[go: up one dir, main page]

CN107490364A - A kind of wide-angle tilt is imaged aerial camera object positioning method - Google Patents

A kind of wide-angle tilt is imaged aerial camera object positioning method Download PDF

Info

Publication number
CN107490364A
CN107490364A CN201710777664.2A CN201710777664A CN107490364A CN 107490364 A CN107490364 A CN 107490364A CN 201710777664 A CN201710777664 A CN 201710777664A CN 107490364 A CN107490364 A CN 107490364A
Authority
CN
China
Prior art keywords
msubsup
mrow
msup
msub
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710777664.2A
Other languages
Chinese (zh)
Inventor
刘志明
李清军
丁亚林
刘禹
乔川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201710777664.2A priority Critical patent/CN107490364A/en
Publication of CN107490364A publication Critical patent/CN107490364A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种大角度倾斜成像航空相机对地目标定位方法,针对大角度倾斜成像航空相机拍摄距离远,激光测距设备作用距离有限的问题,提出了一种不依赖距离测量设备的直接对地目标定位算法。依据载机POS(Position and Orientation System)测量的载机位置、姿态信息以及航空相机中位置编码器测量的框架角位置信息,利用齐次坐标变换的方法求解目标在大地坐标系下的指向,利用地球椭球模型和数字高程模型,确定目标点的经纬度信息。采用飞行试验数据验证了该目标定位算法的有效性,在飞行高度18000m拍摄框架横滚角小于63°时,目标定位圆概率误差小于70m,可满足工程实际需要。

The invention discloses a ground target positioning method for a large-angle oblique imaging aerial camera. Aiming at the problem that the large-angle oblique imaging aerial camera has a long shooting distance and the working distance of a laser ranging device is limited, a direct method that does not rely on a distance measuring device is proposed. Algorithm for ground target location. Based on the aircraft position and attitude information measured by the aircraft POS (Position and Orientation System) and the frame angle position information measured by the position encoder in the aerial camera, the homogeneous coordinate transformation method is used to solve the orientation of the target in the earth coordinate system. Earth ellipsoid model and digital elevation model to determine the latitude and longitude information of the target point. The effectiveness of the target positioning algorithm is verified by flight test data. When the roll angle of the shooting frame is less than 63° at a flight altitude of 18000m, the probability error of the target positioning circle is less than 70m, which can meet the actual needs of the project.

Description

一种大角度倾斜成像航空相机对地目标定位方法A large-angle oblique imaging aerial camera positioning method for ground targets

技术领域technical field

本发明属于航空成像与测控技术领域,具体涉及一种大角度倾斜成像航空相机对地目标定位方法。The invention belongs to the technical field of aerial imaging and measurement and control, and in particular relates to a ground target positioning method for a large-angle oblique imaging aerial camera.

背景技术Background technique

航空相机除了要进行高分辨率成像外,还要同时对目标进行高精度定位。目前大部分目标定位算法基于距离测量,需要通过目标测距设备给出目标相对于机载光电设备的距离值,采用标准差为0.5m和5m激光测距装置的机载光电平台对10km内目标进行定位精度分别优于15m和20m;但航空相机在飞行高度18000m,对50km外的目标倾斜成像时,小型激光测距装置无法满足距离要求,大型激光测距受限于体积无法在航空领域应用,同时远距离的激光测距也会受到大气等各方面因素影响,导致测距精度下降,从而影响对目标的定位。In addition to high-resolution imaging, the aerial camera also needs to perform high-precision positioning of the target at the same time. At present, most target positioning algorithms are based on distance measurement, and the distance value of the target relative to the airborne optoelectronic equipment needs to be given by the target ranging equipment. The positioning accuracy is better than 15m and 20m respectively; however, when the aerial camera is flying at an altitude of 18,000m and obliquely imaging a target 50km away, the small laser ranging device cannot meet the distance requirements, and the large laser ranging is limited by its size and cannot be used in the aviation field. , At the same time, long-distance laser ranging will also be affected by various factors such as the atmosphere, resulting in a decrease in ranging accuracy, thereby affecting the positioning of the target.

发明内容Contents of the invention

有鉴于此,本发明的目的是提供一种大角度倾斜成像航空相机对地目标定位方法,可以提高定位精度。In view of this, the object of the present invention is to provide a large-angle oblique imaging aerial camera positioning method for ground targets, which can improve positioning accuracy.

一种成像航空相机对地目标定位方法,包括如下步骤:A method for locating a ground target with an imaging aerial camera, comprising the steps of:

步骤0、确定目标所在的区域,提取该区域对应的数字高程模型DEM,确定数字高程模型DEM中的最高大地高Hmax;大地平均预装订高度值为hT=HmaxStep 0, determine the area where the target is located, extract the digital elevation model DEM corresponding to the area, and determine the highest earth height H max in the digital elevation model DEM; the average pre-binding height of the earth is h T = H max ;

步骤1、目标投影位置在相机坐标系下的坐标TS';Step 1. The coordinates T S ' of the target projection position in the camera coordinate system;

步骤2、获得目标在CCD上的任一像点的投影在地球坐标系下的坐标为:Step 2, obtain the coordinates of the projection of any image point of the target on the CCD in the earth coordinate system as:

其中,是地球坐标系到地理坐标系的转换矩阵,是地理坐标系到飞机坐标系的转换矩阵,是飞机坐标系到相机坐标系的转换矩阵;并且相机坐标系原点与载机坐标系原点重合,相机原点坐标为由POS系统给出;in, is the conversion matrix from the earth coordinate system to the geographic coordinate system, is the transformation matrix from the geographic coordinate system to the aircraft coordinate system, is the transformation matrix from the aircraft coordinate system to the camera coordinate system; and the origin of the camera coordinate system coincides with the origin of the aircraft coordinate system, and the coordinates of the camera origin are given by the POS system;

步骤3、目标在地球坐标系下的坐标满足方程:Step 3, the coordinates of the target in the earth coordinate system satisfy the equation:

步骤4、目标坐标位置与地球的参量满足如下关系:Step 4. The target coordinate position and the parameters of the earth satisfy the following relationship:

步骤5、根据步骤3和4的结果解得目标在地球坐标系下的坐标 Step 5. Solve the coordinates of the target in the earth coordinate system according to the results of steps 3 and 4

步骤6、用Ni表示第i次迭代得到的地球半长轴,Hi表示第i次迭代得到的大地高,φi表示第i次迭代得到的纬度,迭代公式如下:Step 6. Use N i to represent the semi-major axis of the earth obtained in the i-th iteration, H i to represent the geodetic height obtained in the i-th iteration, and φi to represent the latitude obtained in the i-th iteration. The iteration formula is as follows:

其中,目标大地高初始值为纬度初始值为 Among them, the initial value of the target geodetic height is The initial value of latitude is

经过不断迭代,使得目标大地高的精度和纬度精度收敛到符合要求为止;目标的经度λ直接根据步骤5得到的目标在地球坐标系下的坐标获得:After continuous iterations, the high precision and latitude precision of the target land converge until they meet the requirements; the longitude λ of the target is obtained directly from the coordinates of the target in the earth coordinate system obtained in step 5:

其中,当时,时,时, Among them, when hour, when hour, when hour,

根据以上条件确定的最终的目标经度;Determined according to the above conditions final destination longitude;

步骤7、利用步骤6迭代运算获得的目标经度、纬度信息代入国际通用的数字高程模型DEM中,得到在当前经、纬度下的理论大地高度hi,再与步骤6计算得到的大地高度Hi进行比较,即判断Hi-hi是否小于0:如果是,当前的目标经纬度和大地高即为最终的目标的经度、纬度和地理高度信息,实现目标的定位;如果否,将Hi减去容忍误差εh,并将Hih赋值给目标的大地平均预装订高度hT,返回步骤1,采用重新赋值后的hT执行步骤1至步骤7,直到满足Hi-hi小于0,输出此时对应的目标的经度、纬度和地理高度信息,实现目标的定位。Step 7. Substitute the target longitude and latitude information obtained through the iterative calculation in step 6 into the internationally accepted digital elevation model DEM to obtain the theoretical geodetic height h i under the current longitude and latitude, and then compare it with the geodetic height H i calculated in step 6 For comparison, it is to judge whether H i -h i is less than 0: if yes, the current target latitude and longitude and geodetic height are the longitude, latitude and geographic height information of the final target to realize the positioning of the target; if not, subtract H i To tolerate the error ε h , and assign H ih to the average pre-binding height h T of the target, return to step 1, and use the reassigned h T to perform steps 1 to 7 until H i -h i is satisfied If it is less than 0, output the longitude, latitude and geographic height information of the corresponding target at this time to realize the positioning of the target.

本发明具有如下有益效果:The present invention has following beneficial effect:

针对大角度倾斜成像航空相机拍摄距离远,激光测距设备作用距离有限的问题,提出了一种不依赖距离测量设备的直接对地目标定位算法。依据载机POS(Position andOrientation System)测量的载机位置、姿态信息以及航空相机中位置编码器测量的框架角位置信息,利用齐次坐标变换的方法求解目标在大地坐标系下的指向,利用地球椭球模型和数字高程模型,确定目标点的经纬度信息。采用飞行试验数据验证了该目标定位算法的有效性,在飞行高度18000m拍摄框架横滚角小于63°时,目标定位圆概率误差小于70m,可满足工程实际需要。Aiming at the problem of long shooting distance of large-angle oblique imaging aerial camera and limited range of laser ranging equipment, a direct ground target positioning algorithm independent of distance measuring equipment is proposed. Based on the aircraft position and attitude information measured by the aircraft POS (Position and Orientation System) and the frame angle position information measured by the position encoder in the aerial camera, the method of homogeneous coordinate transformation is used to solve the orientation of the target in the earth coordinate system. Ellipsoid model and digital elevation model to determine the latitude and longitude information of the target point. The effectiveness of the target positioning algorithm is verified by flight test data. When the roll angle of the shooting frame is less than 63° at a flight altitude of 18000m, the probability error of the target positioning circle is less than 70m, which can meet the actual needs of the project.

附图说明Description of drawings

图1为本发明的目标在CCD上投影示意图;Fig. 1 is the target projection schematic diagram on CCD of the present invention;

图2为本发明的各点在地球坐标系下坐标关系示意图;Fig. 2 is a schematic diagram of the coordinate relationship of each point of the present invention under the earth coordinate system;

图3为本发明的目标定位迭代过程图;Fig. 3 is a target positioning iterative process diagram of the present invention;

图4为本发明的基于数字高程模型对地目标定位算法框图。Fig. 4 is a block diagram of the ground target positioning algorithm based on the digital elevation model of the present invention.

具体实施方式detailed description

下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and examples.

目标定位即为获取拍摄图像中目标区域的地理位置信息,以便对目标区域进行有效的评估与分析。机载POS系统由GPS(全球定位系统)和IMU(惯性测量单元)组成,集GPS与IMU各自优点于一体,在性能和可靠性上得到大幅的提高,可准确的测量载机的位置和姿态信息。Target positioning is to obtain the geographical location information of the target area in the captured image, so as to effectively evaluate and analyze the target area. The airborne POS system is composed of GPS (Global Positioning System) and IMU (Inertial Measurement Unit). It integrates the advantages of GPS and IMU, greatly improves the performance and reliability, and can accurately measure the position and attitude of the aircraft. information.

表示从A坐标系到B坐标系的变换矩阵。use Represents the transformation matrix from the A coordinate system to the B coordinate system.

其中,[xA yA zA]T和[xB yB zB]T为同一点在A坐标系和B坐标系下的坐标。Among them, [x A y A z A ] T and [x B y B z B ] T are the coordinates of the same point in the A coordinate system and the B coordinate system.

在目标定位过程中需要用到四个基本的坐标系,地球坐标系、地理坐标系、载机坐标系和相机坐标系。Four basic coordinate systems are needed in the target positioning process, the earth coordinate system, the geographic coordinate system, the aircraft coordinate system and the camera coordinate system.

1、地球坐标系(ECEF)E-XE YE ZE,原点处于地球质心,E XE轴指向本初子午线与赤道的交点,E ZE轴指向地理北极,E YE与其他两轴组成右手坐标系。1. The earth coordinate system (ECEF) EX E Y E Z E , the origin is at the earth's center of mass, the EX E axis points to the intersection of the prime meridian and the equator, the EZ E axis points to the geographic North Pole, and the EY E and other two axes form a right-handed coordinate system.

2、地理坐标系(NED)A-NED,AN和AE坐标轴分别指向正北和正东,AD轴垂直当地参考椭球的切线指向地心。设在地球直角坐标系任一点的坐标为(x,y,z),球坐标为(λ,φ,h),λ为经度,φ为纬度,h为大地高度,则有:2. Geographic coordinate system (NED) A-NED, AN and AE coordinate axes point to true north and true east respectively, and AD axis is perpendicular to the tangent of the local reference ellipsoid to point to the center of the earth. Assuming that the coordinates of any point in the earth's Cartesian coordinate system are (x, y, z), the spherical coordinates are (λ, φ, h), λ is the longitude, φ is the latitude, and h is the height of the earth, then:

x=(RN+h)cosφcosλx=(R N +h)cosφcosλ

y=(RN+h)cosφsinλy=(R N +h)cosφsinλ

z=(RN(1-ε)2+h)sinφz=(R N (1-ε) 2 +h) sinφ

从地球坐标系到地理坐标系的转换矩阵为:The transformation matrix from the earth coordinate system to the geographic coordinate system is:

其中为卯酉面曲率半径,RE为椭球半长轴,RP为椭球半短轴,为偏心率,为地球的扁率。in is the radius of curvature of the unitary surface, R E is the semi-major axis of the ellipsoid, R P is the semi-minor axis of the ellipsoid, is the eccentricity, is the flatness of the earth.

3、飞机坐标系的(AC)A-XAYAZA,AXA为载机机头方向,AYA右翼方向,A ZA在载机纵向对称面内垂直载机向下。在航空相机拍摄过程中,载机姿态变化分别为航向角Ψ,俯仰角θ,横滚角在飞机坐标系中,一般也将AXA轴称为横滚轴(Roll Axis),AYA轴称为俯仰轴(Pitch Axis),AZA轴称为航向轴(Yaw Axis)。飞机的姿态角一般定义为以广义欧拉角的形式。将地理坐标系按欧拉角的旋转顺序可以得到飞机坐标系。3. (AC) AX A Y A Z A of the aircraft coordinate system, AX A is the direction of the nose of the carrier aircraft, AY A is the direction of the right wing, and AZ A is vertical to the carrier aircraft downward in the longitudinal symmetry plane of the carrier aircraft. During the shooting process of the aerial camera, the attitude changes of the carrier aircraft are heading angle Ψ, pitch angle θ, roll angle In the aircraft coordinate system, the AX A axis is generally called the Roll Axis, the AY A axis is called the Pitch Axis, and the AZ A axis is called the Yaw Axis. The attitude angle of an aircraft is generally defined in the form of generalized Euler angles. The aircraft coordinate system can be obtained by rotating the geographic coordinate system in the order of Euler angles.

4、相机坐标系(S)S-XS YS ZS,原点处于航空相机光学系统中心,S–ZS轴为视轴方向,当相机内外框架角均为0时,相机坐标系与载机坐标系完全重合。当相机成像时,外框架角和内框架角分别处于β和α。则有:4. The camera coordinate system (S) SX S Y S Z S , the origin is at the center of the aerial camera optical system, and the S–Z S axis is the direction of the viewing axis. When the inner and outer frame angles of the camera are both 0, the camera coordinate system and the aircraft coordinate The system is completely overlapped. When the camera takes an image, the outer and inner frame angles are at β and α, respectively. Then there are:

本发明的定位方法具体包括如下步骤,如图4所示:The positioning method of the present invention specifically includes the following steps, as shown in Figure 4:

步骤0、确定目标所在的区域,提取该区域对应的数字高程模型DEM,确定数字高程模型DEM中的最高大地高Hmax;大地平均预装订高度值为hT=HmaxStep 0, determine the area where the target is located, extract the digital elevation model DEM corresponding to the area, and determine the highest earth height H max in the digital elevation model DEM; the average pre-binding height of the earth is h T = H max ;

步骤1、目标投影位置在相机坐标系下的坐标TS'为:Step 1. The coordinates T S ' of the target projection position in the camera coordinate system are:

其中,f为相机焦距,CCD像元尺寸为α,像元个数为M×N,目标在CCD上的投影点为(i,j),i为行数,j为列数;Among them, f is the focal length of the camera, the CCD pixel size is α, the number of pixels is M×N, the projected point of the target on the CCD is (i, j), i is the number of rows, and j is the number of columns;

步骤2、目标在CCD上的任一像点的投影在地球坐标系下的坐标为:Step 2. The coordinates of the projection of any image point of the target on the CCD in the earth coordinate system are:

其中,是地球坐标系到地理坐标系的转换矩阵,是地理坐标系到飞机坐标系的转换矩阵,是飞机坐标系到相机坐标系的转换矩阵;并且相机坐标系原点与载机坐标系原点重合,相机原点坐标为由POS系统给出;in, is the conversion matrix from the earth coordinate system to the geographic coordinate system, is the transformation matrix from the geographic coordinate system to the aircraft coordinate system, is the transformation matrix from the aircraft coordinate system to the camera coordinate system; and the origin of the camera coordinate system coincides with the origin of the aircraft coordinate system, and the coordinates of the camera origin are given by the POS system;

步骤3、目标在地球坐标系下的坐标满足方程Step 3, the coordinates of the target in the earth coordinate system satisfy the equation

步骤4、目标坐标位置与地球的参量满足如下关系:Step 4. The target coordinate position and the parameters of the earth satisfy the following relationship:

步骤5、根据步骤3和4的结果解得目标在地球坐标系下的坐标 Step 5. Solve the coordinates of the target in the earth coordinate system according to the results of steps 3 and 4

如果大地为标准椭球体,式中所有变量均是已知量。If the earth is a standard ellipsoid, all variables in the formula are known quantities.

步骤6、目标的经纬度信息通过其在大地坐标系下坐标得到,由于采用WGS-84给出的地球椭球模型,所以其无法准确得到其纬度及大地高信息。为此对大地高度和纬度采用迭代法进行求解,目标定位迭代过程如图3所示,其中,规定北半球纬度为正,南半球纬度为负;东经为正,西经为负,用Ni表示第i次迭代得到的地球半长轴,Hi表示第i次迭代得到的大地高,φi表示第i次迭代得到的纬度,迭代公式如下:Step 6. The longitude and latitude information of the target is obtained through its coordinates in the geodetic coordinate system. Since the earth ellipsoid model given by WGS-84 is used, its latitude and geodetic height information cannot be accurately obtained. For this reason, the iterative method is used to solve the geodetic height and latitude. The iterative process of target positioning is shown in Figure 3, in which it is stipulated that the latitude of the northern hemisphere is positive, and the latitude of the southern hemisphere is negative; the east longitude is positive, and the west longitude is negative. The semi-major axis of the earth obtained by the i iteration, H i represents the earth height obtained by the i iteration, φ i represents the latitude obtained by the i iteration, and the iteration formula is as follows:

其中,第一次迭代使用的地球半长轴初始值为N0=RE,目标大地高初始值为纬度初始值为Among them, the initial value of the semi-major axis of the earth used in the first iteration is N 0 = R E , and the initial value of the target geodetic height is The initial value of latitude is

经过不断迭代,使得目标大地高的精度和纬度精度收敛到符合要求为止。一般迭代4次,即可保证目标大地高的精度收敛到0.001m以内,纬度收敛到0.00001″,目标的经度λ直接可根据步骤5得到的目标在地球坐标系下的坐标获得:After continuous iteration, the high precision and latitude precision of the target land converge until they meet the requirements. Generally, iterates 4 times to ensure that the high precision of the target land converges to within 0.001m, and the latitude converges to 0.00001″. The longitude λ of the target can be directly obtained according to the coordinates of the target obtained in step 5 in the earth coordinate system:

其中,当时,时,时, Among them, when hour, when hour, when hour,

根据以上条件确定的最终的目标经度。Determined according to the above conditions The final destination longitude.

步骤7、利用步骤6迭代运算获得的目标经度、纬度信息代入国际通用的数字高程模型DEM中,得到在当前经、纬度下的理论大地高度hi,再与步骤6计算得到的大地高度Hi进行比较,即判断Hi-hi是否小于0:如果是,当前的目标经纬度和大地高即为最终的目标的经度、纬度和地理高度信息,实现目标的定位;如果否,将Hi减去容忍误差εh,为了得到较为精确的地理信息εh一般取5m,并将Hih赋值给目标的大地平均预装订高度hT,返回步骤1,采用重新赋值后的hT执行步骤1至步骤7,直到满足Hi-hi小于0,输出此时对应的目标的经度、纬度和地理高度信息,实现目标的定位。Step 7. Substitute the target longitude and latitude information obtained through the iterative calculation in step 6 into the internationally accepted digital elevation model DEM to obtain the theoretical geodetic height h i under the current longitude and latitude, and then compare it with the geodetic height H i calculated in step 6 For comparison, it is to judge whether H i -h i is less than 0: if yes, the current target latitude and longitude and geodetic height are the longitude, latitude and geographic height information of the final target to realize the positioning of the target; if not, subtract H i To tolerate the error ε h , in order to obtain more accurate geographical information ε h generally takes 5m, and assign H ih to the average pre-binding height h T of the target earth, return to step 1, and execute with the reassigned h T From step 1 to step 7, until H i -h i is less than 0, output the longitude, latitude and geographic height information of the corresponding target at this time, so as to realize the positioning of the target.

综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (1)

1. A method for positioning a ground target of an imaging aerial camera is characterized by comprising the following steps:
step 0, determining an area where the target is located, extracting a digital elevation model DEM corresponding to the area, and determining the highest earth height H in the digital elevation model DEMmax(ii) a The average pre-binding height value of the earth is hT=Hmax
Step 1, coordinate T of target projection position in camera coordinate systemS';
Step 2, the coordinates of the projection of the target on any image point of the CCD under the terrestrial coordinate system are as follows:
<mrow> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <msubsup> <mi>x</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>z</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msubsup> <mi>C</mi> <mrow> <mi>N</mi> <mi>E</mi> <mi>D</mi> </mrow> <mrow> <mi>E</mi> <mi>C</mi> <mi>E</mi> <mi>F</mi> </mrow> </msubsup> <msubsup> <mi>C</mi> <mrow> <mi>A</mi> <mi>C</mi> </mrow> <mrow> <mi>N</mi> <mi>E</mi> <mi>D</mi> </mrow> </msubsup> <msubsup> <mi>C</mi> <mi>S</mi> <mrow> <mi>A</mi> <mi>C</mi> </mrow> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <msubsup> <mi>T</mi> <mi>S</mi> <mo>&amp;prime;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
wherein,is a transformation matrix from a terrestrial coordinate system to a geographical coordinate system,is a transformation matrix of the geographic coordinate system to the aircraft coordinate system,is a transformation matrix from the airplane coordinate system to the camera coordinate system; and the origin of the camera coordinate system is coincident with the origin of the carrier coordinate system, and the coordinates of the camera origin areGiven by the POS system;
step 3, coordinates of the target under the terrestrial coordinate systemSatisfies the equation:
<mrow> <mfrac> <mrow> <msubsup> <mi>x</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>T</mi> <mi>E</mi> </msubsup> </mrow> <mrow> <msubsup> <mi>x</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>S</mi> <mi>E</mi> </msubsup> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>y</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mi>T</mi> <mi>E</mi> </msubsup> </mrow> <mrow> <msubsup> <mi>y</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>-</mo> <msubsup> <mi>y</mi> <mi>S</mi> <mi>E</mi> </msubsup> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>z</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>-</mo> <msubsup> <mi>z</mi> <mi>T</mi> <mi>E</mi> </msubsup> </mrow> <mrow> <msubsup> <mi>z</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>-</mo> <msubsup> <mi>z</mi> <mi>S</mi> <mi>E</mi> </msubsup> </mrow> </mfrac> <mo>;</mo> </mrow>
and 4, enabling the target coordinate position and the parameters of the earth to meet the following relation:
<mrow> <mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>T</mi> <mi>E</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>T</mi> <mi>E</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>z</mi> <mi>T</mi> <mi>E</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>P</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>=</mo> <mn>1</mn> </mrow>
step 5, solving the coordinates of the target under the terrestrial coordinate system according to the results of the steps 3 and 4
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mi>x</mi> <mi>T</mi> <mi>E</mi> </msubsup> <mo>=</mo> <mi>f</mi> <mo>(</mo> <msubsup> <mi>x</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>x</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>,</mo> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>,</mo> <msub> <mi>R</mi> <mi>P</mi> </msub> <mo>,</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>y</mi> <mi>T</mi> <mi>E</mi> </msubsup> <mo>=</mo> <mi>g</mi> <mo>(</mo> <msubsup> <mi>x</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>x</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>,</mo> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>,</mo> <msub> <mi>R</mi> <mi>P</mi> </msub> <mo>,</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>z</mi> <mi>T</mi> <mi>E</mi> </msubsup> <mo>=</mo> <mi>p</mi> <mo>(</mo> <msubsup> <mi>x</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>x</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>y</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <mi>S</mi> <mi>E</mi> </msubsup> <mo>,</mo> <msubsup> <mi>z</mi> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>E</mi> </msubsup> <mo>,</mo> <msub> <mi>R</mi> <mi>E</mi> </msub> <mo>,</mo> <msub> <mi>R</mi> <mi>P</mi> </msub> <mo>,</mo> <msub> <mi>h</mi> <mi>T</mi> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
Step 6, using NiRepresents the semimajor axis of the earth, H, obtained at the ith iterationiIndicating the geodetic height, phi, obtained in the ith iterationiAnd expressing the latitude obtained by the ith iteration, wherein the iteration formula is as follows:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>N</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>R</mi> <mi>E</mi> </msub> <msqrt> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;epsiv;</mi> <mn>2</mn> </msup> <msup> <mi>sin</mi> <mn>2</mn> </msup> <msub> <mi>&amp;phi;</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </msqrt> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>H</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>T</mi> <mi>E</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>T</mi> <mi>E</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mrow> <msub> <mi>cos&amp;phi;</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>-</mo> <msub> <mi>N</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;phi;</mi> <mi>i</mi> </msub> <mo>=</mo> <msup> <mi>tan</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>z</mi> <mi>T</mi> <mi>E</mi> </msubsup> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>x</mi> <mi>T</mi> <mi>E</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>y</mi> <mi>T</mi> <mi>E</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msup> <mi>&amp;epsiv;</mi> <mn>2</mn> </msup> <msub> <mi>N</mi> <mi>i</mi> </msub> </mrow> <mrow> <msub> <mi>N</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>H</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
wherein the target geodetic height is initially set toInitial value of latitude is
Continuously iterating to make the high precision and latitude precision of the target converge to meet the requirement; the longitude λ of the target is directly obtained according to the coordinates of the target in the terrestrial coordinate system obtained in the step 5:
<mrow> <mi>&amp;lambda;</mi> <mo>=</mo> <msup> <mi>tan</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>y</mi> <mi>T</mi> <mi>E</mi> </msubsup> <msubsup> <mi>x</mi> <mi>T</mi> <mi>E</mi> </msubsup> </mfrac> <mo>)</mo> </mrow> </mrow>
wherein whenWhen the temperature of the water is higher than the set temperature,when in useWhen the temperature of the water is higher than the set temperature,when in useWhen the temperature of the water is higher than the set temperature,
determined according to the above conditionsA final target longitude;
and 7, substituting the target longitude and latitude information obtained by the iterative operation in the step 6 into an international universal digital elevation model DEM to obtain the theoretical geodetic height h under the current longitude and latitudeiAnd then the ground height H obtained by calculation in the step 6iMaking a comparison, i.e. judging Hi-hiWhether or not less than 0: if so, the current longitude and latitude and geodetic height of the target are the final longitude, latitude and geographical height information of the target, and the target is positioned; if not, the step H is carried outiMinus tolerance errorhAnd is combined with Hi-hEarth mean pre-set height h assigned to targetTReturning to the step 1, adopting the h after reassignmentTExecuting the steps 1 to 7 until H is satisfiedi-hiAnd if the current time is less than 0, outputting the longitude, latitude and geographical altitude information of the corresponding target at the time to realize the positioning of the target.
CN201710777664.2A 2017-09-01 2017-09-01 A kind of wide-angle tilt is imaged aerial camera object positioning method Pending CN107490364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710777664.2A CN107490364A (en) 2017-09-01 2017-09-01 A kind of wide-angle tilt is imaged aerial camera object positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710777664.2A CN107490364A (en) 2017-09-01 2017-09-01 A kind of wide-angle tilt is imaged aerial camera object positioning method

Publications (1)

Publication Number Publication Date
CN107490364A true CN107490364A (en) 2017-12-19

Family

ID=60651245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710777664.2A Pending CN107490364A (en) 2017-09-01 2017-09-01 A kind of wide-angle tilt is imaged aerial camera object positioning method

Country Status (1)

Country Link
CN (1) CN107490364A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108629831A (en) * 2018-04-10 2018-10-09 清华大学 3 D human body method for reconstructing and system based on parametric human body template and inertia measurement
CN109683184A (en) * 2018-12-25 2019-04-26 深圳市华信天线技术有限公司 A kind of sloping floor coordinate measuring method
CN110017833A (en) * 2019-04-19 2019-07-16 西安应用光学研究所 Based on pixel class the full frame picture point geographical coordinate localization method of model
CN110411449A (en) * 2019-07-19 2019-11-05 中国科学院大学 An aerial reconnaissance load target positioning method, system and terminal equipment
CN110967021A (en) * 2019-12-16 2020-04-07 中国兵器科学研究院 Active/passive ranging independent target geographic positioning method for airborne photoelectric system
CN111307119A (en) * 2020-03-17 2020-06-19 东南数字经济发展研究院 Pixel-level spatial information recording method for oblique photography
CN111521157A (en) * 2020-05-29 2020-08-11 成都赫尔墨斯科技股份有限公司 Method and system for calculating coordinates of observation area of aircraft
CN112149467A (en) * 2019-06-28 2020-12-29 北京京东尚科信息技术有限公司 Method for executing tasks by airplane cluster and long airplane
CN112254719A (en) * 2020-09-28 2021-01-22 西南电子技术研究所(中国电子科技集团公司第十研究所) Double-coordinate parameter space target positioning method
CN112668397A (en) * 2020-12-04 2021-04-16 普宙飞行器科技(深圳)有限公司 Fire real-time detection and analysis method and system, storage medium and electronic equipment
CN113597596A (en) * 2020-04-24 2021-11-02 深圳市大疆创新科技有限公司 Target calibration method, device and system and remote control terminal of movable platform
CN116086340A (en) * 2023-04-07 2023-05-09 成都飞机工业(集团)有限责任公司 Method, device, equipment and medium for measuring level of whole aircraft
CN116124094A (en) * 2022-12-13 2023-05-16 西北工业大学 Multi-target collaborative positioning method based on UAV reconnaissance image and integrated navigation information
CN117274391A (en) * 2023-11-23 2023-12-22 长春通视光电技术股份有限公司 Digital map matching target positioning method based on graphic neural network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373159A (en) * 2016-08-30 2017-02-01 中国科学院长春光学精密机械与物理研究所 Simplified unmanned aerial vehicle multi-target location method
CN106468552A (en) * 2016-08-30 2017-03-01 中国科学院长春光学精密机械与物理研究所 A kind of two-shipper crossing location method based on airborne photoelectric platform
CN106527457A (en) * 2016-11-17 2017-03-22 天津津航技术物理研究所 Aviation scanner scanning control instruction planning method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106373159A (en) * 2016-08-30 2017-02-01 中国科学院长春光学精密机械与物理研究所 Simplified unmanned aerial vehicle multi-target location method
CN106468552A (en) * 2016-08-30 2017-03-01 中国科学院长春光学精密机械与物理研究所 A kind of two-shipper crossing location method based on airborne photoelectric platform
CN106527457A (en) * 2016-11-17 2017-03-22 天津津航技术物理研究所 Aviation scanner scanning control instruction planning method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
乔川: "大角度倾斜成像航空相机对地目标定位", 《光学精密工程》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108629831A (en) * 2018-04-10 2018-10-09 清华大学 3 D human body method for reconstructing and system based on parametric human body template and inertia measurement
CN109683184A (en) * 2018-12-25 2019-04-26 深圳市华信天线技术有限公司 A kind of sloping floor coordinate measuring method
CN110017833A (en) * 2019-04-19 2019-07-16 西安应用光学研究所 Based on pixel class the full frame picture point geographical coordinate localization method of model
CN110017833B (en) * 2019-04-19 2022-11-01 西安应用光学研究所 Full-screen image point geographic coordinate positioning method based on pixel type ground model
CN112149467A (en) * 2019-06-28 2020-12-29 北京京东尚科信息技术有限公司 Method for executing tasks by airplane cluster and long airplane
CN110411449A (en) * 2019-07-19 2019-11-05 中国科学院大学 An aerial reconnaissance load target positioning method, system and terminal equipment
CN110967021A (en) * 2019-12-16 2020-04-07 中国兵器科学研究院 Active/passive ranging independent target geographic positioning method for airborne photoelectric system
CN111307119A (en) * 2020-03-17 2020-06-19 东南数字经济发展研究院 Pixel-level spatial information recording method for oblique photography
CN113597596A (en) * 2020-04-24 2021-11-02 深圳市大疆创新科技有限公司 Target calibration method, device and system and remote control terminal of movable platform
CN113597596B (en) * 2020-04-24 2025-04-01 深圳市大疆创新科技有限公司 Target calibration method, device and system and remote control terminal for movable platform
CN111521157B (en) * 2020-05-29 2022-08-05 成都赫尔墨斯科技股份有限公司 Method and system for calculating coordinates of observation area of aircraft
CN111521157A (en) * 2020-05-29 2020-08-11 成都赫尔墨斯科技股份有限公司 Method and system for calculating coordinates of observation area of aircraft
CN112254719A (en) * 2020-09-28 2021-01-22 西南电子技术研究所(中国电子科技集团公司第十研究所) Double-coordinate parameter space target positioning method
CN112254719B (en) * 2020-09-28 2023-09-05 西南电子技术研究所(中国电子科技集团公司第十研究所) Double-coordinate parameter space target positioning method
CN112668397A (en) * 2020-12-04 2021-04-16 普宙飞行器科技(深圳)有限公司 Fire real-time detection and analysis method and system, storage medium and electronic equipment
CN116124094A (en) * 2022-12-13 2023-05-16 西北工业大学 Multi-target collaborative positioning method based on UAV reconnaissance image and integrated navigation information
CN116124094B (en) * 2022-12-13 2024-10-15 西北工业大学 Multi-target collaborative localization method based on UAV reconnaissance images and integrated navigation information
CN116086340A (en) * 2023-04-07 2023-05-09 成都飞机工业(集团)有限责任公司 Method, device, equipment and medium for measuring level of whole aircraft
CN116086340B (en) * 2023-04-07 2023-07-21 成都飞机工业(集团)有限责任公司 Method, device, equipment and medium for measuring level of whole aircraft
CN117274391A (en) * 2023-11-23 2023-12-22 长春通视光电技术股份有限公司 Digital map matching target positioning method based on graphic neural network
CN117274391B (en) * 2023-11-23 2024-02-06 长春通视光电技术股份有限公司 Digital map matching target positioning method based on graphic neural network

Similar Documents

Publication Publication Date Title
CN107490364A (en) A kind of wide-angle tilt is imaged aerial camera object positioning method
CN110580717B (en) A method for generating autonomous inspection routes of unmanned aerial vehicles for power towers
CN105698762B (en) Target method for rapidly positioning based on observation station at different moments on a kind of unit flight path
US10048084B2 (en) Star tracker-aided airborne or spacecraft terrestrial landmark navigation system
CN102741706B (en) The geographical method with reference to image-region
CN101893440B (en) Celestial autonomous navigation method based on star sensors
CN106871927A (en) A kind of UAV electro-optical pod&#39;s alignment error Calibration Method
CN105548976A (en) Shipborne radar offshore precision identification method
CN104835115A (en) Imaging method for aerial camera, and system thereof
CN106373159A (en) Simplified unmanned aerial vehicle multi-target location method
CN108535715A (en) A kind of seen suitable for airborne photoelectric takes aim at object localization method under the atmospheric refraction of system
JP2018036053A (en) Laser measurement system and laser measurement method
CN102506867A (en) SINS (strap-down inertia navigation system)/SMANS (scene matching auxiliary navigation system) combined navigation method based on Harris comer matching and combined navigation system
CN115511956A (en) A UAV imaging positioning method
CN108061477A (en) Opposite installation error bearing calibration between a kind of target seeker and used system system
CN112857306A (en) Method for determining continuous solar altitude angle of video satellite at any view direction point
CN116309798A (en) A UAV imaging positioning method
RU2513900C1 (en) Method and device to determine object coordinates
CN103760562A (en) Method for obtaining onboard circular synthetic aperture radar air line
CN115712121A (en) Unmanned aerial vehicle target positioning method, device, equipment and medium
CN207992458U (en) Carbon global position system under complicated observation mode
CN112985398A (en) Target positioning method and system
CN110579744B (en) Scene modeling simulation method based on DOM satellite film
CN110411449B (en) Aviation reconnaissance load target positioning method and system and terminal equipment
CN108489483B (en) A single-satellite suboptimal correction algorithm for ship-borne starlight director

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171219