate by chemical corrosion oxidation; the obtained amorphous metal oxide film is subjected to crystallization heat treatment under different oxygen partial pressures, A metal oxide thin film with controllable morphology and composition is obtained by adjusting the heat treatment temperature and time. In the present invention, by adjusting the oxygen partial pressure in the crystallization heat treatment process, a method for obtaining a metal oxide film with a specific shape and an adjustable composition on a metal substrate in situ, the shape and composition of the metal oxide film are photochemical water splitting cells Two important parameters of photoelectrode materials directly affect the final conversion efficiency of photoelectrochemical cells. In the invention, the metal oxide thin film with specific shape and adjustable composition is obtained in situ on the metal substrate by regulating the atmosphere and partial pressure in the heat treatment process.
Description
技术领域technical field
本发明涉及光电化学电池领域,具体为一种形貌和成分可控的金属氧化物薄膜的制备方法。The invention relates to the field of photoelectrochemical cells, in particular to a method for preparing a metal oxide thin film with controllable morphology and composition.
背景技术Background technique
光电化学水分解电池是太阳能转化和存储的有效途径之一,它将太阳能以氢键的形式固定转化。光电极是光电化学电池的核心部件,它吸收入射的太阳能光并诱导水分解反应来实现太阳能的转化和存储。金属氧化物具有高稳定性、高活性和低成本等优点,是一种理想的半导体光电极材料。Photoelectrochemical water splitting cells are one of the effective ways to convert and store solar energy, which fix and convert solar energy in the form of hydrogen bonds. Photoelectrodes are the core components of photoelectrochemical cells, which absorb incident solar light and induce water splitting reactions to convert and store solar energy. Metal oxides have the advantages of high stability, high activity and low cost, and are ideal semiconductor photoelectrode materials.
金属氧化物的表面原子/电子结构直接决定光生电荷的表面转移过程,最终影响光电极的量子转化效率。金属氧化物半导体不同晶面具有不同的表面原子/电子结构,展现出不同的光催化活性,通常高能晶面具有更高的光催化活性。同时,表面晶格缺陷也可同时调制表面原子/电子结构,直接影响最终的量子转化效率。通过调制表面原子/电子结构,获得特定晶面暴露和组分可调变的金属氧化物薄膜可有效提高光生电荷的表面转移效率,其作为光电极具有高的太阳能转化量子效率。因此,制备特定晶面暴露和组分可调变的金属氧化物薄膜光电极是构建高效光电化学分解水电池的一种有效手段。The surface atomic/electronic structure of metal oxides directly determines the surface transfer process of photogenerated charges, which ultimately affects the quantum conversion efficiency of photoelectrodes. Different crystal planes of metal oxide semiconductors have different surface atomic/electronic structures, which exhibit different photocatalytic activities, and usually high-energy crystal planes have higher photocatalytic activity. At the same time, surface lattice defects can also simultaneously modulate the surface atomic/electronic structure, directly affecting the final quantum conversion efficiency. By modulating the surface atomic/electronic structure, obtaining a metal oxide film with specific crystal plane exposure and composition adjustment can effectively improve the surface transfer efficiency of photogenerated charges, and it has high quantum efficiency of solar energy conversion as a photoelectrode. Therefore, the preparation of metal oxide thin film photoelectrodes with specific crystal facet exposure and tunable composition is an effective means to construct high-efficiency photoelectrochemical water splitting batteries.
发明内容Contents of the invention
本发明的目的在于提供一种形貌和成分可控的金属氧化物薄膜的制备方法,通过调控热处理过程中的气氛和分压,在金属基体上原位获得特定形貌以及成分可调金属氧化物薄膜。The object of the present invention is to provide a method for preparing a metal oxide thin film with controllable morphology and composition. By adjusting the atmosphere and partial pressure during heat treatment, a specific morphology and composition-tunable metal oxide film can be obtained in situ on a metal substrate. object film.
本发明的技术方案是:Technical scheme of the present invention is:
一种形貌和成分可控的金属氧化物薄膜的制备方法,首先,以金属片或合金片为基体,利用化学腐蚀氧化在金属片或合金基片表面原位生成非晶金属氧化物;然后,将获得的非晶金属氧化物薄膜在不同氧气分压下进行晶化热处理,通过调控热处理温度和时间获得形貌和成分可控的金属氧化物薄膜。A method for preparing a metal oxide thin film with controllable morphology and composition. First, using a metal sheet or an alloy sheet as a substrate, using chemical corrosion and oxidation to generate an amorphous metal oxide in situ on the surface of the metal sheet or alloy substrate; and then The obtained amorphous metal oxide film is subjected to crystallization heat treatment under different oxygen partial pressures, and the metal oxide film with controllable morphology and composition is obtained by adjusting the heat treatment temperature and time.
所述的金属基片为Fe、Ta、Ti、W、Zn、Cu或Co,所述的合金基片为Ti/Al、Cu/Zn、Ti/Fe、Ti/W或Ti/Ta合金。The metal substrate is Fe, Ta, Ti, W, Zn, Cu or Co, and the alloy substrate is Ti/Al, Cu/Zn, Ti/Fe, Ti/W or Ti/Ta alloy.
所述的化学腐蚀氧化为各种金属腐蚀氧化过程,采用化学溶液腐蚀、大气腐蚀或电化学氧化腐蚀。The chemical corrosion oxidation refers to various metal corrosion oxidation processes, using chemical solution corrosion, atmospheric corrosion or electrochemical oxidation corrosion.
所述的晶化热处理温度为300~1000℃,升温速度为0.1~10℃/分钟,晶化时间为0.5~48小时。The crystallization heat treatment temperature is 300-1000° C., the heating rate is 0.1-10° C./minute, and the crystallization time is 0.5-48 hours.
所述的形貌和成分可控的金属氧化物薄膜的制备方法,优选的,所述的晶化热处理温度为500~800℃,升温速度为1~5℃/分钟,晶化时间为1~24小时。In the preparation method of the metal oxide thin film with controllable morphology and composition, preferably, the crystallization heat treatment temperature is 500-800°C, the heating rate is 1-5°C/min, and the crystallization time is 1-5°C. 24 hours.
所述的晶化处理氧气分压为0~105Pa。The partial pressure of oxygen in the crystallization treatment is 0-10 5 Pa.
所述的形貌和成分可控的金属氧化物薄膜的制备方法,优选的,所述的晶化处理氧气分压为0~1000Pa。In the preparation method of the metal oxide thin film with controllable morphology and composition, preferably, the partial pressure of oxygen in the crystallization treatment is 0-1000Pa.
本发明的设计思想是:Design idea of the present invention is:
本发明以金属(或合金)片作为基体,通过(电)化学腐蚀氧化在金属(合金)基体上原位获得非晶金属氧化物薄膜,调控非晶薄膜的晶化热处理气氛和分压,在金属(合金)基体上原位获得特定形貌以及组分可调金属氧化物薄膜:利用不同氧分压下金属氧化物晶体热力学稳定构型的差异,将获得的非晶金属氧化物薄膜在不同氧气分压下进行晶化热处理,通过调节热处理温度和时间可得到特定晶面暴露的金属氧化物薄膜;利用金属基体在高温下对金属氧化物薄膜的还原作用,将获得的非晶金属氧化物薄膜在厌氧环境下(如:氩气气氛下)进行晶化处理,通过调节热处理温度和时间可获得不同成分的金属氧化物薄膜。In the present invention, the metal (or alloy) sheet is used as the substrate, and the amorphous metal oxide film is obtained in situ on the metal (alloy) substrate through (electro)chemical corrosion oxidation, and the crystallization heat treatment atmosphere and partial pressure of the amorphous film are controlled. In-situ acquisition of specific morphology and composition-tunable metal oxide films on metal (alloy) substrates: Utilizing the differences in thermodynamically stable configurations of metal oxide crystals under different oxygen partial pressures, the obtained amorphous metal oxide films are obtained in different Crystallization heat treatment is carried out under oxygen partial pressure. By adjusting the heat treatment temperature and time, a metal oxide film with a specific crystal surface exposed can be obtained; the obtained amorphous metal oxide The film is crystallized in an anaerobic environment (such as under an argon atmosphere), and metal oxide films with different components can be obtained by adjusting the heat treatment temperature and time.
本发明的优点及有益效果是:Advantage of the present invention and beneficial effect are:
1、本发明利用(电)化学腐蚀氧化方法在金属(合金)基体上原位氧化刻蚀生长非晶金属氧化物薄膜,容易实现各种非晶金属氧化物薄膜的制备。1. The present invention utilizes (electro)chemical corrosion and oxidation method to in-situ oxidize and etch and grow the amorphous metal oxide film on the metal (alloy) substrate, which can easily realize the preparation of various amorphous metal oxide films.
2、本发明通过简单调控非晶金属氧化物薄膜晶化处理过程中的氧分压,可得到形貌以及成分可调金属(氧)氮化物薄膜,可有效调控其光电催化分解水活性。2. By simply adjusting the oxygen partial pressure during the crystallization process of the amorphous metal oxide film, the present invention can obtain a metal (oxygen) nitride film with adjustable morphology and composition, and can effectively control its photoelectric catalytic water splitting activity.
附图说明Description of drawings
图1.非晶TiO2薄膜的制备过程示意图(a-b)及相应扫描电子显微镜(SEM)照片(c-d)。Figure 1. Schematic diagram (ab) of the preparation process of amorphous TiO2 thin films and corresponding scanning electron microscope (SEM) photographs (cd).
图2.金红石TiO2纳米柱单晶阵列SEM照片:(a)低倍照片,(b)高倍顶端照片和(c)高倍侧面照片,图(c)中的插图为金红石TiO2热力学稳定构型(Wulff构型)示意图。Figure 2. SEM images of rutile TiO 2 nanopillar single crystal arrays: (a) low magnification photo, (b) high magnification top photo and (c) high magnification side photo, the inset in (c) is the thermodynamically stable configuration of rutile TiO 2 (Wulff configuration) schematic diagram.
图3.金红石TiO2纳米柱透射电子显微镜(TEM)照片:(A)单根纳米柱低倍照片,(B)高分辨TEM照片和(C)选取电子衍射斑点。Figure 3. Transmission electron microscope (TEM) photos of rutile TiO 2 nanocolumns: (A) low-magnification photo of a single nanocolumn, (B) high-resolution TEM photo and (C) selected electron diffraction spots.
图4.金红石TiO2纳米柱单晶阵列光电极与传统锐钛矿TiO2纳米管光电极的光电化学分解水活性测试:(a)金红石TiO2纳米柱单晶阵列暗态下测试曲线,(b)传统锐钛矿TiO2纳米管暗态下测试曲线,(c)金红石TiO2纳米柱单晶阵列光照下测试曲线,(d)传统锐钛矿TiO2纳米管光照下测试曲线。X轴为外加电压(伏/V),Y轴为光电流密度(mA·cm-2)。Figure 4. Photoelectrochemical water splitting activity test of rutile TiO 2 nanopillar single crystal array photoelectrode and traditional anatase TiO 2 nanotube photoelectrode: (a) Test curve of rutile TiO 2 nanopillar single crystal array in dark state, ( b) Test curve of traditional anatase TiO2 nanotubes in dark state, (c) test curve of rutile TiO2 nanopillar single crystal array under light, (d) test curve of traditional anatase TiO2 nanotubes under light. The X-axis is the applied voltage (V/V), and the Y-axis is the photocurrent density (mA·cm -2 ).
图5.化学计量比和非化学计量比金红石TiO2薄膜的X射线光电子能谱(XPS)元素深度分析(a)及元素深度分布(b-c)示意图。X轴为溅射时间(秒/s),Y轴为O/Ti原子比。Fig. 5. X-ray photoelectron spectroscopy (XPS) elemental depth analysis (a) and schematic diagram of elemental depth distribution (bc) of stoichiometric and non-stoichiometric rutile TiO2 thin films. The X-axis is the sputtering time (second/s), and the Y-axis is the O/Ti atomic ratio.
图6.化学计量比金红石TiO2薄膜光电极与非化学计量比金红石TiO2薄膜光电极的光电化学分解水活性测试:(a)化学计量比金红石TiO2薄膜暗态下测试曲线,(b)非化学计量比金红石TiO2薄膜,(c)化学计量比金红石TiO2薄膜光照下测试曲线,(d)非化学计量比金红石TiO2薄膜照下测试曲线。X轴为外加电压(伏/V),Y轴为光电流密度(mA·cm-2)。Figure 6. Photoelectrochemical water splitting activity test of stoichiometric rutile TiO 2 thin film photoelectrode and non-stoichiometric rutile TiO 2 thin film photoelectrode: (a) test curve of stoichiometric rutile TiO 2 thin film in dark state, (b) Non-stoichiometric rutile TiO 2 film, (c) test curve of stoichiometric rutile TiO 2 film under light, (d) test curve of non-stoichiometric rutile TiO 2 film under light. The X-axis is the applied voltage (V/V), and the Y-axis is the photocurrent density (mA·cm -2 ).
具体实施方式detailed description
在具体实施过程中,本发明利用(电)化学腐蚀氧化在金属(合金)基体上原位生长非晶金属氧化物薄膜,通过调控晶化处理过程中的氧分压获得特定形貌和成分可控的金属氧化物薄膜的方法。以金属(合金)片作为基体,首先通过(电)化学腐蚀氧化在金属(合金)基体上原位获得非晶金属氧化物薄膜;利用不同氧分压下金属氧化物晶体热力学稳定构型的差异以及金属基体在高温下对金属氧化物薄膜的还原作用,将获得的非晶金属氧化物薄膜在不同氧气分压下进行晶化热处理,通过调节热处理温度和时间可得到特定形貌和成分可控的金属氧化物薄膜,具体如下:In the specific implementation process, the present invention uses (electro)chemical corrosion oxidation to grow amorphous metal oxide films in situ on metal (alloy) substrates, and obtains specific morphology and composition by regulating the oxygen partial pressure in the crystallization process. controlled metal oxide thin films. Using a metal (alloy) sheet as a substrate, first obtain an amorphous metal oxide film on the metal (alloy) substrate in situ by (electro)chemical corrosion oxidation; using the difference in thermodynamically stable configuration of metal oxide crystals under different oxygen partial pressures As well as the reduction of the metal substrate to the metal oxide film at high temperature, the obtained amorphous metal oxide film is subjected to crystallization heat treatment under different oxygen partial pressures, and the specific morphology and composition can be obtained by adjusting the heat treatment temperature and time. The metal oxide thin film, specifically as follows:
1、所述的基片为各种金属及合金基片,包括各种纯金属片(如:Fe、Ta、Ti、W、Zn、Cu、Co等)以及各种合金片(如:Ti/Al、Cu/Zn、Ti/Fe、Ti/W、Ti/Ta合金等)。1. The substrates are various metal and alloy substrates, including various pure metal sheets (such as: Fe, Ta, Ti, W, Zn, Cu, Co, etc.) and various alloy sheets (such as: Ti/ Al, Cu/Zn, Ti/Fe, Ti/W, Ti/Ta alloy, etc.).
2、所述的(电)化学腐蚀氧化为各种金属腐蚀氧化过程,包括化学溶液腐蚀、大气腐蚀和电化学氧化腐蚀等。2. The (electro)chemical corrosion oxidation refers to various metal corrosion oxidation processes, including chemical solution corrosion, atmospheric corrosion and electrochemical oxidation corrosion.
3、所述的晶化热处理温度为300~1000℃,升温速度为0.1~10℃/分钟,晶化时间为0.5~48小时。3. The crystallization heat treatment temperature is 300-1000° C., the heating rate is 0.1-10° C./minute, and the crystallization time is 0.5-48 hours.
4、所述的晶化处理氧气分压范围为0~105Pa。4. The partial pressure of oxygen in the crystallization treatment ranges from 0 to 10 5 Pa.
下面结合实施例和附图对本发明进一步详细阐述。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings.
实施例1Example 1
将金属钛(Ti)片(长1cm×宽2.5cm)分别在去离子水、乙醇、丙酮、异丙醇中超声清洗15分钟,吹干后将其连接到电源正极,Pt片连接到负极,并插入到含NH4F(2~5wt%)的乙二醇和水(体积比9:1)混合溶液中。施加恒定电压60V保持6小时,在金属钛片表面原位阳极氧化生成TiO2纳米管阵列,然后将钛片取出放入双氧水中超声,去除掉表面的TiO2纳米管阵列得到底部致密的非晶TiO2薄膜(图1)。将得到的非晶致密薄膜在氧气气氛下晶化处理,氧气分压控制在1000Pa,550℃下保温晶化2h,升温速度为5℃/分钟,得到金红石TiO2单晶纳米柱阵列,顶端暴露出高能(111)和(101)晶面(图2)。由于高能晶面具有更高的水氧化活性,制备得到的金红石TiO2单晶纳米柱阵列作为光电化学水分解电池光阳极具有优异的活性。Metal titanium (Ti) sheet (length 1cm × width 2.5cm) was ultrasonically cleaned in deionized water, ethanol, acetone, and isopropanol for 15 minutes respectively, and after drying, it was connected to the positive electrode of the power supply, and the Pt sheet was connected to the negative electrode. And inserted into the mixed solution of ethylene glycol and water (volume ratio 9:1) containing NH 4 F (2-5 wt%). Apply a constant voltage of 60V for 6 hours, in-situ anodize the surface of the metal titanium sheet to form a TiO 2 nanotube array, then take the titanium sheet out and put it into hydrogen peroxide water for ultrasonication, remove the TiO 2 nanotube array on the surface to obtain a dense amorphous bottom TiO2 thin film (Figure 1). The obtained amorphous dense film was crystallized under an oxygen atmosphere, the oxygen partial pressure was controlled at 1000Pa, the crystallization was carried out at 550°C for 2 hours, and the heating rate was 5°C/min to obtain a rutile TiO 2 single crystal nanocolumn array with the top exposed High-energy (111) and (101) crystal planes (Figure 2). The as-prepared rutile TiO2 single crystal nanocolumn arrays have excellent activity as photoanodes for photoelectrochemical water splitting cells due to the higher water oxidation activity of the high-energy crystal planes.
如图1所示,通过电化学阳极氧化Ti片获得TiO2纳米管阵列(a),进一步经过超声剥离去除掉表层的TiO2纳米管得到非晶TiO2致密薄膜(b)。As shown in Figure 1, the TiO 2 nanotube array (a) was obtained by electrochemically anodizing the Ti sheet, and the TiO 2 nanotubes on the surface were further removed by ultrasonic peeling to obtain a dense amorphous TiO 2 film (b).
如图2所示,经过550℃、1000Pa氧气分压条件下处理2小时后,从低倍扫描电镜照片中,可观察到畴区TiO2晶体阵列(a);在高倍顶端(b)和侧面(c)扫面电镜照片中,可以观察到其为特定晶面暴露的金红石TiO2纳米柱阵列结构,通过与热力学稳定构型(Wulff构型)对比,顶端暴露晶面为(101)和(111)晶面,侧面为(110)晶面。As shown in Figure 2, after 2 hours of treatment at 550°C and 1000Pa oxygen partial pressure, from the low-magnification scanning electron microscope photos, the TiO 2 crystal array in the domain region (a) can be observed; in the high-magnification top (b) and side (c) In the scanning electron microscope photo, it can be observed that it is a rutile TiO 2 nanocolumn array structure exposed by a specific crystal plane. By comparing with the thermodynamically stable configuration (Wulff configuration), the top exposed crystal planes are (101) and ( 111) crystal plane, and the side is (110) crystal plane.
如图3所示,晶面发育完整的单根纳米柱低倍透射电镜照片(A),结合纳米柱的高分辨透射电镜照片(B)和选区电子衍射照片(C)证明单根纳米柱为单晶结构。As shown in Figure 3, the low-magnification transmission electron microscope photo (A) of a single nanocolumn with complete crystal plane development, combined with the high-resolution transmission electron micrograph of the nanocolumn (B) and the selected area electron diffraction photo (C) prove that the single nanocolumn is single crystal structure.
如图4所示,在暗态下,金红石TiO2单晶纳米柱阵列(a)与锐钛矿TiO2纳米管阵列(b)均无水分解电流响应;在光照下,与传统锐钛矿TiO2纳米管阵列的光电流(d)相比,金红石TiO2单晶纳米柱阵列(c)展现出更优异的光电化学水分解性能。As shown in Figure 4, in the dark state, both the rutile TiO 2 single crystal nanopillar array (a) and the anatase TiO 2 nanotube array (b) have no water splitting current response; Compared with the photocurrent of TiO2 nanotube array (d), the rutile TiO2 single crystal nanopillar array (c) exhibits superior photoelectrochemical water splitting performance.
实施例2Example 2
将金属钛(Ti)片(长1cm×宽2.5cm)分别在去离子水、乙醇、丙酮、异丙醇中超声清洗15分钟,吹干后将其连接到电源正极,Pt片连接到负极,并插入到含NH4F(2~5wt%)的乙二醇和水(体积比9:1)混合溶液中。施加恒定电压60V保持6小时,在金属钛片表面原位阳极氧化生成TiO2纳米管阵列,然后将钛片取出放入双氧水中超声,去除掉表面的TiO2纳米管阵列得到底部致密的非晶TiO2薄膜(图1)。将得到的非晶致密薄膜在厌氧气气氛(Ar或N气气氛)下晶化处理,氧气分压为0Pa,550℃下保温2h,利用高温下金属钛对TiO2的还原作用,得到非化学计量比金红石TiO2薄膜。相比于在空气气氛下(氧气分压量级为104Pa)晶化处理得到的化学计量比金红石TiO2薄膜,非化学计量比金红石TiO2薄膜具有更高的光电化学分解水活性。Metal titanium (Ti) sheet (length 1cm × width 2.5cm) was ultrasonically cleaned in deionized water, ethanol, acetone, and isopropanol for 15 minutes respectively, and after drying, it was connected to the positive electrode of the power supply, and the Pt sheet was connected to the negative electrode. And inserted into the mixed solution of ethylene glycol and water (volume ratio 9:1) containing NH 4 F (2-5 wt%). Apply a constant voltage of 60V for 6 hours, in-situ anodize the surface of the metal titanium sheet to form a TiO 2 nanotube array, then take the titanium sheet out and put it into hydrogen peroxide water for ultrasonication, remove the TiO 2 nanotube array on the surface to obtain a dense amorphous bottom TiO2 thin film (Figure 1). The obtained amorphous dense film was crystallized in an anaerobic atmosphere (Ar or N gas atmosphere), the oxygen partial pressure was 0 Pa, and kept at 550°C for 2 hours, and the reduction of TiO2 by metal titanium at high temperature was used to obtain non-crystalline Stoichiometric rutile TiO2 thin films. Compared with the stoichiometric rutile TiO 2 film obtained by crystallization in air atmosphere (oxygen partial pressure level is 10 4 Pa), the non-stoichiometric rutile TiO 2 film has higher photoelectrochemical water splitting activity.
如图5所示,通过XPS元素深度分布分析,在空气下热处理得到的为化学计量比金红薯TiO2薄膜,O//Ti原子比在薄膜体相接近于2;而在厌氧气氛下热处理得到的为非化学计量比金红石TiO2薄膜。薄膜体相中的O//Ti原子比小于2。As shown in Figure 5, through the XPS element depth distribution analysis, the stoichiometric gold sweet potato TiO 2 film obtained by heat treatment in the air, the O//Ti atomic ratio in the bulk phase of the film is close to 2; while heat treatment in anaerobic atmosphere The resulting non-stoichiometric rutile TiO2 thin films. The O//Ti atomic ratio in the bulk phase of the film is less than 2.
如图6所示,在暗态下,非化学计量比金红石TiO2薄膜(a)与化学计量比金红石TiO2薄膜(b)均无水分解电流响应;在光照下,与化学计量比金红石TiO2薄膜(c)相比,非化学计量比金红石TiO2薄膜(d)展现出更优异的光电化学水分解性能。As shown in Figure 6, in the dark state, both the non-stoichiometric rutile TiO 2 film (a) and the stoichiometric rutile TiO 2 film (b) have no water splitting current response; 2 film (c), the non-stoichiometric rutile TiO 2 film (d) exhibits superior photoelectrochemical water splitting performance.
实施例结果表明,本发明通过调控晶化热处理过程中的氧气分压,在金属(合金)基体上原位获得特定形貌以及组分可调金属氧化物薄膜的方法,金属氧化物薄膜的形貌和成分是光化学水分解电池用光电极材料的两个重要参数,直接影响光电化学电池的最终转化效率。The results of the examples show that the present invention obtains a specific morphology and composition-tunable metal oxide film on a metal (alloy) substrate in situ by regulating the oxygen partial pressure in the crystallization heat treatment process, and the shape of the metal oxide film Appearance and composition are two important parameters of photoelectrode materials for photochemical water splitting cells, which directly affect the final conversion efficiency of photoelectrochemical cells.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610473674.2A CN107541724A (en) | 2016-06-27 | 2016-06-27 | A kind of preparation method of the controllable metal-oxide film of pattern and composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610473674.2A CN107541724A (en) | 2016-06-27 | 2016-06-27 | A kind of preparation method of the controllable metal-oxide film of pattern and composition |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107541724A true CN107541724A (en) | 2018-01-05 |
Family
ID=60959827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610473674.2A Pending CN107541724A (en) | 2016-06-27 | 2016-06-27 | A kind of preparation method of the controllable metal-oxide film of pattern and composition |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107541724A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108754403A (en) * | 2018-06-01 | 2018-11-06 | 天津大学 | Method for preparing Zr-Al-O ternary amorphous oxide layer |
CN110158020A (en) * | 2019-04-09 | 2019-08-23 | 山东大学 | A kind of method of ultrasonic wave added induction heating preparation nanostructure oxidation film |
CN111204799A (en) * | 2018-11-22 | 2020-05-29 | 中国科学院金属研究所 | A kind of preparation method of double-sided god-shaped metal oxygen or nitride hollow shell structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100347333C (en) * | 2001-10-02 | 2007-11-07 | Toto株式会社 | Thin metal oxide film and process for producing the same |
CN101942688A (en) * | 2010-09-21 | 2011-01-12 | 上海大学 | Composite oxidation technology for medicinal titanium alloy |
CN102677124A (en) * | 2012-06-07 | 2012-09-19 | 河北工业大学 | Preparation method of photocatalytic film with energy storage function |
CN103498182A (en) * | 2013-09-18 | 2014-01-08 | 上海大学 | Preparation method of titanium dioxide nanotube array with orientation structure |
-
2016
- 2016-06-27 CN CN201610473674.2A patent/CN107541724A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100347333C (en) * | 2001-10-02 | 2007-11-07 | Toto株式会社 | Thin metal oxide film and process for producing the same |
CN101942688A (en) * | 2010-09-21 | 2011-01-12 | 上海大学 | Composite oxidation technology for medicinal titanium alloy |
CN102677124A (en) * | 2012-06-07 | 2012-09-19 | 河北工业大学 | Preparation method of photocatalytic film with energy storage function |
CN103498182A (en) * | 2013-09-18 | 2014-01-08 | 上海大学 | Preparation method of titanium dioxide nanotube array with orientation structure |
Non-Patent Citations (3)
Title |
---|
CHAO ZHEN ET AL.: ""A film of rutile TiO pillars with well-developed facets on an a-Ti substrate as a photoelectrode for improved water splitting"", 《NANOSCALE》 * |
CHAO ZHEN ET AL.: ""Nonstoichiometric rutile TiO2 photoelectrodes for improved photoelectron chemical water splitting"", 《CHEM. COMMUN》 * |
薛红星: "钛直接氧化制备二氧化钛纳米线和空心多面体", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108754403A (en) * | 2018-06-01 | 2018-11-06 | 天津大学 | Method for preparing Zr-Al-O ternary amorphous oxide layer |
CN108754403B (en) * | 2018-06-01 | 2019-10-15 | 天津大学 | Method for preparing Zr-Al-O ternary amorphous oxide layer |
CN111204799A (en) * | 2018-11-22 | 2020-05-29 | 中国科学院金属研究所 | A kind of preparation method of double-sided god-shaped metal oxygen or nitride hollow shell structure |
CN111204799B (en) * | 2018-11-22 | 2021-11-05 | 中国科学院金属研究所 | Preparation method of double-sided metal oxide or nitride hollow shell structure |
CN110158020A (en) * | 2019-04-09 | 2019-08-23 | 山东大学 | A kind of method of ultrasonic wave added induction heating preparation nanostructure oxidation film |
CN110158020B (en) * | 2019-04-09 | 2020-04-21 | 山东大学 | A method for preparing nanostructured oxide film by ultrasonic-assisted induction heating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Han et al. | Boosting the solar water oxidation performance of a BiVO 4 photoanode by crystallographic orientation control | |
Rahman et al. | Defect-rich decorated TiO 2 nanowires for super-efficient photoelectrochemical water splitting driven by visible light | |
Shin et al. | A tree-like nanoporous WO 3 photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation | |
Wang et al. | Sonoelectrochemical synthesis of highly photoelectrochemically activeTiO2 nanotubes by incorporating CdS nanoparticles | |
Kar et al. | Rutile phase n-and p-type anodic titania nanotube arrays with square-shaped pore morphologies | |
Fan et al. | Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors | |
So et al. | Robust free standing flow-through TiO2 nanotube membranes of pure anatase | |
Kapusta-Kołodziej et al. | 3D nanoporous titania formed by anodization as a promising photoelectrode material | |
Krbal et al. | Self-organized TiO2 nanotubes grown on Ti substrates with different crystallographic preferential orientations: Local structure of TiO2 nanotubes vs. photo-electrochemical response | |
Yoo et al. | Critical factors in the anodic formation of extremely ordered titania nanocavities | |
Yan et al. | Enhanced photoelectrochemical properties of Ta-TiO2 nanotube arrays prepared by magnetron sputtering | |
Lamberti et al. | Sponge-like ZnO nanostructures by low temperature water vapor-oxidation method as dye-sensitized solar cell photoanodes | |
US20140291142A1 (en) | Photoelectrode for photoelectrochemical cell, method of manufacturing the same, and photoelectrochemical cell including the same | |
CN107541724A (en) | A kind of preparation method of the controllable metal-oxide film of pattern and composition | |
Awaid et al. | Effect of electrolyte composition on structural and photoelectrochemical properties of titanium dioxide nanotube arrays synthesized by anodization technique | |
Chen et al. | Highly-dispersed nickel nanoparticles decorated titanium dioxide nanotube array for enhanced solar light absorption | |
Liu et al. | Length-independent charge transport of well-separated single-crystal TiO 2 long nanowire arrays | |
Lee et al. | Direct anodic growth of thick WO3 mesosponge layers and characterization of their photoelectrochemical response | |
Ait Ahmed et al. | Morphological and optical properties of ZnO thin films grown on Si and ITO glass substrates | |
Zhong et al. | Enhanced electron collection in photoanode based on ultrafine TiO2 nanotubes by a rapid anodization process | |
CN106319616A (en) | Method for in-situ growth of metal oxide/nitride monocrystal array film on metal matrix | |
Nasori et al. | Comparative study of p-type CuBi2O4 films and CuBi2O4 nanopillars photocathode for high performance photoelectrochemical water splitting | |
Ferrari et al. | Photoactive multilayer WO3 electrode synthesized via dip-coating | |
CN103560180A (en) | Hydrogenated amorphous silicon nanowire array preparation method | |
Seo et al. | Fast one-step method to synthesize TiO2 nanoparticle clusters for dye sensitized solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180105 |
|
WD01 | Invention patent application deemed withdrawn after publication |