CN107491082A - Spacecraft Attitude Control mixing executing agency optimal control method - Google Patents
Spacecraft Attitude Control mixing executing agency optimal control method Download PDFInfo
- Publication number
- CN107491082A CN107491082A CN201710800629.8A CN201710800629A CN107491082A CN 107491082 A CN107491082 A CN 107491082A CN 201710800629 A CN201710800629 A CN 201710800629A CN 107491082 A CN107491082 A CN 107491082A
- Authority
- CN
- China
- Prior art keywords
- control
- torque
- flywheel
- gyro
- spacecraft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000012937 correction Methods 0.000 claims description 28
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 238000010998 test method Methods 0.000 claims description 2
- 230000007812 deficiency Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明涉及航天器姿态控制领域,具体是一种航天器姿态控制混合执行机构优化控制方法。The invention relates to the field of spacecraft attitude control, in particular to an optimal control method for a spacecraft attitude control hybrid actuator.
背景技术Background technique
随着航天任务需求的逐步提升,从上世纪以来具有敏捷机动能力的航天器已成为研究的重点。尤其是对于下一代成像卫星而言,大角度敏捷机动、多目标捕获和再定向等航天任务已成为获取高分辨率图像的必备能力。With the gradual increase in the requirements of space missions, spacecraft with agile maneuverability has become the focus of research since the last century. Especially for next-generation imaging satellites, space missions such as large-angle agile maneuvering, multi-target acquisition and reorientation have become necessary capabilities for obtaining high-resolution images.
相对于飞轮的小力矩输出能力,单框架控制力矩陀螺(Single Gimbal ControlMoment Gyro,SGCMG)因其强大的力矩放大能力而成为敏捷卫星的主要执行机构。单框架控制力矩陀螺由框架、框架电机、转子和转子电机构成。系统工作时,具有常速旋转的转子在框架电机的驱动下,改变系统角动量的方向,从而产生输出力矩。单框架控制力矩陀螺具有输出力矩大、寿命长、节能高效等优良性能。尤其是因其强大的力矩输出能力,使之得到了广发的应用,如国际空间站和WorldView系列高分辨率地球成像卫星。然而控制力矩陀螺系统的一大缺点在于其固有的几何奇异问题,一旦系统陷入奇异状态,则无法输出期望力矩,从而有可能导致系统失控,这在实际工程应用中是不允许的。因此,单框架控制力矩陀螺系统奇异分析和相应的操纵策略研究成为研究热点问题。Compared with the small torque output capability of the flywheel, the Single Gimbal Control Moment Gyro (SGCMG) has become the main actuator of the agile satellite because of its powerful torque amplification capability. The single-frame control moment gyroscope consists of a frame, a frame motor, a rotor and a rotor motor. When the system is working, the rotor with constant speed is driven by the frame motor to change the direction of the angular momentum of the system, thereby generating output torque. The single-frame control moment gyro has excellent performances such as large output torque, long life, energy saving and high efficiency. Especially because of its powerful torque output capability, it has been widely used, such as the International Space Station and the WorldView series of high-resolution earth imaging satellites. However, a major disadvantage of the control moment gyro system is its inherent geometric singularity. Once the system falls into a singular state, it cannot output the desired torque, which may cause the system to go out of control, which is not allowed in practical engineering applications. Therefore, the singularity analysis of the single-frame control moment gyro system and the research on the corresponding maneuvering strategy have become a research hotspot.
研究表明,含有单框架控制力矩陀螺的混合执行机构系统在应对奇异问题上具有一定的潜力。The research shows that the hybrid actuator system with single frame control moment gyro has a certain potential in dealing with singular problems.
发明内容Contents of the invention
本发明为了解决现有技术的问题,提供了一种航天器姿态控制混合执行机构优化控制方法,针对采用控制力矩陀螺作为执行机构的敏捷航天器,存在控制力矩陀螺奇异的问题,航天器姿态控制混合执行机构优化控制方法,使得二者分别发挥各自特性,保证混合执行机构系统能够长时间无奇异/饱和,完成航天器高精度敏捷姿态机动和控制。In order to solve the problems in the prior art, the present invention provides an optimal control method for a spacecraft attitude control hybrid executive mechanism, aiming at agile spacecraft using a control moment gyroscope as an actuator, there is a problem that the control moment gyroscope is singular, and the spacecraft attitude control The hybrid actuator optimization control method enables the two to play their respective characteristics, ensuring that the hybrid actuator system can be free of singularity/saturation for a long time, and complete the high-precision agile attitude maneuver and control of the spacecraft.
本发明航天器姿态控制混合执行机构优化控制方法主要涉及以下现有系统:(1)航天器角动量管理系统、(2)控制力矩陀螺系统、(3)反作用飞轮系统、(4)航天器姿态控制系统、(5)航天器姿态测量与反馈系统。其特征在于,该混合执行机构优化控制方法包括以下步骤:The hybrid actuator optimization control method for spacecraft attitude control of the present invention mainly involves the following existing systems: (1) spacecraft angular momentum management system, (2) control moment gyro system, (3) reaction flywheel system, (4) spacecraft attitude Control system, (5) spacecraft attitude measurement and feedback system. It is characterized in that the hybrid actuator optimization control method includes the following steps:
步骤1:在每次航天任务中,根据目标姿态要求,由航天器星载控制计算机计算对应的控制力矩τc序列,作为执行机构控制力矩陀螺系统和反作用飞轮系统需产生的力矩。Step 1: In each space mission, according to the target attitude requirements, the onboard control computer of the spacecraft calculates the corresponding control torque τc sequence, which is used as the torque to be generated by the actuator to control the moment gyro system and the reaction flywheel system.
步骤2:控制力矩陀螺和反作用飞轮执行自检,确定系统当前的奇异程度(控制力矩陀螺)和饱和程度(飞轮)。Step 2: The control torque gyro and reaction flywheel perform a self-test to determine the current degree of singularity (control torque gyro) and saturation (flywheel) of the system.
步骤3:由星载控制计算机根据力矩指令序列τc解算仅由控制力矩陀螺输出力矩时的框架角轨迹δ,同时得到控制力矩陀螺的奇异度量函数取值序列S。Step 3 : The spaceborne control computer calculates the frame angle trajectory δ when only the torque is output by the control torque gyro according to the torque command sequence τc, and at the same time obtains the value sequence S of the singular metric function of the control torque gyro.
步骤3-1:由姿态测量与反馈系统确定控制力矩陀螺系统当前的框架角组合δ;Step 3-1: Determine the current frame angle combination δ of the control moment gyro system by the attitude measurement and feedback system;
步骤3-2:执行奇异度量函数,获取当前金字塔构型的控制力矩陀螺系统奇异程度:Step 3-2: Execute the singularity metric function to obtain the singularity degree of the control moment gyro system of the current pyramid configuration:
S=det(JTJ),式中J∈R3×4为控制力矩陀螺系统的雅可比矩阵,由控制力矩陀螺当前的框架角δ=(δ1,δ2,δ3,δ4)确定。S=det(J T J), where J∈R 3×4 is the Jacobian matrix of the control moment gyro system, and the current frame angle of the control moment gyro δ=(δ 1 ,δ 2 ,δ 3 ,δ 4 ) Sure.
步骤4:根据奇异度量序列S,判断控制力矩陀螺在整个任务周期内任一时刻的奇异的程度。若超过初始设定之奇异阈值则认为系统陷入奇异状态,记第一个奇异时刻为ts,并执行步骤5,否则执行步骤9。Step 4: According to the singularity metric sequence S, judge the degree of singularity of the control moment gyroscope at any moment in the entire task period. If it exceeds the initial singularity threshold Then it is considered that the system is in a singular state, record the first singular moment as t s , and go to step 5, otherwise go to step 9.
步骤5:系统转入控制力矩陀螺奇异修正阶段,在ts时刻前Δt时刻力矩指令添加较小的奇异修正力矩得到新的力矩指令序列其中奇异修正力矩将由飞轮系统产生。执行步骤3、步骤4和步骤5直至控制力矩陀螺系统在整个控制周期内远离奇异。然后,执行步骤6。Step 5: The system enters the singularity correction stage of the control torque gyro, and adds a small singularity correction torque to the torque command at time Δt before time ts Get a new sequence of torque commands Among them, the singular correction torque will be generated by the flywheel system. Execute step 3, step 4 and step 5 until the control moment gyro system is far away from singularity in the whole control cycle. Then, go to step 6.
步骤6:根据步骤5所求取的修正力矩序列和飞轮系统当前状态,解算由飞轮系统输出修正力矩TM时的角速度序列Ω。若飞轮初始角速度满足TM输出要求,则执行步骤8,否则执行步骤7。Step 6: According to the correction torque sequence obtained in step 5 and the current state of the flywheel system, calculate the angular velocity sequence Ω when the flywheel system outputs the correction torque TM . If the initial angular velocity of the flywheel meets the output requirement of TM , go to step 8, otherwise go to step 7.
步骤7:根据飞轮角速度序列Ω对初始状态的要求,在控制力矩陀螺系统未陷入奇异状态时,在航天器控制力矩序列τc中添加飞轮初始状态矫正力矩NM,调理飞轮初始角速度满足控制力矩陀螺奇异矫正需求。然后,执行步骤8。Step 7: According to the requirements of the initial state of the flywheel angular velocity sequence Ω, when the control torque gyro system does not fall into a singular state, add the flywheel initial state correction torque N M to the spacecraft control torque sequence τc , and adjust the flywheel initial angular velocity to meet the control torque Gyro singularity correction needs. Then, go to step 8.
步骤8:根据最终的控制力矩陀螺奇异矫正力矩和飞轮初始状态矫正力矩NM确定新的航天器控制力矩序列τc,并执行步骤9。Step 8: Determine the new spacecraft control torque sequence τ c according to the final control torque gyro singular correction torque and the flywheel initial state correction torque N M , and perform step 9.
步骤9:根据控制力矩陀螺操纵律所确定的框架角速度指令序列和飞轮控制律所确定的飞轮加速度指令序列,启动控制力矩陀螺系统和飞轮系统,产生输出力矩NCMG和NRW,作用于航天器,进行姿态控制和机动。Step 9: The frame angular velocity command sequence determined according to the control moment gyro steering law and the flywheel acceleration command determined by the flywheel control law In sequence, the control moment gyro system and the flywheel system are activated to generate output torques N CMG and N RW , which act on the spacecraft for attitude control and maneuvering.
步骤10:在航太器姿态机动任务周期末端,关闭控制力矩陀螺系统。并采用飞轮系统的适中的输出力矩进行姿态修正和精对准。Step 10: At the end of the spacecraft attitude maneuver mission cycle, turn off the control moment gyro system. And the moderate output torque of the flywheel system is used for attitude correction and fine alignment.
本发明有益效果在于:与单框架控制力矩陀螺系统类似,反作用飞轮系统虽无奇异,但存在死区和饱和特性。本发明采用具有金字塔构型的4-SGCMG系统与正交构型3-RW组成航天器姿态控制混合执行机构。旨在利用飞轮系统削弱并克服控制力矩陀螺系统的奇异问题,同时利用控制力矩陀螺系统对飞轮进行调整,使得二者分别发挥各自特性,保证混合执行机构系统能够长时间无奇异,完成航天器高精度敏捷姿态机动。The beneficial effect of the invention is that: similar to the single-frame control moment gyro system, although the reaction flywheel system has no singularity, it has dead zone and saturation characteristics. The invention adopts a 4-SGCMG system with a pyramid configuration and an orthogonal configuration 3-RW to form a spacecraft attitude control hybrid actuator. The purpose is to use the flywheel system to weaken and overcome the singularity problem of the control moment gyro system, and at the same time use the control moment gyro system to adjust the flywheel, so that the two can play their respective characteristics to ensure that the hybrid actuator system can have no singularity for a long time, and complete the high-speed spacecraft. Accurate, agile, and maneuverable.
附图说明Description of drawings
图1为混合执行机构控制程序框图;Figure 1 is a block diagram of the hybrid actuator control program;
图2为含有混合机构的航天器控制逻辑意图;Figure 2 is a control logic diagram of a spacecraft containing a hybrid mechanism;
图3为金字塔构型的4-SGCMG系统和3-RW系统安装示意图。Figure 3 is a schematic diagram of the installation of the 4-SGCMG system and the 3-RW system in a pyramid configuration.
具体实施方式detailed description
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.
本发明提出航天器姿态控制混合执行机构优化控制方法,控制程序框图如图1所示,控制逻辑示意图如图2所示,主要涉及以下现有系统:(1)航天器角动量管理系统、(2)控制力矩陀螺系统、(3)反作用飞轮系统、(4)航天器姿态控制系统、(5)航天器姿态测量与反馈系统。其特征在于,该混合执行机构优化控制方法包括以下步骤:The present invention proposes an optimal control method for a spacecraft attitude control hybrid executive mechanism, the control program block diagram is shown in Figure 1, and the control logic schematic diagram is shown in Figure 2, mainly related to the following existing systems: (1) spacecraft angular momentum management system, ( 2) Control moment gyro system, (3) reaction flywheel system, (4) spacecraft attitude control system, (5) spacecraft attitude measurement and feedback system. It is characterized in that the hybrid actuator optimization control method includes the following steps:
步骤1:在每次航天任务中,根据目标姿态要求,由航天器星载控制计算机计算对应的控制力矩τc序列,作为执行机构控制力矩陀螺系统和反作用飞轮系统需产生的力矩;Step 1: In each space mission, according to the requirements of the target attitude, the onboard control computer of the spacecraft calculates the corresponding control torque τc sequence, which is used as the torque to be generated by the actuator to control the moment gyro system and the reaction flywheel system;
步骤2:控制力矩陀螺和反作用飞轮执行自检,确定系统当前的奇异程度(控制力矩陀螺)和饱和程度(飞轮)。自检程序具体为:Step 2: The control torque gyro and reaction flywheel perform a self-test to determine the current degree of singularity (control torque gyro) and saturation (flywheel) of the system. The self-test procedure is specifically:
(1)计算当前控制力矩陀螺系统距离奇异状态的程度(1) Calculate the degree to which the current control moment gyro system is away from the singular state
S=det(JTJ)S=det(J T J)
其中J为SGCMG系统的雅可比矩阵,且J为框架角函数即J=J(δ);Where J is the Jacobian matrix of the SGCMG system, and J is the frame angle function that is J=J(δ);
(2)计算当前飞轮系统的距离饱和的程度,获得角速度Ω,执行以下函数确定饱和程度,(2) Calculate the distance saturation degree of the current flywheel system, obtain the angular velocity Ω, and execute the following function to determine the saturation degree,
式中Ω=[Ω1 Ω2 Ω3]T为飞轮系统中各个飞轮角速度,Q∈R3×3对权重矩阵,为加权二范数,||Ω0||∞=max{Ωi,i=1,2,3}为无穷范数;where Ω=[Ω 1 Ω 2 Ω 3 ] T is the angular velocity of each flywheel in the flywheel system, Q∈R 3×3 pair weight matrix, is a weighted two-norm, ||Ω 0 || ∞ =max{Ω i ,i=1,2,3} is an infinite norm;
步骤3:由星载控制计算机根据力矩指令序列τc解算仅由控制力矩陀螺输出力矩时的框架角轨迹δ,同时得到控制力矩陀螺的奇异度量函数取值序列S。Step 3 : The spaceborne control computer calculates the frame angle trajectory δ when only the torque is output by the control torque gyro according to the torque command sequence τc, and at the same time obtains the value sequence S of the singular metric function of the control torque gyro.
步骤3-1:由姿态测量与反馈系统确定控制力矩陀螺系统当前的框架角组合δ;Step 3-1: Determine the current frame angle combination δ of the control moment gyro system by the attitude measurement and feedback system;
步骤3-2:执行奇异度量函数,获取当前金字塔构型的控制力矩陀螺系统奇异程度:Step 3-2: Execute the singularity metric function to obtain the singularity degree of the control moment gyro system of the current pyramid configuration:
S=det(JTJ),式中J∈R3×4为控制力矩陀螺系统的雅可比矩阵,由控制力矩陀螺当前的框架角δ=(δ1,δ2,δ3,δ4)确定。S=det(J T J), where J∈R 3×4 is the Jacobian matrix of the control moment gyro system, and the current frame angle of the control moment gyro δ=(δ 1 ,δ 2 ,δ 3 ,δ 4 ) Sure.
步骤4:根据奇异度量序列S,判断控制力矩陀螺在整个任务周期内任一时刻的奇异的程度。若超过初始设定之奇异阈值则认为系统陷入奇异状态,记第一个奇异时刻为ts,并执行步骤5,否则执行步骤9;Step 4: According to the singularity metric sequence S, judge the degree of singularity of the control moment gyroscope at any moment in the entire task period. If it exceeds the initial singularity threshold Then it is considered that the system is in a singular state, record the first singular moment as t s , and go to step 5, otherwise go to step 9;
步骤5:系统转入控制力矩陀螺奇异修正阶段,在ts时刻前Δt时刻力矩指令添加较小的奇异修正力矩得到新的力矩指令序列其中奇异修正力矩将由飞轮系统产生。执行步骤4和步骤5直至控制力矩陀螺系统在整个控制周期内远离奇异。然后,执行步骤6。Step 5: The system enters the singularity correction stage of the control torque gyro, and adds a small singularity correction torque to the torque command at time Δt before time ts Get a new sequence of torque commands Among them, the singular correction torque will be generated by the flywheel system. Execute step 4 and step 5 until the control moment gyro system is far away from singularity in the whole control cycle. Then, go to step 6.
步骤6:根据步骤5所求取的修正力矩序列和飞轮系统当前状态,解算由飞轮系统输出修正力矩TM时的角速度序列Ω。若飞轮初始角速度满足TM输出要求,则执行步骤8,否则执行步骤7。Step 6: According to the correction torque sequence obtained in step 5 and the current state of the flywheel system, calculate the angular velocity sequence Ω when the flywheel system outputs the correction torque TM . If the initial angular velocity of the flywheel meets the output requirement of TM , go to step 8, otherwise go to step 7.
步骤7:根据飞轮角速度序列Ω对初始状态的要求,在控制力矩陀螺系统未陷入奇异状态时,在航天器控制力矩序列τc中添加飞轮初始状态矫正力矩NM,调理飞轮初始角速度满足控制力矩陀螺奇异矫正需求。然后,执行步骤8。Step 7: According to the requirements of the initial state of the flywheel angular velocity sequence Ω, when the control torque gyro system does not fall into a singular state, add the flywheel initial state correction torque N M to the spacecraft control torque sequence τc , and adjust the flywheel initial angular velocity to meet the control torque Gyro singularity correction needs. Then, go to step 8.
步骤8:根据最终的控制力矩陀螺奇异矫正力矩和飞轮初始状态矫正力矩NM确定新的航天器控制力矩序列τc,并执行步骤9。Step 8: Determine the new spacecraft control torque sequence τ c according to the final control torque gyro singular correction torque and the flywheel initial state correction torque N M , and perform step 9.
步骤9:根据控制力矩陀螺操纵律所确定的框架角速度指令序列和飞轮控制律所确定的飞轮加速度指令序列启动控制力矩陀螺系统和飞轮系统,产生输出力矩NCMG和NRW,作用于航天器,进行姿态控制和机动。Step 9: The frame angular velocity command sequence determined according to the control moment gyro steering law and the flywheel acceleration command sequence determined by the flywheel control law The control moment gyro system and the flywheel system are activated to generate output torques N CMG and N RW , which act on the spacecraft for attitude control and maneuvering.
步骤10:在航太器姿态机动任务周期末端,关闭控制力矩陀螺系统。并采用飞轮系统的适中的输出力矩进行姿态修正和精对准。Step 10: At the end of the spacecraft attitude maneuver mission cycle, turn off the control moment gyro system. And the moderate output torque of the flywheel system is used for attitude correction and fine alignment.
本发明提出基于反作用飞轮(Reaction Wheel,RW)和单框架控制力矩陀螺的混合执行机构优化控制方法。与单框架控制力矩陀螺系统类似,反作用飞轮系统虽无奇异,但存在死区和饱和特性。本发明采用具有金字塔构型的4-SGCMG系统与正交构型3-RW组成航天器姿态控制混合执行机构,如图3所示,旨在利用飞轮系统削弱并克服控制力矩陀螺系统的奇异问题,同时利用控制力矩陀螺系统对飞轮进行调整,使得二者分别发挥各自特性,保证混合执行机构系统能够长时间无奇异,完成航天器高精度敏捷姿态机动。The invention proposes an optimal control method for a hybrid executive mechanism based on a reaction flywheel (Reaction Wheel, RW) and a single-frame control moment gyroscope. Similar to the single-frame control-moment gyro system, the reaction flywheel system is non-singular, but has dead-band and saturation characteristics. The present invention adopts a 4-SGCMG system with a pyramid configuration and an orthogonal configuration 3-RW to form a hybrid actuator for spacecraft attitude control, as shown in Figure 3, and aims to use the flywheel system to weaken and overcome the singularity of the control moment gyro system At the same time, the control moment gyro system is used to adjust the flywheel, so that the two can play their respective characteristics, ensuring that the hybrid actuator system can be stable for a long time, and complete the high-precision and agile attitude maneuver of the spacecraft.
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。There are many specific application approaches of the present invention, and the above description is only a preferred embodiment of the present invention. It should be pointed out that for those of ordinary skill in the art, some improvements can also be made without departing from the principles of the present invention. Improvements should also be regarded as the protection scope of the present invention.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611267736 | 2016-12-31 | ||
CN2016112677360 | 2016-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107491082A true CN107491082A (en) | 2017-12-19 |
Family
ID=60651558
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710800629.8A Pending CN107491082A (en) | 2016-12-31 | 2017-09-07 | Spacecraft Attitude Control mixing executing agency optimal control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107491082A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108536014A (en) * | 2018-04-04 | 2018-09-14 | 北京航空航天大学 | A kind of model predictive control method for considering the spacecraft attitude of flywheel dynamic characteristic and evading |
CN108762285A (en) * | 2018-05-25 | 2018-11-06 | 北京控制工程研究所 | A kind of targeted attitude collaborative planning method and system of spacecraft multistage composite control |
CN110471434A (en) * | 2019-07-18 | 2019-11-19 | 南京航空航天大学 | A kind of Spacecraft Attitude Control intelligence counteraction flyback and its control method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101891018A (en) * | 2010-07-09 | 2010-11-24 | 中国科学院长春光学精密机械与物理研究所 | Single-Frame Control Moment Gyro Manipulation Method Based on Optimal Torque Output Capability |
CN102627151A (en) * | 2012-05-09 | 2012-08-08 | 哈尔滨工业大学 | Moment distribution method for rapid maneuvering satellite based on mixed actuating mechanism |
US20120199697A1 (en) * | 2009-05-19 | 2012-08-09 | University Of Florida Research Foundation, Inc. | Attitude control system for small satellites |
CN104527994A (en) * | 2015-01-21 | 2015-04-22 | 哈尔滨工业大学 | Different-surface crossover quick-change track fixed time stable posture pointing direction tracking control method |
CN106218922A (en) * | 2016-07-27 | 2016-12-14 | 中国科学院长春光学精密机械与物理研究所 | The associating actuating mechanism controls method of flexible quick satellite |
-
2017
- 2017-09-07 CN CN201710800629.8A patent/CN107491082A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120199697A1 (en) * | 2009-05-19 | 2012-08-09 | University Of Florida Research Foundation, Inc. | Attitude control system for small satellites |
CN101891018A (en) * | 2010-07-09 | 2010-11-24 | 中国科学院长春光学精密机械与物理研究所 | Single-Frame Control Moment Gyro Manipulation Method Based on Optimal Torque Output Capability |
CN102627151A (en) * | 2012-05-09 | 2012-08-08 | 哈尔滨工业大学 | Moment distribution method for rapid maneuvering satellite based on mixed actuating mechanism |
CN104527994A (en) * | 2015-01-21 | 2015-04-22 | 哈尔滨工业大学 | Different-surface crossover quick-change track fixed time stable posture pointing direction tracking control method |
CN106218922A (en) * | 2016-07-27 | 2016-12-14 | 中国科学院长春光学精密机械与物理研究所 | The associating actuating mechanism controls method of flexible quick satellite |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108536014A (en) * | 2018-04-04 | 2018-09-14 | 北京航空航天大学 | A kind of model predictive control method for considering the spacecraft attitude of flywheel dynamic characteristic and evading |
CN108762285A (en) * | 2018-05-25 | 2018-11-06 | 北京控制工程研究所 | A kind of targeted attitude collaborative planning method and system of spacecraft multistage composite control |
CN108762285B (en) * | 2018-05-25 | 2021-08-10 | 北京控制工程研究所 | Target attitude collaborative planning method and system for multi-stage composite control of spacecraft |
CN110471434A (en) * | 2019-07-18 | 2019-11-19 | 南京航空航天大学 | A kind of Spacecraft Attitude Control intelligence counteraction flyback and its control method |
CN110471434B (en) * | 2019-07-18 | 2020-11-20 | 南京航空航天大学 | A spacecraft attitude control intelligent reaction flywheel and its control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103983254B (en) | The motor-driven middle formation method of a kind of novel quick satellite | |
CN107487458B (en) | A system of attitude and orbit control actuator for all-electric propulsion satellite platform | |
Wu et al. | Attitude tracking control for a space moving target with high dynamic performance using hybrid actuator | |
CN107992062B (en) | Spatial high-dynamic target high-precision attitude tracking control method based on hybrid actuating mechanism | |
CN104326093B (en) | Optical imagery small satellite attitude control system and mode of operation changing method in-orbit | |
CN109269504B (en) | Attitude maneuver path planning method with terminal constraint | |
CN104062976B (en) | A kind of is sinusoidal attitude of flight vehicle fast reserve method based on angular acceleration derivative | |
CN104085539B (en) | The attitude control method of imaging calibration | |
CN107491082A (en) | Spacecraft Attitude Control mixing executing agency optimal control method | |
Zhang et al. | Output-feedback super-twisting control for line-of-sight angles tracking of non-cooperative target spacecraft | |
CN110687931A (en) | Integrated maneuvering guiding method for switching azimuth attitude and preposed guidance | |
CN105116914A (en) | Stratospheric-airship-analytic-model-based prediction path tracking control method | |
CN106931967A (en) | A kind of strapdown inertial navigation method of boosting gliding type near space vehicle | |
CN110816897A (en) | Multi-mode switching control method based on CMG system | |
CN106200660B (en) | An Attitude Maneuvering Trajectory Calculation Method for Geosynchronous Orbit SAR Satellites | |
Zhao et al. | Maneuver control of the hypersonic gliding vehicle with a scissored pair of control moment gyros | |
CN104765374A (en) | High-orbit natural-flying-around-track correcting method | |
CN106021835B (en) | A kind of flight path design method towards optimal scouting | |
CN108657467B (en) | A kind of spacecraft yawing maneuvering control method and system using virtual solar vector | |
Zhou et al. | A simple reentry trajectory generation and tracking scheme for common aero vehicle | |
CN108839824A (en) | A kind of mixing executing agency momentum optimum management method based on cooperative game | |
Han et al. | Optimal ballistic coefficient control for Mars aerocapture | |
CN110750110A (en) | Pointing control device and control method for space laser communication | |
CN106005483A (en) | Active attitude control method of modular mobile phone satellite | |
CN111596692B (en) | Method and system for orbiting and tracking moving target control of stratospheric airship |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171219 |