CN107540014B - A kind of heterogeneous seed mesoporous monocrystalline rutile titanium dioxide controllable growth preparation method - Google Patents
A kind of heterogeneous seed mesoporous monocrystalline rutile titanium dioxide controllable growth preparation method Download PDFInfo
- Publication number
- CN107540014B CN107540014B CN201610486297.6A CN201610486297A CN107540014B CN 107540014 B CN107540014 B CN 107540014B CN 201610486297 A CN201610486297 A CN 201610486297A CN 107540014 B CN107540014 B CN 107540014B
- Authority
- CN
- China
- Prior art keywords
- heterogeneous
- seed
- titanium dioxide
- seeds
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 238000002360 preparation method Methods 0.000 title claims abstract description 35
- 239000013078 crystal Substances 0.000 claims abstract description 67
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 17
- 239000002243 precursor Substances 0.000 claims abstract description 17
- 239000003426 co-catalyst Substances 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 230000001699 photocatalysis Effects 0.000 claims abstract description 12
- 238000005530 etching Methods 0.000 claims abstract description 11
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims abstract description 10
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- 239000000243 solution Substances 0.000 claims description 36
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 23
- 239000007864 aqueous solution Substances 0.000 claims description 21
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000011148 porous material Substances 0.000 claims description 16
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 239000008367 deionised water Substances 0.000 claims description 15
- 229910021641 deionized water Inorganic materials 0.000 claims description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 14
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 14
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 12
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims description 10
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 claims description 10
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 claims description 9
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 239000001119 stannous chloride Substances 0.000 claims description 9
- 235000011150 stannous chloride Nutrition 0.000 claims description 9
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 7
- 239000011775 sodium fluoride Substances 0.000 claims description 7
- 235000013024 sodium fluoride Nutrition 0.000 claims description 7
- 239000011259 mixed solution Substances 0.000 claims description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims description 6
- WRWQVSOJXAVREP-UHFFFAOYSA-J tetrachlorotitanium hydrochloride Chemical compound Cl.[Cl-].[Cl-].[Cl-].[Cl-].[Ti+4] WRWQVSOJXAVREP-UHFFFAOYSA-J 0.000 claims description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229920001903 high density polyethylene Polymers 0.000 claims description 3
- 239000004700 high-density polyethylene Substances 0.000 claims description 3
- 230000006911 nucleation Effects 0.000 claims description 3
- 238000010899 nucleation Methods 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 238000012360 testing method Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 3
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 2
- 150000004706 metal oxides Chemical class 0.000 abstract description 2
- 238000007704 wet chemistry method Methods 0.000 abstract description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000000151 deposition Methods 0.000 description 5
- 238000013032 photocatalytic reaction Methods 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000002256 photodeposition Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/10—Heat treatment in the presence of water, e.g. steam
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明涉及异质种子中孔金属氧化物制备领域,具体为一种异质种子中孔单晶金红石二氧化钛可控生长的制备方法。该方法通过湿化学过程以四氯化钛作为前驱体,含有异质种子的二氧化硅球作为模板,水热生长具有特定晶面暴露的金红石二氧化钛,刻蚀模板后得到含异质种子的中孔单晶金红石二氧化钛,能够实现异质种子外延生长助催化剂,解决了催化剂与助催化剂界面接触质量较差,光催化效率较低的问题。与传统种子模板法不同,本发明将四氯化钛前驱体和含异质种子二氧化硅模板装入反应釜中,经加热处理,刻蚀后得到特定晶面暴露的中孔单晶金红石二氧化钛。The invention relates to the field of preparation of heterogeneous seed mesoporous metal oxides, in particular to a preparation method for the controllable growth of heterogeneous seed mesoporous single crystal rutile titanium dioxide. This method uses titanium tetrachloride as a precursor and silica spheres containing heterogeneous seeds as a template through a wet chemical process to hydrothermally grow rutile titanium dioxide with specific crystal planes exposed, and etches the template to obtain a medium containing heterogeneous seeds. Porous single-crystal rutile titanium dioxide can realize heterogeneous seed epitaxial growth co-catalyst, which solves the problems of poor contact quality between catalyst and co-catalyst interface and low photocatalytic efficiency. Different from the traditional seed template method, the present invention puts the titanium tetrachloride precursor and the silicon dioxide template containing heterogeneous seeds into the reaction kettle, heats them, and obtains mesoporous single-crystal rutile titanium dioxide with specific crystal faces exposed after etching .
Description
技术领域technical field
本发明涉及异质种子中孔金属氧化物制备领域,具体为一种异质种子中孔单晶金红石二氧化钛可控生长的制备方法,通过湿化学过程以二氧化钌(二氧化锡、二氧化铱)异质种子,以TiCl4为前驱体水热生长特定晶面中孔单晶金红石TiO2。The invention relates to the field of preparation of heterogeneous seed mesoporous metal oxides, in particular to a preparation method for the controllable growth of heterogeneous seed mesoporous single crystal rutile titanium dioxide, which uses ruthenium dioxide (tin dioxide, iridium dioxide) ) heterogeneous seeds, using TiCl 4 as precursor to hydrothermally grow mesoporous single-crystal rutile TiO 2 with specific crystal facets.
背景技术Background technique
由于二氧化钛具有高的稳定性、合适的带隙、低成本、无毒等优点,其作为经典的光催化材料引起了广泛的关注和深入的研究。二氧化钛光催化剂除了应用于光催化分解水外,还广泛应用于光降解、太阳能电池、光电化学以及自清洁等领域。因为光催化反应主要在半导体材料的表面进行,且一定量的助催化剂有利用光生载流子的分离,所以研究半导体材料助催化剂沉积及找到提高其光催化效率的途径是近年来研究的重点。近年来,对于助催化剂的沉积主要是通过热沉和光沉的方法,这两种方法沉积的助催化剂界面接触质量较差,使得光生载流子不能有效的分离发生反应。Due to the advantages of high stability, suitable band gap, low cost, and non-toxicity, titanium dioxide has attracted extensive attention and in-depth research as a classic photocatalytic material. In addition to being used in photocatalytic water splitting, titanium dioxide photocatalysts are also widely used in photodegradation, solar cells, photoelectrochemistry, and self-cleaning. Because the photocatalytic reaction is mainly carried out on the surface of semiconductor materials, and a certain amount of co-catalysts can use the separation of photogenerated carriers, it is the focus of research in recent years to study the deposition of co-catalysts on semiconductor materials and find ways to improve their photocatalytic efficiency. In recent years, the deposition of co-catalysts is mainly through heat sinking and optical deposition. The interfacial contact quality of co-catalysts deposited by these two methods is poor, so that the photogenerated carriers cannot be effectively separated and reacted.
发明内容Contents of the invention
本发明的目的在于提供一种异质种子中孔单晶金红石二氧化钛可控生长制备方法,利用结构的相似性使得RuO2(SnO2、IrO2)即作为制备过程中TiO2生长的形核位点,又可以作为光催化反应中的助催化剂,这种方法可以得到全部为{111}晶面暴露的中孔单晶金红石TiO2,改变种子的浓度,样品的形状基本不发生改变。The purpose of the present invention is to provide a preparation method for the controllable growth of mesoporous single-crystal rutile titanium dioxide with heterogeneous seeds, using the similarity in structure to make RuO 2 (SnO 2 , IrO 2 ) as the nucleation site for TiO 2 growth in the preparation process It can also be used as a co-catalyst in the photocatalytic reaction. This method can obtain mesoporous single-crystal rutile TiO 2 with all exposed {111} crystal planes. The shape of the sample basically does not change when the concentration of the seed is changed.
本发明的技术方案是:Technical scheme of the present invention is:
一种异质种子中孔单晶金红石二氧化钛可控生长制备方法,以四氯化钛盐酸溶液作为前驱体,商用氟化钠作为晶面控制剂,选择同样为金红石型的二氧化钌、二氧化锡或二氧化铱作为异质种子,具体过程如下:A preparation method for the controllable growth of heterogeneous seed mesoporous single-crystal rutile titanium dioxide, using titanium tetrachloride hydrochloric acid solution as a precursor, commercial sodium fluoride as a crystal plane control agent, and selecting rutile-type ruthenium dioxide and Tin or iridium dioxide are used as heterogeneous seeds, the specific process is as follows:
(1)取氯化钌水溶液或氯化铱水溶液为种子溶液,或者取氯化亚锡的乙醇溶液或水、乙醇混合溶液为种子溶液,加入二氧化硅球,制备含异质种子的二氧化硅球种子模板;(1) Take ruthenium chloride aqueous solution or iridium chloride aqueous solution as the seed solution, or take the ethanol solution of stannous chloride or the mixed solution of water and ethanol as the seed solution, add silica balls, and prepare the carbon dioxide containing heterogeneous seeds Silicon ball seed template;
(2)将前驱体、氟化钠和二氧化硅球种子模板放入反应釜中,前驱体体积为20ml~60ml,氟化钠和二氧化硅球种子模板的质量比例为(0.1~1):(0.5~20),反应釜密封后,放入烘箱加热处理,取出反应样品,用去离子水清洗并烘干,刻蚀模板后,用去离子水和乙醇分别清洗并烘干,得到{111}晶面暴露的含不同异质种子的中孔单晶金红石二氧化钛,异质种子既作为制备过程中的形核位点,又作为光催化测试过程中的助催化剂。(2) Put the precursor, sodium fluoride and silica ball seed template into the reaction kettle, the volume of the precursor is 20ml~60ml, and the mass ratio of sodium fluoride and silica ball seed template is (0.1~1) : (0.5~20), after the reaction kettle is sealed, put it into the oven for heat treatment, take out the reaction sample, wash and dry with deionized water, after etching the template, wash and dry with deionized water and ethanol respectively, to obtain { 111} facet-exposed mesoporous single-crystal rutile titania containing different heterogeneous seeds, which serve as both nucleation sites during preparation and co-catalysts during photocatalytic testing.
所述的前驱体为商用化学纯四氯化钛溶液,所用的二氧化硅球直径为5~250纳米。The precursor is a commercial chemically pure titanium tetrachloride solution, and the diameter of the silicon dioxide spheres used is 5-250 nanometers.
所述的反应釜材质为不锈钢、铝合金、铜和钽的一种,反应釜的内胆为聚四氟乙烯和高密度聚乙烯的一种。The material of the reaction kettle is one of stainless steel, aluminum alloy, copper and tantalum, and the inner tank of the reaction kettle is one of polytetrafluoroethylene and high-density polyethylene.
所述的四氯化钛盐酸溶液中,盐酸的摩尔浓度为0.05M~5M,四氯化钛的摩尔浓度为0.01M~1M;所述的氯化钌水溶液或氯化铱水溶液中,氯化钌或氯化铱的摩尔浓度为0.001mM~0.1M;所述的氯化亚锡的乙醇溶液或水、乙醇混合溶液中,氯化亚锡的摩尔浓度为0.001mM~0.1M,乙醇与水的体积比在0~1之间。In the described titanium tetrachloride hydrochloric acid solution, the molar concentration of hydrochloric acid is 0.05M-5M, and the molar concentration of titanium tetrachloride is 0.01M-1M; in the described ruthenium chloride aqueous solution or iridium chloride aqueous solution, the The molar concentration of ruthenium or iridium chloride is 0.001mM~0.1M; in the ethanol solution of described stannous chloride or water, ethanol mixed solution, the molar concentration of stannous chloride is 0.001mM~0.1M, ethanol and water The volume ratio is between 0 and 1.
所述的异质种子中孔单晶金红石二氧化钛可控生长制备方法,优选的:所述的四氯化钛盐酸溶液中,盐酸的摩尔浓度为1M~5M,四氯化钛的摩尔浓度为0.01M~0.1M;所述的氯化钌水溶液或氯化铱水溶液中,氯化钌或氯化铱的摩尔浓度为0.02mM~10mM;所述的氯化亚锡的乙醇溶液或水、乙醇混合溶液中,氯化亚锡的摩尔浓度为1mM~30mM,乙醇与水的体积比在0~1之间。The preparation method of the heterogeneous seed mesoporous single crystal rutile titanium dioxide controllable growth, preferably: in the titanium tetrachloride hydrochloric acid solution, the molar concentration of hydrochloric acid is 1M-5M, and the molar concentration of titanium tetrachloride is 0.01 M~0.1M; in the ruthenium chloride aqueous solution or iridium chloride aqueous solution, the molar concentration of ruthenium chloride or iridium chloride is 0.02mM~10mM; the ethanol solution of the stannous chloride or the mixture of water and ethanol In the solution, the molar concentration of stannous chloride is 1mM-30mM, and the volume ratio of ethanol to water is between 0-1.
所述的放入烘箱加热处理时,加热温度为100~300℃,加热时间为2h~48h。When putting into an oven for heat treatment, the heating temperature is 100-300°C, and the heating time is 2h-48h.
所述的用去离子水清洗后烘干时,烘干温度为60~100℃。When drying after cleaning with deionized water, the drying temperature is 60-100°C.
所述的刻蚀模板时,采用NaOH水溶液的摩尔浓度为1M~5M,在水浴温度60~90℃下刻蚀0.5~2h。When etching the template, a NaOH aqueous solution with a molar concentration of 1M-5M is used for etching at a water bath temperature of 60-90° C. for 0.5-2 hours.
所述的异质种子中孔单晶金红石二氧化钛可控生长制备方法,不同浓度异质种子所制备的中孔单晶金红石二氧化钛的样品晶粒尺寸为300nm~900nm,孔径在2到50纳米之间,孔道贯穿于样品内部,表面为{111}晶面暴露。According to the preparation method for the controllable growth of mesoporous single crystal rutile titanium dioxide with heterogeneous seeds, the sample grain size of mesoporous single crystal rutile titanium dioxide prepared by heterogeneous seeds with different concentrations is 300nm-900nm, and the pore diameter is between 2 and 50 nanometers , the channel runs through the inside of the sample, and the {111} crystal plane is exposed on the surface.
所述的异质种子中孔单晶金红石二氧化钛可控生长制备方法,制备二氧化硅球种子模板时,种子溶液和二氧化硅球在60~80℃水浴保温0.5~2h,然后用去离子水冲洗,在70~90℃加热套中将种完种子后的二氧化硅球烘干,放置马弗炉中450~550℃保温20~40min。In the preparation method for the controllable growth of mesoporous single-crystal rutile titanium dioxide in heterogeneous seeds, when preparing the silica ball seed template, the seed solution and the silica ball are kept in a water bath at 60-80°C for 0.5-2 hours, and then deionized water is used to Rinse, dry the silica balls after planting seeds in a heating mantle at 70-90°C, and place them in a muffle furnace at 450-550°C for 20-40 minutes.
本发明的设计思想如下:Design idea of the present invention is as follows:
对于光催化反应来说,样品的比表面积在一定程度上代表反应活性位的多少,因此获得多孔半导体材料很重要;而助催化剂沉积又是提高光催化性能的一个重要方面,目前主要的沉积方法是热沉积和光沉积,这两种方法所获得助催化剂与催化剂界面接触质量较差,不利于载流子的分离。因此,在实验过程中选择中孔单晶金红石TiO2为合成对象,在制备过程中,利用RuO2(SnO2、IrO2)为金红石结构,且晶格常数相近的特点,设计了异质种子外延生长制备中孔单晶金红石TiO2的过程。经水热和刻蚀处理后,可得到含异质种子作为助催化剂的中孔单晶样品,采用RuO2作为种子时,所制备样品表现出了较好的光催化产氢和产氧性能。For photocatalytic reactions, the specific surface area of the sample represents the number of reactive sites to a certain extent, so it is very important to obtain porous semiconductor materials; and co-catalyst deposition is an important aspect to improve photocatalytic performance. At present, the main deposition method It is thermal deposition and photodeposition, the co-catalyst and catalyst interface contact quality obtained by these two methods is poor, which is not conducive to the separation of carriers. Therefore, mesoporous single - crystal rutile TiO 2 was selected as the synthesis object during the experiment. In the preparation process, the heterogeneous seed Process for the preparation of mesoporous single-crystal rutile TiO2 by epitaxial growth. After hydrothermal and etching treatments, mesoporous single crystal samples containing heterogeneous seeds as cocatalysts can be obtained. When RuO2 was used as seeds, the prepared samples showed better photocatalytic hydrogen and oxygen production performance.
本发明的优点及有益效果是:Advantage of the present invention and beneficial effect are:
1、本发明是一种异质种子外延生长中孔单晶金红石TiO2的制备方法,在不同种子浓度下均可获得中孔样品。1. The present invention is a method for preparing mesoporous single-crystal rutile TiO2 grown epitaxially by heterogeneous seeds, and mesoporous samples can be obtained under different seed concentrations.
2、本发明方法将中孔样品制备过程所需种子与光催化反应所需助催化剂结合在一起,获得了原位助催化剂修饰的中孔单晶金红石TiO2。2. The method of the present invention combines the seeds required in the preparation process of the mesoporous samples with the cocatalyst required for the photocatalytic reaction to obtain in-situ cocatalyst-modified mesoporous single crystal rutile TiO 2 .
3、本发明方法所形成异质种子中孔单晶金红石TiO2形貌均一、孔分布均匀,粒径大小可通过种子浓度调控。3. The heterogeneous seed mesoporous single crystal rutile TiO 2 formed by the method of the present invention has uniform appearance and uniform pore distribution, and the particle size can be regulated by the seed concentration.
总之,采用本发明制备出具有规则形貌的、孔径分布均匀、粒径大小可调的异质种子中孔单晶金红石TiO2,对于材料合成本身及随后的光催化活性的研究都有重要的意义。对材料合成而言,在本发明中为合成异质种子中孔单晶金红石TiO2晶体应用了不同浓度的RuCl3(IrCl3)水溶液及不同浓度的SnCl2的水和乙醇溶液。对异质种子外延生长中孔TiO2光催化活性研究而言,异质种子作为助催化剂与TiO2的接触是原子层面的,不存在宏观的界面,因此光催化反应过程中载流子的分离效率更高,从而导致其光催化分解水产氢能力有差异。这也使得对原位生长助催化剂的方式有了更深的认识,从而为此后的以异质种子制备其他中孔氧化物提供了基础。In conclusion, the preparation of mesoporous single-crystal rutile TiO 2 with regular morphology, uniform pore size distribution and adjustable particle size by the present invention is of great importance for the synthesis of the material itself and the subsequent study of photocatalytic activity. significance. For material synthesis, different concentrations of RuCl 3 (IrCl 3 ) in water and different concentrations of SnCl 2 in water and ethanol were used for the synthesis of heterogeneous seeded mesoporous single-crystal rutile TiO 2 crystals in the present invention. For the study of photocatalytic activity of mesoporous TiO 2 epitaxially grown by heterogeneous seeds, the contact between heterogeneous seeds as cocatalysts and TiO 2 is at the atomic level, and there is no macroscopic interface, so the separation of carriers during the photocatalytic reaction The efficiency is higher, which leads to the difference in the ability of photocatalytic water splitting to produce hydrogen. This also leads to a deeper understanding of the way to grow co-catalysts in situ, which provides a basis for the subsequent preparation of other mesoporous oxides with heterogeneous seeds.
附图说明Description of drawings
图1不同浓度种子下中孔单晶金红石TiO2的SEM照片;其中,图(a)、(b)为0.04mMolRuO2作种子时制备得到的样品,图(c)、(d)为1mMol IrO2作种子时制备得到的样品,图(e)、(f)为10mMol SnO2作种子时制备得到的样品。Figure 1 SEM photos of mesoporous single crystal rutile TiO2 under different concentrations of seeds; among them, pictures (a), (b) are samples prepared when 0.04mMolRuO2 is used as seeds, and pictures (c), (d) are 1mMol IrO 2 Samples prepared when used as seeds, Figures (e) and (f) are samples prepared when 10mMol SnO 2 was used as seeds.
图2不同浓度种子下中孔单晶金红石TiO2的TEM照片;其中,图(a)、(b)分别为0.04mMRuO2和1mM IrO2作种子时制备得到样品的透射照片,图(c)为10mMol SnO2作种子时制备得到样品的透射照片。图(a)中的两个插图分别为0.04mM RuO2种子浓度下得到的中孔单晶金红石TiO2的低倍形貌相以及选区衍射图谱,图(b)中的两个插图分别为1mM IrO2种子浓度下得到的中孔单晶金红石TiO2的低倍形貌相以及选区衍射图谱,图(c)中的两个插图分别为10mM SnO2种子浓度下得到的中孔单晶金红石TiO2的低倍形貌相以及选区衍射图谱。TEM photos of mesoporous single-crystal rutile TiO2 under different concentrations of seeds in Fig. 2; among them, figure (a), (b) are respectively 0.04mM RuO 2 and 1mM IrO 2 Prepare the transmission pictures of samples when making seeds, figure (c) Transmission photographs of samples prepared when seeded with 10 mMol SnO2 . The two insets in panel (a) are the low-magnification phase and selected area diffraction pattern of mesoporous single-crystal rutile TiO 2 obtained at the seed concentration of 0.04mM RuO 2 , and the two insets in panel (b) are 1mM The low-magnification phase and selected area diffraction pattern of mesoporous single crystal rutile TiO2 obtained at the seed concentration of IrO2 . The two insets in figure (c) are respectively the mesoporous single crystal rutile TiO obtained at the seed concentration of 10mM SnO2 The low magnification phase and selected area diffraction pattern of 2.
图3不同种子下中孔单晶金红石TiO2的XRD图谱;其中,图(a)为0.04mMRuO2作种子时制备得到样品的XRD图谱,图(b)为1mM IrO2作种子时制备得到样品的XRD图谱,图(c)为10mMol SnO2作种子时制备得到样品XRD图谱;X轴为衍射角2θ(度),Y轴为强度(a.u.)。Mesoporous single crystal rutile TiO under different seeds of Fig. 3 XRD patterns; Wherein, figure (a) is 0.04mM RuO Prepare the XRD pattern of samples when making seeds, figure (b ) prepare and obtain samples when making seeds for 1mM IrO Figure (c) is the XRD pattern of the sample prepared when 10mMol SnO 2 was used as the seed; the X-axis is the diffraction angle 2θ (degrees), and the Y-axis is the intensity (au).
图4为不同种子下中孔单晶金红石TiO2的N2吸附曲线及孔径分布图;其中,图(a)为0.04mM RuO2作种子时制备得到样品的吸附曲线及孔径分布图(其中插图表示0.04mMRuO2浓度下制备样品的孔径分布图),图(b)为10mMol SnO2作种子时制备得到样品的吸附曲线及孔径分布图(其中插图表示10mMol SnO2浓度下制备样品的孔径分布图)。图(a)和图(b)中,X轴为相对压强(P/P0),Y轴为吸附量(mmol/g)。图(a)和图(b)的插图中,X轴为孔径(nm),Y轴为孔容积(cm3/g·nm)。Figure 4 is the N2 adsorption curve and pore size distribution diagram of mesoporous single crystal rutile TiO2 under different seeds; wherein, figure (a) is the adsorption curve and pore size distribution diagram of the sample prepared when 0.04mM RuO2 is used as the seed (inset Represent 0.04mMRuO The pore size distribution figure of the sample prepared under the concentration), figure (b) is 10mMol SnO When making the seed, the adsorption curve and the pore size distribution figure of the sample prepared (wherein the inset represents the pore size distribution figure of the prepared sample under the 10mMol SnO2 concentration) . In Figure (a) and Figure (b), the X-axis is the relative pressure (P/P0), and the Y-axis is the adsorption amount (mmol/g). In the inset of Figure (a) and Figure (b), the X-axis is the pore diameter (nm), and the Y-axis is the pore volume (cm 3 /g·nm).
具体实施方式Detailed ways
在具体实施过程中,本发明异质种子中孔单晶金红石TiO2可控生长的制备方法,首先是种子模板制备过程:以一定浓度的RuCl3.xH2O的水溶液为种子溶液,取上述50mL溶液,加入一定量的二氧化硅球(3g~25g),70℃水浴1h后,用大量去离子水冲洗,在80℃加热套中将种完种子后的二氧化硅球烘干,放置马弗炉中加热(2℃/min升至500℃,保温30min)。TiO2前驱体溶液配制过程:将TiCl4缓慢滴入盐酸中,加入一定量的水,配成一定浓度的TiCl4盐酸水溶液,配溶液过程中需要冰水浴。然后是异质种子中孔单晶TiO2的制备:取一定量的二氧化硅球种子模板(500mg~5g)放入含有前驱体溶液的聚四氟乙烯内胆中,在一定温度的烘箱中水热一定时间,待内胆冷却后,收集二氧化硅球种子模板,用大量去离子水冲洗,在80℃加热套中干燥,收集,放入一定浓度NaOH水溶液中一定温度下水浴1h,刻蚀二氧化硅球种子模板,离心收集中孔TiO2样品,用去离子水和乙醇分别清洗2~3次,收集并干燥样品。同时,异质种子还可以选择SnO2或IrO2,制备过程与上述类似,只是种子溶液选用IrCl3.xH2O的水溶液,或种子溶液选用SnCl2的乙醇溶液或水、乙醇的混合溶液。其中,具体的特征在于:In the specific implementation process, the preparation method for the controllable growth of heterogeneous seed mesoporous single crystal rutile TiO 2 of the present invention, first of all, the preparation process of the seed template: the aqueous solution of RuCl 3 .xH 2 O with a certain concentration is used as the seed solution, and the above-mentioned Add a certain amount of silica spheres (3g to 25g) to 50mL solution, bathe in 70°C water for 1h, rinse with a large amount of deionized water, dry the silica spheres after planting seeds in a heating mantle at 80°C, and place Heat in a muffle furnace (2°C/min up to 500°C, hold for 30min). TiO 2 precursor solution preparation process: Slowly drop TiCl 4 into hydrochloric acid, add a certain amount of water to make a certain concentration of TiCl 4 hydrochloric acid aqueous solution, and an ice-water bath is required during the solution preparation process. Next is the preparation of heterogeneous seed mesoporous single crystal TiO2 : take a certain amount of silica spherical seed template (500mg ~ 5g) and put it into a polytetrafluoroethylene liner containing the precursor solution, and put it in an oven at a certain temperature Heat water for a certain period of time. After the inner tank is cooled, collect the silica ball seed template, wash it with a large amount of deionized water, dry it in a heating mantle at 80°C, collect it, put it in a water bath with a certain concentration of NaOH solution at a certain temperature for 1 hour, and inscribe Etch the silica ball seed template, centrifuge to collect the mesoporous TiO 2 sample, wash with deionized water and ethanol for 2 to 3 times, collect and dry the sample. At the same time, heterogeneous seeds can also choose SnO 2 or IrO 2 , and the preparation process is similar to the above, except that the seed solution is an aqueous solution of IrCl 3 .xH 2 O, or the seed solution is an ethanol solution of SnCl 2 or a mixed solution of water and ethanol. Among them, the specific features are:
1、反应所用TiCl4为商用化学纯溶液,二氧化硅球种子模板为直径50nm左右的SiO2小球。1. The TiCl 4 used in the reaction is a commercially pure solution, and the silica ball seed template is a small SiO 2 ball with a diameter of about 50 nm.
2、反应釜材质为不锈钢、铝合金、铜和钽的一种,内胆为聚四氟乙烯和高密度聚乙烯的一种。2. The material of the reaction kettle is one of stainless steel, aluminum alloy, copper and tantalum, and the inner tank is one of polytetrafluoroethylene and high-density polyethylene.
3、所述种子溶液浓度:对于RuCl3.xH2O水溶液或IrCl3.xH2O水溶液,其浓度为0.02mM~10mM;对于SnCl2溶液,其浓度为1mM~30mM,SnCl2溶液中水和乙醇的体积比为0~1之间。3. The concentration of the seed solution: for the RuCl 3 .xH 2 O aqueous solution or IrCl 3 .xH 2 O aqueous solution, the concentration is 0.02mM-10mM; for the SnCl 2 solution, the concentration is 1mM-30mM, the water in the SnCl 2 solution The volume ratio to ethanol is between 0 and 1.
4、刻蚀模板过程中,所用NaOH水溶液的摩尔浓度为1M~5M,水浴温度60~90℃。4. In the process of etching the template, the molar concentration of the NaOH aqueous solution used is 1M-5M, and the temperature of the water bath is 60-90°C.
5、所述放入烘箱加热处理时,加热温度为100~300℃,加热时间为2h~48h。5. When putting into an oven for heat treatment, the heating temperature is 100-300°C, and the heating time is 2h-48h.
6、所述用去离子水清洗后烘干时,烘干温度为60~100℃。6. When drying after cleaning with deionized water, the drying temperature is 60-100°C.
7、在用RuO2作种子时,不同浓度下都可以得到中孔单晶金红石TiO2,样品的尺寸在500nm~900nm之间,不同浓度的种子助催化剂单载量差别导致测试光催化性能会有差别;同样,采用SnO2或IrO2作种子时,可得到形貌相似的中孔单晶金红石TiO2。7. When RuO 2 is used as the seed, mesoporous single crystal rutile TiO 2 can be obtained at different concentrations. The size of the sample is between 500nm and 900nm. There are differences; similarly, when using SnO 2 or IrO 2 as seeds, mesoporous single crystal rutile TiO 2 with similar morphology can be obtained.
下面结合实施例来详细说明本发明。The present invention will be described in detail below in conjunction with examples.
实施例Example
本实施例中,以RuO2作为异质种子制备中孔单晶金红石TiO2为例:In this example, the preparation of mesoporous single-crystal rutile TiO 2 with RuO 2 as heterogeneous seeds is taken as an example:
种子模板制备过程:取3g密堆积的SiO2球模板放入50mL摩尔浓度0.04mM的RuCl3水溶液中,水浴70℃1h,然后取出二氧化硅球种子模板用大量去离子水冲洗,放入80℃加热套中干燥;之后,放置马弗炉中500℃保温30min,获得含异质种子的二氧化硅球种子模板。Seed template preparation process: Take 3g of close-packed SiO 2 ball template and put it into 50mL RuCl 3 aqueous solution with a molar concentration of 0.04mM. ℃ drying in a heating mantle; after that, place in a muffle furnace at 500 ℃ for 30 minutes to obtain a silica ball seed template containing heterogeneous seeds.
配制TiCl4前驱体:1.64mL的TiCl4缓慢滴入292mL浓度为37wt%的浓盐酸中(冰水浴),然后加入去离子水至1L,混合均匀。Prepare TiCl 4 precursor: slowly drop 1.64mL of TiCl 4 into 292mL of 37wt% concentrated hydrochloric acid (ice-water bath), then add deionized water to 1L, and mix well.
制备中孔样品:取上述前躯体溶液40mL,放入聚四氟乙烯内胆中,加入80mg的NaF作为形貌控制剂,加入500mg二氧化硅球种子模板,将上述聚四氟乙烯内衬密封入不锈钢外套中,烘箱加热至200℃保温12h。待冷却至室温,取聚四氟乙烯内衬中的模板颗粒用去离子水进行冲洗、80℃干燥后,投入到100mL摩尔浓度2M的NaOH溶液中,80℃水浴保温1h,对模板进行刻蚀。刻蚀完成后,用去离子水和乙醇分别离心清洗2~3次,干燥收集样品。Preparation of mesoporous samples: Take 40 mL of the above precursor solution, put it into a polytetrafluoroethylene liner, add 80 mg of NaF as a shape control agent, add 500 mg of silica ball seed template, and seal the above polytetrafluoroethylene liner Put it into a stainless steel jacket, and heat it in an oven to 200°C for 12h. After cooling to room temperature, the template particles in the PTFE lining were rinsed with deionized water, dried at 80°C, put into 100mL NaOH solution with a molar concentration of 2M, kept in a water bath at 80°C for 1h, and the template was etched . After the etching is completed, wash with deionized water and ethanol by centrifugation for 2 to 3 times, and dry to collect samples.
以IrO2或SnO2作为种子制备中孔单晶金红石TiO2的过程与之类似。The process of preparing mesoporous single-crystal rutile TiO2 with IrO2 or SnO2 as seeds is similar.
图1展示了RuO2、IrO2、SnO2作种子制备的中孔单晶金红石TiO2的SEM照片,表明样品为多孔结构,单晶金红石TiO2样品的晶粒尺寸在400nm~900nm之间。Figure 1 shows the SEM photo of mesoporous single crystal rutile TiO 2 prepared with RuO 2 , IrO 2 , and SnO 2 as seeds, showing that the sample has a porous structure, and the grain size of the single crystal rutile TiO 2 sample is between 400nm and 900nm.
图2展示了RuO2、IrO2、SnO2作种子制备的中孔单晶金红石TiO2的TEM照片,衍射斑点表明样品为单晶结构,形貌图可看出孔结构贯穿于样品内部,表面为{111}晶面暴露。Figure 2 shows the TEM photo of mesoporous single crystal rutile TiO 2 prepared with RuO 2 , IrO 2 , and SnO 2 as seeds. The diffraction spots indicate that the sample is a single crystal structure. The topography shows that the pore structure runs through the inside of the sample. The {111} crystal plane is exposed.
图3展示了RuO2、IrO2、SnO2作种子制备的中孔单晶金红石TiO2的XRD图谱,表明样品为金红石相。Figure 3 shows the XRD spectrum of mesoporous single crystal rutile TiO 2 prepared with RuO 2 , IrO 2 , and SnO 2 as seeds, indicating that the sample is in the rutile phase.
图4展示了RuO2和SnO2作种子制备的中孔单晶金红石TiO2的N2等温吸附曲线及孔径分布曲线,表明样品含有丰富的孔结构,孔径分布表明样品的孔径大约为50nm与二氧化硅球种子模板尺寸一致。Figure 4 shows the N 2 isotherm adsorption curve and pore size distribution curve of mesoporous single-crystal rutile TiO 2 prepared with RuO 2 and SnO 2 as seeds, indicating that the sample contains a rich pore structure, and the pore size distribution shows that the pore size of the sample is about 50 nm and 2 Silica ball seed templates are consistent in size.
实施例结果表明,本发明通过湿化学过程以四氯化钛作为前驱体,含有异质种子的二氧化硅球作为模板,水热生长具有特定晶面暴露的金红石二氧化钛,刻蚀模板后得到含异质种子的中孔单晶金红石二氧化钛,能够实现异质种子外延生长助催化剂,解决了催化剂与助催化剂界面接触质量较差,光催化效率较低的问题。与传统种子模板法不同,本发明将四氯化钛前驱体和含异质种子二氧化硅模板装入反应釜中,经加热处理,刻蚀后得到特定晶面暴露的中孔单晶金红石二氧化钛。The results of the examples show that the present invention uses titanium tetrachloride as a precursor through a wet chemical process, and silica spheres containing heterogeneous seeds as a template, hydrothermally grows rutile titanium dioxide with specific crystal plane exposure, and after etching the template, obtains rutile titanium dioxide containing The mesoporous single-crystal rutile titanium dioxide with heterogeneous seeds can realize the epitaxial growth of co-catalysts on heterogeneous seeds, which solves the problems of poor interface contact quality between catalysts and co-catalysts and low photocatalytic efficiency. Different from the traditional seed template method, the present invention puts the titanium tetrachloride precursor and the silicon dioxide template containing heterogeneous seeds into the reaction kettle, heats them, and obtains mesoporous single-crystal rutile titanium dioxide with specific crystal faces exposed after etching .
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610486297.6A CN107540014B (en) | 2016-06-27 | 2016-06-27 | A kind of heterogeneous seed mesoporous monocrystalline rutile titanium dioxide controllable growth preparation method |
PCT/CN2017/089683 WO2018001176A1 (en) | 2016-06-27 | 2017-06-23 | Preparation method for controllable growth of heterogeneous seed mesoporous monocrystalline rutile titanium dioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610486297.6A CN107540014B (en) | 2016-06-27 | 2016-06-27 | A kind of heterogeneous seed mesoporous monocrystalline rutile titanium dioxide controllable growth preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107540014A CN107540014A (en) | 2018-01-05 |
CN107540014B true CN107540014B (en) | 2019-08-16 |
Family
ID=60786406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610486297.6A Active CN107540014B (en) | 2016-06-27 | 2016-06-27 | A kind of heterogeneous seed mesoporous monocrystalline rutile titanium dioxide controllable growth preparation method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107540014B (en) |
WO (1) | WO2018001176A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108910944A (en) * | 2018-08-30 | 2018-11-30 | 济南大学 | A method of mesoporous TiO 2 is prepared by template of chitin |
CN111206281A (en) * | 2018-11-22 | 2020-05-29 | 中国科学院金属研究所 | Preparation method for controllable growth of large-sized mesoporous single crystal rutile titanium dioxide |
CN110420134B (en) * | 2019-08-28 | 2022-04-15 | 广州骏朗生物科技有限公司 | Flaky silica/nano TiO2 composite material and preparation method thereof |
CN111013580B (en) * | 2019-11-06 | 2023-04-07 | 浙江师范大学 | Catalyst for preparing chlorine by hydrogen chloride oxidation and preparation method and application thereof |
CN110983557A (en) * | 2019-11-27 | 2020-04-10 | 江阴龙阳纺织有限公司 | A kind of photodynamic antibacterial knitted underwear fabric and preparation method thereof |
CN112121781B (en) * | 2020-08-26 | 2022-11-01 | 太原科技大学 | Visible light-responsive titanium-silicon composite oxide photocatalyst with chiral stacking structure and its preparation and application |
CN112661241B (en) * | 2020-12-07 | 2023-04-28 | 同济大学 | High-efficiency titanium dioxide photoelectrode with {111} crystal face highly exposed and preparation and application thereof |
CN115212875B (en) * | 2022-07-10 | 2023-09-01 | 华东理工大学 | Preparation method of high-efficiency photocatalytic methane dry reforming monoatomic ruthenium doped-porous titanium silicon material |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001334148A (en) * | 2000-05-26 | 2001-12-04 | Kawasaki Heavy Ind Ltd | Photocatalytic function holding material and method for holding the same |
WO2003014022A1 (en) * | 2001-08-03 | 2003-02-20 | Nippon Soda Co., Ltd. | Dispersed ingredient having metal-oxygen |
CN1179888C (en) * | 2002-03-26 | 2004-12-15 | 北京化工大学 | Nano rutile titanium dioxide and preparation method thereof |
CN1415548A (en) * | 2002-10-31 | 2003-05-07 | 南开大学 | Method for producing rutile type white titanium pigment by using crystal seed method of double action |
CN101204648A (en) * | 2006-12-20 | 2008-06-25 | 中国科学院金属研究所 | A method for preparing doped mesoporous nano titanium oxide photocatalyst |
US20090065896A1 (en) * | 2007-09-07 | 2009-03-12 | Seoul National University Industry Foundation | CAPACITOR HAVING Ru ELECTRODE AND TiO2 DIELECTRIC LAYER FOR SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME |
US8609553B2 (en) * | 2011-02-07 | 2013-12-17 | Micron Technology, Inc. | Methods of forming rutile titanium dioxide and associated methods of forming semiconductor structures |
US8659869B2 (en) * | 2012-01-12 | 2014-02-25 | Nanya Technology Corporation | Method for forming rutile titanium oxide and the stacking structure thereof |
CN102992398B (en) * | 2012-12-18 | 2014-08-27 | 中国科学院合肥物质科学研究院 | Preparation method of titanium dioxide-tin dioxide nano-sosoloid material |
CN104249993A (en) * | 2013-06-27 | 2014-12-31 | 中国科学院大连化学物理研究所 | Method for producing hydrogen and oxygen through solar photocatalysis of water based on metal oxide photocatalyst |
KR101567388B1 (en) * | 2013-07-02 | 2015-11-10 | 한국과학기술연구원 | Metal oxides composite including hollow core and porous shell layer and the fabrication method thereof |
-
2016
- 2016-06-27 CN CN201610486297.6A patent/CN107540014B/en active Active
-
2017
- 2017-06-23 WO PCT/CN2017/089683 patent/WO2018001176A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN107540014A (en) | 2018-01-05 |
WO2018001176A1 (en) | 2018-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107540014B (en) | A kind of heterogeneous seed mesoporous monocrystalline rutile titanium dioxide controllable growth preparation method | |
Joo et al. | Tailored synthesis of mesoporous TiO 2 hollow nanostructures for catalytic applications | |
CN105664935B (en) | A kind of three-dimensional ordered mesoporous Au TiO2/IO‑SiO2Film visible-light photocatalyst and preparation method | |
CN101481140B (en) | A kind of preparation method of multi-stage flower-like structure titanium dioxide | |
CN103101972B (en) | Preparation method of three-dimensional mesoporous titanium dioxide photocatalyst by means of biological template method | |
CN105879886B (en) | A kind of preparation method of GO/Sb BiOBr composite photo-catalysts | |
CN105836807B (en) | A two-dimensional sheet self-assembled multi-level structure tungsten oxide and its preparation method and application | |
CN104311142B (en) | A kind of vertical growth TiO2 nanosheet and its preparation method | |
CN108325550A (en) | A kind of Preparation method and use of nitrogen-doped graphene quantum dot/zinc oxide/carbonitride composite visible light catalyst | |
CN105645459B (en) | A kind of surface modification sea urchin shape ZnO/TiO2Composite and preparation method thereof | |
CN106986555A (en) | A kind of ZIF 8/ZnO nano-stick array thin film materials and preparation method thereof | |
CN101791545A (en) | Method for preparing (001) surface-exposed micrometer laminar titanium dioxide photocatalyst | |
CN106480470B (en) | Al2O3The array TiO of modification2The method of nano wire and photoelectrocatalysis hydrogen production by water decomposition | |
CN103316698A (en) | Preparation method of energy band-tunable solid solution BiOI-Bi5O7I nanosheet visible light photocatalytic material | |
Islam et al. | Hydrazine-based synergistic Ti (III)/N doping of surfactant-templated TiO2 thin films for enhanced visible light photocatalysis | |
CN105642262B (en) | Two-dimensional-layered titanium-dioxide nanometer photocatalytic material and preparing method | |
CN103014829A (en) | Method for preparing anatase TiO2 single crystal rich in {001}/{010}/{101} facets | |
CN105621479A (en) | A kind of green preparation technology of TiO2 | |
CN107008473A (en) | A kind of three-dimensional structure bismuth titanates nanometer sheet/perite nanometer piece composite photo-catalyst and preparation method thereof | |
CN101863509A (en) | A rutile phase TiO2 nanowire array synthesized by soft chemistry-hydrothermal technology and its preparation method | |
CN105819501A (en) | Double-layer rutile titanium dioxide nano-structure and preparation method thereof | |
CN102828227B (en) | A Method for Preparing Anatase TiO2 Single Crystal Rich in {010}/{101} Facets | |
CN101880057B (en) | Method for preparing high-purity brookite titanium dioxide with controlled appearance | |
Vu et al. | High surface area stainless steel wire mesh-supported TiO2 prepared by sacrificial template accelerated hydrolysis. A monolithic photocatalyst superior to P25 TiO2 | |
EP2840066B1 (en) | Metal complex of fluorinated tin oxide and titanium oxide and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |