CN107478635A - A kind of MOF noble metals composite S ERS substrates and preparation method thereof - Google Patents
A kind of MOF noble metals composite S ERS substrates and preparation method thereof Download PDFInfo
- Publication number
- CN107478635A CN107478635A CN201710486565.9A CN201710486565A CN107478635A CN 107478635 A CN107478635 A CN 107478635A CN 201710486565 A CN201710486565 A CN 201710486565A CN 107478635 A CN107478635 A CN 107478635A
- Authority
- CN
- China
- Prior art keywords
- mof
- noble metal
- sers substrate
- aunps
- mil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 68
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 42
- 239000002131 composite material Substances 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims abstract description 26
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 claims abstract description 76
- 239000000463 material Substances 0.000 claims abstract description 26
- 239000002114 nanocomposite Substances 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 23
- 230000012010 growth Effects 0.000 claims abstract description 17
- 239000002082 metal nanoparticle Substances 0.000 claims abstract description 17
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical compound C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 claims abstract description 15
- 230000009881 electrostatic interaction Effects 0.000 claims abstract description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 51
- 239000006185 dispersion Substances 0.000 claims description 42
- 239000000243 solution Substances 0.000 claims description 36
- 239000010931 gold Substances 0.000 claims description 32
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 30
- 229910052737 gold Inorganic materials 0.000 claims description 30
- 239000012621 metal-organic framework Substances 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 25
- 239000013178 MIL-101(Cr) Substances 0.000 claims description 24
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 12
- 239000002105 nanoparticle Substances 0.000 claims description 12
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 11
- 239000012498 ultrapure water Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 10
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 8
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 claims description 8
- 239000011246 composite particle Substances 0.000 claims description 6
- 239000013179 MIL-101(Fe) Substances 0.000 claims description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 4
- 229960005070 ascorbic acid Drugs 0.000 claims description 4
- 235000010323 ascorbic acid Nutrition 0.000 claims description 4
- 239000011668 ascorbic acid Substances 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 claims description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 claims description 4
- 239000012279 sodium borohydride Substances 0.000 claims description 4
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims description 3
- 239000011258 core-shell material Substances 0.000 claims description 3
- 239000002086 nanomaterial Substances 0.000 claims description 3
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical compound [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 claims description 2
- 239000013291 MIL-100 Substances 0.000 claims 2
- 230000001476 alcoholic effect Effects 0.000 claims 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 claims 1
- 239000005416 organic matter Substances 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000001069 Raman spectroscopy Methods 0.000 abstract description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 11
- 238000001179 sorption measurement Methods 0.000 abstract description 11
- 238000011065 in-situ storage Methods 0.000 abstract description 6
- 239000002905 metal composite material Substances 0.000 abstract description 3
- 230000004048 modification Effects 0.000 abstract description 3
- 238000012986 modification Methods 0.000 abstract description 3
- 238000011896 sensitive detection Methods 0.000 abstract description 3
- 230000009977 dual effect Effects 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 24
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- 238000011068 loading method Methods 0.000 description 6
- 238000007865 diluting Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- VYXSBFYARXAAKO-UHFFFAOYSA-N ethyl 2-[3-(ethylamino)-6-ethylimino-2,7-dimethylxanthen-9-yl]benzoate;hydron;chloride Chemical compound [Cl-].C1=2C=C(C)C(NCC)=CC=2OC2=CC(=[NH+]CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000035040 seed growth Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000013144 Fe-MIL-100 Substances 0.000 description 2
- 239000013177 MIL-101 Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 description 2
- GVHCUJZTWMCYJM-UHFFFAOYSA-N chromium(3+);trinitrate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GVHCUJZTWMCYJM-UHFFFAOYSA-N 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000012924 metal-organic framework composite Substances 0.000 description 2
- 239000002957 persistent organic pollutant Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 239000012922 MOF pore Substances 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 1
- 229940107698 malachite green Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/07—Metallic powder characterised by particles having a nanoscale microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Health & Medical Sciences (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明涉及MOF‑贵金属纳米复合材料领域,具体涉及一种MOF‑贵金属复合SERS基底及其制备方法。在醇溶液中,通过静电作用,将CTAB修饰的带正电的贵金属纳米粒子负载于MOF材料表面,形成MOF‑贵金属纳米复合SERS基底。相比较于原位生长方法,本发明通过静电相互作用将贵金属纳米粒子负载到MOF表面,在保持MOF材料高的孔隙率、比表面积和优异的吸附能力的同时,可实现MOF表面金属纳米粒子的形貌、尺寸以及密度的精确可控,制备大量拉曼活性位点,进而进一步有效提高复合基底SERS性能。本发明所制备的MOF‑AuNPs复合SERS基底,具备吸附富集和拉曼增强的双重作用,无需表面修饰,可实现对荧蒽等分子的直接、高灵敏检测。
The invention relates to the field of MOF-noble metal nanocomposite materials, in particular to a MOF-noble metal composite SERS substrate and a preparation method thereof. In the alcohol solution, the CTAB-modified positively charged noble metal nanoparticles were supported on the surface of the MOF material through electrostatic interaction to form a MOF-noble metal nanocomposite SERS substrate. Compared with the in-situ growth method, the present invention loads noble metal nanoparticles on the surface of MOF through electrostatic interaction, while maintaining the high porosity, specific surface area and excellent adsorption capacity of MOF materials, it can achieve the metal nanoparticles on the surface of MOF. The shape, size and density can be precisely controlled to prepare a large number of Raman active sites, which can further effectively improve the SERS performance of the composite substrate. The MOF-AuNPs composite SERS substrate prepared by the present invention has dual functions of adsorption enrichment and Raman enhancement, without surface modification, and can realize direct and highly sensitive detection of molecules such as fluoranthene.
Description
技术领域technical field
本发明涉及MOF-贵金属纳米复合材料领域,具体涉及一种MOF-贵金属复合SERS基底及其制备方法。The invention relates to the field of MOF-noble metal nanocomposite materials, in particular to a MOF-noble metal composite SERS substrate and a preparation method thereof.
背景技术Background technique
表面增强拉曼散射技术是一种超灵敏、无损的分子检测技术,广泛应用于化学传感、生物医学、环境污染物检测等领域。现如今,制备灵敏度高、重现性好、稳定性高的SERS基底,实现对环境有机污染物的快速、直接高灵敏检测仍然是人们面对的一个重要挑战。多环芳烃类有机物,一种石油燃烧产物,和传统贵金属SERS基底表面吸附性差,很难到达局域表面等离子共振区,SERS效应弱。目前多采用表面修饰——引入巯基的方法,捕获和吸附分子,实验过程复杂。Surface-enhanced Raman scattering technology is an ultrasensitive and non-destructive molecular detection technology, which is widely used in chemical sensing, biomedicine, environmental pollutant detection and other fields. Nowadays, it is still an important challenge to prepare SERS substrates with high sensitivity, good reproducibility and high stability to realize rapid, direct and highly sensitive detection of environmental organic pollutants. Polycyclic aromatic hydrocarbons, a product of petroleum combustion, have poor adsorption to the surface of traditional noble metal SERS substrates, and it is difficult to reach the local surface plasmon resonance region, and the SERS effect is weak. At present, surface modification-the method of introducing sulfhydryl groups is mostly used to capture and adsorb molecules, and the experimental process is complicated.
MOF材料作为一种新型有机-无机杂化多孔材料,与传统多孔材料相比,具有规整的孔道结构、超大的比表面积、高孔隙率和表面化学性质可调性,近年来在催化、化学分离、选择性吸附和药物运输等领域具有巨大的潜在应用价值。特别是在表面增强拉曼散射领域,将MOF多孔材料与贵金属纳米材料相复合,利用MOF材料比表面大、孔隙率高等特点,有效结合MOF优异的吸附富集能力和贵金属纳米粒子局域表面等离子共振性质,可显著提高SERS检测的灵敏度和可重现性。Li Gongke (Analyst. 2015, 140, 8165-8171)报道了一种Au@MIL-100(Fe)核壳纳米复合结构,MOF材料作为外壳,可将检测分子大量富集到金纳米内核表面,对孔雀石绿分子的检测限低至8×10-9 mol/L。但是此类方法很难制备粒子间隙大量的活性位点。Li Yuanfang利用原位还原的方法分别在MIL-101(Fe)(Anal.Chem.2015, 87, 12177-12182)和MIL-101(Cr) (RSC Adv. 2016, 6, 79805-79810) MOF材料表面负载银纳米粒子,成功制备了性能优异的AgNPs/MOF复合SERS基底。但是,利用原位还原的方法无法精确控制金属纳米粒子的尺寸、形貌以及附着密度,并且通过原位生长方法所制备的金属纳米粒子/MOF复合材料,金属前躯体等杂质容易残留在MOF孔道内,导致MOF材料孔隙率、比表面积明显下降,大大降低MOF材料对检测分子的吸附能力以及SERS检测的灵敏度与信号可重现性。As a new type of organic-inorganic hybrid porous material, MOF material has regular pore structure, large specific surface area, high porosity and adjustable surface chemical properties compared with traditional porous materials. , Selective adsorption and drug transport and other fields have great potential application value. Especially in the field of surface-enhanced Raman scattering, MOF porous materials are combined with noble metal nanomaterials, taking advantage of the characteristics of MOF materials such as large specific surface area and high porosity, and effectively combining the excellent adsorption and enrichment ability of MOF with localized surface plasmons of noble metal nanoparticles The resonant nature can significantly improve the sensitivity and reproducibility of SERS detection. Li Gongke (Analyst. 2015, 140, 8165-8171) reported a kind of Au@MIL-100(Fe) core-shell nanocomposite structure, MOF material is used as the shell, which can enrich the detection molecules on the surface of the gold nano-core. The detection limit of malachite green molecule is as low as 8×10 -9 mol/L. However, such methods are difficult to prepare a large number of active sites between particles. Li Yuanfang used the method of in situ reduction in MIL-101(Fe) (Anal.Chem.2015, 87, 12177-12182) and MIL-101(Cr) (RSC Adv. 2016, 6, 79805-79810) MOF materials AgNPs/MOF composite SERS substrate with excellent performance was successfully prepared by loading silver nanoparticles on the surface. However, the in-situ reduction method cannot precisely control the size, morphology, and attachment density of metal nanoparticles, and metal nanoparticles/MOF composites prepared by in-situ growth methods, metal precursors and other impurities are likely to remain in the MOF pores. In the channel, the porosity and specific surface area of MOF materials are significantly reduced, which greatly reduces the adsorption capacity of MOF materials for detection molecules and the sensitivity and signal reproducibility of SERS detection.
本发明制备的MOF-贵金属复合SERS基底,通过静电作用,将CTAB(十六烷基三甲基溴化铵)修饰的金纳米粒子(AuNPs)负载在MIL-101(Cr)表面,利用MOF材料极大的比表面积和高孔隙率,实现对待测分子的有效吸附和富集。通过精确调整金纳米粒子的形貌、尺寸以及负载密度,制备大量粒子间隙间拉曼活性位点,进一步调控复合基底的SERS性能,实现拉曼检测信号的极大增强。The MOF-noble metal composite SERS substrate prepared in the present invention is loaded with gold nanoparticles (AuNPs) modified by CTAB (cetyltrimethylammonium bromide) on the surface of MIL-101 (Cr) through electrostatic interaction. The large specific surface area and high porosity realize the effective adsorption and enrichment of the molecules to be tested. By precisely adjusting the morphology, size and loading density of gold nanoparticles, a large number of Raman active sites between the particle gaps are prepared, and the SERS performance of the composite substrate is further adjusted to achieve a great enhancement of the Raman detection signal.
发明内容Contents of the invention
本发明制备了一种金属有机骨架材料表面负载金纳米粒子的MOF-AuNPs复合SERS检测基底,通过静电相互作用实现了MOF与金属纳米粒子的有效结合。该复合粒子结合了MOF材料比表面积大、孔隙率高、可有效吸附和富集待测分子以及金纳米粒子优异的表面等离子性能,显著提高了复合SERS基底对有机污染物检测的灵敏度,解决了目前多环芳烃类有机物与传统贵金属材料结合能力弱,检测信号差的问题,成功实现了对多环芳烃类有机物的快速、直接、高灵敏的SERS检测。The invention prepares a MOF-AuNPs composite SERS detection substrate with gold nanoparticles loaded on the surface of a metal organic framework material, and realizes the effective combination of MOF and metal nanoparticles through electrostatic interaction. The composite particles combine the large specific surface area and high porosity of MOF materials, which can effectively adsorb and enrich the analyte molecules and the excellent surface plasmon properties of gold nanoparticles, which significantly improves the sensitivity of the composite SERS substrate for the detection of organic pollutants and solves the problem At present, due to the weak binding ability between polycyclic aromatic hydrocarbons and traditional precious metal materials, and the poor detection signal, the rapid, direct and highly sensitive SERS detection of polycyclic aromatic hydrocarbons has been successfully realized.
本发明是通过以下技术方案实现的:一种MOF-贵金属纳米复合SERS基底,在醇溶液中,通过静电作用,将CTAB修饰的带正电的贵金属纳米粒子负载于MOF材料表面,形成MOF-贵金属纳米复合SERS基底。The present invention is achieved through the following technical solutions: a MOF-noble metal nanocomposite SERS substrate, in an alcohol solution, through electrostatic interaction, CTAB-modified positively charged noble metal nanoparticles are loaded on the surface of the MOF material to form a MOF-noble metal Nanocomposite SERS substrates.
MOF粒子表面含有大量不饱和金属位点,在醇溶液中,这些不饱和金属位点易被供电子基团占据,从而使得MOF呈负电性。而被CTAB包覆的贵金属纳米粒子在溶液中呈正电性,能与带负电的MOF产生静电吸引,从而通过静电相互作用将两者结合在一起。最终形成表面负载贵金属纳米粒子的MOF-贵金属纳米复合SERS基底。The surface of MOF particles contains a large number of unsaturated metal sites. In alcohol solution, these unsaturated metal sites are easily occupied by electron-donating groups, which makes MOF negatively charged. The CTAB-coated noble metal nanoparticles are positively charged in solution, and can generate electrostatic attraction with the negatively charged MOF, thereby binding the two together through electrostatic interaction. Finally, a MOF-noble metal nanocomposite SERS substrate loaded with noble metal nanoparticles is formed.
作为本发明MOF-贵金属纳米复合SERS基底技术方案的进一步改进,所述的贵金属纳米粒子为金纳米粒子、银纳米粒子或金银核壳纳米结构。As a further improvement of the MOF-noble metal nanocomposite SERS substrate technical solution of the present invention, the noble metal nanoparticles are gold nanoparticles, silver nanoparticles or gold-silver core-shell nanostructures.
作为本发明MOF-贵金属纳米复合SERS基底技术方案的进一步改进,所述的MOF材料为MIL-101(Fe)、MIL-101(Cr)或MIL-100(Fe)。As a further improvement of the MOF-noble metal nanocomposite SERS substrate technical solution of the present invention, the MOF material is MIL-101(Fe), MIL-101(Cr) or MIL-100(Fe).
本发明进一步提供了一种MOF-贵金属纳米复合SERS基底的制备方法,包括以下步骤:The present invention further provides a method for preparing a MOF-noble metal nanocomposite SERS substrate, comprising the following steps:
(1) AuNPs的制备:将2-4℃的硼氢化钠溶液迅速加入到四氯金酸和CTAB的混合溶液中,剧烈搅拌1 min,室温下静置1 h,得到金种子;(1) Preparation of AuNPs: quickly add sodium borohydride solution at 2-4 °C to the mixed solution of tetrachloroauric acid and CTAB, stir vigorously for 1 min, and stand at room temperature for 1 h to obtain gold seeds;
将CTAB、四氯金酸、抗坏血酸依次加入到超纯水中,配置生长溶液待用;将金种子稀释后加入到生长溶液中搅拌1min,室温下静置6 h,得到AuNPs;将产物离心,超纯水洗涤2次后分散在甲醇中,形成AuNPs分散液;Add CTAB, tetrachloroauric acid, and ascorbic acid to ultrapure water in turn to prepare a growth solution for use; dilute the gold seeds and add them to the growth solution and stir for 1 min, and let stand at room temperature for 6 h to obtain AuNPs; centrifuge the product, Washed twice with ultrapure water and dispersed in methanol to form AuNPs dispersion;
(2) MOF-AuNPs复合粒子制备:将MOF材料与AuNPs分散液迅速混合,搅拌1min,室温下静置1h,得到表面负载金纳米粒子的MOF-AuNPs复合SERS基底。(2) Preparation of MOF-AuNPs composite particles: The MOF material and AuNPs dispersion were quickly mixed, stirred for 1 min, and left at room temperature for 1 h to obtain a MOF-AuNPs composite SERS substrate loaded with gold nanoparticles on the surface.
本发明的制备方法简单,高效,重复率高,反应条件温和。为新型纳米复合SERS基底的设计与制备提供了切实可行的方案。The preparation method of the invention is simple, efficient, high in repetition rate and mild in reaction conditions. It provides a feasible solution for the design and preparation of new nanocomposite SERS substrates.
具体操作时,当生长溶液中金种子分散液体积越大(也就是说浓度越高、添加量越多)时,得到的AuNPs粒径越小,形貌趋近于球形;反之,当生长溶液中金种子分散液体积越小时,得到的AuNPs粒径越大,形貌趋近于多面体粒子。AuNPs分散液中,AuNPs与MOF材料的比例决定了MOF-AuNPs复合SERS基底表面负载金纳米粒子的密度,比例越高时,负载密度越大;比例越低时,负载密度越小。本发明提供的上述金纳米粒子尺寸、形貌以及负载密度精确可调机理,同样适用于其他MOF-贵金属纳米复合SERS基底的制备。In specific operations, when the volume of the gold seed dispersion in the growth solution is larger (that is to say, the concentration is higher and the amount added is more), the particle size of the obtained AuNPs is smaller, and the shape tends to be spherical; on the contrary, when the growth solution The smaller the volume of the gold seed dispersion, the larger the particle size of the obtained AuNPs, and the shape tends to be polyhedral particles. In the AuNPs dispersion, the ratio of AuNPs to MOF materials determines the density of gold nanoparticles loaded on the surface of the MOF-AuNPs composite SERS substrate. The higher the ratio, the greater the loading density; the lower the ratio, the smaller the loading density. The above-mentioned precise adjustment mechanism of the size, shape and loading density of gold nanoparticles provided by the present invention is also applicable to the preparation of other MOF-noble metal nanocomposite SERS substrates.
作为本发明制备方法技术方案的进一步改进,所述的MOF材料为MIL-101(Fe)、MIL-101(Cr)或MIL-100(Fe)。As a further improvement of the technical solution of the preparation method of the present invention, the MOF material is MIL-101(Fe), MIL-101(Cr) or MIL-100(Fe).
进一步的,本发明提供了上述任一一种MOF-贵金属纳米复合SERS基底以及上述任一一种MOF-贵金属纳米复合SERS基底的制备方法制备获得的MOF-贵金属纳米复合SERS基底在检测多环芳烃类有机物中的应用。Further, the present invention provides any one of the above-mentioned MOF-noble metal nanocomposite SERS substrates and the preparation method of any one of the above-mentioned MOF-noble metal nanocomposite SERS substrates. applications in organic compounds.
具体的,所述多环芳烃类有机物为荧蒽或萘、菲等。Specifically, the polycyclic aromatic hydrocarbons are fluoranthene, naphthalene, phenanthrene, and the like.
与现有技术相比,通过静电相互作用制备得到的MOF-AuNPs复合SERS基底具有如下的优点和有益效果:Compared with the prior art, the MOF-AuNPs composite SERS substrate prepared by electrostatic interaction has the following advantages and beneficial effects:
(1)相比较于原位生长方法,本发明通过静电相互作用将贵金属纳米粒子负载到MOF表面,可实现MOF表面金属纳米粒子的形貌、尺寸以及密度的精确可控,制备大量拉曼活性位点,进而进一步有效提高复合基底SERS性能。(1) Compared with the in-situ growth method, the present invention loads noble metal nanoparticles on the surface of MOF through electrostatic interaction, which can realize the precise and controllable shape, size and density of metal nanoparticles on the surface of MOF, and prepare a large number of Raman active sites, thereby further effectively improving the SERS performance of the composite substrate.
(2)通过原位生长方法所制备的MOF-金属纳米粒子复合SERS基底,金属前躯体等杂质容易残留在MOF孔道内,导致MOF材料孔隙率、比表面积明显下降,大大降低MOF材料对检测分子的吸附能力以及SERS检测的灵敏度与信号可重现性。而本发明所制备的MOF-AuNPs复合SERS基底,先分别合成两种粒子,再通过静电相互作用将两者结合,不影响 MOF材料对检测分子的吸附性能。(2) For the MOF-metal nanoparticle composite SERS substrate prepared by the in-situ growth method, impurities such as metal precursors tend to remain in the MOF channels, resulting in a significant decrease in the porosity and specific surface area of the MOF material, which greatly reduces the ability of the MOF material to detect molecules. The adsorption capacity and the sensitivity and signal reproducibility of SERS detection. However, for the MOF-AuNPs composite SERS substrate prepared in the present invention, two kinds of particles are first synthesized separately, and then the two are combined through electrostatic interaction, which does not affect the adsorption performance of the MOF material on the detection molecules.
(3)有效解决了多环芳烃与传统贵金属基底吸附性差,SERS响应低的问题。多环芳烃类有机物与贵金属纳米粒子结合能力弱,SERS检测困难,多采用表面修饰例如引入巯基等。本发明所制备的MOF-AuNPs复合SERS基底,具备吸附富集和拉曼增强的双重作用,无需表面修饰,可实现对荧蒽等分子的直接、高灵敏检测。(3) It effectively solves the problems of poor adsorption between PAHs and traditional noble metal substrates and low SERS response. Polycyclic aromatic hydrocarbons have weak binding ability to noble metal nanoparticles, and SERS detection is difficult, so surface modification such as introducing sulfhydryl groups is often used. The MOF-AuNPs composite SERS substrate prepared by the present invention has dual functions of adsorption enrichment and Raman enhancement, without surface modification, and can realize direct and highly sensitive detection of molecules such as fluoranthene.
附图说明Description of drawings
图1为不同粒径(平均直径)金纳米粒子负载的MOF-AuNPs复合SERS基底SEM图片。(a) 48 nm(实施例7),(b) 54 nm(实施例6),(c) 66 nm(实施例5),(d) 84 nm(实施例 4),标尺均为100nm。Figure 1 is the SEM image of the MOF-AuNPs composite SERS substrate loaded with gold nanoparticles of different particle sizes (average diameter). (a) 48 nm (Example 7), (b) 54 nm (Example 6), (c) 66 nm (Example 5), (d) 84 nm (Example 4), the scale bar is 100nm.
图2为不同负载密度的MOF-AuNPs(66 nm)复合SERS基底SEM图片。MIL-101分散液与AuNPs分散液体积比分别为(a) 1:1(实施例5),(b) 1:2(实施例8),(c)1:3(实施例9),标尺均为400nm。Figure 2 is the SEM images of MOF-AuNPs (66 nm) composite SERS substrates with different loading densities. The volume ratio of MIL-101 dispersion to AuNPs dispersion is (a) 1:1 (Example 5), (b) 1:2 (Example 8), (c) 1:3 (Example 9), scale Both are 400nm.
图3为不同浓度R6G在MOF-AuNPs(66nm、MIL-101(Cr)甲醇分散液:AuNPs分散液体积比1:2)复合SERS基底上的拉曼信号图。图中编号数字1到6分别对应的是不同浓度的R6G。Figure 3 is the Raman signal diagram of different concentrations of R6G on MOF-AuNPs (66nm, MIL-101 (Cr) methanol dispersion: AuNPs dispersion volume ratio 1:2) composite SERS substrate. Numbers 1 to 6 in the figure correspond to different concentrations of R6G.
图4为不同浓度荧蒽在MOF-AuNPs(66 nm、MIL-101(Cr)甲醇分散液:AuNPs分散液体积比1:2)复合SERS基底上的拉曼信号图。图中编号数字1到6分别对应的是不同浓度的荧蒽。Figure 4 is the Raman signal diagram of MOF-AuNPs (66 nm, MIL-101 (Cr) methanol dispersion: AuNPs dispersion volume ratio 1:2) composite SERS substrate with different concentrations of fluoranthene. Numbers 1 to 6 in the figure correspond to different concentrations of fluoranthene.
具体实施方式detailed description
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following clearly and completely describes the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
为了更清楚的说明本发明所述的MOF-贵金属纳米复合SERS基底,本发明下面详细叙述MOF-AuNPs复合SERS基底的制备方法。采用该制备方法的原料比例、浓度及工艺条件制备获得的SERS基底,相对于其他制备方法,对多环芳烃类有机物的检测更加灵敏。In order to illustrate the MOF-noble metal nanocomposite SERS substrate described in the present invention more clearly, the present invention will describe the preparation method of the MOF-AuNPs composite SERS substrate in detail below. Compared with other preparation methods, the SERS substrate prepared by using the raw material ratio, concentration and process conditions of this preparation method is more sensitive to the detection of polycyclic aromatic hydrocarbons.
所述的MOF-AuNPs复合SERS基底的制备方法,包括如下步骤:The preparation method of described MOF-AuNPs composite SERS substrate, comprises the steps:
①MIL-101的制备:将5mmol的硝酸铬九水合物、氢氟酸、对苯二甲酸和24mL的去离子水加入到反应釜中,220℃下恒温12h后,1h内逐渐降温至150℃,12h内缓慢降至室温。将产物离心分离,得到MIL-101(Cr) 粉末。将1 mg MIL-101(Cr)粉末分散在10 mL甲醇中,得到浓度为0.1 mg/mL的MIL-101(Cr)甲醇分散液。① Preparation of MIL-101: Add 5mmol of chromium nitrate nonahydrate, hydrofluoric acid, terephthalic acid and 24mL of deionized water into the reaction kettle, keep the temperature at 220°C for 12h, then gradually cool down to 150°C within 1h, Slowly drop to room temperature within 12h. The product was centrifuged to obtain MIL-101(Cr) powder. Disperse 1 mg of MIL-101(Cr) powder in 10 mL of methanol to obtain a MIL-101(Cr) methanol dispersion with a concentration of 0.1 mg/mL.
(1) AuNPs的制备:采用种子生长法将2-4℃的硼氢化钠(0.01M,0.6mL)溶液迅速加入到四氯金酸(0.01M,0.25mL)和CTAB(0.1M,7.5mL)的混合溶液中,剧烈搅拌1min,室温下静置1h,得到金种子。(1) Preparation of AuNPs: Rapidly add sodium borohydride (0.01M, 0.6mL) solution at 2-4°C to tetrachloroauric acid (0.01M, 0.25mL) and CTAB (0.1M, 7.5mL) by seed growth method ) in the mixed solution, vigorously stirred for 1 min, and stood at room temperature for 1 h to obtain gold seeds.
将CTAB(0.1M,6.4mL),四氯金酸(0.01M,6.8mL),抗坏血酸(0.1M,3.8mL)依次加入到32mL超纯水中,配置生长溶液。将金种子稀释10倍后取15μL~40μL加入到生长溶液中搅拌1min,室温下静置6h,得到平均粒径48nm~84nm的AuNPs纳米粒子。将产物离心,超纯水洗涤2次后分散在8mL的甲醇中,得到AuNPs分散液。Add CTAB (0.1M, 6.4mL), tetrachloroauric acid (0.01M, 6.8mL), and ascorbic acid (0.1M, 3.8mL) to 32mL ultrapure water in sequence to prepare a growth solution. After diluting the gold seeds 10 times, take 15 μL~40 μL and add them to the growth solution, stir for 1 min, and let stand at room temperature for 6 h to obtain AuNPs nanoparticles with an average particle size of 48 nm~84 nm. The product was centrifuged, washed twice with ultrapure water, and then dispersed in 8 mL of methanol to obtain the AuNPs dispersion.
(2)MOF-AuNPs复合粒子制备:将MIL-101(Cr)甲醇分散液与不同粒径AuNPs分散液按照体积比1:3~1:1迅速混合,剧烈搅拌1min,室温下静置1h,得到表面负载不同粒径、不同密度的MOF-AuNPs复合SERS基底。(2) Preparation of MOF-AuNPs composite particles: MIL-101(Cr) methanol dispersion and AuNPs dispersion with different particle sizes were quickly mixed according to the volume ratio of 1:3~1:1, vigorously stirred for 1 min, and left to stand at room temperature for 1 h. The MOF-AuNPs composite SERS substrates with different particle sizes and densities loaded on the surface were obtained.
在上述制备方法中,所采用的“剧烈搅拌”的搅拌速率为800r/min,所采用的“搅拌”的搅拌速率为350r/min。In the above preparation method, the stirring rate of the "vigorous stirring" used is 800r/min, and the stirring rate of the "stirring" is 350r/min.
优选的,步骤(1)中产物离心分离后得到的MIL-101(Cr) 粉末,用60℃乙醇和N,N-二甲基甲酰胺(DMF)溶液清洗。再将上述产物浸泡在乙醇中,回流6小时,充分清除孔道内未反应的残留物。150℃真空干燥12h,充分去除MOF材料表面的不饱和金属位点残余水分子。Preferably, the MIL-101(Cr) powder obtained after centrifugation of the product in step (1) is washed with 60°C ethanol and N,N-dimethylformamide (DMF) solution. Then soak the above product in ethanol and reflux for 6 hours to fully remove unreacted residues in the pores. Vacuum drying at 150°C for 12 hours fully removes residual water molecules on the unsaturated metal sites on the surface of the MOF material.
具体的,步骤(2)中,金种子稀释10倍后取15 μL~40 μL加入到生长溶液中,得到粒径48nm~84nm的AuNPs。其中优选金种子添加量为20μL,当添加量为20μL时,AuNPs的粒径为66nm。Specifically, in step (2), 15 μL to 40 μL of the gold seeds were diluted 10 times and added to the growth solution to obtain AuNPs with a particle size of 48 nm to 84 nm. Among them, the preferred amount of gold seeds added is 20 μL, and when the added amount is 20 μL, the particle size of AuNPs is 66 nm.
进一步的,步骤(3)将MIL-101(Cr)甲醇分散液与不同粒径AuNPs分散液按照体积比1:3 ~1:1迅速混合,其中优选体积比为1:2。Further, in step (3), the methanol dispersion of MIL-101(Cr) and the dispersion of AuNPs with different particle sizes are rapidly mixed according to the volume ratio of 1:3 to 1:1, and the preferred volume ratio is 1:2.
下面结合附图对本发明所述的MOF-AuNPs复合SERS基底进行详细的说明The MOF-AuNPs composite SERS substrate of the present invention will be described in detail below in conjunction with the accompanying drawings
实施例1:Example 1:
金种子的制备,其步骤为:The preparation of gold seed, its step is:
将2-4℃的硼氢化钠(0.01M,0.6mL)溶液迅速加入到四氯金酸(0.01M,0.25mL)和CTAB(0.1M,7.5mL)的混合溶液中,剧烈搅拌1min,室温下静置1h,得到金种子(8.35 mL)。Quickly add sodium borohydride (0.01M, 0.6mL) solution at 2-4°C to a mixed solution of tetrachloroauric acid (0.01M, 0.25mL) and CTAB (0.1M, 7.5mL), stir vigorously for 1min, and After standing for 1 h, gold seeds (8.35 mL) were obtained.
实施例2:Example 2:
金种子生长溶液的制备,其步骤为:The preparation of gold seed growth solution, its step is:
将CTAB(0.1M,6.4mL),四氯金酸(0.01M,6.8mL),抗坏血酸(0.1M,3.8mL)依次加入到32mL超纯水中,配置成金种子生长溶液(49 mL)。Add CTAB (0.1M, 6.4mL), tetrachloroauric acid (0.01M, 6.8mL), and ascorbic acid (0.1M, 3.8mL) to 32mL ultrapure water in sequence to prepare a gold seed growth solution (49 mL).
实施例3:Example 3:
MIL-101(Cr)的制备:Preparation of MIL-101(Cr):
将5mmol的硝酸铬九水合物、氢氟酸、对苯二甲酸和24mL的去离子水加入到100mL反应釜中,220℃下恒温12h后,1h内逐渐降温至150℃,12h内缓慢降至室温。将产物离心分离,用60℃乙醇和DMF溶液清洗。再将上述产物浸泡在乙醇中,回流6小时,150℃真空干燥12h,得到MIL-101(Cr)粉末。将1 mgMIL-101(Cr)粉末分散在10mL甲醇中,得到浓度为0.1mg/mL的MIL-101(Cr)甲醇分散液。Add 5mmol of chromium nitrate nonahydrate, hydrofluoric acid, terephthalic acid and 24mL of deionized water into a 100mL reaction kettle. room temperature. The product was centrifuged and washed with 60°C ethanol and DMF solution. The above product was then soaked in ethanol, refluxed for 6 hours, and vacuum-dried at 150° C. for 12 hours to obtain MIL-101 (Cr) powder. Disperse 1 mg of MIL-101(Cr) powder in 10 mL of methanol to obtain a MIL-101(Cr) methanol dispersion with a concentration of 0.1 mg/mL.
实施例4:Example 4:
一种MOF-AuNPs复合SERS基底的制备方法,其步骤为:A method for preparing a MOF-AuNPs composite SERS substrate, the steps of which are:
将实施例1中获得的金种子稀释10倍后,取15μL加入到实施例2制备的生长溶液中搅拌1min,室温下静置6h。得到平均粒径约为84nm的AuNPs。将产物离心,用超纯水洗涤2次后分散在8 mL的甲醇溶液中。After diluting the gold seeds obtained in Example 1 by 10 times, 15 μL was added to the growth solution prepared in Example 2, stirred for 1 min, and left standing at room temperature for 6 h. AuNPs with an average particle size of about 84 nm were obtained. The product was centrifuged, washed twice with ultrapure water, and dispersed in 8 mL of methanol solution.
将实施例3所获得的MIL-101(Cr)分散液与平均粒径为84 nm的AuNPs分散液按体积比为1:1迅速混合,剧烈搅拌1min,室温下静置1h,得到MOF-AuNPs复合SERS基底分散液。如附图1d。The MIL-101 (Cr) dispersion obtained in Example 3 and the AuNPs dispersion with an average particle diameter of 84 nm were quickly mixed at a volume ratio of 1:1, vigorously stirred for 1 min, and left to stand at room temperature for 1 h to obtain MOF-AuNPs Composite SERS substrate dispersion. As shown in Figure 1d.
实施例5:Example 5:
一种MOF-AuNPs复合SERS基底的制备方法,其步骤为:A method for preparing a MOF-AuNPs composite SERS substrate, the steps of which are:
将实施例1中获得的金种子稀释10倍后,取20 μL加入到实施例2制备的生长溶液中搅拌1min,室温下静置6 h,得到平均粒径约为66 nm的AuNPs。将产物离心,用超纯水洗涤后分散在8 mL的甲醇溶液中。After diluting the gold seeds obtained in Example 1 by 10 times, 20 μL was added to the growth solution prepared in Example 2, stirred for 1 min, and left at room temperature for 6 h to obtain AuNPs with an average particle size of about 66 nm. The product was centrifuged, washed with ultrapure water and dispersed in 8 mL of methanol solution.
将实施例3所获得的MIL-101(Cr)分散液与平均粒径为66 nm的AuNPs分散液按体积比为1:1迅速混合,剧烈搅拌1min,室温下静置1h,得到MOF-AuNPs复合SERS基底分散液。如附图1c与2a。The MIL-101 (Cr) dispersion obtained in Example 3 and the AuNPs dispersion with an average particle diameter of 66 nm were quickly mixed at a volume ratio of 1:1, vigorously stirred for 1 min, and left to stand at room temperature for 1 h to obtain MOF-AuNPs Composite SERS substrate dispersion. As shown in Figures 1c and 2a.
实施例6:Embodiment 6:
一种MOF-AuNPs复合SERS基底的制备方法,其步骤为:A method for preparing a MOF-AuNPs composite SERS substrate, the steps of which are:
将实施例1中获得的金种子稀释10倍后,取30 μL加入到实施例2制备的生长溶液中搅拌1min,室温下静置6 h,得到平均粒径约为54 nm的AuNPs。将产物离心,用超纯水洗涤后分散在8 mL的甲醇溶液中。After diluting the gold seeds obtained in Example 1 by 10 times, 30 μL was added to the growth solution prepared in Example 2, stirred for 1 min, and left at room temperature for 6 h to obtain AuNPs with an average particle size of about 54 nm. The product was centrifuged, washed with ultrapure water and dispersed in 8 mL of methanol solution.
将实施例3所获得的MIL-101(Cr)分散液与平均粒径为54 nm的AuNPs分散液按体积比为1:1迅速混合,剧烈搅拌1min,室温下静置1h,得到MOF-AuNPs复合SERS基底分散液。如附图1b。The MIL-101 (Cr) dispersion obtained in Example 3 and the AuNPs dispersion with an average particle diameter of 54 nm were quickly mixed at a volume ratio of 1:1, vigorously stirred for 1 min, and left to stand at room temperature for 1 h to obtain MOF-AuNPs Composite SERS substrate dispersion. As shown in Figure 1b.
实施例7:Embodiment 7:
一种MOF-AuNPs复合SERS基底的制备方法,其步骤为:A method for preparing a MOF-AuNPs composite SERS substrate, the steps of which are:
将实施例1中获得的金种子稀释10倍后,取40 μL加入到实施例2制备的生长溶液中搅拌1min,室温下静置6 h。得到平均粒径约为48 nm的AuNPs。将产物离心,用超纯水洗涤后分散在8 mL的甲醇溶液中。After diluting the gold seeds obtained in Example 1 by 10 times, 40 μL was added to the growth solution prepared in Example 2, stirred for 1 min, and allowed to stand at room temperature for 6 h. AuNPs with an average particle size of about 48 nm were obtained. The product was centrifuged, washed with ultrapure water and dispersed in 8 mL of methanol solution.
将实施例3所获得的MIL-101(Cr)分散液与平均粒径为48 nm的AuNPs分散液按体积比为1:1迅速混合,剧烈搅拌1min,室温下静置1h,得到MOF-AuNPs复合SERS基底分散液。如附图1 a。The MIL-101 (Cr) dispersion obtained in Example 3 and the AuNPs dispersion with an average particle diameter of 48 nm were quickly mixed at a volume ratio of 1:1, vigorously stirred for 1 min, and left to stand at room temperature for 1 h to obtain MOF-AuNPs Composite SERS substrate dispersion. As shown in Figure 1 a.
实施例8:Embodiment 8:
一种MOF-AuNPs复合SERS基底的制备方法,其步骤为:A method for preparing a MOF-AuNPs composite SERS substrate, the steps of which are:
将实施例3所获得的MIL-101(Cr)分散液与实施例5中获得的粒径为66 nm的AuNPs分散液按体积比为1:2迅速混合,剧烈搅拌1 min,室温下静置1h,得到MOF-AuNPs复合SERS基底分散液。如附图2b。The MIL-101(Cr) dispersion obtained in Example 3 and the AuNPs dispersion with a particle size of 66 nm obtained in Example 5 were quickly mixed at a volume ratio of 1:2, vigorously stirred for 1 min, and left to stand at room temperature After 1h, the MOF-AuNPs composite SERS substrate dispersion was obtained. As shown in Figure 2b.
实施例9:Embodiment 9:
一种MOF-AuNPs复合SERS基底的制备方法,其步骤为:A method for preparing a MOF-AuNPs composite SERS substrate, the steps of which are:
将实施例3所获得的MIL-101(Cr)分散液与实施例5中获得的粒径为66 nm的AuNPs分散液按体积比为1:3迅速混合,剧烈搅拌1min,室温下静置1h,得到MOF-AuNPs复合SERS基底分散液。如附图2c。The MIL-101(Cr) dispersion obtained in Example 3 and the AuNPs dispersion with a particle size of 66 nm obtained in Example 5 were quickly mixed at a volume ratio of 1:3, vigorously stirred for 1 min, and left to stand at room temperature for 1 h , to obtain MOF-AuNPs composite SERS substrate dispersion. As shown in Figure 2c.
实施例10:Example 10:
一种MOF-AuNPs复合SERS基底检测生物探针分子罗丹明6G,其检测步骤为:取0.5mL 不同浓度R6G待检测溶液于1mL离心管中,再加入0.5mL 实施例8所获得的MOF-AuNPs复合SERS基底分散液,上下倒置,使其混合均匀。静置40 min后,4000 rpm离心,取出0.8mL上层液体。将剩余固液部分超声3秒,使得吸附了R6G分子的MOF-AuNPs复合粒子重新分散。吸取15μL分散液于硅片上。待甲醇挥发后进行拉曼检测。拉曼检测激光波长为532nm,功率为3mW,积分时间为10s。如附图3。当然,通过其他制备方法(原料比例、浓度及工艺条件不同)获得的MOF-贵金属纳米复合SERS基底也可通过上述检测方法实现生物探针分子罗丹明6G的检测。A MOF-AuNPs composite SERS substrate for detecting the bioprobe molecule rhodamine 6G, the detection step is: take 0.5mL of different concentrations of R6G solution to be detected in a 1mL centrifuge tube, and then add 0.5mL of the MOF-AuNPs obtained in Example 8 Composite SERS base dispersion, invert up and down to make it evenly mixed. After standing still for 40 min, centrifuge at 4000 rpm, and take out 0.8 mL of the upper layer liquid. The remaining solid-liquid part was ultrasonicated for 3 seconds, so that the MOF-AuNPs composite particles adsorbed with R6G molecules were redispersed. Pipette 15 μL of the dispersion onto the silicon wafer. Raman detection was performed after the methanol evaporated. The wavelength of the Raman detection laser is 532nm, the power is 3mW, and the integration time is 10s. As shown in Figure 3. Of course, the MOF-noble metal nanocomposite SERS substrate obtained by other preparation methods (with different raw material ratios, concentrations and process conditions) can also be used to detect the bioprobe molecule rhodamine 6G by the above detection method.
实施例11:Example 11:
一种MOF-AuNPs复合SERS基底检测多环芳烃类有机物-荧蒽分子,其检测步骤为:A MOF-AuNPs composite SERS substrate detects polycyclic aromatic hydrocarbons-fluoranthene molecules, and the detection steps are:
取0.5mL不同浓度荧蒽待检测溶液于1mL离心管中,再加入0.5mL 实施例8所获得的MOF-AuNPs复合SERS基底分散液,上下倒置,使其混合均匀。静置40min后,4000rpm离心,取出0.8mL上层液体。将剩余固液部分超声3秒,使得吸附了荧蒽分子的MOF-Au复合粒子重新分散。吸取15μL分散液于硅片上。待甲醇挥发后进行拉曼检测。拉曼检测激光波长为532nm,功率为3mW,积分时间为10s。如附图4。当然,通过其他制备方法(原料比例、浓度及工艺条件不同)获得的MOF-贵金属纳米复合SERS基底也可通过上述检测方法实现多环芳烃类有机物-荧蒽分子的检测。Take 0.5mL of different concentrations of fluoranthene to be tested in a 1mL centrifuge tube, then add 0.5mL of the MOF-AuNPs composite SERS substrate dispersion obtained in Example 8, invert up and down to mix evenly. After standing still for 40min, centrifuge at 4000rpm, and take out 0.8mL upper layer liquid. The remaining solid-liquid part was ultrasonicated for 3 seconds, so that the MOF-Au composite particles adsorbed with fluoranthene molecules were redispersed. Pipette 15 μL of the dispersion onto the silicon wafer. Raman detection was performed after the methanol evaporated. The wavelength of the Raman detection laser is 532nm, the power is 3mW, and the integration time is 10s. As shown in Figure 4. Of course, MOF-noble metal nanocomposite SERS substrates obtained by other preparation methods (with different raw material ratios, concentrations, and process conditions) can also be used to detect polycyclic aromatic hydrocarbons-fluoranthene molecules through the above-mentioned detection method.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710486565.9A CN107478635B (en) | 2017-06-23 | 2017-06-23 | A kind of MOF-precious metal composite SERS substrate and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710486565.9A CN107478635B (en) | 2017-06-23 | 2017-06-23 | A kind of MOF-precious metal composite SERS substrate and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107478635A true CN107478635A (en) | 2017-12-15 |
CN107478635B CN107478635B (en) | 2020-09-04 |
Family
ID=60594462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710486565.9A Active CN107478635B (en) | 2017-06-23 | 2017-06-23 | A kind of MOF-precious metal composite SERS substrate and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107478635B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108195903A (en) * | 2017-12-25 | 2018-06-22 | 济南大学 | A kind of preparation method of electrochemical sensing material to arsenic detection |
CN108414494A (en) * | 2018-01-24 | 2018-08-17 | 中国工程物理研究院化工材料研究所 | For the MOFs@precious metal surfaces enhancing Raman scattering substrate of trace harmful toxic matter detection, preparation method and application |
CN108918855A (en) * | 2018-07-31 | 2018-11-30 | 济南大学 | A kind of preparation method and application based on signal " on-off " type Electrochemiluminescsensor sensor that AgNCs is illuminator |
CN108982466A (en) * | 2018-06-06 | 2018-12-11 | 上海应用技术大学 | A method of for antibiotic field quick detection in Amoxicillin in water body |
CN109119253A (en) * | 2018-09-12 | 2019-01-01 | 安徽大学 | Composite metal-organic framework material, composite metal oxide-organic framework material, preparation method and application |
CN110054791A (en) * | 2019-06-04 | 2019-07-26 | 中国工程物理研究院化工材料研究所 | MOFs- noble metal ordered composite material and its preparation method and application |
WO2019205364A1 (en) * | 2018-04-28 | 2019-10-31 | 厦门斯贝克科技有限责任公司 | Enhanced raman detection method using satellite structure |
CN110646400A (en) * | 2019-10-08 | 2020-01-03 | 吉林师范大学 | A kind of PS/Ag/ZIF-8 composite structure surface-enhanced Raman scattering active substrate and preparation method thereof |
CN110687098A (en) * | 2019-10-30 | 2020-01-14 | 江南大学 | Preparation method of nano-silver SERS substrate based on polyurethane |
CN111982881A (en) * | 2020-08-19 | 2020-11-24 | 东南大学 | A magnetic recyclable surface-enhanced Raman substrate and its preparation method |
CN112649413A (en) * | 2020-11-03 | 2021-04-13 | 中山大学 | Nano-gold-MOF composite flexible SERS film substrate and preparation method and application thereof |
CN112730375A (en) * | 2020-12-16 | 2021-04-30 | 厦门大学 | Method for detecting VOC gas by using MOF-coated gold nanoparticles through enhanced Raman spectroscopy |
CN112798571A (en) * | 2020-12-29 | 2021-05-14 | 中国检验检疫科学研究院 | A kind of preparation method of SERS substrate, SERS substrate and application thereof |
CN112986215A (en) * | 2021-04-20 | 2021-06-18 | 江南大学 | Method for detecting benzoic acid in milk based on surface enhanced Raman spectroscopy |
CN113138185A (en) * | 2021-04-28 | 2021-07-20 | 江南大学 | Method for detecting sodium thiocyanate in milk by using SERS (surface enhanced Raman Scattering) technology based on MOF (metal-organic framework) |
CN113484304A (en) * | 2021-07-28 | 2021-10-08 | 上海应用技术大学 | AuNP/UiO-68 composite material and preparation method and application thereof |
CN113603894A (en) * | 2021-07-23 | 2021-11-05 | 上海应用技术大学 | Ag-MOF/AuNRs nano composite material and preparation and application thereof |
CN113624730A (en) * | 2021-08-26 | 2021-11-09 | 军事科学院军事医学研究院环境医学与作业医学研究所 | Application of precious metal-doped metal-organic framework composites in the detection of tetrodotoxin, detection method of tetrodotoxin |
CN113667138A (en) * | 2021-09-28 | 2021-11-19 | 上海师范大学 | Silver-gold-metal organic framework compound surface enhanced Raman scattering substrate and preparation method and application thereof |
CN113933283A (en) * | 2021-09-28 | 2022-01-14 | 中山大学 | Composite SERS substrate and preparation method and application thereof |
CN115372347A (en) * | 2022-05-28 | 2022-11-22 | 浙江大学 | Cyfra21-1 detection kit and application in saliva based on AuNPs/HRP/FeMOF synergy |
CN115561218A (en) * | 2021-07-01 | 2023-01-03 | 中国科学院宁波材料技术与工程研究所 | Noble metal-semiconductor composite material and preparation method and application thereof |
CN118085852A (en) * | 2024-02-29 | 2024-05-28 | 宁夏大学 | Preparation method and application of metal organic framework and AuAg NPs composite material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101934380A (en) * | 2010-10-14 | 2011-01-05 | 杭州启泰生物技术有限公司 | Preparation method of immune colloidal gold particles capable of being used for rapid diagnosis |
CN106546571A (en) * | 2015-09-21 | 2017-03-29 | 中国科学院宁波材料技术与工程研究所 | A method for detecting polycyclic aromatic hydrocarbons in liquid phase |
-
2017
- 2017-06-23 CN CN201710486565.9A patent/CN107478635B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101934380A (en) * | 2010-10-14 | 2011-01-05 | 杭州启泰生物技术有限公司 | Preparation method of immune colloidal gold particles capable of being used for rapid diagnosis |
CN106546571A (en) * | 2015-09-21 | 2017-03-29 | 中国科学院宁波材料技术与工程研究所 | A method for detecting polycyclic aromatic hydrocarbons in liquid phase |
Non-Patent Citations (5)
Title |
---|
JIA LIAO ET AL: "Controlled stepwise-synthesis of core–shell Au@MIL-100 (Fe) nanoparticles for sensitive surface-enhanced Raman scattering detection", 《ANALYST》 * |
ZHONGWEI JIANG ET AL: "Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal−Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine", 《ANALYTICAL CHEMISTRY》 * |
宋莉芳等: "中孔金属有机骨架材料的制备与应用", 《化学进展》 * |
王嘉骏: "柔性SERS基底以及石墨烯用于提高基底稳定性的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
纪伟: "表面增强拉曼散射化学增强机理的研究及其应用", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108195903A (en) * | 2017-12-25 | 2018-06-22 | 济南大学 | A kind of preparation method of electrochemical sensing material to arsenic detection |
CN108195903B (en) * | 2017-12-25 | 2019-07-02 | 济南大学 | A kind of preparation method of electrochemical sensing material for arsenic detection |
CN108414494A (en) * | 2018-01-24 | 2018-08-17 | 中国工程物理研究院化工材料研究所 | For the MOFs@precious metal surfaces enhancing Raman scattering substrate of trace harmful toxic matter detection, preparation method and application |
WO2019205364A1 (en) * | 2018-04-28 | 2019-10-31 | 厦门斯贝克科技有限责任公司 | Enhanced raman detection method using satellite structure |
CN108982466A (en) * | 2018-06-06 | 2018-12-11 | 上海应用技术大学 | A method of for antibiotic field quick detection in Amoxicillin in water body |
CN108982466B (en) * | 2018-06-06 | 2021-09-28 | 上海应用技术大学 | Method for rapidly detecting amoxicillin antibiotics in water body on site |
CN108918855A (en) * | 2018-07-31 | 2018-11-30 | 济南大学 | A kind of preparation method and application based on signal " on-off " type Electrochemiluminescsensor sensor that AgNCs is illuminator |
CN109119253A (en) * | 2018-09-12 | 2019-01-01 | 安徽大学 | Composite metal-organic framework material, composite metal oxide-organic framework material, preparation method and application |
CN109119253B (en) * | 2018-09-12 | 2020-06-02 | 安徽大学 | Composite metal-organic framework material, composite metal oxide-organic framework material, preparation method and application |
CN110054791A (en) * | 2019-06-04 | 2019-07-26 | 中国工程物理研究院化工材料研究所 | MOFs- noble metal ordered composite material and its preparation method and application |
CN110054791B (en) * | 2019-06-04 | 2021-06-22 | 中国工程物理研究院化工材料研究所 | MOFs-noble metal ordered composite material and preparation method and application thereof |
CN110646400A (en) * | 2019-10-08 | 2020-01-03 | 吉林师范大学 | A kind of PS/Ag/ZIF-8 composite structure surface-enhanced Raman scattering active substrate and preparation method thereof |
CN110687098B (en) * | 2019-10-30 | 2020-09-08 | 江南大学 | Preparation method of nano-silver SERS substrate based on polyurethane |
CN110687098A (en) * | 2019-10-30 | 2020-01-14 | 江南大学 | Preparation method of nano-silver SERS substrate based on polyurethane |
CN111982881A (en) * | 2020-08-19 | 2020-11-24 | 东南大学 | A magnetic recyclable surface-enhanced Raman substrate and its preparation method |
CN112649413A (en) * | 2020-11-03 | 2021-04-13 | 中山大学 | Nano-gold-MOF composite flexible SERS film substrate and preparation method and application thereof |
CN112730375A (en) * | 2020-12-16 | 2021-04-30 | 厦门大学 | Method for detecting VOC gas by using MOF-coated gold nanoparticles through enhanced Raman spectroscopy |
CN112798571A (en) * | 2020-12-29 | 2021-05-14 | 中国检验检疫科学研究院 | A kind of preparation method of SERS substrate, SERS substrate and application thereof |
WO2022142109A1 (en) * | 2020-12-29 | 2022-07-07 | 中国检验检疫科学研究院 | Preparation method for sers substrate, sers substrate, and application |
CN112986215A (en) * | 2021-04-20 | 2021-06-18 | 江南大学 | Method for detecting benzoic acid in milk based on surface enhanced Raman spectroscopy |
CN112986215B (en) * | 2021-04-20 | 2022-08-02 | 江南大学 | Method for detecting benzoic acid in milk based on surface enhanced Raman spectroscopy |
CN113138185A (en) * | 2021-04-28 | 2021-07-20 | 江南大学 | Method for detecting sodium thiocyanate in milk by using SERS (surface enhanced Raman Scattering) technology based on MOF (metal-organic framework) |
CN115561218A (en) * | 2021-07-01 | 2023-01-03 | 中国科学院宁波材料技术与工程研究所 | Noble metal-semiconductor composite material and preparation method and application thereof |
CN113603894A (en) * | 2021-07-23 | 2021-11-05 | 上海应用技术大学 | Ag-MOF/AuNRs nano composite material and preparation and application thereof |
CN113603894B (en) * | 2021-07-23 | 2022-08-16 | 上海应用技术大学 | Ag-MOF/AuNRs nano composite material and preparation and application thereof |
CN113484304A (en) * | 2021-07-28 | 2021-10-08 | 上海应用技术大学 | AuNP/UiO-68 composite material and preparation method and application thereof |
CN113624730A (en) * | 2021-08-26 | 2021-11-09 | 军事科学院军事医学研究院环境医学与作业医学研究所 | Application of precious metal-doped metal-organic framework composites in the detection of tetrodotoxin, detection method of tetrodotoxin |
CN113667138A (en) * | 2021-09-28 | 2021-11-19 | 上海师范大学 | Silver-gold-metal organic framework compound surface enhanced Raman scattering substrate and preparation method and application thereof |
CN113933283A (en) * | 2021-09-28 | 2022-01-14 | 中山大学 | Composite SERS substrate and preparation method and application thereof |
CN113667138B (en) * | 2021-09-28 | 2023-03-14 | 上海师范大学 | Silver-gold-metal organic framework compound surface enhanced Raman scattering substrate and preparation method and application thereof |
CN115372347A (en) * | 2022-05-28 | 2022-11-22 | 浙江大学 | Cyfra21-1 detection kit and application in saliva based on AuNPs/HRP/FeMOF synergy |
CN118085852A (en) * | 2024-02-29 | 2024-05-28 | 宁夏大学 | Preparation method and application of metal organic framework and AuAg NPs composite material |
CN118085852B (en) * | 2024-02-29 | 2024-08-06 | 宁夏大学 | Preparation method and application of metal organic framework and AuAg NPs composite material |
Also Published As
Publication number | Publication date |
---|---|
CN107478635B (en) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107478635B (en) | A kind of MOF-precious metal composite SERS substrate and preparation method thereof | |
Liu et al. | Multifunctional nanoparticle@ MOF core–shell nanostructures | |
CN107436300B (en) | Surface enhanced Raman scattering substrate material and preparation method thereof | |
Cao et al. | SERS-active metal–organic frameworks with embedded gold nanoparticles | |
CN102773495B (en) | Composite material of graphene oxide/ nanometer precious metal with surface enhanced Raman effect and preparation thereof | |
Wang et al. | Cobalt-based metal-organic frameworks as co-reaction accelerator for enhancing electrochemiluminescence behavior of N-(aminobutyl)-N-(ethylisoluminol) and ultrasensitive immunosensing of amyloid-β protein | |
CN103056384B (en) | Preparation method of precious metal and magnetic nano particles | |
CN108940269B (en) | Nano alloy and preparation method thereof | |
CN111289493A (en) | Surface-enhanced Raman substrate and preparation method thereof | |
CN106623894B (en) | Magnetic coupling particle and its preparation method and application | |
CN105798289A (en) | Preparation method and application of carbon shell isolated noble metal nanoparticles | |
CN107099787B (en) | A surface-enhanced Raman scattering substrate and its preparation method | |
CN105911044A (en) | Surface enhanced Raman spectrum substrate with nanogap and preparation method thereof | |
CN107583627A (en) | A kind of Au nano particles/graphene oxide composite material and its preparation method and application | |
CN106546571A (en) | A method for detecting polycyclic aromatic hydrocarbons in liquid phase | |
CN106596501A (en) | Magnetic movable Raman enhanced chip, and preparation method and application thereof | |
CN110082338A (en) | Superparamagnetism Fe3O4@SiO2@Ag nanocomposite is used for the method detected to oxacillin SERS | |
CN108526487A (en) | A kind of preparation method of macro-size closs packing gold nano grain monofilm | |
CN102990083A (en) | Preparation method of silver nanometer particle film | |
CN105842229B (en) | A kind of nucleocapsid SERS probes, preparation method and its application in trace arsenic acid ion context of detection | |
CN108568519B (en) | A kind of preparation method and application of silver nanocomposite material | |
CN108580919B (en) | Preparation method of silver core mesoporous gold nanostructure material, surface enhanced Raman detection probe and application thereof | |
CN107275023A (en) | Golden shell magnetic bead and its preparation method and application | |
CN105819434B (en) | A kind of surface-enhanced Raman base material and preparation method thereof | |
CN116718582A (en) | Surface-enhanced Raman scattering active flexible substrate and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |