CN107533202A - Optical bench sub-component with integrated photonic device - Google Patents
Optical bench sub-component with integrated photonic device Download PDFInfo
- Publication number
- CN107533202A CN107533202A CN201680023080.XA CN201680023080A CN107533202A CN 107533202 A CN107533202 A CN 107533202A CN 201680023080 A CN201680023080 A CN 201680023080A CN 107533202 A CN107533202 A CN 107533202A
- Authority
- CN
- China
- Prior art keywords
- optical
- component
- photonic device
- optical bench
- pedestal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 232
- 239000013307 optical fiber Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims description 28
- 239000000835 fiber Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims 19
- 230000032683 aging Effects 0.000 claims 1
- 239000011469 building brick Substances 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 230000005693 optoelectronics Effects 0.000 abstract description 54
- 230000008878 coupling Effects 0.000 description 14
- 238000010168 coupling process Methods 0.000 description 14
- 238000005859 coupling reaction Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 239000007769 metal material Substances 0.000 description 7
- 230000002950 deficient Effects 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000002839 fiber optic waveguide Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4214—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26F—PERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
- B26F1/00—Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
- B26F1/38—Cutting-out; Stamping-out
- B26F1/40—Cutting-out; Stamping-out using a press, e.g. of the ram type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4228—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
- G02B6/423—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3648—Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
- G02B6/3652—Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3684—Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
- G02B6/3696—Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier by moulding, e.g. injection moulding, casting, embossing, stamping, stenciling, printing, or with metallic mould insert manufacturing using LIGA or MIGA techniques
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/424—Mounting of the optical light guide
- G02B6/4243—Mounting of the optical light guide into a groove
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/4245—Mounting of the opto-electronic elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4246—Bidirectionally operating package structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4249—Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4251—Sealed packages
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
- Light Receiving Elements (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
Abstract
本发明公开一种包括集成光子器件的光具座子组件。可以在将光子器件附接至光电封装件组件之前,在光电封装件组件之外执行光电器件与光具座的光学对准。光子器件在其光学输入端/输出端与光具座的光学输出端/输入端光学对准的情况下,被附接至光具座的基座。光具座以精确关系将光纤的阵列关于结构化反射表面支撑。光子器件被安装在子底座上,以被附接至光具座。光子器件可以被有源地或者无源地与光具座对准。在实现光学对准之后,光子器件的子底座被固定地附接至光具座的基座。光具座子组件可以被结构化,以气密地密封为气密馈通件,从而气密地附接至气密光电封装件。
The invention discloses an optical bench subassembly including an integrated photonic device. Optical alignment of the optoelectronic device to the optical bench can be performed outside of the optoelectronic package assembly prior to attaching the photonic device to the optoelectronic package assembly. The photonic device is attached to the base of the optical bench with its optical input/output in optical alignment with the optical output/input of the optical bench. The optical bench supports the array of optical fibers in precise relationship with respect to the structured reflective surface. Photonic devices are mounted on the submount to be attached to the optical bench. Photonic devices can be actively or passively aligned with the optical bench. After optical alignment is achieved, the submount of the photonic device is fixedly attached to the base of the optical bench. The optical bench subassembly can be structured to be hermetically sealed as a hermetic feedthrough for hermetically attaching to a hermetic optoelectronic package.
Description
背景技术Background technique
1.优先权权利要求1. Priority claims
本申请:This application:
(1)要求2015年3月22日提交的美国临时专利申请第62/136,601号的优先权;(1) claiming priority to U.S. Provisional Patent Application No. 62/136,601, filed March 22, 2015;
(2)是2013年4月11日提交的美国专利申请第13/861,273号的部分继续申请,该部分继续申请:(2) is a continuation-in-part of U.S. Patent Application No. 13/861,273 filed on April 11, 2013, which continuation-in-part:
(a)要求2012年4月11日提交的美国临时专利申请第61/623,027号的优先权,(a) claiming priority to U.S. Provisional Patent Application No. 61/623,027, filed April 11, 2012,
(b)要求2012年9月10日提交的美国临时专利申请第61/699,125号的优先权,并且(b) claiming priority to U.S. Provisional Patent Application No. 61/699,125, filed September 10, 2012, and
(c)是2013年3月5日提交的美国专利申请第13/786,448号的部分继续申请,该部分继续申请要求2012年3月5日提交的美国临时专利申请第61/606,885号的优先权。(c) is a continuation-in-part of U.S. Patent Application No. 13/786,448, filed March 5, 2013, which requires U.S. Provisional Patent Application No. 61/606,885, filed March 5, 2012 number priority.
(3)是2015年5月15日提交的美国专利申请第14/714,211号的部分继续申请,该部分继续申请:(3) It is a continuation-in-part of U.S. Patent Application No. 14/714,211 filed on May 15, 2015, which continuation-in-part:
(a)要求2014年5月15日提交的美国临时专利申请第61/994,094号的优先权,(a) claiming priority to U.S. Provisional Patent Application No. 61/994,094, filed May 15, 2014,
(b)是2015年4月23日提交的美国专利申请第14/695,008号的部分继续申请。(b) is a continuation-in-part of U.S. Patent Application No. 14/695,008 filed April 23, 2015.
这些申请通过引用的方式好像在本文完全阐述那样被完全并入。下面说明的所有公开通过引用的方式好像在本文完全阐述那样被完全并入。These applications are fully incorporated by reference as if fully set forth herein. All disclosures set forth below are fully incorporated by reference as if fully set forth herein.
2.技术领域2. Technical fields
本发明涉及光具座子组件,尤其涉及基于光具座的光纤子组件,并且更尤其涉及基于光具座的气密光纤馈通件子组件。The present invention relates to optical bench subassemblies, more particularly to optical bench based optical fiber subassemblies, and more particularly to optical bench based hermetic fiber feedthrough subassemblies.
3.现有技术3. Existing technology
经由光纤波导传输光信号存在很多优点,并且其使用是多样的。单个和多个光纤波导可以简单用于向远程位置传输可见光。复杂电话和数据通信系统可以传输多个特定光信号。数据通信系统牵涉以端到端关系联接光纤的器件,包括光电或者光子器件,其包括提供、检测和/或控制光以在光信号和电信号之间转换的光学和电子部件。There are many advantages to transmitting optical signals via fiber optic waveguides, and their uses are diverse. Single and multiple fiber optic waveguides can be easily used to transmit visible light to remote locations. Complex telephony and data communication systems can transmit multiple specific optical signals. Data communication systems involve devices joining optical fibers in an end-to-end relationship, including optoelectronic or photonic devices, which include optical and electronic components that provide, detect and/or control light to convert between optical and electrical signals.
例如,收发器(Xcvr)是光电模块,包括模块外壳内与电路组合的发送器(Tx)和接收器(Rx),其在现有技术中已知为封装件。封装件可以被气密地密封,以保护其内容不受环境影响。发送器包括光源(例如,VCSEL或者DFB激光器),并且接收器包括光传感器(例如,光电二极管(PD))。在此以前,收发器的电路(例如,包括激光驱动器、跨阻放大器(TIA)等)被钎焊到印刷电路板上。这样的收发器总体具有形成封装件的底或者底部的基底(气密或者非气密),然后诸如激光器和光电二极管之类的光电器件被钎焊到基底上。光纤连接至封装件的外部或者使用气密馈通件来穿过封装件的壁(见US20130294732A1,其被共同转让给本申请的受让人/申请人,并且好像完全在本文中阐述那样被完全并入)。For example, a transceiver (Xcvr) is an optoelectronic module comprising a transmitter (Tx) and a receiver (Rx) combined with circuitry within a module housing, known in the prior art as a package. The package can be hermetically sealed to protect its contents from the environment. The transmitter includes a light source (eg, a VCSEL or DFB laser), and the receiver includes a light sensor (eg, a photodiode (PD)). Heretofore, the circuitry of the transceiver (eg, including the laser driver, transimpedance amplifier (TIA), etc.) is soldered to the printed circuit board. Such transceivers generally have a substrate (hermetic or non-hermetic) forming the base or base of the package, and then optoelectronic devices such as lasers and photodiodes are soldered to the substrate. The optical fiber is connected to the outside of the enclosure or uses a gas-tight feedthrough to pass through the wall of the enclosure (see US20130294732A1, which is commonly assigned to the assignee/applicant of the present application, and is fully described as if fully set forth herein incorporated).
光纤的端部被光联接至外壳中保持的光电器件。馈通元件支撑穿过壁开口的光纤的一部分。对于多种应用,可期望将光电器件气密地密封在光电模块的外壳内,以保护部件不受腐蚀介质、潮湿等的影响。因为光电模块的封装必须作为整体被气密地密封,所以馈通元件必须被气密地密封,以使得光电模块外壳内的光电部件被可靠地和持续地保护而不受环境影响。The ends of the optical fibers are optically coupled to optoelectronic devices held in the housing. The feedthrough element supports a portion of the optical fiber passing through the wall opening. For many applications, it may be desirable to hermetically seal the optoelectronic device within the housing of the optoelectronic module to protect the components from corrosive media, moisture, and the like. Since the package of the optoelectronic module as a whole must be hermetically sealed, the feedthrough element must be hermetically sealed such that the optoelectronic components within the optoelectronic module housing are reliably and continuously protected from environmental influences.
对于适当的操作,在印刷电路板上支撑的光电器件需要将光高效联接至外部光纤。一些光电器件需要单模光连接件,单模光连接件需要光纤和器件之间的严格对准公差,典型小于1微米。这特别对于多个光纤应用是挑战,在多个光纤应用中,多个光纤需要使用有源光学对准方法(其中,通过机械设备调整(多个)光纤的位置和取向,直至光纤和光电器件之间传递的光量被最大化为止)被光学对准至多个光电器件。For proper operation, optoelectronic devices supported on printed circuit boards require efficient coupling of light to external optical fibers. Some optoelectronic devices require single-mode optical connections, which require tight alignment tolerances between the fiber and the device, typically less than 1 micron. This is particularly challenging for multi-fiber applications where multiple fibers require the use of active optical alignment methods (where the position and orientation of the fiber(s) is adjusted by mechanical devices down to the fiber and optoelectronic devices. are optically aligned to multiple optoelectronic devices until the amount of light passing between them is maximized.
图1A和1B图示了具有气密多光纤馈通件502的气密密封光电封装件500,其中,气密馈通件502与安装在由封装件500的底部支撑的子底座506上的光子器件504有源地对准。在这个示例中,馈通件502类似于US2016/0016218A1中公开的光联接器件,US2016/0016218A1已经共同转让给本申请的受让人/申请人,并且好像在本文中完全阐述那样被完全并入。光子器件504可以包括VCSEL阵列和/或PD阵列,其例如经由子底座506和印刷电路板508支撑在封装件底部上。印刷电路板508设置有其他电子部件和电路,并且封装件500可以包括若干印刷电路板。在将光子器件504/子底座506和其他部件组装至封装件500中之后,馈通件504通过由封装件500的外壳501的侧壁上的管嘴50限定的开口503插入。光缆21的光纤20的阵列由馈通件502支撑,并且与光子器件504有源对准,以实现光子器件和光纤20的阵列之间的期望光联接效率。这个过程要求光子器件504和相关联的电子器件(未示出)被预组装到封装件500中。光子器件504被激活/激励以向光纤20的阵列发送光信号22/从光纤20的阵列接收光信号22。本质上,当在光纤20和光子器件504之间传送的信号22被最大化时,到光纤20/来自光纤20的光信号被最优地联接到光子器件504。然后馈通件502在光学对准的状态下被钎焊到外壳501的封装件侧壁处的管嘴50中。FIGS. 1A and 1B illustrate a hermetically sealed optoelectronic package 500 having a hermetically sealed multi-fiber feedthrough 502 with a photon submount 506 mounted on a submount 506 supported by the bottom of the package 500. Device 504 is actively aligned. In this example, the feedthrough 502 is similar to the optical coupling device disclosed in US2016/0016218A1, which has been commonly assigned to the assignee/applicant of the present application and is fully incorporated as if fully set forth herein . Photonic device 504 may include a VCSEL array and/or a PD array supported on the package bottom, eg, via submount 506 and printed circuit board 508 . The printed circuit board 508 is provided with other electronic components and circuits, and the package 500 may include several printed circuit boards. After the photonic device 504 /submount 506 and other components are assembled into the package 500 , the feedthrough 504 is inserted through the opening 503 defined by the nozzle 50 on the sidewall of the housing 501 of the package 500 . The array of optical fibers 20 of optical cable 21 is supported by feedthrough 502 and actively aligned with photonic device 504 to achieve a desired optical coupling efficiency between the photonic device and the array of optical fibers 20 . This process requires that the photonic device 504 and associated electronics (not shown) be pre-assembled into the package 500 . The photonic device 504 is activated/stimulated to send/receive optical signals 22 to/from the array of optical fibers 20 . Essentially, the optical signal to/from the optical fiber 20 is optimally coupled to the photonic device 504 when the signal 22 transmitted between the optical fiber 20 and the photonic device 504 is maximized. The feedthrough 502 is then soldered in optical alignment into the nozzle 50 at the package side wall of the housing 501 .
有源光学对准牵涉相对复杂的、低生产量过程,因为VCSEL或者PD在有源对准过程期间必须被激励。集成电路的制造商通常具有能够亚微米对准的昂贵的资本设备(例如,用于测试集成电路的晶圆探测器和处理器),而封装芯片的公司一般具有能力较差的机械设备(若干微米对准公差,通常不适用于单模设备),并且经常使用手动操作。Active optical alignment involves a relatively complex, low-throughput process, since the VCSEL or PD must be activated during the active alignment process. Manufacturers of integrated circuits typically have expensive capital equipment capable of submicron alignment (e.g., wafer probers and handlers for testing integrated circuits), while companies that package chips typically have less capable machinery (several Micron alignment tolerances, generally not applicable to single-mode devices), and manual operations are often used.
现有技术的当前状态除了常见的电子器件的使用和组装过程,由于包含封装件而昂贵,和/或经常不适用于单模应用。相对于气密馈通子组件,封装件是相对更昂贵的组件(其包括昂贵的电路部件,诸如IC等之类)。假设要求预组装封装件中的支撑有源光学对准的部件的所需的预组装以及进一步假设有源对准和钎焊过程牵涉对于整体封装过程的结束具有高风险的步骤,则由于缺陷部件导致的实现有源对准的失败将导致整个封装被丢弃,该缺陷部件可能在有源对准过程中引入,整个封装件包括光子器件和已经封装其中的其他部件。The current state of the art, apart from common electronics use and assembly processes, is expensive due to the inclusion of packages, and/or is often unsuitable for single-mode applications. Packages are relatively more expensive assemblies (which include expensive circuit components such as ICs, etc.) than hermetic feedthrough subassemblies. Given the required pre-assembly of components supporting active optical alignment in pre-assembled packages and further assuming that the active alignment and soldering process involves steps with high risk to the end of the overall packaging process, due to defective parts The resulting failure to achieve active alignment will result in the discarding of the entire package, including the photonic device and other components already packaged therein, that defective components may have been introduced during the active alignment process.
此外,虽然VCSEL和PD部件可以在组装之前在静态下被测试,但是直至随着用以驱动这些部件的电子器件被组装在封装件中,它们不能在操作状态下被测试。因此,VCSEL和PD部件的老化过程(用以根据模拟加载条件识别早期寿命部件不合格)可以仅在这些部件被组装到封装件中之后进行。由于有缺陷但是相对不昂贵的VCSEL和PD部件,这将导致是组装的相对更昂贵的模块的封装件的进一步浪费(即,低封装件产量)。VCSEL和PD组件已知对于组装后的封装件的相对高数量的不合格有贡献。Furthermore, while VCSEL and PD components can be tested statically prior to assembly, they cannot be tested in operational conditions until the electronics to drive these components are assembled in the package. Therefore, the burn-in process of VCSEL and PD components (to identify early-life component failures based on simulated loading conditions) can be performed only after these components are assembled into packages. This will lead to further waste of packages (ie low package yield) that are assembled relatively more expensive modules due to defective but relatively inexpensive VCSEL and PD components. VCSEL and PD components are known to contribute to a relatively high number of rejects of assembled packages.
导致浪费组装后的封装件的另外的不合格模式由相对更大并且更顺应的结构环(由图1B中的虚线表示)造成,该结构环维持光子器件和馈通件之间的光学对准,如图1B所示。长结构环对于热-机械变形(其能够使得封装件偏离到预期设计规格之外)更敏感,由此导致不合格模式。An additional failure mode that results in wasted assembled packages is caused by relatively larger and more compliant structural rings (represented by dashed lines in Figure 1B ) that maintain optical alignment between the photonic device and the feedthrough , as shown in Figure 1B. Long structural loops are more sensitive to thermo-mechanical deformation (which can cause the package to deviate from intended design specifications), thereby leading to failure modes.
需要用以将光纤的输入端/输出端光学对准地联接到光电部件/光子器件的改进的结构,其在降低成本下改进生产量、公差、制造能力、易于使用性、功能性和可靠性。There is a need for improved structures for optically aligned coupling of input/output ends of optical fibers to optoelectronic components/photonic devices that improve throughput, tolerances, manufacturability, ease of use, functionality and reliability at reduced cost .
发明内容Contents of the invention
本发明提供有助于光子器件到光具座的光学对准的改进的结构,其克服了现有技术的缺点。本发明结合光子器件和光具座在子组件中,以使得光子器件与光具座的光学联接能够在光电封装组件之外进行。The present invention provides an improved structure that facilitates optical alignment of photonic devices to an optical bench, which overcomes the disadvantages of the prior art. The present invention combines the photonic device and the optical bench in a subassembly, so that the optical coupling of the photonic device and the optical bench can be performed outside the optoelectronic packaging assembly.
根据本发明,光子器件附接至光具座的基座,其光输入端/输出端与光具座的光输出端/输入端光学对准。According to the invention, the photonic device is attached to the base of the optical bench with its optical input/output optically aligned with the optical output/input of the optical bench.
在一个实施例中,光具座支撑光波导(例如,光纤)的形式的光学部件。在更特定的实施例中,光具座的基座以至少一个凹槽的形式限定对准结构,以精确支撑光纤的端部部分。光学元件(例如,透镜、棱镜、反射器、反射镜等)可以以精确关系提供至光纤的端面。在另一实施例中,光学元件包括结构化表面,其可以是平反射面或者凹反射面(例如,非球面镜表面)。In one embodiment, the optical bench supports optical components in the form of optical waveguides (eg, optical fibers). In a more particular embodiment, the base of the optical bench defines an alignment structure in the form of at least one groove to precisely support the end portion of the optical fiber. Optical elements (eg, lenses, prisms, reflectors, mirrors, etc.) may be provided in precise relationship to the end faces of the optical fibers. In another embodiment, the optical element includes a structured surface, which may be a flat reflective surface or a concave reflective surface (eg, an aspheric mirror surface).
在一个实施例中,光子器件可以安装在子底座上,子底座与光具座光学对准地被附接至光具座的基座。子底座可以设置有电路、电接触垫、电路部件(例如,VCSEL的驱动器、PD的TIA)、和与光子器件的操作相关联的其他部件和/或电路。In one embodiment, the photonic device may be mounted on a submount attached to the base of the optical bench in optical alignment with the optical bench. The submount may be provided with circuitry, electrical contact pads, circuit components (eg, drivers for VCSELs, TIAs for PDs), and other components and/or circuits associated with the operation of the photonic device.
光子器件可以与光具座无源地对准(例如,依赖于光具座上设置的对准标记)。可替代地,光子器件和光具座可以通过在光具座中的光波导和光子器件之间传递光信号而被有源地对准。光子器件(例如,VCSEL和/或PD)可以被激活,以允许与在光具座中支撑的光波导(例如,光纤)的有源对准,而不需要依赖于封装件内的其他部件。在实现光学对准之后,光子器件的子底座被固定地附接至光具座的基座。Photonic devices can be passively aligned with the optical bench (eg, relying on alignment marks provided on the optical bench). Alternatively, the photonic device and the optical bench can be actively aligned by passing optical signals between the optical waveguides in the optical bench and the photonic device. Photonic devices (eg, VCSELs and/or PDs) can be activated to allow active alignment with optical waveguides (eg, optical fibers) supported in the optical bench without relying on other components within the package. After optical alignment is achieved, the submount of the photonic device is fixedly attached to the base of the optical bench.
光具座的基座优选通过冲压可延展的材料(例如,金属)来形成,以形成光具座的精确几何形状和特征。光具座子组件可以被结构化,以被气密地密封。The base of the optical bench is preferably formed by stamping a malleable material (eg, metal) to form the precise geometry and features of the optical bench. The optical bench subassembly can be structured to be hermetically sealed.
在本发明的另一实施例中,光具座被结构化,以支撑多个波导(例如,多个光纤)和结构化反射表面(例如,镜的阵列),以与子底座上安装的光子器件(VCSEL和/或PD)的阵列一起工作。In another embodiment of the invention, the optical bench is structured to support a plurality of waveguides (e.g., a plurality of optical fibers) and a structured reflective surface (e.g., an array of mirrors) to communicate with the photon optics mounted on the submount. Arrays of devices (VCSELs and/or PDs) work together.
本发明在组装至更大的光电封装件之前,将光学元件和部件以及光子器件精确地预组装至光具座子组件中。子组件可以在光电封装将之外,在子组件级被功能测试,包括老化测试,由此降低由于装配在光电封装件中的光子器件的早期不合格引起的更昂贵的光电封装件的浪费。The present invention precisely preassembles optical elements and components and photonic devices into optical bench subassemblies prior to assembly into larger optoelectronic packages. Subassemblies can be functionally tested at the subassembly level, outside of the optoelectronic package, including burn-in testing, thereby reducing waste of more expensive optoelectronic packages due to early failure of photonic devices assembled in the optoelectronic package.
附图说明Description of drawings
为了更全面地理解本发明的性质和优点以及使用的优选模式,应参照结合附图阅读的下面的详细描述。在下面的图中,整个附图中相同的参考标号表示相同或者类似的部分。For a fuller understanding of the nature and advantages of the invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings. In the following figures, the same reference numerals designate the same or similar parts throughout the drawings.
图1A示出包括气密光纤馈通件的气密光电封装件;图1B是沿着图1A的线1B-1B截取的剖视图。FIG. 1A shows a hermetic optoelectronic package including a hermetic optical fiber feedthrough; FIG. 1B is a cross-sectional view taken along line 1B-1B of FIG. 1A .
图2A示出根据本发明的一个实施例的包括集成光电器件的气密馈通件的形式的光具座子组件;图2B是沿着图2A中的线2B-2B截取的剖视图,显示为安装在气密光电封装件中。2A illustrates an optical bench subassembly in the form of a hermetic feedthrough including integrated optoelectronic devices according to one embodiment of the present invention; FIG. 2B is a cross-sectional view taken along line 2B-2B in FIG. 2A , shown as Mounted in a hermetic optoelectronic package.
图3A是根据本发明的一个实施例的图2的光具座子组件的光具座的扩大视图;图3B是光具座的组装后的视图。3A is an enlarged view of the optical bench of the optical bench subassembly of FIG. 2 according to one embodiment of the present invention; FIG. 3B is an assembled view of the optical bench.
图4A是根据本发明的另一个实施例的光具座子组件中的光具座的扩大视图;图4B是光具座的组装后的视图。FIG. 4A is an enlarged view of an optical bench in an optical bench subassembly according to another embodiment of the present invention; FIG. 4B is an assembled view of the optical bench.
图5示出光具座子组件中的光子器件的子底座的替代实施例。Figure 5 shows an alternative embodiment of a submount for a photonic device in an optical bench subassembly.
图6A至6C示出气密光电封装件的组装顺序,其中,图6A图示了光子器件组件的组装;图6B图示了光子器件组件与光具座的组装和有源对准;图6C图示了气密光电封装件的组装。6A to 6C show the assembly sequence of the hermetic optoelectronic package, wherein, FIG. 6A illustrates the assembly of the photonic device assembly; FIG. 6B illustrates the assembly and active alignment of the photonic device assembly and the optical bench; FIG. 6C diagram The assembly of a hermetic optoelectronic package is shown.
图7示出安装在气密光电封装件中的气密馈通件。Figure 7 shows a hermetic feedthrough installed in a hermetic optoelectronic package.
具体实施方式detailed description
下面参考附图参照各个实施例描述本发明。虽然按照实现本发明的目的的最佳模式描述本发明,但是本领域技术人员将理解,可以在不脱离本发明的精神或范围的情况下,鉴于这些教导完成变型。The present invention is described below with reference to various embodiments with reference to the accompanying drawings. While this invention has been described in terms of the best mode for carrying out its objectives, those skilled in the art will appreciate that modifications may be made in light of these teachings without departing from the spirit or scope of the invention.
本发明提供有助于光子器件到光具座的光学对准的改进的结构,其克服现有技术的缺点。本发明结合光子器件和光具座在子组件中,以使得光子器件与光具座的光学联接对准能够在光电封装组件之外进行。The present invention provides an improved structure that facilitates optical alignment of photonic devices to an optical bench, which overcomes the disadvantages of the prior art. The present invention combines the photonic device and the optical bench in a subassembly, so that the optical coupling alignment of the photonic device and the optical bench can be performed outside the optoelectronic package assembly.
根据本发明,光子器件附接至光具座的基座,其光学输入端/输出端与光具座的光学输出端/输入端光学对准。本发明的各种实施例并入一些由本发明的受让人(nanoPrecision Products,Inc.)开发的发明构思,包括各种专利产品(包括与光学数据传输关联使用的光具座子组件),包括下面讨论的专利公开(其已经共同转让给受让人)中公开的构思。待审申请的优先权已经在这里被要求。According to the invention, the photonic device is attached to the base of the optical bench with its optical input/output optically aligned with the optical output/input of the optical bench. Various embodiments of the present invention incorporate certain inventive concepts developed by the assignee of the present invention (nanoPrecision Products, Inc.), including various patented products including optical bench subassemblies for use in connection with optical data transmission, including The concepts disclosed in the patent publications discussed below, which have been commonly assigned to the assignee. Priority to the pending application has been claimed here.
例如,美国专利申请公开第US2013/0322818A1号公开了用于路由光信号的光联接器件,该器件是具有用于路由光数据信号的冲压结构化表面的光具座的形式。光具座包括金属基座,金属基座具有限定其中的结构化表面,其中,结构化表面具有使入射光弯曲、反射和/或再成形的表面轮廓。基座还限定对准结构,该对准结构配置有表面特征,以便于与结构化表面精确光学对准地将光学部件(例如,光纤)精确定位在基座上,从而允许光沿着结构化表面和光学部件之间的限定路径传输,其中,结构化表面和对准结构通过冲压可延展的金属材料以形成光具座而一体限定在基座上。For example, US Patent Application Publication No. US2013/0322818A1 discloses an optical coupling device for routing optical signals in the form of an optical bench having a stamped structured surface for routing optical data signals. The optical bench includes a metal base having a structured surface defined therein, wherein the structured surface has surface contours that bend, reflect, and/or reshape incident light. The base also defines an alignment structure configured with surface features to facilitate precise positioning of an optical component (eg, an optical fiber) on the base in precise optical alignment with the structured surface, thereby allowing light to travel along the structured surface. A defined path transport between the surface and the optical component, wherein the structured surface and alignment structures are integrally defined on the base by stamping a malleable metallic material to form the optical bench.
美国专利申请公开第US2015/0355420A1还公开了在光通信模块中使用的用于路由光信号的光联接器件,特别是光具座形式的光联接器件,其中,具有使入射光弯曲、反射和/或再成形的表面轮廓的结构化表面限定在金属基座上。对准结构限定在基座上,配置有表面特征,以便于与结构化表面光对准地将光部件(例如,光纤)定位在基座上,从而允许光沿着结构化表面和光部件之间的限定路径传输。结构化表面和对准结构通过冲压基座的可延展的金属材料而一体限定在基座上。对准结构便于与结构化表面光学对准地将光部件无源对准在基座上,以允许光沿着结构化表面和光部件之间的限定路径传输。U.S. Patent Application Publication No. US2015/0355420A1 also discloses an optical coupling device for routing optical signals used in an optical communication module, in particular an optical coupling device in the form of an optical bench, wherein there are functions to bend, reflect and/or Or a structured surface of reshaped surface profile is defined on the metal base. An alignment structure is defined on the submount configured with surface features to facilitate positioning an optical component (eg, an optical fiber) on the submount in light alignment with the structured surface, thereby allowing the light to travel along the path between the structured surface and the optical component. Restricted route transmission. The structured surface and alignment structures are integrally defined on the base by stamping the ductile metallic material of the base. The alignment structure facilitates passive alignment of the optical component on the submount in optical alignment with the structured surface to allow light to travel along a defined path between the structured surface and the optical component.
美国专利申请公开第US2013/0294732A1还公开了具有一体光元件的气密光纤对准组件,特别是包括光具座的气密光纤对准组件,该光具座包括具有多个凹槽的金属套圈部分,所述多个凹槽用于接收光纤端部部分,其中,凹槽限定端部部分关于套圈部分的定位和取向。该组件包括一体的光元件,用于将光纤的输入端/输出端联接到光电模块中的光电器件。光元件可以是结构化反射表面的形式。光纤的端部在距离结构化反射表面限定的距离处并且与结构化反射表面对准。结构化反射表面和光纤对准凹槽可通过冲压可延展金属以在金属基座上限定这些特征来形成。U.S. Patent Application Publication No. US2013/0294732A1 also discloses a hermetic fiber optic alignment assembly with an integral optical element, in particular a hermetic fiber optic alignment assembly including an optical bench comprising a metal sleeve with a plurality of grooves A collar portion, the plurality of grooves for receiving an end portion of an optical fiber, wherein the grooves define a location and orientation of the end portion with respect to the ferrule portion. The assembly includes an integral optical element for coupling the input/output ends of the optical fiber to the optoelectronic device in the optoelectronic module. The light elements may be in the form of structured reflective surfaces. The end of the optical fiber is at a defined distance from and aligned with the structured reflective surface. The structured reflective surfaces and fiber alignment grooves can be formed by stamping the ductile metal to define these features on the metal base.
美国专利第9,213,148号还公开了相似的气密光纤对准组件,但不需要一体的结构化反射表面。US Patent No. 9,213,148 also discloses a similar hermetic fiber alignment assembly, but without the need for an integral structured reflective surface.
美国专利第7,343,770号公开了用于制造小容差部件的新颖的精确冲压系统。这样的发明性冲压系统可以以各种冲压过程实施,以生产上面说明的专利公开中公开的器件。这些冲压过程涉及冲压大体积材料(例如,金属坯料),从而以紧(即,小)容差形成最终整个几何形状和表面特征的几何形状,包括具有与其他限定的表面特征精确对准的期望几何形状的反射表面。US Patent No. 7,343,770 discloses a novel precision stamping system for manufacturing close tolerance parts. Such an inventive stamping system can be implemented in various stamping processes to produce the devices disclosed in the patent publications noted above. These stamping processes involve stamping large volumes of material (e.g., metal blanks) to form final overall geometries and surface feature geometries with tight (i.e., small) tolerances, including the desire to have precise alignment with other defined surface features Reflective surfaces of geometric shapes.
美国专利申请公开第US2016/0016218A1号还公开了一种复合结构,包括具有主要部分的基座和不相似金属材料的辅助部分。基座和辅助部分通过冲压成形。在辅助部分被冲压时,其与基座互锁,并且同时,在辅助部分上形成期望的结构化特征,诸如结构化反射表面、光纤对准特征等。利用这种方法,可以以更少的努力来在基座的体积上成形相对更不关键的结构化特征,以维持相对更大的公差,而辅助部分上的相对更关键的结构化特征被更精确地成形,以进一步考虑在相对更小的容差下限定尺寸、几何形状和/或光洁度。辅助部分可以包括另外的复合结构,其具有与用于冲压不同的结构化特征的不同性能相关联的两种不相似金属材料。这种冲压方法改进美国专利第7,343,770号中的较早的冲压工艺,其中,遭受冲压的大体积材料是同质材料(例如,金属条,诸如科瓦铁镍钴合金(Kovar)、铝等)。冲压过程产生出自单一同质材料的结构特征。因此,不同特征将共同具有该材料的性能,这不可以对于一个或者多个特征进行优化。例如,具有适用于冲压对准特征的性能可能不拥有适用于冲压具有用以降低光信号损耗的最佳光反射效率的反射表面特征的性能。US Patent Application Publication No. US2016/0016218A1 also discloses a composite structure comprising a base having a main part and an auxiliary part of a dissimilar metallic material. The base and auxiliary parts are formed by stamping. As the auxiliary part is stamped, it interlocks with the base, and at the same time, desired structured features, such as structured reflective surfaces, fiber alignment features, etc., are formed on the auxiliary part. Using this method, relatively less critical structural features on the volume of the base can be formed with less effort to maintain relatively larger tolerances, while relatively more critical structural features on the auxiliary part are more precisely formed. Precisely shaped to further consider defining size, geometry and/or finish within relatively tight tolerances. The auxiliary part may comprise an additional composite structure having two dissimilar metallic materials associated with different properties for stamping different structural features. This method of stamping improves on the earlier stamping process in US Patent No. 7,343,770, in which the bulk material subjected to stamping is a homogeneous material (e.g., metal strips such as Kovar, aluminum, etc.) . The stamping process produces structural features from a single homogeneous material. Thus, the different features will share properties of the material that cannot be optimized for one or more features. For example, features that are suitable for stamping alignment features may not possess properties suitable for stamping reflective surface features with optimal light reflection efficiency to reduce optical signal loss.
美国专利第8,961,034公开了生产用于将光纤支撑在光纤连接器中的套圈的方法,包括冲压金属坯料以形成具有多个总体U形的纵向开口凹槽的主体,每个凹槽具有设置在主体的表面上的纵向开口,其中,每个凹槽尺寸设置为通过夹持光纤牢固地将光纤保持在凹槽中。光纤被牢固地保持在套圈的主体中,而不需要附加的光纤保持构件。U.S. Patent No. 8,961,034 discloses a method of producing a ferrule for supporting an optical fiber in a fiber optic connector, comprising stamping a metal blank to form a body having a plurality of generally U-shaped longitudinally open grooves, each groove having a a longitudinal opening in the surface of the body, wherein each groove is sized to securely hold the optical fiber in the groove by gripping the optical fiber. The optical fibers are held securely in the body of the ferrule without the need for additional fiber retaining members.
PCT专利申请公开第WO2014/011283A2号公开了用于光纤连接器的套圈,其克服了现有技术的套圈和连接器的很多缺点,并且进一步改进了上面说明的无销对准套圈。光纤连接器包括光纤套圈,其具有总体椭圆的横截面,用于使用套筒将多个光纤的阵列与另一套圈中保持的光纤对准。PCT Patent Application Publication No. WO2014/011283A2 discloses a ferrule for an optical fiber connector, which overcomes many shortcomings of prior art ferrules and connectors, and further improves the pinless alignment ferrule described above. The fiber optic connector includes a fiber optic ferrule having a generally elliptical cross-section for aligning an array of multiple optical fibers with fibers held in another ferrule using a ferrule.
上面的发明性构思通过引用并入本文,并且将在下面被引用以便于公开本发明。本发明关于用于气密光电封装件的气密光纤馈通件的示例性实施例被公开,其包括具有集成光子器件的光具座子组件。The above inventive concept is incorporated herein by reference, and will be cited below for the convenience of disclosing the present invention. Exemplary embodiments of the present invention are disclosed with respect to a hermetic fiber optic feedthrough for a hermetic optoelectronic package that includes an optical bench subassembly with integrated photonic devices.
图2A和2B图示了光具座子组件10的形式的密封光纤馈通件的一个实施例,其包括根据本发明的一个实施例的具有集成光子器件12的光具座11。在图示的实施例中,光子器件12在与光具座11的光学输入端/输出端对准的位置处(见图2B中的光信号22)安装在子底座14上,子底座14附接至光具座11。2A and 2B illustrate one embodiment of a sealed fiber feedthrough in the form of an optical bench subassembly 10 comprising an optical bench 11 with integrated photonic devices 12 according to one embodiment of the present invention. In the illustrated embodiment, photonic device 12 is mounted on submount 14 at a position aligned with the optical input/output of optical bench 11 (see optical signal 22 in FIG. 2B ), attached to submount 14. Connect to optical bench 11.
图3A和3B更清楚地图示光具座子组件10中的光具座11的结构。在这个实施例中,光具座11类似于上面引用的受让人的US2016/0016218A1中公开的气密多光纤对准子组件。光具座支撑在图示的实施例中是光缆21的多个光纤20的一个或者多个光波导。对于多个光纤的情况,光具座11的基座13限定支撑光纤20的多个开口凹槽16,并且限定或者支撑光学元件(例如,透镜、棱镜、反射器、镜等)。在图示的实施例中,光学元件包括结构化反射表面17的阵列,每个结构化反射表面17对应一个光纤20。反射表面可以是平反射面或者轮廓化为凹反射面(例如,非球面镜表面)或者凸反射面。在图示的实施例中,基座13包括复合结构,复合结构包括材料与基座13的剩余部分(即,主要部分13’)的材料不相似的辅助部分30。包括辅助部分30的基座13由可延展的材料冲压,以形成主体几何形状和期望的表面特征。在这种情况下,辅助部分通过冲压可延展的金属材料来成形,以形成结构化的反射表面17和凹槽18的阵列,而基座13由不同的可延展的金属材料冲压,以形成凹槽16和所示的其他结构。如US2016/0016218A1中公开的,当辅助部分17被冲压时,其与基座13互锁,类似铆钉,并且同时在辅助部分30上形成期望的结构化特征,包括结构化反射表面17的阵列和用于支撑光纤20的端部部分的光纤对准凹槽18,以使得每个反射表面17和对应光纤20的端面(即,输入端/输出端)维持精确关系。在本实施例中,辅助部分17和主要部分13’使用不相似的金属材料冲压。3A and 3B illustrate the structure of the optical bench 11 in the optical bench subassembly 10 more clearly. In this embodiment, the optical bench 11 is similar to the hermetic multi-fiber alignment subassembly disclosed in assignee's US2016/0016218A1 cited above. The optical bench supports one or more optical waveguides of a plurality of optical fibers 20 which in the illustrated embodiment are optical cables 21 . In the case of multiple optical fibers, the base 13 of the optical bench 11 defines a plurality of open grooves 16 that support the optical fibers 20 and define or support optical elements (eg, lenses, prisms, reflectors, mirrors, etc.). In the illustrated embodiment, the optical element includes an array of structured reflective surfaces 17 , one for each optical fiber 20 . The reflective surface may be a flat reflective surface or contoured as a concave reflective surface (eg, an aspheric mirror surface) or a convex reflective surface. In the illustrated embodiment, the base 13 comprises a composite structure comprising an auxiliary portion 30 of material dissimilar to that of the remainder of the base 13, i.e. the main portion 13'. The base 13 including the auxiliary portion 30 is stamped from a malleable material to form the body geometry and desired surface features. In this case, the auxiliary part is formed by stamping a malleable metal material to form the array of structured reflective surfaces 17 and grooves 18, while the base 13 is stamped from a different malleable metal material to form the recesses. Slot 16 and other structures shown. As disclosed in US2016/0016218A1, when the auxiliary part 17 is stamped, it interlocks with the base 13, like a rivet, and at the same time forms the desired structured features on the auxiliary part 30, including the array of structured reflective surfaces 17 and Fiber alignment grooves 18 for supporting end portions of optical fibers 20 such that each reflective surface 17 maintains a precise relationship with the end face (ie, input end/output end) of the corresponding optical fiber 20 . In this embodiment, the auxiliary part 17 and the main part 13' are stamped from dissimilar metal materials.
开口凹槽16和18可以根据美国专利第8,961,034号中公开的冲压开口凹槽(其将光纤牢固地夹在凹槽中,而不需要附加的紧固构件(例如,没有环氧树脂等))被配置和形成。在图示的实施例中,设置盖15以覆盖基座13,而不需要覆盖结构化反射表面17。施加气密密封环氧树脂(例如,玻璃环氧树脂),以填充光纤20的在盖15和基座13之间的腔19中的部分周围的空间,从而形成气密密封,以使得光具座11为馈通件,其可以以与图1的气密馈通件502类似的功能与光电封装件一起使用,除了光具座11具有根据本发明的集成在其上以形成光具座组件10的光电器件之外。相似的气密馈通件结构的进一步详尽说明可以在US2013/0294732A中找到。The open grooves 16 and 18 can be punched open grooves according to the disclosed in U.S. Patent No. 8,961,034 (which firmly clamps the optical fiber in the groove without the need for additional fastening members (for example, without epoxy Resins, etc.)) are configured and formed. In the illustrated embodiment, cover 15 is provided to cover base 13 without covering structured reflective surface 17 . A hermetic sealing epoxy (e.g., glass epoxy) is applied to fill the space around the portion of the optical fiber 20 in the cavity 19 between the cover 15 and the base 13 to form a hermetic seal such that the optic Socket 11 is a feedthrough that can be used with an optoelectronic package in a similar function to the hermetic feedthrough 502 of FIG. 1 , except that optical bench 11 has integrated thereon to form an optical bench assembly 10 optoelectronic devices. A further elaboration of a similar hermetic feedthrough structure can be found in US2013/0294732A.
图4A和4B图示了除了光缆21之外与图3A和3B的光具座11相似的光具座11’的另一个实施例。在本实施例中,光具座11’设置有套圈30的形式的可拆卸连接件。替代从光具座11’延伸离开的光纤21,套圈30支撑光纤20的短部分的近端截面,而光纤的远前端部分由光具座11’内的凹槽16和18支撑。套圈30可以被结构化,以具有总的椭圆横截面,如WO2014/011283A2中公开。套筒(未示出)可以用以联接至例如以相似套圈终止的光缆(例如,插线光缆)。在本实施例中,如果连接光缆变得有缺陷,其可以被断开并且被替换,而不需要替换整个光电封装件,光具座11’被永久或者固定地被附接至所述光电封装件。4A and 4B illustrate another embodiment of an optical bench 11' that is similar to the optical bench 11 of FIGS. In this embodiment, the optical bench 11' is provided with a detachable connection in the form of a ferrule 30. Instead of the fiber 21 extending away from the optical bench 11', the ferrule 30 supports the proximal section of the short portion of the fiber 20, while the distal portion of the fiber is supported by the grooves 16 and 18 in the optical bench 11'. The ferrule 30 may be structured to have a generally elliptical cross-section, as disclosed in WO2014/011283A2. A sleeve (not shown) may be used to couple to, for example, a fiber optic cable terminated with a similar ferrule (eg, a patch cable). In this embodiment, if the connecting cable becomes defective, it can be disconnected and replaced without needing to replace the entire optoelectronic package to which the optical bench 11' is permanently or fixedly attached. pieces.
现在转到光子器件,在图2A和2B的图示实施例中,光子器件12被安装至子底座14上,以形成光子器件组件23。子底座14可以设置有电路、电接触垫、电路部件(例如,VCSEL的驱动器、PD的TIA)、和与光子器件12的操作相关联的其他部件和/或电路。Turning now to photonic devices, in the illustrated embodiment of FIGS. 2A and 2B , photonic device 12 is mounted to submount 14 to form photonic device assembly 23 . Submount 14 may be provided with circuitry, electrical contact pads, circuit components (eg, drivers for VCSELs, TIAs for PDs), and other components and/or circuits associated with the operation of photonic device 12 .
图6A至6C图示气密光电封装件的组装顺序。图6A图示了光子器件(发送器或接收器或收发器)组件的组装;图6B图示了光子器件组件与光具座的组装和有源对准;图6C图示了气密光电封装件的组装。6A to 6C illustrate the assembly sequence of the hermetic optoelectronic package. Figure 6A illustrates the assembly of the photonic device (transmitter or receiver or transceiver) assembly; Figure 6B illustrates the assembly and active alignment of the photonic device assembly with the optical bench; Figure 6C illustrates the hermetic optoelectronic package assembly of parts.
参考图6A,在光子器件12是发送器(诸如VCSEL之类)的情况下,其与驱动器芯片一起安装在子底座14上。VCSEL可以引线结合到子底座14上的电路。可以在组装之后进行测试,以确认VCSEL可操作以发送光信号。在光子器件12是接收器(诸如PD之类)的情况下,其与TIA芯片一起安装在子底座14上。PD可以引线结合到子底座14上的电路。可以在组装之后进行测试,以确认PD可操作以接收光器件并且输出电信号。在收发器的情况下,组合上面的过程以测试分离的接收和发送功能。光子器件12可以包括安装在子底座14上的多个接收器、发送器和/或收发器。Referring to FIG. 6A , where the photonic device 12 is a transmitter such as a VCSEL, it is mounted on a submount 14 together with a driver chip. The VCSELs may be wire bonded to circuitry on submount 14 . Testing may be performed after assembly to confirm that the VCSEL is operable to transmit light signals. In case the photonic device 12 is a receiver, such as a PD, it is mounted on a submount 14 together with a TIA chip. The PD may be wire bonded to circuitry on the submount 14 . Testing may be performed after assembly to confirm that the PD is operable to receive an optical device and output an electrical signal. In the case of a transceiver, the above procedures are combined to test separate receive and transmit functions. Photonic device 12 may include multiple receivers, transmitters and/or transceivers mounted on submount 14 .
参考图6B,光子器件组件的子底座14在光子器件12与光具座11光学对准的位置(在该位置中,光子器件12的输入端/输出端与光具座11的输出端和输入端光学对准)被附接至光具座11的基座13的相对表面,以使得光学路径12实现光子器件和光纤20之间的期望光联接效率。在图2B图示的实施例中,光学路径22在光纤20的输入端/输出端的端面和对应光器件12的输出端/输入端之间,该光学路径22被反射表面17(例如,非球面镜表面)弯曲并且再成形。更具体地,在图示的实施例中,光学路径在从基座13的平面出来的方向上,该方向总体垂直于基座13的平面。如图2B所示,子底座24的平面与基座13的平面平行。框架32设置为子底座14和基座13的相对表面之间的间隔件,以在子底座14和基座13之间提供用以容纳光子器件13的空间。在图示的实施例中,存在与四个光纤20的阵列对应的四个反射表面17的阵列。Referring to FIG. 6B, the submount 14 of the photonic device assembly is in a position where the photonic device 12 is optically aligned with the optical bench 11 (in this position, the input/output of the photonic device 12 is connected to the output and input of the optical bench 11). End optical alignment) is attached to the opposite surface of the base 13 of the optical bench 11 so that the optical pathway 12 achieves the desired optical coupling efficiency between the photonic device and the optical fiber 20. 2B, the optical path 22 is between the end face of the input/output end of the optical fiber 20 and the output/input end of the corresponding optical device 12. surface) to bend and reshape. More specifically, in the illustrated embodiment, the optical path is in a direction out of the plane of the base 13 which is generally perpendicular to the plane of the base 13 . As shown in FIG. 2B , the plane of the sub-base 24 is parallel to the plane of the base 13 . The frame 32 is provided as a spacer between opposite surfaces of the sub-mount 14 and the base 13 to provide a space between the sub-mount 14 and the base 13 to accommodate the photonic device 13 . In the illustrated embodiment, there are four arrays of reflective surfaces 17 corresponding to four arrays of optical fibers 20 .
光子器件12可以与光具座11无源地对准(例如,通过依赖于光具座11的基座上设置的对准标记(未示出))。可替代的,光子器件12和光具座11可以通过在光具座11中的光波导(即,光纤20)和光子器件12之间传送光信号并且测量光学路径中光信号的强度以确定指示光学对准状态的光学联接来被有源地对准。光子器件12(例如,VCSEL和/或PD)可以被激活,以允许与在光具座11中支撑的光纤的有源对准,而不需要依赖于光电封装件内的其他部件,光具座组件10被安装至所述光电封装件。例如,在光电器件12是发送器(例如,VCSEL)的情况下,其被激励以向反射表面17发射光,以定向到对应光纤20的端面。经由反射表面17发送并且穿过对应光纤的光信号的强度被测量,以确定发送器和光具座11之间的光联接。在光电器件是接收器(例如,PD)的情况下,由反射表面反射至对应接收器的光信号供应穿过光纤。可以根据接收器的电输出(其对应接收到的光信号的强度)确定光纤和接收器之间的光联接的程度,以识别对准状态。有源对准过程牵涉关于反射表面17在子底座14的平面中移动光子器件12,同时针对对准点确定光联接效率。为了有助于电连接以施行有源对准,导电垫设置在远离基座13的子底座的表面上。Photonic device 12 may be passively aligned with optical bench 11 (eg, by relying on alignment marks (not shown) provided on the base of optical bench 11 ). Alternatively, the photonic device 12 and the optical bench 11 can transmit an optical signal between the optical waveguide in the optical bench 11 (i.e., the optical fiber 20) and the photonic device 12 and measure the intensity of the optical signal in the optical path to determine the indicating optical signal. The aligned state of the optical link is actively aligned. Photonic devices 12 (e.g., VCSELs and/or PDs) can be activated to allow active alignment with optical fibers supported in the optical bench 11 without relying on other components within the optoelectronic package, the optical bench Component 10 is mounted to the optoelectronic package. For example, where the optoelectronic device 12 is a transmitter (eg, a VCSEL), it is energized to emit light toward the reflective surface 17 to be directed to the end face of the corresponding optical fiber 20 . The intensity of the optical signal transmitted via the reflective surface 17 and through the corresponding optical fiber is measured to determine the optical coupling between the transmitter and the optical bench 11 . In case the optoelectronic device is a receiver (eg PD), the optical signal reflected by the reflective surface to the corresponding receiver is supplied through the optical fiber. The degree of optical coupling between the optical fiber and the receiver can be determined from the electrical output of the receiver, which corresponds to the strength of the received optical signal, to identify the alignment state. The active alignment process involves moving the photonic device 12 in the plane of the submount 14 about the reflective surface 17 while determining the optical coupling efficiency for the alignment point. In order to facilitate the electrical connection to perform active alignment, conductive pads are provided on the surface of the submount remote from the base 13 .
一旦实现期望的光学对准,光子器件12的子底座14例如通过激光焊接、钎焊或者环氧树脂固定地附接至光具座的基座。Once the desired optical alignment is achieved, the submount 14 of the photonic device 12 is fixedly attached to the base of the optical bench, eg, by laser welding, soldering, or epoxy.
在组装光具座子组件10之后,其可以被老化,以消除早期寿命不合格,以及被进一步功能测试。After the optical bench subassembly 10 is assembled, it may be aged to eliminate early life failures and further functionally tested.
包括集成光子器件12的光具座子组件10的前面的实施例是具有集成光子器件12的气密馈通件。The preceding embodiments of the optical bench subassembly 10 including the integrated photonic device 12 are hermetic feedthroughs with the integrated photonic device 12 .
参考图6C,并且如图2B所示,一旦完成光具座子组件10的组装,光具座子组件10气密地(例如,通过钎焊)附接至光电封装件500’,光电封装件500’可能与图1A的封装件500相似,除了光子器件12与光具座11光学对准地被集成到光具座子组件10中之外。光电封装件500’设置有各种部件(例如,IC、芯片、子底座、电路板等)。作为气密馈通件的光具座子组件10被插入穿过密封件500’的外壳501’的侧壁中的管嘴50的开口,并且被气密地(例如,通过钎焊)密封。与图1B的情形相比,该馈通件的关于密封件500’的位置不是关键的,因为不存在馈通件和封装件500’内的外部光子器件之间要求的光学对准。如图2B所示,子底座14可以利用设置通过子底座14的基底的通孔36,钎焊结合到封装件500’内的印刷电路板39(其可以是柔性印刷电路板),以连接到子底座14的另一侧上的光子器件12。具有微钎焊球接头的球栅阵列(BGA)可以配置在子底座14上。其他电连接件可以包括图5的实施例中的光具座子组件10’,其中,设置在子底座14’的侧部上的环绕迹线38通过引线结合或软电路接头37电连接到封装件500’中的电路板(未示出)。可替代地,弹簧销(未示出)可以被配置为形成子底座和封装件500’中的印刷电路板之间的电连接件。这些电连接件吸收由于热膨胀/收缩引起的误差运动和应力,这将不影响集成到板上的光子器件和光具座子组件中的光具座之间的光学对准。6C, and as shown in FIG. 2B, once the assembly of the optical bench subassembly 10 is complete, the optical bench subassembly 10 is hermetically (eg, by soldering) attached to the optoelectronic package 500', the optoelectronic package 500 ′ may be similar to package 500 of FIG. 1A except that photonic device 12 is integrated into optical bench subassembly 10 in optical alignment with optical bench 11 . The optoelectronic package 500' is provided with various components (eg, ICs, chips, submounts, circuit boards, etc.). The optical bench subassembly 10, which is a hermetic feedthrough, is inserted through the opening of the nozzle 50 in the sidewall of the housing 501' of the seal 500' and hermetically sealed (eg, by brazing). In contrast to the situation of FIG. 1B , the position of the feedthrough with respect to the encapsulation 500' is not critical because there is no required optical alignment between the feedthrough and the external photonic device within the package 500'. As shown in FIG. 2B , submount 14 may be solder bonded to a printed circuit board 39 (which may be a flexible printed circuit board) within package 500 ′ using through holes 36 provided through the base of submount 14 for connection to The photonic device 12 on the other side of the submount 14 . A ball grid array (BGA) with micro-soldered ball joints may be disposed on the submount 14 . Other electrical connections may include the optical bench subassembly 10' in the embodiment of FIG. A circuit board (not shown) in part 500'. Alternatively, spring pins (not shown) may be configured to form an electrical connection between the submount and a printed circuit board in package 500'. These electrical connections absorb error motion and stress due to thermal expansion/contraction, which will not affect the optical alignment between the photonic devices integrated on the board and the optical bench in the optical bench subassembly.
图7图示了安装在气密光电封装件500’中的气密馈通件/光具座子组件10。其他电子器件和电路部件从图7的视图中省略。气密光电封装件500’的气密盖也从视图中省略。Figure 7 illustrates the hermetic feedthrough/optical bench subassembly 10 installed in a hermetic optoelectronic package 500'. Other electronics and circuit components are omitted from the view of FIG. 7 . The hermetic cover of the hermetic optoelectronic package 500' is also omitted from view.
在将光具座子组件10组装至气密光电封装件500’之后,封装件500’可以被老化,以消除早期寿命不合格,并且被进一步功能测试。After the optical bench subassembly 10 is assembled into the hermetic optoelectronic package 500', the package 500' can be aged to eliminate early life failures and further functionally tested.
假设本发明在组装至更大的光电封装件之前将光学元件和部件以及光子器件精确地预组装至光具座子组件中,则光具座子组件可以在光电封装件之外,在子组件级被功能测试,包括老化测试,由此降低由于安装在光电封装件中的光子器件的早期不合格引起的更昂贵的光电封装件(包括昂贵的电路部件,诸如IC之类等)的浪费。光具座子组件的有源对准过程容易地多。另外,在光具座和光子器件之间提供小得多并且更鲁棒的结构环。由此,对于包括根据本发明的气密馈送件的光电封装件,可以实现整体更高的产量、更高的可靠性和更低的制造成本。Given that the present invention precisely pre-assembles optics and components and photonics into an optical bench subassembly prior to assembly into a larger optoelectronic package, the optical bench subassembly can be outside of the optoelectronic package, within the subassembly The stages are functionally tested, including burn-in testing, thereby reducing waste of more expensive optoelectronic packages (including expensive circuit components such as ICs, etc.) due to early failure of photonic devices mounted in the optoelectronic package. The active alignment process of the optical bench subassembly is much easier. Additionally, a much smaller and more robust structural ring is provided between the optical bench and the photonic device. Thereby, an overall higher yield, higher reliability and lower manufacturing costs can be achieved for optoelectronic packages comprising a hermetic feedthrough according to the invention.
虽然本发明已经参考优选实施例被具体示出和描述,但是本领域技术人员将理解可以在不脱离本发明的精神、范围和教导的情况下,做出各种形式和细节的改变。因此,本公开的发明仅被视为图示性的并且限制在仅所附权利要求中规定的范围内。Although the present invention has been particularly shown and described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit, scope and teaching of the invention. Accordingly, the disclosed invention is to be considered as illustrative only and limited only as specified in the appended claims.
Claims (20)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562136601P | 2015-03-22 | 2015-03-22 | |
US62/136,601 | 2015-03-22 | ||
US14/695,008 | 2015-04-23 | ||
US14/695,008 US20150355420A1 (en) | 2012-03-05 | 2015-04-23 | Coupling device having a stamped structured surface for routing optical data signals |
US14/714,211 US9782814B2 (en) | 2012-03-05 | 2015-05-15 | Stamping to form a composite structure of dissimilar materials having structured features |
US14/714,211 | 2015-05-15 | ||
PCT/US2016/023636 WO2016154229A1 (en) | 2015-03-22 | 2016-03-22 | Optical bench subassembly having integrated photonic device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107533202A true CN107533202A (en) | 2018-01-02 |
CN107533202B CN107533202B (en) | 2021-01-15 |
Family
ID=55802455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680023080.XA Active CN107533202B (en) | 2015-03-22 | 2016-03-22 | Optical bench subassembly with integrated photonic device |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP3274108A1 (en) |
JP (1) | JP6898245B2 (en) |
KR (1) | KR20170129236A (en) |
CN (1) | CN107533202B (en) |
AU (1) | AU2016235324B2 (en) |
BR (1) | BR112017019567A2 (en) |
CA (1) | CA2978955A1 (en) |
IL (1) | IL254364A0 (en) |
MX (1) | MX383739B (en) |
RU (1) | RU2717374C2 (en) |
WO (1) | WO2016154229A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11022755B2 (en) * | 2018-10-23 | 2021-06-01 | Cudoquanta Florida, Inc. | Demountable edge couplers with micro-mirror optical bench for photonic integrated circuits |
US20240085633A1 (en) * | 2022-09-14 | 2024-03-14 | Senko Advanced Components, Inc. | Configurable optical connector module |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001027676A1 (en) * | 1999-10-14 | 2001-04-19 | Digital Optics Corporation | Optical subassembly |
US20080008426A1 (en) * | 2006-07-07 | 2008-01-10 | Seiko Epson Corporation | Optical module package and optical module |
CN101266325A (en) * | 2007-03-15 | 2008-09-17 | 日立电线株式会社 | Optical system connection structure, optical component and optical transmission module |
CN102621641A (en) * | 2011-01-27 | 2012-08-01 | 鸿富锦精密工业(深圳)有限公司 | Optical fiber connector |
WO2013134326A1 (en) * | 2012-03-05 | 2013-09-12 | Nanoprecision Products, Inc. | Coupling device having a structured reflective surface for coupling input/output of an optical fiber |
US20130294732A1 (en) * | 2012-03-05 | 2013-11-07 | Nanoprecision Products, Inc. | Hermetic optical fiber alignment assembly having integrated optical element |
CN103630988A (en) * | 2012-04-24 | 2014-03-12 | 新科实业有限公司 | Optoelectronic device and active optical cable using the optoelectronic device |
CN103676029A (en) * | 2012-09-14 | 2014-03-26 | 鸿富锦精密工业(深圳)有限公司 | Photoelectric coupling module |
CN103792626A (en) * | 2012-11-02 | 2014-05-14 | 信泰光学(深圳)有限公司 | Optical coupling device |
CN104220915A (en) * | 2012-03-02 | 2014-12-17 | 泰科电子公司 | Modularized interposer |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1240310B (en) * | 1989-07-24 | 1993-12-07 | Pirelli Cavi Spa | SEPARABLE CONNECTION GROUP FOR OPTICAL FIBERS COMBINED WITH BELT AND RELATED METHOD OF REALIZATION. |
EP0645651B1 (en) * | 1993-03-31 | 1999-06-02 | Sumitomo Electric Industries, Ltd | Optical fiber array |
DE19748989A1 (en) * | 1997-11-06 | 1999-07-15 | Daimler Chrysler Ag | Optical transmit / receive module |
WO2002057821A1 (en) * | 2001-01-19 | 2002-07-25 | Primarion, Inc. | Optical interconnect with integral reflective surface and lens, system including the interconnect and method of forming the same |
US20020110328A1 (en) * | 2001-02-14 | 2002-08-15 | Bischel William K. | Multi-channel laser pump source for optical amplifiers |
AU2002318132A1 (en) * | 2001-05-15 | 2002-11-25 | Peregrine Semiconductor Corporation | Small-scale optoelectronic package |
US7343770B2 (en) | 2002-08-16 | 2008-03-18 | Nanoprecision Products, Inc. | Stamping system for manufacturing high tolerance parts |
US20070172175A1 (en) * | 2006-01-26 | 2007-07-26 | Talapker Imanbayev | Hermetic fiber optic ferrule |
US8961034B2 (en) | 2011-04-05 | 2015-02-24 | Nanoprecision Products, Inc. | Optical fiber connector ferrule having open fiber clamping grooves |
US20150355420A1 (en) | 2012-03-05 | 2015-12-10 | Nanoprecision Products, Inc. | Coupling device having a stamped structured surface for routing optical data signals |
JP6325522B2 (en) | 2012-04-11 | 2018-05-16 | ナノプレシジョン プロダクツ インコーポレイテッドNanoprecision Products, Inc. | Fiber optic connector ferrule with curved external alignment surface |
AU2013289173B2 (en) * | 2012-04-11 | 2017-02-09 | Cudoquanta Florida, Inc. | Hermetic optical fiber alignment assembly |
-
2016
- 2016-03-22 KR KR1020177030028A patent/KR20170129236A/en not_active Ceased
- 2016-03-22 WO PCT/US2016/023636 patent/WO2016154229A1/en active Application Filing
- 2016-03-22 EP EP16717731.0A patent/EP3274108A1/en active Pending
- 2016-03-22 CA CA2978955A patent/CA2978955A1/en not_active Abandoned
- 2016-03-22 JP JP2017546852A patent/JP6898245B2/en active Active
- 2016-03-22 AU AU2016235324A patent/AU2016235324B2/en not_active Ceased
- 2016-03-22 CN CN201680023080.XA patent/CN107533202B/en active Active
- 2016-03-22 RU RU2017136256A patent/RU2717374C2/en active
- 2016-03-22 MX MX2017012155A patent/MX383739B/en unknown
- 2016-03-22 BR BR112017019567A patent/BR112017019567A2/en not_active Application Discontinuation
-
2017
- 2017-09-06 IL IL254364A patent/IL254364A0/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001027676A1 (en) * | 1999-10-14 | 2001-04-19 | Digital Optics Corporation | Optical subassembly |
US20080008426A1 (en) * | 2006-07-07 | 2008-01-10 | Seiko Epson Corporation | Optical module package and optical module |
CN101266325A (en) * | 2007-03-15 | 2008-09-17 | 日立电线株式会社 | Optical system connection structure, optical component and optical transmission module |
CN102621641A (en) * | 2011-01-27 | 2012-08-01 | 鸿富锦精密工业(深圳)有限公司 | Optical fiber connector |
CN104220915A (en) * | 2012-03-02 | 2014-12-17 | 泰科电子公司 | Modularized interposer |
WO2013134326A1 (en) * | 2012-03-05 | 2013-09-12 | Nanoprecision Products, Inc. | Coupling device having a structured reflective surface for coupling input/output of an optical fiber |
US20130294732A1 (en) * | 2012-03-05 | 2013-11-07 | Nanoprecision Products, Inc. | Hermetic optical fiber alignment assembly having integrated optical element |
CN103630988A (en) * | 2012-04-24 | 2014-03-12 | 新科实业有限公司 | Optoelectronic device and active optical cable using the optoelectronic device |
CN103676029A (en) * | 2012-09-14 | 2014-03-26 | 鸿富锦精密工业(深圳)有限公司 | Photoelectric coupling module |
CN103792626A (en) * | 2012-11-02 | 2014-05-14 | 信泰光学(深圳)有限公司 | Optical coupling device |
Also Published As
Publication number | Publication date |
---|---|
AU2016235324A1 (en) | 2017-11-09 |
IL254364A0 (en) | 2017-11-30 |
JP6898245B2 (en) | 2021-07-07 |
CA2978955A1 (en) | 2016-09-29 |
MX2017012155A (en) | 2018-02-19 |
MX383739B (en) | 2025-03-14 |
JP2018509655A (en) | 2018-04-05 |
RU2717374C2 (en) | 2020-03-23 |
AU2016235324B2 (en) | 2021-05-20 |
WO2016154229A1 (en) | 2016-09-29 |
RU2017136256A (en) | 2019-04-23 |
KR20170129236A (en) | 2017-11-24 |
CN107533202B (en) | 2021-01-15 |
EP3274108A1 (en) | 2018-01-31 |
RU2017136256A3 (en) | 2019-09-26 |
BR112017019567A2 (en) | 2018-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11803020B2 (en) | Optical bench subassembly having integrated photonic device | |
US10598873B2 (en) | Optical alignment of an optical subassembly to an optoelectronic device | |
US9151916B2 (en) | Compact optical package made with planar structures | |
JP4477677B2 (en) | Optical module and manufacturing method thereof | |
US20160161686A1 (en) | Demountable optical connector for optoelectronic devices | |
KR20170012339A (en) | Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device | |
US20150192747A1 (en) | Modified transistor outline (to)-can assembly for use in optical communications and a method | |
WO2009107671A1 (en) | Photoelectric conversion device | |
US9429496B2 (en) | Optical time domain reflectometer in a small form factor package | |
WO2004070428A2 (en) | Method and apparatus for parallel optical transceiver module assembly | |
WO2016088349A1 (en) | Optical module | |
CN107533202B (en) | Optical bench subassembly with integrated photonic device | |
US7437038B2 (en) | Z-axis alignment of an optoelectronic component using a spacer tool | |
JP4699155B2 (en) | Optical module | |
JP2001074981A (en) | Optical module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |