CN107490364A - A kind of wide-angle tilt is imaged aerial camera object positioning method - Google Patents
A kind of wide-angle tilt is imaged aerial camera object positioning method Download PDFInfo
- Publication number
- CN107490364A CN107490364A CN201710777664.2A CN201710777664A CN107490364A CN 107490364 A CN107490364 A CN 107490364A CN 201710777664 A CN201710777664 A CN 201710777664A CN 107490364 A CN107490364 A CN 107490364A
- Authority
- CN
- China
- Prior art keywords
- msubsup
- mrow
- msup
- msub
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000003384 imaging method Methods 0.000 claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims description 11
- 230000009466 transformation Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 3
- 238000011426 transformation method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 206010034719 Personality change Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C11/00—Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开了一种大角度倾斜成像航空相机对地目标定位方法,针对大角度倾斜成像航空相机拍摄距离远,激光测距设备作用距离有限的问题,提出了一种不依赖距离测量设备的直接对地目标定位算法。依据载机POS(Position and Orientation System)测量的载机位置、姿态信息以及航空相机中位置编码器测量的框架角位置信息,利用齐次坐标变换的方法求解目标在大地坐标系下的指向,利用地球椭球模型和数字高程模型,确定目标点的经纬度信息。采用飞行试验数据验证了该目标定位算法的有效性,在飞行高度18000m拍摄框架横滚角小于63°时,目标定位圆概率误差小于70m,可满足工程实际需要。
The invention discloses a ground target positioning method for a large-angle oblique imaging aerial camera. Aiming at the problem that the large-angle oblique imaging aerial camera has a long shooting distance and the working distance of a laser ranging device is limited, a direct method that does not rely on a distance measuring device is proposed. Algorithm for ground target location. Based on the aircraft position and attitude information measured by the aircraft POS (Position and Orientation System) and the frame angle position information measured by the position encoder in the aerial camera, the homogeneous coordinate transformation method is used to solve the orientation of the target in the earth coordinate system. Earth ellipsoid model and digital elevation model to determine the latitude and longitude information of the target point. The effectiveness of the target positioning algorithm is verified by flight test data. When the roll angle of the shooting frame is less than 63° at a flight altitude of 18000m, the probability error of the target positioning circle is less than 70m, which can meet the actual needs of the project.
Description
技术领域technical field
本发明属于航空成像与测控技术领域,具体涉及一种大角度倾斜成像航空相机对地目标定位方法。The invention belongs to the technical field of aerial imaging and measurement and control, and in particular relates to a ground target positioning method for a large-angle oblique imaging aerial camera.
背景技术Background technique
航空相机除了要进行高分辨率成像外,还要同时对目标进行高精度定位。目前大部分目标定位算法基于距离测量,需要通过目标测距设备给出目标相对于机载光电设备的距离值,采用标准差为0.5m和5m激光测距装置的机载光电平台对10km内目标进行定位精度分别优于15m和20m;但航空相机在飞行高度18000m,对50km外的目标倾斜成像时,小型激光测距装置无法满足距离要求,大型激光测距受限于体积无法在航空领域应用,同时远距离的激光测距也会受到大气等各方面因素影响,导致测距精度下降,从而影响对目标的定位。In addition to high-resolution imaging, the aerial camera also needs to perform high-precision positioning of the target at the same time. At present, most target positioning algorithms are based on distance measurement, and the distance value of the target relative to the airborne optoelectronic equipment needs to be given by the target ranging equipment. The positioning accuracy is better than 15m and 20m respectively; however, when the aerial camera is flying at an altitude of 18,000m and obliquely imaging a target 50km away, the small laser ranging device cannot meet the distance requirements, and the large laser ranging is limited by its size and cannot be used in the aviation field. , At the same time, long-distance laser ranging will also be affected by various factors such as the atmosphere, resulting in a decrease in ranging accuracy, thereby affecting the positioning of the target.
发明内容Contents of the invention
有鉴于此,本发明的目的是提供一种大角度倾斜成像航空相机对地目标定位方法,可以提高定位精度。In view of this, the object of the present invention is to provide a large-angle oblique imaging aerial camera positioning method for ground targets, which can improve positioning accuracy.
一种成像航空相机对地目标定位方法,包括如下步骤:A method for locating a ground target with an imaging aerial camera, comprising the steps of:
步骤0、确定目标所在的区域,提取该区域对应的数字高程模型DEM,确定数字高程模型DEM中的最高大地高Hmax;大地平均预装订高度值为hT=Hmax;Step 0, determine the area where the target is located, extract the digital elevation model DEM corresponding to the area, and determine the highest earth height H max in the digital elevation model DEM; the average pre-binding height of the earth is h T = H max ;
步骤1、目标投影位置在相机坐标系下的坐标TS';Step 1. The coordinates T S ' of the target projection position in the camera coordinate system;
步骤2、获得目标在CCD上的任一像点的投影在地球坐标系下的坐标为:Step 2, obtain the coordinates of the projection of any image point of the target on the CCD in the earth coordinate system as:
其中,是地球坐标系到地理坐标系的转换矩阵,是地理坐标系到飞机坐标系的转换矩阵,是飞机坐标系到相机坐标系的转换矩阵;并且相机坐标系原点与载机坐标系原点重合,相机原点坐标为由POS系统给出;in, is the conversion matrix from the earth coordinate system to the geographic coordinate system, is the transformation matrix from the geographic coordinate system to the aircraft coordinate system, is the transformation matrix from the aircraft coordinate system to the camera coordinate system; and the origin of the camera coordinate system coincides with the origin of the aircraft coordinate system, and the coordinates of the camera origin are given by the POS system;
步骤3、目标在地球坐标系下的坐标满足方程:Step 3, the coordinates of the target in the earth coordinate system satisfy the equation:
步骤4、目标坐标位置与地球的参量满足如下关系:Step 4. The target coordinate position and the parameters of the earth satisfy the following relationship:
步骤5、根据步骤3和4的结果解得目标在地球坐标系下的坐标 Step 5. Solve the coordinates of the target in the earth coordinate system according to the results of steps 3 and 4
步骤6、用Ni表示第i次迭代得到的地球半长轴,Hi表示第i次迭代得到的大地高,φi表示第i次迭代得到的纬度,迭代公式如下:Step 6. Use N i to represent the semi-major axis of the earth obtained in the i-th iteration, H i to represent the geodetic height obtained in the i-th iteration, and φi to represent the latitude obtained in the i-th iteration. The iteration formula is as follows:
其中,目标大地高初始值为纬度初始值为 Among them, the initial value of the target geodetic height is The initial value of latitude is
经过不断迭代,使得目标大地高的精度和纬度精度收敛到符合要求为止;目标的经度λ直接根据步骤5得到的目标在地球坐标系下的坐标获得:After continuous iterations, the high precision and latitude precision of the target land converge until they meet the requirements; the longitude λ of the target is obtained directly from the coordinates of the target in the earth coordinate system obtained in step 5:
其中,当时,当时,当时, Among them, when hour, when hour, when hour,
根据以上条件确定的最终的目标经度;Determined according to the above conditions final destination longitude;
步骤7、利用步骤6迭代运算获得的目标经度、纬度信息代入国际通用的数字高程模型DEM中,得到在当前经、纬度下的理论大地高度hi,再与步骤6计算得到的大地高度Hi进行比较,即判断Hi-hi是否小于0:如果是,当前的目标经纬度和大地高即为最终的目标的经度、纬度和地理高度信息,实现目标的定位;如果否,将Hi减去容忍误差εh,并将Hi-εh赋值给目标的大地平均预装订高度hT,返回步骤1,采用重新赋值后的hT执行步骤1至步骤7,直到满足Hi-hi小于0,输出此时对应的目标的经度、纬度和地理高度信息,实现目标的定位。Step 7. Substitute the target longitude and latitude information obtained through the iterative calculation in step 6 into the internationally accepted digital elevation model DEM to obtain the theoretical geodetic height h i under the current longitude and latitude, and then compare it with the geodetic height H i calculated in step 6 For comparison, it is to judge whether H i -h i is less than 0: if yes, the current target latitude and longitude and geodetic height are the longitude, latitude and geographic height information of the final target to realize the positioning of the target; if not, subtract H i To tolerate the error ε h , and assign H i -ε h to the average pre-binding height h T of the target, return to step 1, and use the reassigned h T to perform steps 1 to 7 until H i -h i is satisfied If it is less than 0, output the longitude, latitude and geographic height information of the corresponding target at this time to realize the positioning of the target.
本发明具有如下有益效果:The present invention has following beneficial effect:
针对大角度倾斜成像航空相机拍摄距离远,激光测距设备作用距离有限的问题,提出了一种不依赖距离测量设备的直接对地目标定位算法。依据载机POS(Position andOrientation System)测量的载机位置、姿态信息以及航空相机中位置编码器测量的框架角位置信息,利用齐次坐标变换的方法求解目标在大地坐标系下的指向,利用地球椭球模型和数字高程模型,确定目标点的经纬度信息。采用飞行试验数据验证了该目标定位算法的有效性,在飞行高度18000m拍摄框架横滚角小于63°时,目标定位圆概率误差小于70m,可满足工程实际需要。Aiming at the problem of long shooting distance of large-angle oblique imaging aerial camera and limited range of laser ranging equipment, a direct ground target positioning algorithm independent of distance measuring equipment is proposed. Based on the aircraft position and attitude information measured by the aircraft POS (Position and Orientation System) and the frame angle position information measured by the position encoder in the aerial camera, the method of homogeneous coordinate transformation is used to solve the orientation of the target in the earth coordinate system. Ellipsoid model and digital elevation model to determine the latitude and longitude information of the target point. The effectiveness of the target positioning algorithm is verified by flight test data. When the roll angle of the shooting frame is less than 63° at a flight altitude of 18000m, the probability error of the target positioning circle is less than 70m, which can meet the actual needs of the project.
附图说明Description of drawings
图1为本发明的目标在CCD上投影示意图;Fig. 1 is the target projection schematic diagram on CCD of the present invention;
图2为本发明的各点在地球坐标系下坐标关系示意图;Fig. 2 is a schematic diagram of the coordinate relationship of each point of the present invention under the earth coordinate system;
图3为本发明的目标定位迭代过程图;Fig. 3 is a target positioning iterative process diagram of the present invention;
图4为本发明的基于数字高程模型对地目标定位算法框图。Fig. 4 is a block diagram of the ground target positioning algorithm based on the digital elevation model of the present invention.
具体实施方式detailed description
下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and examples.
目标定位即为获取拍摄图像中目标区域的地理位置信息,以便对目标区域进行有效的评估与分析。机载POS系统由GPS(全球定位系统)和IMU(惯性测量单元)组成,集GPS与IMU各自优点于一体,在性能和可靠性上得到大幅的提高,可准确的测量载机的位置和姿态信息。Target positioning is to obtain the geographical location information of the target area in the captured image, so as to effectively evaluate and analyze the target area. The airborne POS system is composed of GPS (Global Positioning System) and IMU (Inertial Measurement Unit). It integrates the advantages of GPS and IMU, greatly improves the performance and reliability, and can accurately measure the position and attitude of the aircraft. information.
用表示从A坐标系到B坐标系的变换矩阵。use Represents the transformation matrix from the A coordinate system to the B coordinate system.
其中,[xA yA zA]T和[xB yB zB]T为同一点在A坐标系和B坐标系下的坐标。Among them, [x A y A z A ] T and [x B y B z B ] T are the coordinates of the same point in the A coordinate system and the B coordinate system.
在目标定位过程中需要用到四个基本的坐标系,地球坐标系、地理坐标系、载机坐标系和相机坐标系。Four basic coordinate systems are needed in the target positioning process, the earth coordinate system, the geographic coordinate system, the aircraft coordinate system and the camera coordinate system.
1、地球坐标系(ECEF)E-XE YE ZE,原点处于地球质心,E XE轴指向本初子午线与赤道的交点,E ZE轴指向地理北极,E YE与其他两轴组成右手坐标系。1. The earth coordinate system (ECEF) EX E Y E Z E , the origin is at the earth's center of mass, the EX E axis points to the intersection of the prime meridian and the equator, the EZ E axis points to the geographic North Pole, and the EY E and other two axes form a right-handed coordinate system.
2、地理坐标系(NED)A-NED,AN和AE坐标轴分别指向正北和正东,AD轴垂直当地参考椭球的切线指向地心。设在地球直角坐标系任一点的坐标为(x,y,z),球坐标为(λ,φ,h),λ为经度,φ为纬度,h为大地高度,则有:2. Geographic coordinate system (NED) A-NED, AN and AE coordinate axes point to true north and true east respectively, and AD axis is perpendicular to the tangent of the local reference ellipsoid to point to the center of the earth. Assuming that the coordinates of any point in the earth's Cartesian coordinate system are (x, y, z), the spherical coordinates are (λ, φ, h), λ is the longitude, φ is the latitude, and h is the height of the earth, then:
x=(RN+h)cosφcosλx=(R N +h)cosφcosλ
y=(RN+h)cosφsinλy=(R N +h)cosφsinλ
z=(RN(1-ε)2+h)sinφz=(R N (1-ε) 2 +h) sinφ
从地球坐标系到地理坐标系的转换矩阵为:The transformation matrix from the earth coordinate system to the geographic coordinate system is:
其中为卯酉面曲率半径,RE为椭球半长轴,RP为椭球半短轴,为偏心率,为地球的扁率。in is the radius of curvature of the unitary surface, R E is the semi-major axis of the ellipsoid, R P is the semi-minor axis of the ellipsoid, is the eccentricity, is the flatness of the earth.
3、飞机坐标系的(AC)A-XAYAZA,AXA为载机机头方向,AYA右翼方向,A ZA在载机纵向对称面内垂直载机向下。在航空相机拍摄过程中,载机姿态变化分别为航向角Ψ,俯仰角θ,横滚角在飞机坐标系中,一般也将AXA轴称为横滚轴(Roll Axis),AYA轴称为俯仰轴(Pitch Axis),AZA轴称为航向轴(Yaw Axis)。飞机的姿态角一般定义为以广义欧拉角的形式。将地理坐标系按欧拉角的旋转顺序可以得到飞机坐标系。3. (AC) AX A Y A Z A of the aircraft coordinate system, AX A is the direction of the nose of the carrier aircraft, AY A is the direction of the right wing, and AZ A is vertical to the carrier aircraft downward in the longitudinal symmetry plane of the carrier aircraft. During the shooting process of the aerial camera, the attitude changes of the carrier aircraft are heading angle Ψ, pitch angle θ, roll angle In the aircraft coordinate system, the AX A axis is generally called the Roll Axis, the AY A axis is called the Pitch Axis, and the AZ A axis is called the Yaw Axis. The attitude angle of an aircraft is generally defined in the form of generalized Euler angles. The aircraft coordinate system can be obtained by rotating the geographic coordinate system in the order of Euler angles.
4、相机坐标系(S)S-XS YS ZS,原点处于航空相机光学系统中心,S–ZS轴为视轴方向,当相机内外框架角均为0时,相机坐标系与载机坐标系完全重合。当相机成像时,外框架角和内框架角分别处于β和α。则有:4. The camera coordinate system (S) SX S Y S Z S , the origin is at the center of the aerial camera optical system, and the S–Z S axis is the direction of the viewing axis. When the inner and outer frame angles of the camera are both 0, the camera coordinate system and the aircraft coordinate The system is completely overlapped. When the camera takes an image, the outer and inner frame angles are at β and α, respectively. Then there are:
本发明的定位方法具体包括如下步骤,如图4所示:The positioning method of the present invention specifically includes the following steps, as shown in Figure 4:
步骤0、确定目标所在的区域,提取该区域对应的数字高程模型DEM,确定数字高程模型DEM中的最高大地高Hmax;大地平均预装订高度值为hT=Hmax;Step 0, determine the area where the target is located, extract the digital elevation model DEM corresponding to the area, and determine the highest earth height H max in the digital elevation model DEM; the average pre-binding height of the earth is h T = H max ;
步骤1、目标投影位置在相机坐标系下的坐标TS'为:Step 1. The coordinates T S ' of the target projection position in the camera coordinate system are:
其中,f为相机焦距,CCD像元尺寸为α,像元个数为M×N,目标在CCD上的投影点为(i,j),i为行数,j为列数;Among them, f is the focal length of the camera, the CCD pixel size is α, the number of pixels is M×N, the projected point of the target on the CCD is (i, j), i is the number of rows, and j is the number of columns;
步骤2、目标在CCD上的任一像点的投影在地球坐标系下的坐标为:Step 2. The coordinates of the projection of any image point of the target on the CCD in the earth coordinate system are:
其中,是地球坐标系到地理坐标系的转换矩阵,是地理坐标系到飞机坐标系的转换矩阵,是飞机坐标系到相机坐标系的转换矩阵;并且相机坐标系原点与载机坐标系原点重合,相机原点坐标为由POS系统给出;in, is the conversion matrix from the earth coordinate system to the geographic coordinate system, is the transformation matrix from the geographic coordinate system to the aircraft coordinate system, is the transformation matrix from the aircraft coordinate system to the camera coordinate system; and the origin of the camera coordinate system coincides with the origin of the aircraft coordinate system, and the coordinates of the camera origin are given by the POS system;
步骤3、目标在地球坐标系下的坐标满足方程Step 3, the coordinates of the target in the earth coordinate system satisfy the equation
步骤4、目标坐标位置与地球的参量满足如下关系:Step 4. The target coordinate position and the parameters of the earth satisfy the following relationship:
步骤5、根据步骤3和4的结果解得目标在地球坐标系下的坐标 Step 5. Solve the coordinates of the target in the earth coordinate system according to the results of steps 3 and 4
如果大地为标准椭球体,式中所有变量均是已知量。If the earth is a standard ellipsoid, all variables in the formula are known quantities.
步骤6、目标的经纬度信息通过其在大地坐标系下坐标得到,由于采用WGS-84给出的地球椭球模型,所以其无法准确得到其纬度及大地高信息。为此对大地高度和纬度采用迭代法进行求解,目标定位迭代过程如图3所示,其中,规定北半球纬度为正,南半球纬度为负;东经为正,西经为负,用Ni表示第i次迭代得到的地球半长轴,Hi表示第i次迭代得到的大地高,φi表示第i次迭代得到的纬度,迭代公式如下:Step 6. The longitude and latitude information of the target is obtained through its coordinates in the geodetic coordinate system. Since the earth ellipsoid model given by WGS-84 is used, its latitude and geodetic height information cannot be accurately obtained. For this reason, the iterative method is used to solve the geodetic height and latitude. The iterative process of target positioning is shown in Figure 3, in which it is stipulated that the latitude of the northern hemisphere is positive, and the latitude of the southern hemisphere is negative; the east longitude is positive, and the west longitude is negative. The semi-major axis of the earth obtained by the i iteration, H i represents the earth height obtained by the i iteration, φ i represents the latitude obtained by the i iteration, and the iteration formula is as follows:
其中,第一次迭代使用的地球半长轴初始值为N0=RE,目标大地高初始值为纬度初始值为Among them, the initial value of the semi-major axis of the earth used in the first iteration is N 0 = R E , and the initial value of the target geodetic height is The initial value of latitude is
经过不断迭代,使得目标大地高的精度和纬度精度收敛到符合要求为止。一般迭代4次,即可保证目标大地高的精度收敛到0.001m以内,纬度收敛到0.00001″,目标的经度λ直接可根据步骤5得到的目标在地球坐标系下的坐标获得:After continuous iteration, the high precision and latitude precision of the target land converge until they meet the requirements. Generally, iterates 4 times to ensure that the high precision of the target land converges to within 0.001m, and the latitude converges to 0.00001″. The longitude λ of the target can be directly obtained according to the coordinates of the target obtained in step 5 in the earth coordinate system:
其中,当时,当时,当时, Among them, when hour, when hour, when hour,
根据以上条件确定的最终的目标经度。Determined according to the above conditions The final destination longitude.
步骤7、利用步骤6迭代运算获得的目标经度、纬度信息代入国际通用的数字高程模型DEM中,得到在当前经、纬度下的理论大地高度hi,再与步骤6计算得到的大地高度Hi进行比较,即判断Hi-hi是否小于0:如果是,当前的目标经纬度和大地高即为最终的目标的经度、纬度和地理高度信息,实现目标的定位;如果否,将Hi减去容忍误差εh,为了得到较为精确的地理信息εh一般取5m,并将Hi-εh赋值给目标的大地平均预装订高度hT,返回步骤1,采用重新赋值后的hT执行步骤1至步骤7,直到满足Hi-hi小于0,输出此时对应的目标的经度、纬度和地理高度信息,实现目标的定位。Step 7. Substitute the target longitude and latitude information obtained through the iterative calculation in step 6 into the internationally accepted digital elevation model DEM to obtain the theoretical geodetic height h i under the current longitude and latitude, and then compare it with the geodetic height H i calculated in step 6 For comparison, it is to judge whether H i -h i is less than 0: if yes, the current target latitude and longitude and geodetic height are the longitude, latitude and geographic height information of the final target to realize the positioning of the target; if not, subtract H i To tolerate the error ε h , in order to obtain more accurate geographical information ε h generally takes 5m, and assign H i -ε h to the average pre-binding height h T of the target earth, return to step 1, and execute with the reassigned h T From step 1 to step 7, until H i -h i is less than 0, output the longitude, latitude and geographic height information of the corresponding target at this time, so as to realize the positioning of the target.
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710777664.2A CN107490364A (en) | 2017-09-01 | 2017-09-01 | A kind of wide-angle tilt is imaged aerial camera object positioning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710777664.2A CN107490364A (en) | 2017-09-01 | 2017-09-01 | A kind of wide-angle tilt is imaged aerial camera object positioning method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107490364A true CN107490364A (en) | 2017-12-19 |
Family
ID=60651245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710777664.2A Pending CN107490364A (en) | 2017-09-01 | 2017-09-01 | A kind of wide-angle tilt is imaged aerial camera object positioning method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107490364A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108629831A (en) * | 2018-04-10 | 2018-10-09 | 清华大学 | 3 D human body method for reconstructing and system based on parametric human body template and inertia measurement |
CN109683184A (en) * | 2018-12-25 | 2019-04-26 | 深圳市华信天线技术有限公司 | A kind of sloping floor coordinate measuring method |
CN110017833A (en) * | 2019-04-19 | 2019-07-16 | 西安应用光学研究所 | Based on pixel class the full frame picture point geographical coordinate localization method of model |
CN110411449A (en) * | 2019-07-19 | 2019-11-05 | 中国科学院大学 | An aerial reconnaissance load target positioning method, system and terminal equipment |
CN110967021A (en) * | 2019-12-16 | 2020-04-07 | 中国兵器科学研究院 | Active/passive ranging independent target geographic positioning method for airborne photoelectric system |
CN111307119A (en) * | 2020-03-17 | 2020-06-19 | 东南数字经济发展研究院 | Pixel-level spatial information recording method for oblique photography |
CN111521157A (en) * | 2020-05-29 | 2020-08-11 | 成都赫尔墨斯科技股份有限公司 | Method and system for calculating coordinates of observation area of aircraft |
CN112149467A (en) * | 2019-06-28 | 2020-12-29 | 北京京东尚科信息技术有限公司 | Method for executing tasks by airplane cluster and long airplane |
CN112254719A (en) * | 2020-09-28 | 2021-01-22 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Double-coordinate parameter space target positioning method |
CN112668397A (en) * | 2020-12-04 | 2021-04-16 | 普宙飞行器科技(深圳)有限公司 | Fire real-time detection and analysis method and system, storage medium and electronic equipment |
CN113597596A (en) * | 2020-04-24 | 2021-11-02 | 深圳市大疆创新科技有限公司 | Target calibration method, device and system and remote control terminal of movable platform |
CN116086340A (en) * | 2023-04-07 | 2023-05-09 | 成都飞机工业(集团)有限责任公司 | Method, device, equipment and medium for measuring level of whole aircraft |
CN116124094A (en) * | 2022-12-13 | 2023-05-16 | 西北工业大学 | Multi-target collaborative positioning method based on UAV reconnaissance image and integrated navigation information |
CN117274391A (en) * | 2023-11-23 | 2023-12-22 | 长春通视光电技术股份有限公司 | Digital map matching target positioning method based on graphic neural network |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106373159A (en) * | 2016-08-30 | 2017-02-01 | 中国科学院长春光学精密机械与物理研究所 | Simplified unmanned aerial vehicle multi-target location method |
CN106468552A (en) * | 2016-08-30 | 2017-03-01 | 中国科学院长春光学精密机械与物理研究所 | A kind of two-shipper crossing location method based on airborne photoelectric platform |
CN106527457A (en) * | 2016-11-17 | 2017-03-22 | 天津津航技术物理研究所 | Aviation scanner scanning control instruction planning method |
-
2017
- 2017-09-01 CN CN201710777664.2A patent/CN107490364A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106373159A (en) * | 2016-08-30 | 2017-02-01 | 中国科学院长春光学精密机械与物理研究所 | Simplified unmanned aerial vehicle multi-target location method |
CN106468552A (en) * | 2016-08-30 | 2017-03-01 | 中国科学院长春光学精密机械与物理研究所 | A kind of two-shipper crossing location method based on airborne photoelectric platform |
CN106527457A (en) * | 2016-11-17 | 2017-03-22 | 天津津航技术物理研究所 | Aviation scanner scanning control instruction planning method |
Non-Patent Citations (1)
Title |
---|
乔川: "大角度倾斜成像航空相机对地目标定位", 《光学精密工程》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108629831A (en) * | 2018-04-10 | 2018-10-09 | 清华大学 | 3 D human body method for reconstructing and system based on parametric human body template and inertia measurement |
CN109683184A (en) * | 2018-12-25 | 2019-04-26 | 深圳市华信天线技术有限公司 | A kind of sloping floor coordinate measuring method |
CN110017833A (en) * | 2019-04-19 | 2019-07-16 | 西安应用光学研究所 | Based on pixel class the full frame picture point geographical coordinate localization method of model |
CN110017833B (en) * | 2019-04-19 | 2022-11-01 | 西安应用光学研究所 | Full-screen image point geographic coordinate positioning method based on pixel type ground model |
CN112149467A (en) * | 2019-06-28 | 2020-12-29 | 北京京东尚科信息技术有限公司 | Method for executing tasks by airplane cluster and long airplane |
CN110411449A (en) * | 2019-07-19 | 2019-11-05 | 中国科学院大学 | An aerial reconnaissance load target positioning method, system and terminal equipment |
CN110967021A (en) * | 2019-12-16 | 2020-04-07 | 中国兵器科学研究院 | Active/passive ranging independent target geographic positioning method for airborne photoelectric system |
CN111307119A (en) * | 2020-03-17 | 2020-06-19 | 东南数字经济发展研究院 | Pixel-level spatial information recording method for oblique photography |
CN113597596A (en) * | 2020-04-24 | 2021-11-02 | 深圳市大疆创新科技有限公司 | Target calibration method, device and system and remote control terminal of movable platform |
CN113597596B (en) * | 2020-04-24 | 2025-04-01 | 深圳市大疆创新科技有限公司 | Target calibration method, device and system and remote control terminal for movable platform |
CN111521157B (en) * | 2020-05-29 | 2022-08-05 | 成都赫尔墨斯科技股份有限公司 | Method and system for calculating coordinates of observation area of aircraft |
CN111521157A (en) * | 2020-05-29 | 2020-08-11 | 成都赫尔墨斯科技股份有限公司 | Method and system for calculating coordinates of observation area of aircraft |
CN112254719A (en) * | 2020-09-28 | 2021-01-22 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Double-coordinate parameter space target positioning method |
CN112254719B (en) * | 2020-09-28 | 2023-09-05 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Double-coordinate parameter space target positioning method |
CN112668397A (en) * | 2020-12-04 | 2021-04-16 | 普宙飞行器科技(深圳)有限公司 | Fire real-time detection and analysis method and system, storage medium and electronic equipment |
CN116124094A (en) * | 2022-12-13 | 2023-05-16 | 西北工业大学 | Multi-target collaborative positioning method based on UAV reconnaissance image and integrated navigation information |
CN116124094B (en) * | 2022-12-13 | 2024-10-15 | 西北工业大学 | Multi-target collaborative localization method based on UAV reconnaissance images and integrated navigation information |
CN116086340A (en) * | 2023-04-07 | 2023-05-09 | 成都飞机工业(集团)有限责任公司 | Method, device, equipment and medium for measuring level of whole aircraft |
CN116086340B (en) * | 2023-04-07 | 2023-07-21 | 成都飞机工业(集团)有限责任公司 | Method, device, equipment and medium for measuring level of whole aircraft |
CN117274391A (en) * | 2023-11-23 | 2023-12-22 | 长春通视光电技术股份有限公司 | Digital map matching target positioning method based on graphic neural network |
CN117274391B (en) * | 2023-11-23 | 2024-02-06 | 长春通视光电技术股份有限公司 | Digital map matching target positioning method based on graphic neural network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107490364A (en) | A kind of wide-angle tilt is imaged aerial camera object positioning method | |
CN110580717B (en) | A method for generating autonomous inspection routes of unmanned aerial vehicles for power towers | |
CN105698762B (en) | Target method for rapidly positioning based on observation station at different moments on a kind of unit flight path | |
US10048084B2 (en) | Star tracker-aided airborne or spacecraft terrestrial landmark navigation system | |
CN102741706B (en) | The geographical method with reference to image-region | |
CN101893440B (en) | Celestial autonomous navigation method based on star sensors | |
CN106871927A (en) | A kind of UAV electro-optical pod's alignment error Calibration Method | |
CN105548976A (en) | Shipborne radar offshore precision identification method | |
CN104835115A (en) | Imaging method for aerial camera, and system thereof | |
CN106373159A (en) | Simplified unmanned aerial vehicle multi-target location method | |
CN108535715A (en) | A kind of seen suitable for airborne photoelectric takes aim at object localization method under the atmospheric refraction of system | |
JP2018036053A (en) | Laser measurement system and laser measurement method | |
CN102506867A (en) | SINS (strap-down inertia navigation system)/SMANS (scene matching auxiliary navigation system) combined navigation method based on Harris comer matching and combined navigation system | |
CN115511956A (en) | A UAV imaging positioning method | |
CN108061477A (en) | Opposite installation error bearing calibration between a kind of target seeker and used system system | |
CN112857306A (en) | Method for determining continuous solar altitude angle of video satellite at any view direction point | |
CN116309798A (en) | A UAV imaging positioning method | |
RU2513900C1 (en) | Method and device to determine object coordinates | |
CN103760562A (en) | Method for obtaining onboard circular synthetic aperture radar air line | |
CN115712121A (en) | Unmanned aerial vehicle target positioning method, device, equipment and medium | |
CN207992458U (en) | Carbon global position system under complicated observation mode | |
CN112985398A (en) | Target positioning method and system | |
CN110579744B (en) | Scene modeling simulation method based on DOM satellite film | |
CN110411449B (en) | Aviation reconnaissance load target positioning method and system and terminal equipment | |
CN108489483B (en) | A single-satellite suboptimal correction algorithm for ship-borne starlight director |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20171219 |