[go: up one dir, main page]

CN107459565A - Application of the soybean drought resisting GAP-associated protein GAP in regulating and controlling soybean drought resistance - Google Patents

Application of the soybean drought resisting GAP-associated protein GAP in regulating and controlling soybean drought resistance Download PDF

Info

Publication number
CN107459565A
CN107459565A CN201710873361.0A CN201710873361A CN107459565A CN 107459565 A CN107459565 A CN 107459565A CN 201710873361 A CN201710873361 A CN 201710873361A CN 107459565 A CN107459565 A CN 107459565A
Authority
CN
China
Prior art keywords
drought
plant
sequence
gmsqe1
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710873361.0A
Other languages
Chinese (zh)
Other versions
CN107459565B (en
Inventor
矫永庆
沈欣杰
王岩岩
包爱丽
张永兴
郭葳
周新安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oil Crops Research Institute of Chinese Academy of Agriculture Sciences
Original Assignee
Oil Crops Research Institute of Chinese Academy of Agriculture Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oil Crops Research Institute of Chinese Academy of Agriculture Sciences filed Critical Oil Crops Research Institute of Chinese Academy of Agriculture Sciences
Priority to CN201710873361.0A priority Critical patent/CN107459565B/en
Publication of CN107459565A publication Critical patent/CN107459565A/en
Application granted granted Critical
Publication of CN107459565B publication Critical patent/CN107459565B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了大豆抗旱相关蛋白在调控大豆抗旱性中的应用。本发明公开的大豆抗旱相关蛋白(GmSQE1)为如下A1)或A2)或A3):A1)氨基酸序列为序列1的蛋白质;A2)在序列1的氨基酸序列中经过取代和/或缺失和/或添加一个或几个氨基酸残基得到的具有相同功能的由A1)衍生的蛋白质;A3)在A1)或A2)的N端或/和C端连接标签得到的融合蛋白质。实验证明,与未转GmSQE1基因的植株相比,阳性转GmSQE1基因植株在干旱处理后,表现耐旱性状;而在复水处理后,未转GmSQE1基因的植株死亡,而阳性转GmSQE1基因植株能正常生长。表明,GmSQE1及其编码基因可以提高植物的抗旱性。The invention discloses the application of soybean drought-resistance-related protein in regulating soybean drought-resistance. The soybean drought resistance-related protein (GmSQE1) disclosed by the present invention is the following A1) or A2) or A3): A1) the protein whose amino acid sequence is sequence 1; A2) the amino acid sequence of sequence 1 is substituted and/or deleted and/or A protein derived from A1) with the same function obtained by adding one or several amino acid residues; A3) a fusion protein obtained by linking tags at the N-terminal or/and C-terminal of A1) or A2). Experiments have shown that, compared with plants without GmSQE1 gene transfection, plants positively transfected with GmSQE1 gene show drought-tolerant traits after drought treatment; and after rehydration treatment, plants without GmSQE1 gene transfection die, while positive GmSQE1 gene transgenic plants can normal growth. It was shown that GmSQE1 and its coding gene can improve the drought resistance of plants.

Description

大豆抗旱相关蛋白在调控大豆抗旱性中的应用Application of Soybean Drought Resistance Related Proteins in Regulating Soybean Drought Resistance

技术领域technical field

本发明涉及生物技术领域中,大豆抗旱相关蛋白在调控大豆抗旱性中的应用。The invention relates to the application of soybean drought-resistance-related protein in regulating soybean drought-resistance in the field of biotechnology.

背景技术Background technique

随着全球气候变暖和越来越多的土地荒漠化,干旱已经成为威胁全球农业发展和粮食安全的一个及其重要的因素。干旱胁迫会造成农作物的枯萎和发育不良,进而造成作物的减产。短时间内改变全球气候变暖的大趋势很困难,所以通过现代生物技术手段培育具有抗旱能力的作物是一个很好的解决途径。With global warming and increasing land desertification, drought has become an extremely important factor threatening global agricultural development and food security. Drought stress can cause the wilting and stunting of crops, which in turn leads to crop yield reduction. It is very difficult to change the general trend of global warming in a short period of time, so cultivating crops with drought resistance through modern biotechnology is a good solution.

大豆(Glycine max)是原产于中国的在世界范围内具有重要粮食安全地位的五大经济农作物之一。我国是全球最大的大豆进口国和消费国,大豆对保障我国油脂供应安全具有重量的战略意义。大豆可以给人们提供优质的大豆油,大豆植物蛋白。大豆被加工后的副产物豆饼被广泛作为优质的养殖饲料所应用。但是,随着全球气候变暖以及淡水资源的逐渐匮乏,干旱对大豆产量产生了重要的影响。因此,培育具有良好抗旱性状的大豆品种对于大豆生产具有重要的意义。目前,大豆抗旱育种主要集中在传统的杂交育种和转基因育种技术两方面。传统的杂交育种由于优良的抗旱种质资源比较匮乏,而且传统杂交育种需要不断地杂交配组合群体,然后拿到分离群体后寻找抗旱后代植株,然后不断地繁种挑选稳定遗传抗旱后代。传统的大豆杂交育种费时长,工作量大需要投入大量的人力物力。而且,传统的大豆杂交育种可能会造成亲本在获得抗旱性状后丢失原有的优良性状,比如说产量,株型,抗病性等。大豆转基因育种可以在明确抗旱关键基因的前提下迅速的通过植物遗传转化技术把抗旱基因导入到具有优良性状背景的亲本大豆品种中,通过对转基因阳性大豆植株的筛选确定单拷贝基因插入的纯合后代植株。转基因大豆抗旱育种可以方便,迅速的育成具有明确抗旱性的大豆新品种。目前国内和国际上对于大豆转基因育种主要集中在培育抗除草剂,抗虫和调节生长发育方面。大豆抗旱转基因育种方面目前报道较少。Soybean (Glycine max) is one of the five major economic crops that originate in China and have important food security status in the world. my country is the world's largest importer and consumer of soybeans, and soybeans are of great strategic significance to ensure the security of my country's oil supply. Soybeans can provide people with high-quality soybean oil and soybean plant protein. Soybean cake, a by-product of soybean processing, is widely used as high-quality breeding feed. However, with global warming and the gradual scarcity of fresh water resources, drought has had an important impact on soybean yield. Therefore, cultivating soybean varieties with good drought resistance is of great significance for soybean production. At present, soybean drought-resistant breeding mainly focuses on traditional hybrid breeding and transgenic breeding techniques. Due to the lack of excellent drought-resistant germplasm resources in traditional cross-breeding, traditional cross-breeding requires continuous hybridization and combination of populations, and then obtains separated populations to find drought-resistant offspring plants, and then continuously breeds to select stable genetic drought-resistant offspring. Traditional soybean hybrid breeding takes a long time and requires a lot of manpower and material resources. Moreover, traditional soybean cross-breeding may cause parents to lose their original good traits, such as yield, plant type, and disease resistance, after acquiring drought-resistant traits. Soybean transgenic breeding can quickly introduce drought resistance genes into parent soybean varieties with excellent trait background through plant genetic transformation technology on the premise of clarifying the key genes of drought resistance, and determine the homozygousity of single-copy gene insertion by screening transgenic positive soybean plants offspring plants. Drought-resistant breeding of transgenic soybeans can conveniently and quickly breed new soybean varieties with definite drought resistance. At present, domestic and international soybean transgenic breeding is mainly focused on cultivating herbicide resistance, insect resistance and regulating growth and development. So far, there are few reports on soybean drought-resistant transgenic breeding.

发明内容Contents of the invention

本发明所要解决的技术问题是如何提高植物抗旱性。The technical problem to be solved by the invention is how to improve the drought resistance of plants.

为解决上述技术问题,本发明首先提供了抗旱相关蛋白在调控植物抗旱性中的应用;所述抗旱相关蛋白的名称为GmSQE1,是如下A1)或A2)或A3):In order to solve the above-mentioned technical problems, the present invention firstly provides the application of drought-resistance-related proteins in regulating plant drought resistance; the name of the drought-resistance-related proteins is GmSQE1, which is as follows A1) or A2) or A3):

A1)氨基酸序列为序列1的蛋白质;A1) a protein whose amino acid sequence is sequence 1;

A2)在序列1的氨基酸序列中经过取代和/或缺失和/或添加一个或几个氨基酸残基得到的具有相同功能的由A1)衍生的蛋白质;A2) a protein derived from A1) with the same function obtained through substitution and/or deletion and/or addition of one or several amino acid residues in the amino acid sequence of sequence 1;

A3)在A1)或A2)的N端或/和C端连接标签得到的融合蛋白质。A3) A fusion protein obtained by linking a tag at the N-terminal or/and C-terminal of A1) or A2).

为了使A1)中的蛋白质便于纯化,可在由序列表中序列1所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如表1所示的标签。In order to make the protein in A1) easy to purify, the amino-terminal or carboxy-terminal of the protein consisting of the amino acid sequence shown in Sequence 1 in the Sequence Listing can be linked with the tags shown in Table 1.

表1、标签的序列Table 1. Sequence of tags

标签Label 残基Residues 序列sequence Poly-ArgPoly-Arg 5-6(通常为5个)5-6 (usually 5) RRRRRRRRRR Poly-HisPoly-His 2-10(通常为6个)2-10 (usually 6) HHHHHHHHHHHH FLAGFLAG 88 DYKDDDDKDYKDDDDK Strep-tag IIStrep-tag II 88 WSHPQFEKWSHPQFEK c-mycc-myc 1010 EQKLISEEDLEQKLISEEDL

上述A2)中的GmSQE1蛋白质,所述一个或几个氨基酸残基的取代和/或缺失和/或添加为不超过10个氨基酸残基的取代和/或缺失和/或添加。For the GmSQE1 protein in A2) above, the substitution and/or deletion and/or addition of one or several amino acid residues is a substitution and/or deletion and/or addition of no more than 10 amino acid residues.

上述A2)中的GmSQE1蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到。The GmSQE1 protein in the above A2) can be synthesized artificially, or its coding gene can be synthesized first, and then biologically expressed.

上述A2)中的GmSQE1蛋白质的编码基因可通过将序列2所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上表1所示的标签的编码序列得到。The gene encoding the GmSQE1 protein in the above A2) can be obtained by deleting the codon of one or several amino acid residues in the DNA sequence shown in sequence 2, and/or performing a missense mutation of one or several base pairs, and /or obtained by linking the coding sequence of the tag shown in Table 1 at its 5' end and/or 3' end.

本发明还提供了与GmSQE1相关的生物材料在调控植物抗旱性中的应用;The present invention also provides the application of biological materials related to GmSQE1 in regulating the drought resistance of plants;

所述生物材料,为下述B1)至B14)中的任一种:The biological material is any one of the following B1) to B14):

B1)编码GmSQE1的核酸分子;B1) a nucleic acid molecule encoding GmSQE1;

B2)含有B1)所述核酸分子的表达盒;B2) an expression cassette containing the nucleic acid molecule of B1);

B3)含有B1)所述核酸分子的重组载体;B3) a recombinant vector containing the nucleic acid molecule of B1);

B4)含有B2)所述表达盒的重组载体;B4) a recombinant vector containing the expression cassette described in B2);

B5)含有B1)所述核酸分子的重组微生物;B5) a recombinant microorganism containing the nucleic acid molecule of B1);

B6)含有B2)所述表达盒的重组微生物;B6) a recombinant microorganism containing the expression cassette described in B2);

B7)含有B3)所述重组载体的重组微生物;B7) a recombinant microorganism containing the recombinant vector described in B3);

B8)含有B4)所述重组载体的重组微生物;B8) a recombinant microorganism containing the recombinant vector described in B4);

B9)含有B1)所述核酸分子的转基因植物细胞系;B9) a transgenic plant cell line containing the nucleic acid molecule of B1);

B10)含有B2)所述表达盒的转基因植物细胞系;B10) a transgenic plant cell line containing the expression cassette of B2);

B11)含有B1)所述核酸分子的转基因植物组织;B11) a transgenic plant tissue containing the nucleic acid molecule of B1);

B12)含有B2)所述表达盒的转基因植物组织;B12) transgenic plant tissue containing the expression cassette described in B2);

B13)含有B1)所述核酸分子的转基因植物器官;B13) a transgenic plant organ containing the nucleic acid molecule of B1);

B14)含有B2)所述表达盒的转基因植物器官。B14) A transgenic plant organ containing the expression cassette described in B2).

上述应用中,B1)所述核酸分子可为如下b1)、b2)、b3)或b4)所示的基因:In the above application, the nucleic acid molecule described in B1) can be the gene shown in b1), b2), b3) or b4) as follows:

b1)核苷酸序列是序列表中序列2的cDNA分子或DNA分子;b1) The nucleotide sequence is a cDNA molecule or a DNA molecule of sequence 2 in the sequence listing;

b2)核苷酸序列是序列表中序列3的cDNA分子或DNA分子;b2) The nucleotide sequence is a cDNA molecule or a DNA molecule of sequence 3 in the sequence listing;

b3)与b1)或b2)或限定的核苷酸序列具有75%或75%以上同一性,且编码GmSQE1的cDNA分子或基因组DNA分子;b3) It has 75% or more identity with b1) or b2) or the defined nucleotide sequence, and encodes a cDNA molecule or genomic DNA molecule of GmSQE1;

b4)在严格条件下与b1)或b2)限定的核苷酸序列杂交,且编码GmSQE1的cDNA分子或基因组DNA分子。b4) a cDNA molecule or a genomic DNA molecule that hybridizes to the nucleotide sequence defined in b1) or b2) under stringent conditions and encodes GmSQE1.

其中,所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如mRNA或hnRNA等。Wherein, the nucleic acid molecule can be DNA, such as cDNA, genomic DNA or recombinant DNA; the nucleic acid molecule can also be RNA, such as mRNA or hnRNA.

其中,序列2所示的DNA分子编码序列1所示的GmSQE1蛋白质。Wherein, the DNA molecule shown in sequence 2 encodes the GmSQE1 protein shown in sequence 1.

本领域普通技术人员可以很容易地采用已知的方法,例如定向进化和点突变的方法,对本发明的编码GmSQE1蛋白质的核苷酸序列进行突变。那些经过人工修饰的,具有与本发明分离得到的GmSQE1蛋白质的核苷酸序列75%或者更高同一性的核苷酸,只要编码GmSQE1蛋白质且具有GmSQE1蛋白质功能,均是衍生于本发明的核苷酸序列并且等同于本发明的序列。Those skilled in the art can easily use known methods, such as directed evolution and point mutation methods, to mutate the nucleotide sequence encoding the GmSQE1 protein of the present invention. Those nucleotides that have been artificially modified and have 75% or higher identity with the nucleotide sequence of the isolated GmSQE1 protein of the present invention, as long as they encode the GmSQE1 protein and have the function of the GmSQE1 protein, are all derived from the core of the present invention. Nucleotide sequence and is equivalent to the sequence of the present invention.

这里使用的术语“同一性”指与天然核酸序列的序列相似性。“同一性”包括与本发明的编码序列1所示的氨基酸序列组成的蛋白质的核苷酸序列具有75%或更高,或85%或更高,或90%或更高,或95%或更高同一性的核苷酸序列。同一性可以用肉眼或计算机软件进行评价。使用计算机软件,两个或多个序列之间的同一性可以用百分比(%)表示,其可以用来评价相关序列之间的同一性。The term "identity" as used herein refers to sequence similarity to a native nucleic acid sequence. "Identity" includes 75% or higher, or 85% or higher, or 90% or higher, or 95% or higher, of the nucleotide sequence of the protein composed of the amino acid sequence shown in the coding sequence 1 of the present invention. Nucleotide sequences of higher identity. Identity can be assessed visually or with computer software. Using computer software, identity between two or more sequences can be expressed as a percentage (%), which can be used to evaluate the identity between related sequences.

上述应用中,所述严格条件是在2×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次5min,又于0.5×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次15min;或,0.1×SSPE(或0.1×SSC)、0.1%SDS的溶液中,65℃条件下杂交并洗膜。In the above-mentioned application, the stringent conditions are in a solution of 2×SSC and 0.1% SDS, hybridize at 68° C. and wash the membrane twice, each time for 5 minutes, and then in a solution of 0.5×SSC and 0.1% SDS, in Hybridize and wash the membrane twice at 68°C, 15 min each time; or, hybridize and wash the membrane at 65°C in a solution of 0.1×SSPE (or 0.1×SSC) and 0.1% SDS.

上述75%或75%以上同一性,可为80%、85%、90%或95%以上的同一性。The identity of 75% or more may be 80%, 85%, 90% or more.

上述应用中,B2)所述的含有编码GmSQE1蛋白质的核酸分子的表达盒(GmSQE1基因表达盒),是指能够在宿主细胞中表达GmSQE1蛋白质的DNA,该DNA不但可包括启动GmSQE1基因转录的启动子,还可包括终止GmSQE1基因转录的终止子。进一步,所述表达盒还可包括增强子序列。可用于本发明的启动子包括但不限于:组成型启动子,组织、器官和发育特异的启动子,和诱导型启动子。启动子的例子包括但不限于:花椰菜花叶病毒的组成型启动子35S:来自西红柿的创伤诱导型启动子,亮氨酸氨基肽酶("LAP",Chao等人(1999)PlantPhysiol 120:979-992);来自烟草的化学诱导型启动子,发病机理相关1(PR1)(由水杨酸和BTH(苯并噻二唑-7-硫代羟酸S-甲酯)诱导);西红柿蛋白酶抑制剂II启动子(PIN2)或LAP启动子(均可用茉莉酮酸甲酯诱导);热休克启动子(美国专利5,187,267);四环素诱导型启动子(美国专利5,057,422);种子特异性启动子,如谷子种子特异性启动子pF128(CN101063139B(中国专利200710099169.7)),种子贮存蛋白质特异的启动子(例如,菜豆球蛋白、napin,oleosin和大豆beta conglycin的启动子(Beachy等人(1985)EMBO J.4:3047-3053))。它们可单独使用或与其它的植物启动子结合使用。此处引用的所有参考文献均全文引用。合适的转录终止子包括但不限于:农杆菌胭脂碱合成酶终止子(NOS终止子)、花椰菜花叶病毒CaMV 35S终止子、tml终止子、豌豆rbcS E9终止子和胭脂氨酸和章鱼氨酸合酶终止子(参见,例如:Odell等人(I985)Nature313:810;Rosenberg等人(1987)Gene,56:125;Guerineau等人(1991)Mol.Gen.Genet,262:141;Proudfoot(1991)Cell,64:671;Sanfacon等人Genes Dev.,5:141;Mogen等人(1990)Plant Cell,2:1261;Munroe等人(1990)Gene,91:151;Ballad等人(1989)Nucleic Acids Res.17:7891;Joshi等人(1987)Nucleic AcidRes.,15:9627)。In the above-mentioned application, the expression cassette (GmSQE1 gene expression cassette) described in B2) containing the nucleic acid molecule encoding the GmSQE1 protein refers to the DNA that can express the GmSQE1 protein in the host cell, and the DNA can not only include the initiation of GmSQE1 gene transcription A terminator that terminates the transcription of the GmSQE1 gene may also be included. Further, the expression cassette may also include an enhancer sequence. Promoters that can be used in the present invention include, but are not limited to: constitutive promoters, tissue, organ and development specific promoters, and inducible promoters. Examples of promoters include, but are not limited to: Cauliflower Mosaic Virus Constitutive Promoter 35S: Wound-Inducible Promoter from Tomato, Leucine Aminopeptidase ("LAP", Chao et al. (1999) PlantPhysiol 120:979 -992); chemically inducible promoter from tobacco, pathogenesis-related 1 (PR1) (induced by salicylic acid and BTH (benzothiadiazole-7-thiohydroxy acid S-methyl ester)); tomato protease Inhibitor II promoter (PIN2) or LAP promoter (both can be induced by methyl jasmonate); heat shock promoter (US Patent 5,187,267); tetracycline-inducible promoter (US Patent 5,057,422); Seed-specific promoters, such as millet seed-specific promoter pF128 (CN101063139B (Chinese patent 200710099169.7)), seed storage protein-specific promoters (for example, the promoters of phaseolin, napin, oleosin and soybean beta conglycin (Beachy et al. Al (1985) EMBO J. 4:3047-3053)). They can be used alone or in combination with other plant promoters. All references cited herein are cited in their entirety. Suitable transcription terminators include, but are not limited to: Agrobacterium nopaline synthase terminator (NOS terminator), cauliflower mosaic virus CaMV 35S terminator, tml terminator, pea rbcS E9 terminator and nopaline and octopine Synthase terminators (see, e.g.: Odell et al. (1985) Nature 313:810; Rosenberg et al. (1987) Gene, 56:125; Guerineau et al. (1991) Mol. Gen. Genet, 262:141; Proudfoot ( 1991) Cell, 64:671; Sanfacon et al. Genes Dev., 5:141; Mogen et al. (1990) Plant Cell, 2:1261; Munroe et al. (1990) Gene, 91:151; Ballad et al. (1989) Nucleic Acids Res. 17:7891; Joshi et al. (1987) Nucleic Acids Res., 15:9627).

可用现有的表达载体构建含有所述GmSQE1基因表达盒的重组载体。所述植物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等。如pAHC25、pBin438、pCAMBIA1302、pCAMBIA2301、pCAMBIA1301、pCAMBIA1300、pBI121、pCAMBIA1391-Xa或pCAMBIA1391-Xb(CAMBIA公司)等。所述植物表达载体还可包含外源基因的3′端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3′端,如农杆菌冠瘿瘤诱导(Ti)质粒基因(如胭脂碱合成酶基因Nos)、植物基因(如大豆贮存蛋白基因)3′端转录的非翻译区均具有类似功能。使用本发明的基因构建植物表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、萤光素酶基因等)、抗生素的标记基因(如赋予对卡那霉素和相关抗生素抗性的nptII基因,赋予对除草剂膦丝菌素抗性的bar基因,赋予对抗生素潮霉素抗性的hph基因,和赋予对氨甲喋呤抗性的dhfr基因,赋予对草甘磷抗性的EPSPS基因)或是抗化学试剂标记基因等(如抗除莠剂基因)、提供代谢甘露糖能力的甘露糖-6-磷酸异构酶基因。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以逆境筛选转化植株。An existing expression vector can be used to construct a recombinant vector containing the expression cassette of the GmSQE1 gene. The plant expression vectors include binary Agrobacterium vectors and vectors that can be used for plant microprojectile bombardment and the like. Such as pAHC25, pBin438, pCAMBIA1302, pCAMBIA2301, pCAMBIA1301, pCAMBIA1300, pBI121, pCAMBIA1391-Xa or pCAMBIA1391-Xb (CAMBIA Company), etc. The plant expression vector may also include the 3' untranslated region of the foreign gene, that is, the polyadenylation signal and any other DNA fragments involved in mRNA processing or gene expression. The polyadenylic acid signal can guide polyadenylic acid to be added to the 3' end of the mRNA precursor, such as Agrobacterium crown gall tumor induction (Ti) plasmid gene (such as nopaline synthase gene Nos), plant gene (such as soybean The untranslated region transcribed at the 3′ end of the storage protein gene) has similar functions. When using the gene of the present invention to construct plant expression vectors, enhancers can also be used, including translation enhancers or transcription enhancers, and these enhancer regions can be ATG initiation codons or adjacent region initiation codons, etc. The reading frames of the sequences are identical to ensure correct translation of the entire sequence. The sources of the translation control signals and initiation codons are extensive and can be natural or synthetic. The translation initiation region can be from a transcription initiation region or a structural gene. In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vector used can be processed, such as adding genes (GUS gene, luciferase gene, etc.) genes, etc.), antibiotic marker genes (such as the nptII gene that confers resistance to kanamycin and related antibiotics, the bar gene that confers resistance to the herbicide phosphinothricin, and the hph gene that confers resistance to the antibiotic hygromycin , and the dhfr gene that confers resistance to methotrexate, the EPSPS gene that confers resistance to glyphosate) or the chemical resistance marker gene (such as the herbicide resistance gene), the mannose-6- that provides the ability to metabolize mannose Phosphate isomerase gene. Considering the safety of the transgenic plants, the transformed plants can be screened directly by adversity without adding any selectable marker gene.

上述应用中,所述载体可为质粒、黏粒、噬菌体或病毒载体。所述质粒具体可为载体pGWC或质粒pB2GW7.0。In the above application, the vector can be a plasmid, cosmid, phage or viral vector. Specifically, the plasmid can be vector pGWC or plasmid pB2GW7.0.

所述重组载体具体可为GmSQE1-pGWC或GmSQE1-pB2GW7.0,所述GmSQE1-pGWC为将序列2所示的DNA片段导入载体pGWC中得到的重组载体,所述GmSQE1-pB2GW7.0为将序列2所示的DNA片段导入质粒pB2GW7.0中得到的重组载体,所述GmSQE1-pGWC能表达序列1所示的GmSQE1蛋白质。The recombinant vector can specifically be GmSQE1-pGWC or GmSQE1-pB2GW7.0, the GmSQE1-pGWC is a recombinant vector obtained by introducing the DNA fragment shown in Sequence 2 into the vector pGWC, and the GmSQE1-pB2GW7.0 is the sequence The recombinant vector obtained by introducing the DNA fragment shown in 2 into plasmid pB2GW7.0, said GmSQE1-pGWC can express the GmSQE1 protein shown in sequence 1.

上述应用中,所述微生物可为酵母、细菌、藻或真菌。其中,细菌可为农杆菌,如农杆菌EHA105。In the above applications, the microorganisms can be yeast, bacteria, algae or fungi. Wherein, the bacteria can be Agrobacterium, such as Agrobacterium EHA105.

上述应用中,所述转基因植物细胞系、转基因植物组织和转基因植物器官均不包括繁殖材料。In the above applications, the transgenic plant cell lines, transgenic plant tissues and transgenic plant organs do not include propagation materials.

本发明还提供了GmSQE1或所述生物材料在培育抗旱性增强植物中的应用。The present invention also provides the application of GmSQE1 or the biological material in cultivating plants with enhanced drought resistance.

本发明还提供了一种培育抗旱性增强植物的方法,所述方法包括:增加目的植物中GmSQE1的活性、增加目的植物中GmSQE1的含量、促进GmSQE1的编码基因的表达,得到与所述目的植物相比抗旱性增强的抗旱植物。The present invention also provides a method for cultivating plants with enhanced drought resistance, the method comprising: increasing the activity of GmSQE1 in the target plant, increasing the content of GmSQE1 in the target plant, promoting the expression of the coding gene of GmSQE1, and obtaining the same expression as the target plant Drought-resistant plants with enhanced drought resistance.

上述方法中,所述抗旱植物可为通过向所述目的植物中导入GmSQE1的编码基因得到的转基因植物。In the above method, the drought-resistant plant may be a transgenic plant obtained by introducing a gene encoding GmSQE1 into the target plant.

上述方法中,GmSQE1的编码基因可为B1)所述核酸分子。In the above method, the gene encoding GmSQE1 can be the nucleic acid molecule described in B1).

本发明还提供了调控植物抗旱性的产品,所述产品含有GmSQE1或所述生物材料。The present invention also provides a product for regulating drought resistance of plants, which contains GmSQE1 or the biological material.

所述产品可以GmSQE1或所述生物材料作为其活性成分,还可将GmSQE1或所述生物材料与其他具有相同功能的物质一起作为其活性成分。The product can use GmSQE1 or the biological material as its active ingredient, and can also use GmSQE1 or the biological material together with other substances with the same function as its active ingredient.

本发明还提供了所述产品在调控植物抗旱性中的应用。The invention also provides the application of the product in regulating the drought resistance of plants.

本发明中,所述植物可为双子叶植物或单子叶植物;所述目的植物可为双子叶植物或单子叶植物。所述双子叶植物可为豆科植物。所述豆科植物可为大豆,如大豆品种天隆一号。In the present invention, the plant can be a dicotyledon or a monocotyledon; the target plant can be a dicotyledon or a monocotyledon. The dicot may be a leguminous plant. The leguminous plant can be soybean, such as soybean variety Tianlong No. 1.

本发明中,所述转基因植物理解为不仅包含将所述GmSQE1基因转化目的植物得到的第一代转基因植物,也包括其子代。对于转基因植物,可以在该物种中繁殖该基因,也可用常规育种技术将该基因转移进入相同物种的其它品种,特别包括商业品种中。所述转基因植物包括种子、愈伤组织、完整植株和细胞。In the present invention, the transgenic plant is understood to include not only the first-generation transgenic plant obtained by transforming the target plant with the GmSQE1 gene, but also its progeny. For transgenic plants, the gene can be propagated in that species, or transferred into other varieties of the same species, particularly including commercial varieties, using conventional breeding techniques. The transgenic plants include seeds, callus, whole plants and cells.

实验证明,与未转GmSQE1基因的植株相比,阳性转GmSQE1基因植株在干旱处理后,表现耐旱性状;而在复水处理后,未转GmSQE1基因的植株死亡,而阳性转GmSQE1基因植株能正常生长。表明,GmSQE1及其编码基因可以提高植物的抗旱性。Experiments have shown that, compared with plants without GmSQE1 gene transfection, plants positively transfected with GmSQE1 gene show drought-tolerant traits after drought treatment; and after rehydration treatment, plants without GmSQE1 gene transfection die, while positive GmSQE1 gene transgenic plants can normal growth. It was shown that GmSQE1 and its coding gene can improve the drought resistance of plants.

附图说明Description of drawings

图1为抗草胺膦转基因试纸条筛选阳性转基因大豆的结果。Figure 1 shows the results of screening positive transgenic soybeans with glufosinate-resistant transgenic test strips.

图2为转基因大豆的抗旱性鉴定。Figure 2 is the identification of drought resistance of transgenic soybeans.

具体实施方式detailed description

下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂、仪器等,如无特殊说明,均可从商业途径得到。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。The present invention will be further described in detail below in conjunction with specific embodiments, and the given examples are only for clarifying the present invention, not for limiting the scope of the present invention. The experimental methods in the following examples are conventional methods unless otherwise specified. Materials, reagents, instruments, etc. used in the following examples can be obtained from commercial sources unless otherwise specified. Quantitative experiments in the following examples were all set up to repeat the experiments three times, and the results were averaged.

下述实施例中的pGWC(Huang et al.,Cloning and Expression Analysis ofthe Soybean CO-Like Gene GmCOL9,Plant Mol Biol Rep(2011)29:352–359),公众可从申请人处获得该生物材料,该生物材料只为重复本发明的相关实验所用,不可作为其它用途使用。pGWC (Huang et al., Cloning and Expression Analysis of the Soybean CO-Like Gene GmCOL9, Plant Mol Biol Rep (2011) 29:352-359) in the following examples, the public can obtain this biological material from the applicant, The biological material is only used for repeating related experiments of the present invention, and cannot be used for other purposes.

下述实施例中的CCM液体培养基,1L含有B-5粉0.321g、MES 5.9g、100*B5有机9ml、蔗糖30g、Na2S2O3溶液1ml、L-cys溶液4ml、DTT溶液1ml、AS溶液2ml、6-BA溶液1.67ml和GA3溶液100μl,余量为水。CCM固体培养基为向CCM液体培养基中添加琼脂粉得到的培养基,PH=5.4。For the CCM liquid medium in the following examples, 1L contains 0.321g of B-5 powder, 5.9g of MES, 9ml of 100*B5 organic, 30g of sucrose, 1ml of Na 2 S 2 O 3 solution, 4ml of L-cys solution, and DTT solution 1ml, 2ml of AS solution, 1.67ml of 6-BA solution and 100μl of GA3 solution, the balance is water. The CCM solid medium is a medium obtained by adding agar powder to the CCM liquid medium, and the pH is 5.4.

下述实施例中的液体芽诱导培养基,1L含有B-5粉3.21g、MES 0.59g、蔗糖30g、Timentin溶液1ml、6-BA溶液1.12ml以及Cef溶液0.4ml,余量为水。SIM固体培养基为向液体芽诱导培养基中添加琼脂粉和PPT溶液500μl/500ml得到的培养基。In the liquid bud induction medium in the following examples, 1 L contains 3.21 g of B-5 powder, 0.59 g of MES, 30 g of sucrose, 1 ml of Timentin solution, 1.12 ml of 6-BA solution and 0.4 ml of Cef solution, and the balance is water. The SIM solid medium is a medium obtained by adding agar powder and PPT solution 500 μl/500ml to the liquid shoot induction medium.

下述实施例中的固体芽伸长培养基,1L含有MS 4.43g、MES 0.59g、100*B5有机9ml、蔗糖30g、IAA溶液100μl、Cef溶液400μl、GA3溶液600μl、PPT溶液400μl、Glu溶液1ml、Timentin溶液1ml、ZR溶液1ml、Asp溶液1ml以及琼脂粉,余量为水,PH=5.6。Solid shoot elongation medium in the following examples, 1L contains MS 4.43g, MES 0.59g, 100*B5 organic 9ml, sucrose 30g, IAA solution 100μl, Cef solution 400μl, GA3 solution 600μl, PPT solution 400μl, Glu solution 1ml, 1ml of Timentin solution, 1ml of ZR solution, 1ml of Asp solution and agar powder, the balance is water, pH=5.6.

下述实施例中的生根培养基,1L含有MS 2.22g、MES 0.59g、100*B5有机9ml、蔗糖20g、Cef溶液400μl、Timentin溶液1ml、IBA溶液1ml、Glu溶液1ml、Asp溶液1ml以及琼脂粉,余量为水,PH=5.7。Rooting medium in the following examples, 1L contains MS 2.22g, MES 0.59g, 100*B5 organic 9ml, sucrose 20g, Cef solution 400μl, Timentin solution 1ml, IBA solution 1ml, Glu solution 1ml, Asp solution 1ml and agar powder, the balance is water, pH=5.7.

其中,每500ml 100*B5有机含有:肌醇(myo-lnositol)5g,烟酸(Nicotinic acid)0.05g,盐酸吡哆酸(维生素B6)0.05g,盐酸硫胺(Thiamine hydrochloride)0.5g,余量为水。Among them, every 500ml of 100*B5 contains: myo-lnositol 5g, niacin (Nicotinic acid) 0.05g, pyridoxic acid hydrochloride (vitamin B6) 0.05g, thiamine hydrochloride (Thiamine hydrochloride) 0.5g, more than The amount is water.

Na2S2O3(硫代硫酸钠)溶液:3.16g Na2S2O3/20ml,蒸馏水溶。Na 2 S 2 O 3 (sodium thiosulfate) solution: 3.16g Na 2 S 2 O 3 /20ml, dissolved in distilled water.

L-cys(L-半胱氨酸)溶液:10g L-cys/100ml,蒸馏水溶。L-cys (L-cysteine) solution: 10g L-cys/100ml, dissolved in distilled water.

DTT(二硫苏糖醇,DL-Dithiothreitol)溶液:3.08g DTT/20ml,用3M NaAC水溶液溶。DTT (dithiothreitol, DL-Dithiothreitol) solution: 3.08g DTT/20ml, dissolved in 3M NaAC aqueous solution.

AS(乙酰丁香酮)溶液:0.392g AS/20ml,95%乙醇水溶液溶。AS (acetosyringone) solution: 0.392g AS/20ml, dissolved in 95% ethanol aqueous solution.

6-BA(6-苄氨基腺嘌呤)溶液:1mg6-BA/ml,先少量1M NaOH水溶液溶解,后蒸馏水定容。6-BA (6-benzylaminoadenine) solution: 1mg6-BA/ml, first dissolved in a small amount of 1M NaOH aqueous solution, and then distilled water to make up to volume.

GA3(赤霉素)溶液:1mg GA3/ml,95%乙醇水溶液溶。GA3 (gibberellin) solution: 1mg GA3/ml, dissolved in 95% ethanol aqueous solution.

Temetime(特美汀)溶液:80mg Temetime/ml,蒸馏水溶。Temetime solution: 80mg Temetime/ml, dissolved in distilled water.

Cef(头孢)溶液:250mg Cef/ml,蒸馏水溶。Cef (cephalosporin) solution: 250mg Cef/ml, dissolved in distilled water.

IAA(吲哚乙酸)溶液:1mg IAA/ml,先少量95%乙醇水溶液溶解,后蒸馏水定容。IAA (indole acetic acid) solution: 1mg IAA/ml, dissolve in a small amount of 95% ethanol aqueous solution, and then distilled water to make it to volume.

PPT(除草剂-草铵膦,Glufosinate-ammonium)溶液:5mg PPT/ml,蒸馏水溶。PPT (herbicide-glufosinate-ammonium) solution: 5mg PPT/ml, dissolved in distilled water.

Glu(谷氨酸)溶液:50mg Glu/ml,蒸馏水溶。Glu (glutamic acid) solution: 50mg Glu/ml, dissolved in distilled water.

ZR(反玉米核苷酸)溶液:1mg ZR/ml,先少量1M HCl溶液溶解,后蒸馏水定容。ZR (trans-corn nucleotide) solution: 1mg ZR/ml, dissolve in a small amount of 1M HCl solution, and then distilled water to make up to volume.

Asp(天冬氨酸)溶液:50mg Asp/ml,先少量1M HCl水溶液溶解,后蒸馏水定容。Asp (aspartic acid) solution: 50mg Asp/ml, first dissolve a small amount of 1M HCl aqueous solution, and then distilled water to make up to volume.

IBA(吲哚丁酸)溶液:1mg IBA/ml,95%乙醇溶液溶。IBA (indole butyric acid) solution: 1mg IBA/ml, dissolved in 95% ethanol solution.

实施例1、大豆抗旱相关蛋白GmSQE1可以调控大豆抗旱性Example 1, Soybean Drought Resistance-related Protein GmSQE1 Can Regulate Soybean Drought Resistance

本实施例提供了来源于大豆品种willam82的大豆抗旱相关蛋白,将其命名为GmSQE1,GmSQE1的序列为序列表中序列1。在大豆品种willam82中,GmSQE1的CDS序列为序列表中序列2,基因组序列为序列表中序列3。This embodiment provides a soybean drought-resistance-related protein derived from soybean variety willam82, which is named GmSQE1, and the sequence of GmSQE1 is sequence 1 in the sequence listing. In soybean variety willam82, the CDS sequence of GmSQE1 is sequence 2 in the sequence listing, and the genome sequence is sequence 3 in the sequence listing.

将序列2所示的DNA分子(即GmSQE1编码基因)转至大豆中检测GmSQE1在调控大豆中的功能,具体方法如下:The DNA molecule shown in Sequence 2 (i.e. the GmSQE1 encoding gene) is transferred to soybean to detect the function of GmSQE1 in regulating soybean, the specific method is as follows:

1、构建GmSQE1表达重组载体与重组菌1. Construction of GmSQE1 expression recombinant vector and recombinant bacteria

利用上游引物(F:AGGCTTTGACTTTAGGTC ATGATGGGTTATGAGTATATTTTGG)和下游引物(R:GTCTAGAGACTTTAGGTC TTAATCTTCCAAATTGGTAGGG)组成的引物对对大豆品种willam82的cDNA进行PCR扩增,通过同源重组的方式使得到的PCR产物与中间载体pGWC发生同源重组,将序列2所示的GmSQE1编码基因转移至中间载体pGWC上,将得到的含有正确序列的重组载体命名为GmSQE1-pGWC。The primer pair consisting of upstream primer (F: AGGCTTTGACTTTAGGTC ATGATGGGTTATGAGTATATTTTGG) and downstream primer (R: GTCTAGAGACTTTAGGTC TTAATCTTCCAAATTGGTAGGG) was used to amplify the cDNA of soybean variety willam82 by PCR, and the obtained PCR product was identical to the intermediate vector pGWC by homologous recombination. Source recombination, the GmSQE1 coding gene shown in Sequence 2 was transferred to the intermediate vector pGWC, and the resulting recombinant vector containing the correct sequence was named GmSQE1-pGWC.

同源重组的方式将GmSQE1-pGWC与质粒pB2GW7.0(Fibrillin 5Is Essential forPlastoquinone-9Biosynthesis by Binding to Solanesyl Diphosphate Synthases inArabidopsis)进行gateway反应,得到序列正确的重组载体,将该重组载体命名为GmSQE1-pB2GW7.0,GmSQE1-pB2GW7.0即为GmSQE1表达重组载体,能表达序列1所示的GmSQE1。In the way of homologous recombination, GmSQE1-pGWC and plasmid pB2GW7.0 (Fibrillin 5Is Essential for Plastoquinone-9 Biosynthesis by Binding to Solanesyl Diphosphate Synthases in Arabidopsis) were subjected to gateway reaction to obtain a recombinant vector with correct sequence, which was named GmSQE1-pB2GW7. 0, GmSQE1-pB2GW7.0 is the GmSQE1 expression recombinant vector, which can express the GmSQE1 shown in sequence 1.

将GmSQE1-pB2GW7.0导入根癌农杆菌EHA105中,得到重组菌,将该重组菌命名为EHA105/GmSQE1-pB2GW7.0;将pB2GW7.0导入根癌农杆菌EHA105中,得到重组菌EHA105/GmSQE1,作为空载体对照。Introduce GmSQE1-pB2GW7.0 into Agrobacterium tumefaciens EHA105 to obtain recombinant bacteria, and name the recombinant bacteria EHA105/GmSQE1-pB2GW7.0; introduce pB2GW7.0 into Agrobacterium tumefaciens EHA105 to obtain recombinant bacteria EHA105/GmSQE1 , as an empty vector control.

2、转基因大豆的构建2. Construction of transgenic soybean

通过农杆菌侵染法利用重组菌EHA105/GmSQE1-pB2GW7.0转化大豆品种天隆一号得到转基因大豆,并利用重组菌EHA105/GmSQE1得到的转空载体植株作为对照,具体方法如下:The recombinant strain EHA105/GmSQE1-pB2GW7.0 was used to transform the soybean variety Tianlong No. 1 through the Agrobacterium infection method to obtain transgenic soybeans, and the empty vector plants obtained by using the recombinant strain EHA105/GmSQE1 were used as controls. The specific method is as follows:

2.1农杆菌侵染液的准备:2.1 Preparation of Agrobacterium infection solution:

将重组菌加入含有利福平(50ng/L)和壮观霉素(50ng/L)的LB液体培养基,28℃,200rpm,过夜培养。期间检测菌液浓度,在OD600值达到1.2-1.5时,4000rpm,离心10min,收集菌体。重悬于CCM液体培养基(Co-culture Medium,CCM),调整OD600至0.6左右,得到菌体悬液,备用。The recombinant bacteria were added to LB liquid medium containing rifampicin (50ng/L) and spectinomycin (50ng/L), cultivated overnight at 28°C and 200rpm. During this period, the concentration of the bacterial solution was detected, and when the OD600 value reached 1.2-1.5, it was centrifuged at 4000 rpm for 10 minutes to collect the bacterial cells. Resuspend in CCM liquid medium (Co-culture Medium, CCM), adjust OD600 to about 0.6, obtain bacterial cell suspension, set aside.

2.2外植体的制备:2.2 Preparation of explants:

挑选饱满、表面光滑、无病瘢的大豆品种天隆一号成熟的种子,氯气灭菌5h后备用。将灭过菌的大豆种子浸泡在无菌水中,室温下过夜,用手术刀将浸泡后的大豆种子沿着种脐从中间一分为二,确保子叶两边胚完整,去掉种皮,切去大部分下胚轴,只留靠近子叶的3-5mm下胚轴,在子叶与胚轴交接处直径约3mm的范围内划1-3刀。获得具有完整胚的半粒种子作为外植体。Mature seeds of the soybean variety Tianlong No. 1, which are plump, smooth, and disease-free, were selected and sterilized by chlorine gas for 5 hours before use. Soak the sterilized soybean seeds in sterile water overnight at room temperature, use a scalpel to divide the soaked soybean seeds into two along the hilum from the middle, ensure that the embryos on both sides of the cotyledon are complete, remove the seed coat, and cut off the large For part of the hypocotyl, only the 3-5mm hypocotyl near the cotyledon is left, and 1-3 knives are drawn in the range of about 3mm in diameter at the junction of the cotyledon and hypocotyl. Half seeds with intact embryos were obtained as explants.

2.3农杆菌侵染外植体及共培养:2.3 Agrobacterium infection of explants and co-cultivation:

将步骤2.2得到的外植体浸泡至步骤2.1得到的菌体悬液中,在28℃,200rpm条件下侵染30min后,将外植体取出,晾干至表面没有明显菌液,将外植体腹面朝下,铺在放有无菌滤纸的CCM固体培养基上,在26℃暗培养三天。Soak the explants obtained in step 2.2 into the cell suspension obtained in step 2.1, infect at 28°C and 200 rpm for 30 minutes, take out the explants, and dry them until there is no obvious bacterial liquid on the surface. The ventral side of the body was spread on the CCM solid medium with sterile filter paper, and cultured in the dark at 26°C for three days.

2.4外植体的清洗及丛生芽的诱导:2.4 Cleaning of explants and induction of clustered buds:

暗培养结束后,先后用无菌水及液体芽诱导培养基(Shoot Induction Mediium,SIM)清洗外植体表面的菌液,在无菌滤纸上吸去多余水分,用手术刀将暗培养过程中长大的下胚轴再次截断,只留靠近子叶的3-5mm下胚轴,并用刀刮去生长点附近的乳芽,最后,将处理好的外植体以切面朝上,子叶节朝下,约45度角斜插入SIM固体培养基进行筛选培养,封口,放置培养室培养,培养温度26℃,光周期16h/8h。每两周继代一次,共继代三次,得到诱导出丛生芽的外植体。After the dark culture, the bacterial solution on the surface of the explants was cleaned with sterile water and liquid shoot induction medium (SIM), and the excess water was absorbed on sterile filter paper, and the dark culture was removed with a scalpel. The grown hypocotyl is cut off again, leaving only the 3-5mm hypocotyl close to the cotyledons, and scraping off the milk buds near the growth point with a knife. Insert the SIM solid medium obliquely at an angle of about 45 degrees for screening culture, seal it, and place it in a culture room for culture. The culture temperature is 26°C and the photoperiod is 16h/8h. Subculture once every two weeks, a total of three subcultures, to obtain explants with induced clustered buds.

2.5丛生芽的伸长及生根:2.5 Elongation and rooting of clustered buds:

将诱导出丛生芽的外植体,切去子叶后,接入固体芽伸长培养基(ShootElongation Mediium,SEM)中,培养温度26℃,光周期16h/8h。每两周继代一次,视情况继代3-5次。每次继代时,用小刀刮掉外层褐化变黑的组织,露出里层绿色组织后接入固体SEM中。丛生芽伸长到5cm左右时,将其从外植体上切下,并接入生根培养基(Rooting Mediium,RM)中生根。The explants with clustered shoots were cut off and placed in solid shoot elongation medium (ShootElongation Medium, SEM) at a culture temperature of 26°C and a photoperiod of 16h/8h. Subculture once every two weeks, depending on the situation 3-5 times. For each subculture, use a knife to scrape off the browned and blackened tissue in the outer layer to expose the green tissue in the inner layer and insert it into the solid SEM. When the clustered shoots stretched to about 5 cm, they were cut off from the explants and inserted into rooting medium (Rooting Medium, RM) to take root.

2.6炼苗及移栽:2.6 Hardening and transplanting:

当步骤2.5的苗根系发达后,打开培养瓶的盖子,在组织培养室炼苗,保持其生长环境湿度,3天后将小苗移出培养基,把根部的培养基冲洗干净,将苗移栽入土壤(营养土:蛭石比为1:2)中,并盖上保鲜膜保湿,3天后揭膜,培养温度25℃,光周期16h/8h。注意水肥等管理,等小苗稍长大一点就可以取样鉴定是否为阳性植株。When the root system of the seedlings in step 2.5 is developed, open the lid of the culture bottle, harden the seedlings in the tissue culture room, and keep the humidity of the growth environment. After 3 days, remove the seedlings from the medium, rinse the medium of the roots, and transplant the seedlings into the soil. (The ratio of nutrient soil: vermiculite is 1:2), and cover it with plastic wrap to keep it moist, and remove the film after 3 days. The culture temperature is 25°C, and the photoperiod is 16h/8h. Pay attention to the management of water and fertilizer, and wait for the seedlings to grow a little before taking samples to identify whether they are positive plants.

2.7转基因植株鉴定:2.7 Identification of transgenic plants:

通过利用专门鉴定具有basta抗性的抗草胺膦转基因试纸条,对大豆基因组进行PCR扩增两方面确定转基因植株是否具有抗basta除草剂抗性来筛选阳性转基因大豆。其中,PCR扩增所用引物为F:5’-CAAAACCAAGAGTGGACAAGA-3’;R:5’-AAGGATCACCCAAGATAACGT-3’。将两种实验结果均为阳性的植株(即阳性转基因大豆)进行进一步的实验,抗草胺膦转基因试纸条的检测结果如图1所示。Positive transgenic soybeans were screened by using glufosinate-resistant transgenic test strips specifically identified for basta resistance, and performing PCR amplification on the soybean genome to determine whether the transgenic plants had resistance to basta herbicides. Wherein, the primers used for PCR amplification are F: 5'-CAAAACCAAGAGTGGACAAGA-3'; R: 5'-AAGGATCACCCAAGATAACGT-3'. The plants (ie, positive transgenic soybeans) with positive results in both experiments were further tested, and the detection results of the glufosinate-resistant transgenic test strips are shown in FIG. 1 .

3、转基因大豆的抗旱性鉴定3. Identification of drought resistance of transgenic soybean

将步骤2得到的三个独立的阳性转基因大豆株系(line-1,line-2和line-3)和对照未转基因(CK)的大豆品种天隆一号以及转空载体植株,在种子萌发后50天后统一进行干旱胁迫处理,每种大豆均至少10株,具体胁迫处理如下:The three independent positive transgenic soybean lines (line-1, line-2 and line-3) obtained in step 2 and the non-transgenic (CK) soybean variety Tianlong No. 1 and the empty vector plant were transferred after seed germination After 50 days, the drought stress treatment was carried out uniformly, with at least 10 plants of each kind of soybean, and the specific stress treatment was as follows:

1)处理前均匀浇水,保证每一盆苗子(T2代转基因苗子)之间处理前的土壤含水量基本一致;1) Evenly water before treatment to ensure that the soil water content before treatment between each pot of seedlings (T2 generation transgenic seedlings) is basically the same;

2)将处理的大豆苗子放置于室温26度,湿度50%的恒温培养间里面,光照周期白昼16小时/黑暗8h,期间不浇水,进行干旱处理,共处理8天;2) Place the treated soybean seedlings in a room temperature of 26 degrees, in a constant temperature cultivation room with a humidity of 50%, with a photoperiod of 16 hours in the daytime/8 hours in the dark, without watering during the period, and carry out drought treatment for a total of 8 days;

3)干旱处理8天后观察表型,然后正常浇水,浇水量均相同,进行复水处理;3) Observing the phenotype after 8 days of drought treatment, then watering normally, the amount of watering is the same, and performing rehydration treatment;

4)复水处理8天后观察表型。4) Observe the phenotype after 8 days of rehydration treatment.

结果显示,处理前各中植株的生长状况基本一致。干旱处理8天后,大豆品种天隆一号与转空载体植株的叶片均发黄、下垂、干枯,而三个独立的阳性转基因大豆株系仅有部分植株的最下部的叶片发黄,所有植株所有叶片均未发生非正常下垂与干枯。复水处理8天后,大豆品种天隆一号与转空载体植株均死亡,而三个独立的阳性转基因大豆株系均能正常生长。表明,GmSQE1及其编码基因可以提高大豆的抗旱性。其中,阳性转基因大豆株系与大豆品种天隆一号(CK)的结果如图2所示。The results showed that the growth status of the plants in each medium was basically the same before treatment. After 8 days of drought treatment, the leaves of the soybean variety Tianlong No. 1 and the transgenic plants turned yellow, drooped, and withered, while only some of the lower leaves of the three independent positive transgenic soybean lines turned yellow, and all plants had No abnormal drooping and withering of leaves occurred. After 8 days of rehydration treatment, the soybean variety Tianlong No. 1 and the transgenic plants all died, while the three independent positive transgenic soybean lines could grow normally. It was shown that GmSQE1 and its coding gene can improve the drought resistance of soybean. Among them, the results of positive transgenic soybean lines and soybean variety Tianlong No. 1 (CK) are shown in FIG. 2 .

<110> 中国农业科学院油料作物研究所<110> Institute of Oil Crops, Chinese Academy of Agricultural Sciences

<120> 大豆抗旱相关蛋白在调控大豆抗旱性中的应用<120> Application of Soybean Drought Resistance Related Proteins in Regulating Soybean Drought Resistance

<160> 3<160> 3

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 529<211> 529

<212> PRT<212> PRT

<213> 大豆<213> soybean

<400> 1<400> 1

Met Met Gly Tyr Glu Tyr Ile Leu Gly Gly Ile Ile Ala Ser Ser LeuMet Met Gly Tyr Glu Tyr Ile Leu Gly Gly Ile Ile Ala Ser Ser Leu

1 5 10 151 5 10 15

Val Leu Val Phe Val Ile Tyr Gly Ser Val Ser Lys Arg Lys Ala LysVal Leu Val Phe Val Ile Tyr Gly Ser Val Ser Lys Arg Lys Ala Lys

20 25 30 20 25 30

Ser Ser Val His Ala Glu Ser Asn Gly Gly Ser Ile Ile Arg Thr SerSer Ser Val His Ala Glu Ser Asn Gly Gly Ser Ile Ile Arg Thr Ser

35 40 45 35 40 45

Pro Glu Asn Gly Asn His His Gln Glu Ile Ser Glu Thr Thr Asp ValPro Glu Asn Gly Asn His His Gln Glu Ile Ser Glu Thr Thr Asp Val

50 55 60 50 55 60

Ile Ile Val Gly Ala Gly Val Ala Gly Ala Ala Leu Ala Tyr Thr LeuIle Ile Val Gly Ala Gly Val Ala Gly Ala Ala Leu Ala Tyr Thr Leu

65 70 75 8065 70 75 80

Gly Lys Glu Gly Arg Arg Val His Val Ile Glu Arg Asp Leu Thr GluGly Lys Glu Gly Arg Arg Val His Val Ile Glu Arg Asp Leu Thr Glu

85 90 95 85 90 95

Pro Asp Arg Ile Val Gly Glu Leu Leu Gln Pro Gly Gly Tyr Leu LysPro Asp Arg Ile Val Gly Glu Leu Leu Gln Pro Gly Gly Tyr Leu Lys

100 105 110 100 105 110

Leu Ile Glu Leu Gly Leu Gln Asp Cys Val Gly Glu Ile Asp Ala GlnLeu Ile Glu Leu Gly Leu Gln Asp Cys Val Gly Glu Ile Asp Ala Gln

115 120 125 115 120 125

Pro Val Phe Gly Tyr Ala Leu Tyr Lys Asp Gly Lys Asn Thr Lys LeuPro Val Phe Gly Tyr Ala Leu Tyr Lys Asp Gly Lys Asn Thr Lys Leu

130 135 140 130 135 140

Ser Tyr Pro Leu Glu Asn Phe Ala Ser Asp Val Ser Gly Arg Ser PheSer Tyr Pro Leu Glu Asn Phe Ala Ser Asp Val Ser Gly Arg Ser Phe

145 150 155 160145 150 155 160

His Asn Gly Arg Phe Ile Gln Arg Met Arg Glu Lys Ala Ser Ser LeuHis Asn Gly Arg Phe Ile Gln Arg Met Arg Glu Lys Ala Ser Ser Leu

165 170 175 165 170 175

Pro Asn Val Lys Leu Glu Gln Gly Thr Val Thr Phe Leu Leu Glu GluPro Asn Val Lys Leu Glu Gln Gly Thr Val Thr Phe Leu Leu Glu Glu

180 185 190 180 185 190

Asp Arg Ile Ile Lys Gly Val Asn Phe Lys Thr Lys Ser Gly Gln GluAsp Arg Ile Ile Lys Gly Val Asn Phe Lys Thr Lys Ser Gly Gln Glu

195 200 205 195 200 205

Leu Thr Ala Lys Ala Pro Leu Thr Ile Val Cys Asp Gly Cys Phe SerLeu Thr Ala Lys Ala Pro Leu Thr Ile Val Cys Asp Gly Cys Phe Ser

210 215 220 210 215 220

Asn Leu Arg Arg Ser Leu Cys Asn Pro Lys Val Asp Val Pro Ser HisAsn Leu Arg Arg Ser Leu Cys Asn Pro Lys Val Asp Val Pro Ser His

225 230 235 240225 230 235 240

Phe Val Gly Leu Val Leu Glu Asn Cys Asn Leu Pro Tyr Ala Asn HisPhe Val Gly Leu Val Leu Glu Asn Cys Asn Leu Pro Tyr Ala Asn His

245 250 255 245 250 255

Gly His Val Ile Leu Gly Asp Pro Ser Pro Ile Leu Phe Tyr Pro IleGly His Val Ile Leu Gly Asp Pro Ser Pro Ile Leu Phe Tyr Pro Ile

260 265 270 260 265 270

Ser Ser Thr Glu Ile Arg Cys Leu Val Asp Val Pro Gly His Lys LeuSer Ser Thr Glu Ile Arg Cys Leu Val Asp Val Pro Gly His Lys Leu

275 280 285 275 280 285

Pro Ser Leu Gly Asn Gly Asp Met Ala Arg Tyr Leu Lys Thr Val ValPro Ser Leu Gly Asn Gly Asp Met Ala Arg Tyr Leu Lys Thr Val Val

290 295 300 290 295 300

Ala Pro Gln Val Pro Pro Glu Leu Arg Asp Ser Phe Ile Ala Ala ValAla Pro Gln Val Pro Pro Glu Leu Arg Asp Ser Phe Ile Ala Ala Val

305 310 315 320305 310 315 320

Glu Lys Gly Asn Ile Arg Ser Met Pro Asn Arg Ser Met Pro Ala SerGlu Lys Gly Asn Ile Arg Ser Met Pro Asn Arg Ser Met Pro Ala Ser

325 330 335 325 330 335

Pro Tyr Pro Thr Pro Gly Ala Leu Leu Met Gly Asp Ala Phe Asn MetPro Tyr Pro Thr Pro Gly Ala Leu Leu Met Gly Asp Ala Phe Asn Met

340 345 350 340 345 350

Arg His Pro Leu Thr Gly Gly Gly Met Thr Val Ala Leu Ser Asp IleArg His Pro Leu Thr Gly Gly Gly Met Thr Val Ala Leu Ser Asp Ile

355 360 365 355 360 365

Val Leu Leu Arg Asn Leu Leu Arg Pro Leu His Asp Leu His Asp AlaVal Leu Leu Arg Asn Leu Leu Arg Pro Leu His Asp Leu His Asp Ala

370 375 380 370 375 380

Asn Ala Leu Cys Lys Tyr Leu Glu Ser Phe Tyr Thr Leu Arg Lys ProAsn Ala Leu Cys Lys Tyr Leu Glu Ser Phe Tyr Thr Leu Arg Lys Pro

385 390 395 400385 390 395 400

Val Ala Ser Thr Ile Asn Thr Leu Ala Gly Ala Leu Tyr Lys Val PheVal Ala Ser Thr Ile Asn Thr Leu Ala Gly Ala Leu Tyr Lys Val Phe

405 410 415 405 410 415

Cys Ala Ser Pro Asp Pro Ala Ser Lys Glu Met Arg Gln Ala Cys PheCys Ala Ser Pro Asp Pro Ala Ser Lys Glu Met Arg Gln Ala Cys Phe

420 425 430 420 425 430

Asp Tyr Leu Ser Leu Gly Gly Val Phe Ser Asp Gly Pro Ile Ala LeuAsp Tyr Leu Ser Leu Gly Gly Val Phe Ser Asp Gly Pro Ile Ala Leu

435 440 445 435 440 445

Leu Ser Gly Leu Asn Pro Arg Pro Leu Ser Leu Val Leu His Phe PheLeu Ser Gly Leu Asn Pro Arg Pro Leu Ser Leu Val Leu His Phe Phe

450 455 460 450 455 460

Ala Val Ala Ile Tyr Gly Val Gly Arg Leu Leu Ile Pro Phe Pro SerAla Val Ala Ile Tyr Gly Val Gly Arg Leu Leu Ile Pro Phe Pro Ser

465 470 475 480465 470 475 480

Pro Lys Arg Met Trp Ile Gly Ala Arg Leu Ile Ser Gly Ala Ser AlaPro Lys Arg Met Trp Ile Gly Ala Arg Leu Ile Ser Gly Ala Ser Ala

485 490 495 485 490 495

Ile Ile Phe Pro Ile Ile Lys Ala Glu Gly Ile Arg Gln Met Phe PheIle Ile Phe Pro Ile Ile Lys Ala Glu Gly Ile Arg Gln Met Phe Phe

500 505 510 500 505 510

Pro Val Thr Val Pro Ala Tyr Tyr Arg Thr Pro Pro Thr Asn Leu GluPro Val Thr Val Pro Ala Tyr Tyr Arg Thr Pro Pro Thr Asn Leu Glu

515 520 525 515 520 525

AspAsp

<210> 2<210> 2

<211> 1590<211> 1590

<212> DNA<212>DNA

<213> 大豆<213> soybean

<400> 2<400> 2

atgatgggtt atgagtatat tttgggaggc attatagctt ctagcttggt gcttgtgttt 60atgatgggtt atgagtatat tttgggaggc attatagctt ctagcttggt gcttgtgttt 60

gttatatatg gttctgtatc aaagaggaag gccaaaagtt cagtacatgc agaaagtaat 120gttatatatg gttctgtatc aaagaggaag gccaaaagtt cagtacatgc agaaagtaat 120

ggtggtagta ttataaggac atcaccagaa aatggaaacc accatcaaga aatctcagaa 180ggtggtagta ttataaggac atcaccagaa aatggaaacc accatcaaga aatctcagaa 180

actacggacg tcatcattgt cggtgctggg gttgctggcg cagcccttgc ttacacactt 240actacggacg tcatcattgt cggtgctggg gttgctggcg cagcccttgc ttacacactt 240

ggcaaggaag gaaggcgagt gcatgttatt gaaagggact tgactgaacc agacaggatt 300ggcaaggaag gaaggcgagt gcatgttatt gaaagggact tgactgaacc agacaggatt 300

gtgggggaat tgctacaacc tggggggtat cttaagttaa ttgaattggg tctccaagat 360gtgggggaat tgctacaacc tggggggtat cttaagttaa ttgaattggg tctccaagat 360

tgtgtgggtg agattgatgc tcagccagtc tttggctatg ctctttacaa ggacgggaaa 420tgtgtgggtg agattgatgc tcagccagtc tttggctatg ctctttacaa ggacgggaaa 420

aatactaagc tttcttaccc cttggaaaat tttgcctctg atgtttctgg aagaagcttt 480aatactaagc tttcttaccc cttggaaaat tttgcctctg atgtttctgg aagaagcttt 480

cacaatggcc gtttcataca aaggatgcgc gaaaaggctt catctcttcc aaatgtaaaa 540cacaatggcc gtttcataca aaggatgcgc gaaaaggctt catctcttcc aaatgtaaaa 540

ttagaacaag gaactgtcac atttctacta gaagaagata gaatcatcaa aggggtaaac 600ttagaacaag gaactgtcac atttctacta gaagaagata gaatcatcaa aggggtaaac 600

ttcaaaacca agagtggaca agagctcaca gctaaggctc ccctcaccat tgtatgtgat 660ttcaaaacca agagtggaca agagctcaca gctaaggctc ccctcaccat tgtatgtgat 660

ggctgttttt ccaacctgag acgttctctt tgcaacccaa aggttgatgt accatctcat 720ggctgttttt ccaacctgag acgttctctt tgcaacccaa aggttgatgt accatctcat 720

tttgttggtc tggtcctaga gaactgcaat cttccatatg caaaccacgg gcacgttatc 780tttgttggtc tggtcctaga gaactgcaat cttccatatg caaaccacgg gcacgttatc 780

ttgggtgatc cttctcccat tttgttttat cccatcagta gcactgagat tcggtgtttg 840ttgggtgatc cttctcccat tttgttttat cccatcagta gcactgagat tcggtgtttg 840

gttgatgtgc ctggccataa attaccttcc cttggcaatg gtgacatggc ccgttatttg 900gttgatgtgc ctggccataa attaccttcc cttggcaatg gtgacatggc ccgttatttg 900

aaaacagtag tagctcccca ggttcctcca gagctgcgtg actcttttat agcagcagtt 960aaaacagtag tagctcccca ggttcctcca gagctgcgtg actcttttat agcagcagtt 960

gagaaaggaa acataagaag catgccaaac agaagcatgc ccgcatctcc ttatcccaca 1020gagaaaggaa acataagaag catgccaaac agaagcatgc ccgcatctcc ttatcccaca 1020

cctggtgccc ttctcatggg agatgccttc aacatgcgtc accctttaac cggaggggga 1080cctggtgccc ttctcatggg agatgccttc aacatgcgtc accctttaac cggaggggga 1080

atgactgtgg ctttgtctga cattgttttg ctaaggaacc ttcttagacc cctgcatgat 1140atgactgtgg ctttgtctga cattgttttg ctaaggaacc ttcttagacc cctgcatgat 1140

ctgcatgacg ctaatgctct ttgcaaatat cttgaatcat tctacaccct acgcaagcca 1200ctgcatgacg ctaatgctct ttgcaaatat cttgaatcat tctacaccct acgcaagcca 1200

gtggcatcta caataaacac attagctggg gcattgtaca aggtgttttg tgcatcccct 1260gtggcatcta caataaacac attagctggg gcattgtaca aggtgttttg tgcatcccct 1260

gatccagcta gtaaggaaat gcgccaggca tgttttgatt atttaagcct tggaggtgtt 1320gatccagcta gtaaggaaat gcgccaggca tgttttgatt atttaagcct tggaggtgtt 1320

ttctcagatg gaccaattgc tctactctct ggtctaaatc ctcgtccatt aagcttggtt 1380ttctcagatg gaccaattgc tctactctct ggtctaaatc ctcgtccatt aagcttggtt 1380

ctccacttct ttgccgtggc tatatatggt gttggtcgct tactcatacc attcccttct 1440ctccacttct ttgccgtggc tatatatggt gttggtcgct tactcatacc attcccttct 1440

ccaaaacgaa tgtggattgg agctagattg atttccggtg cctctgctat cattttcccc 1500ccaaaacgaa tgtggattgg agctagattg atttccggtg cctctgctat cattttcccc 1500

attatcaagg ccgaaggaat tagacaaatg ttcttcccag taactgtgcc agcgtattac 1560attatcaagg ccgaaggaat tagacaaatg ttcttcccag taactgtgcc agcgtattac 1560

agaacacccc ctaccaattt ggaagattaa 1590agaacaccccc ctaccaattt ggaagattaa 1590

<210> 3<210> 3

<211> 3323<211> 3323

<212> DNA<212>DNA

<213> 大豆<213> soybean

<400> 3<400> 3

atgatgggtt atgagtatat tttgggaggc attatagctt ctagcttggt gcttgtgttt 60atgatgggtt atgagtatat tttgggaggc attatagctt ctagcttggt gcttgtgttt 60

gttatatatg gttctgtatc aaagaggaag gccaaaagtt cagtacatgc agaaagtaat 120gttatatatg gttctgtatc aaagaggaag gccaaaagtt cagtacatgc agaaagtaat 120

ggtggtagta ttataaggac atcaccagaa aatggaaacc accatcaaga aatctcagaa 180ggtggtagta ttataaggac atcaccagaa aatggaaacc accatcaaga aatctcagaa 180

actacggacg tcatcattgt cggtgctggg gttgctggcg cagcccttgc ttacacactt 240actacggacg tcatcattgt cggtgctggg gttgctggcg cagcccttgc ttacacactt 240

ggcaaggtag aacaaacctt ttcttgacac gactttgtga aatctaatcc atatgtgtga 300ggcaaggtag aacaaacctt ttcttgacac gactttgtga aatctaatcc atatgtgtga 300

tgttttttct tagttactac ctgcaaatat gttttgattc atagatatat gcaaaactta 360tgttttttct tagttactac ctgcaaatat gttttgattc atagatatat gcaaaactta 360

tgttgaggta aaataataac aataacaatt atgttagaaa gtcatgtttg attgccagaa 420tgttgaggta aaataataac aataacaatt atgttagaaa gtcatgtttg attgccagaa 420

agtagaggtt ggaagataga agagtagttt tctaagtgtt attctgaatg aaattataca 480agtagaggtt ggaagataga agagtagttt tctaagtgtt attctgaatg aaattataca 480

agtgatacag ttataagtta taaccttata taggcttcat agaacattta ttctaaagat 540agtgatacag ttataagtta taaccttata taggcttcat agaacattta ttctaaagat 540

agatttccca tttttttttt attttcattt tcatgaatat atttttcttg caaccagaca 600agatttccca tttttttttt attttcattt tcatgaatat atttttcttg caaccagaca 600

aaaacatgaa aagttaaact gtggaaagtc caagatctct tcctttccat gatctgttct 660aaaacatgaa aagttaaact gtggaaagtc caagatctct tcctttccat gatctgttct 660

tagaaccaca acacaaacta catatgcagt cagattcaga cttctagtta tatataaact 720tagaaccaca acacaaacta catatgcagt cagattcaga cttctagtta tatataaact 720

ttatggtaat ttaaaagaat ggtctaaaat atttttacac aatgaatcat atagtttgtg 780ttatggtaat ttaaaagaat ggtctaaaat atttttacac aatgaatcat atagtttgtg 780

ttgtaaaagg atcaatgatg ttggtctatg gttcttgctt caggaaggaa ggcgagtgca 840ttgtaaaagg atcaatgatg ttggtctatg gttcttgctt caggaaggaa ggcgagtgca 840

tgttattgaa agggacttga ctgaaccaga caggattgtg ggggaattgc tacaacctgg 900tgttattgaa agggacttga ctgaaccaga caggattgtg ggggaattgc tacaacctgg 900

ggggtatctt aagttaattg aattgggtct ccaaggtaac caagcaagaa acatgtcaca 960ggggtatctt aagttaattg aattgggtct ccaaggtaac caagcaagaa acatgtcaca 960

tattatgtca cataagtaga tgtatggaag attgtgtgag aattgaagta atcaatctta 1020tattatgtca cataagtaga tgtatggaag attgtgtgag aattgaagta atcaatctta 1020

ggtgtgaact cccttgcctt tgcttgtcaa attcaaggct cttattaaca gattaagttg 1080ggtgtgaact cccttgcctt tgcttgtcaa attcaaggct cttattaaca gattaagttg 1080

tgagttgttt cagattgtgt gggtgagatt gatgctcagc cagtctttgg ctatgctctt 1140tgagttgttt cagattgtgtgggtgagatt gatgctcagc cagtctttgg ctatgctctt 1140

tacaaggacg ggaaaaatac taagctttct taccccttgg aaaattttgc ctctgatgtt 1200tacaaggacg ggaaaaatac taagctttct taccccttgg aaaattttgc ctctgatgtt 1200

tctggaagaa gctttcacaa tggccgtttc atacaaagga tgcgcgaaaa ggcttcatct 1260tctggaagaa gctttcacaa tggccgtttc atacaaagga tgcgcgaaaa ggcttcatct 1260

cttccaaagt acagactctt atcatccttt ttcaaaaact gtttctgaaa aggatttttt 1320cttccaaagt acagactctt atcatccttt ttcaaaaact gtttctgaaa aggatttttt 1320

tttattaaat cctttccttc cgttacttgc tcttattgtt ccaaattttg tgcagtgtaa 1380tttattaaat cctttccttc cgttacttgc tcttattgtt ccaaattttg tgcagtgtaa 1380

aattagaaca aggaactgtc acatttctac tagaagaaga tagaatcatc aaaggggtaa 1440aattagaaca aggaactgtc aatttctac tagaagaaga tagaatcatc aaaggggtaa 1440

acttcaaaac caagagtgga caagagctca cagctaaggc tcccctcacc attgtatgtg 1500acttcaaaac caagagtgga caagagctca cagctaaggc tcccctcacc attgtatgtg 1500

atggctgttt ttccaacctg agacgttctc tttgcaaccc aaaggtaact atgctgtttt 1560atggctgttt ttccaacctg agacgttctc tttgcaaccc aaaggtaact atgctgtttt 1560

ttttattatt atttatgtta aaagtgtgaa atatattctg actttgttga tgattaattt 1620ttttattatt atttatgtta aaagtgtgaa atatattctg actttgttga tgattaattt 1620

ccattgaaaa attggttgac cattttagta gtcttctctt ctaatggtgt ttttttttct 1680ccattgaaaa attggttgac cattttagta gtcttctctt ctaatggtgt ttttttttct 1680

gtcacaaggc tccaagccaa gactttactt ataggtccga gtccaagtca agctaactta 1740gtcacaaggc tccaagccaa gactttactt ataggtccga gtccaagtca agctaactta 1740

atgttggtat ctatttgtct ttgctagtac ttagatgggt ttatttgttt atttatttat 1800atgttggtat ctatttgtct ttgctagtac ttagatgggt ttaatttgttt atttatttat 1800

gcaggttgat gtaccatctc attttgttgg tctggtccta gagaactgca atcttccata 1860gcaggttgat gtaccatctc attttgttgg tctggtccta gagaactgca atcttccata 1860

tgcaaaccac gggcacgtta tcttgggtga tccttctccc attttgtttt atcccatcag 1920tgcaaaccac gggcacgtta tcttgggtga tccttctccc attttgtttt atcccatcag 1920

tagcactgag attcggtgtt tggttgatgt gcctggccat aaattacctt cccttggcaa 1980tagcactgag attcggtgtt tggttgatgt gcctggccat aaattacctt cccttggcaa 1980

tggtgacatg gcccgttatt tgaaaacagt agtagctccc caggtacaaa tatcctagtc 2040tggtgacatg gcccgttatt tgaaaacagt agtagctccc caggtacaaa tatcctagtc 2040

tttggcttgg cttaatattc aaaacatgga acatattctt caattccact aatggaggaa 2100tttggcttgg cttaatattc aaaacatgga acatattctt caattccact aatggaggaa 2100

attgtgtttt aggttcctcc agagctgcgt gactctttta tagcagcagt tgagaaagga 2160attgtgtttt aggttcctcc agagctgcgt gactctttta tagcagcagt tgagaaagga 2160

aacataagaa gcatgccaaa cagaagcatg cccgcatctc cttatcccac acctggtgcc 2220aacataagaa gcatgccaaa cagaagcatg cccgcatctc cttatcccac acctggtgcc 2220

cttctcatgg gagatgcctt caacatgcgt caccctttaa ccggaggggg aatgactgtg 2280cttctcatgg gagatgcctt caacatgcgt caccctttaa ccggaggggg aatgactgtg 2280

gctttgtctg acattgtttt gctaaggaac cttcttagac ccctgcatga tctgcatgac 2340gctttgtctg acattgtttt gctaaggaac cttcttagac ccctgcatga tctgcatgac 2340

gctaatgctc tttgcaaata tcttgaatca ttctacaccc tacgcaaggt taatatatat 2400gctaatgctc tttgcaaata tcttgaatca ttctacaccc tacgcaaggt taatatatat 2400

ataatcgaaa gagtttaata gtcatgcacc ttagaataaa agtattttct ttataaacta 2460ataatcgaaa gagtttaata gtcatgcacc ttagaataaa agtattttct ttataaacta 2460

attagaaaac atccttattc cttagtatgc agtactatga ctttggtggt tattataaaa 2520attagaaaac atccttatattc cttagtatgc agtactatga ctttggtggt tattataaaa 2520

gtgaacgagt ttatcttaca tgacagtttg taattgaata atcgtataag aaacctttac 2580gtgaacgagt ttatcttca tgacagtttg taattgaata atcgtataag aaacctttac 2580

attgttttct taaccaaata ccctgtcatg ttttatcagt attggtttga gcaaatttaa 2640attgttttct taaccaaata ccctgtcatg ttttatcagt attggtttga gcaaatttaa 2640

taggtggttc ttgattgtgt ttgcagccag tggcatctac aataaacaca ttagctgggg 2700taggtggttc ttgattgtgtttgcagccag tggcatctac aataaacaca ttagctgggg 2700

cattgtacaa ggtgttttgt gcatcccctg atccagctag taaggaaatg cgccaggcat 2760cattgtacaa ggtgttttgt gcatcccctg atccagctag taaggaaatg cgccaggcat 2760

gttttgatta tttaagcctt ggaggtgttt tctcagatgg accaattgct ctactctctg 2820gttttgatta tttaagcctt ggaggtgttt tctcagatgg accaattgct ctactctctg 2820

gtctaaatcc tcgtccatta agcttggttc tccacttctt tgccgtggct atatatggtg 2880gtctaaatcc tcgtccatta agcttggttc tccacttctt tgccgtggct atatatggtg 2880

ttggtcgctt actcatacca ttcccttctc caaaacgaat gtggattgga gctagattga 2940ttggtcgctt actcatacca ttcccttctc caaaacgaat gtggattgga gctagattga 2940

tttccgtgag tgtttcttgc atttctttat agacataatt tttcacatat taaccataac 3000tttccgtgag tgtttcttgc atttctttat agacataatt tttcacatat taaccataac 3000

ctttgctgca acaatattct attacaaatt atgaataatt ctagcatgag tagagtgttt 3060ctttgctgca acaatattct attacaaatt atgaataatt ctagcatgag tagagtgttt 3060

aatattcaaa taaattcaac acggtctata tattttgatt aattgagtct gtaaatgttg 3120aatattcaaa taaattcaac acggtctata tattttgatt aattgagtct gtaaatgttg 3120

tggtcataaa agaattgttc ccaaaatatt agttaatggt acaacaaaat ttatgatttt 3180tggtcataaa agaattgttc ccaaaatatt agttaatggt acaacaaaat ttatgatttt 3180

gaaccaagtt tgttcttgac attttcaggg tgcctctgct atcattttcc ccattatcaa 3240gaaccaagtt tgttcttgac attttcaggg tgcctctgct atcattttcc ccattatcaa 3240

ggccgaagga attagacaaa tgttcttccc agtaactgtg ccagcgtatt acagaacacc 3300ggccgaagga attagacaaa tgttcttccc agtaactgtg ccagcgtatt acagaacacc 3300

ccctaccaat ttggaagatt aaa 3323ccctaccaat ttggaagatt aaa 3323

Claims (10)

1. application of the drought resistant correlative protein in plant drought resistance is regulated and controled;The drought resistant correlative protein is following A1) or A2) or A3):
A1) amino acid sequence is the protein of sequence 1;
A2) obtained in the amino acid sequence of sequence 1 by substituting and/or lacking and/or add one or several amino acid residues Arrive have identical function as A1) derived from protein;
A3) in A1) or the obtained fused protein of N-terminal A2) or/and C-terminal connection label.
2. application of the biomaterial related to drought resistant correlative protein described in claim 1 in plant drought resistance is regulated and controled;
Any of the biomaterial, it is following B1) to B14):
B1 the nucleic acid molecules of drought resistant correlative protein described in claim 1) are encoded;
B2 B1) is contained) expression cassettes of the nucleic acid molecules;
B3 B1) is contained) recombinant vectors of the nucleic acid molecules;
B4 B2) is contained) recombinant vector of the expression cassette;
B5 B1) is contained) recombinant microorganisms of the nucleic acid molecules;
B6 B2) is contained) recombinant microorganism of the expression cassette;
B7 B3) is contained) recombinant microorganism of the recombinant vector;
B8 B4) is contained) recombinant microorganism of the recombinant vector;
B9 B1) is contained) the transgenic plant cells systems of the nucleic acid molecules;
B10 B2) is contained) the transgenic plant cells system of the expression cassette;
B11 B1) is contained) Transgenic plant tissues of the nucleic acid molecules;
B12 B2) is contained) Transgenic plant tissue of the expression cassette;
B13 B1) is contained) the genetically modified plants organs of the nucleic acid molecules;
B14 B2) is contained) the genetically modified plants organ of the expression cassette.
3. application according to claim 2, it is characterised in that:B1) nucleic acid molecules are following b1), b2), b3) or B4 the gene shown in):
B1) nucleotide sequence is the cDNA molecules or DNA molecular of sequence 2 in sequence table;
B2) nucleotide sequence is the cDNA molecules or DNA molecular of sequence 3 in sequence table;
B3) and b1) or b2) or the nucleotide sequence that limits there is 75% or more than 75% homogeneity, and in coding claim 1 The cDNA molecules or genomic DNA molecule of the drought resistant correlative protein;
B4) under strict conditions with b1) or b2) limit nucleotide sequence hybridization, and encode claim 1 described in drought resisting phase Close the cDNA molecules or genomic DNA molecule of albumen.
4. biomaterial described in drought resistant correlative protein described in claim 1 or Claims 2 or 3 is cultivating drought resistance enhancing Application in plant.
5. a kind of method for cultivating drought resistance enhancing plant, including:Increase drought resisting correlation described in claim 1 in purpose plant The activity of albumen, increase the content of drought resistant correlative protein described in claim 1 in purpose plant, promote institute in claim 1 The expression of the encoding gene of drought resistant correlative protein is stated, obtains the drought-resistant plant that drought resistance strengthens compared with the purpose plant.
6. according to the method for claim 5, it is characterised in that:The drought-resistant plant is by being led into the purpose plant Enter the plant that the encoding gene of drought resistant correlative protein described in claim 1 obtains.
7. according to the method for claim 6, it is characterised in that:The coding base of drought resistant correlative protein described in claim 1 Because B1 in claim 3) nucleic acid molecules.
8. regulating and controlling the product of plant drought resistance, contain institute in drought resistant correlative protein described in claim 1 or Claims 2 or 3 State biomaterial.
9. application of the product described in claim 8 in plant drought resistance is regulated and controled.
10. according to any described method or claim 8 in any described applications of claim 1-4 or claim 5-7 Application described in described product or claim 9, it is characterised in that:The plant is dicotyledon or monocotyledon; The purpose plant is dicotyledon or monocotyledon.
CN201710873361.0A 2017-09-25 2017-09-25 Application of soybean drought resistance-related proteins in regulating soybean drought resistance Active CN107459565B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710873361.0A CN107459565B (en) 2017-09-25 2017-09-25 Application of soybean drought resistance-related proteins in regulating soybean drought resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710873361.0A CN107459565B (en) 2017-09-25 2017-09-25 Application of soybean drought resistance-related proteins in regulating soybean drought resistance

Publications (2)

Publication Number Publication Date
CN107459565A true CN107459565A (en) 2017-12-12
CN107459565B CN107459565B (en) 2020-01-21

Family

ID=60553102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710873361.0A Active CN107459565B (en) 2017-09-25 2017-09-25 Application of soybean drought resistance-related proteins in regulating soybean drought resistance

Country Status (1)

Country Link
CN (1) CN107459565B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183524A (en) * 2019-06-11 2019-08-30 扬州大学 One promotes gene GmKRP2a, albumen and its application of the elongation of soybean main root
CN110684753A (en) * 2019-11-14 2020-01-14 中国科学院东北地理与农业生态研究所 Application of Soybean Cuticle Wax Synthesis Gene or Its Protein
CN111606986A (en) * 2020-06-10 2020-09-01 北京市农林科学院 A Drought and Salt Tolerance-Related Protein and Its Related Biological Materials and Applications
CN112725498A (en) * 2021-01-15 2021-04-30 甘肃省农业科学院作物研究所 SNP molecular marker related to soybean seedling stage/adult plant stage drought resistance and application thereof
CN114644699A (en) * 2020-12-21 2022-06-21 中国农业大学 Application of Substances Regulating ZmARP1 Gene Expression in Regulating Plant Drought Resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567578A (en) * 2016-01-06 2016-05-11 昆明理工大学 Ganoderic acid high yield engineering strain kmust-SE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567578A (en) * 2016-01-06 2016-05-11 昆明理工大学 Ganoderic acid high yield engineering strain kmust-SE

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
无: "PREDICTED: Glycine max squalene monooxygenase (LOC100795027), mRNA NCBI Reference Sequence: XM_003545714.2", 《GENBANK》 *
许燕 等: "药用植物中鲨烯环氧酶基因的研究进展", 《安徽医药》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183524A (en) * 2019-06-11 2019-08-30 扬州大学 One promotes gene GmKRP2a, albumen and its application of the elongation of soybean main root
CN110684753A (en) * 2019-11-14 2020-01-14 中国科学院东北地理与农业生态研究所 Application of Soybean Cuticle Wax Synthesis Gene or Its Protein
CN111606986A (en) * 2020-06-10 2020-09-01 北京市农林科学院 A Drought and Salt Tolerance-Related Protein and Its Related Biological Materials and Applications
CN111606986B (en) * 2020-06-10 2021-12-28 北京市农林科学院 Drought-resistant salt-tolerant associated protein, and related biological material and application thereof
CN114644699A (en) * 2020-12-21 2022-06-21 中国农业大学 Application of Substances Regulating ZmARP1 Gene Expression in Regulating Plant Drought Resistance
CN114644699B (en) * 2020-12-21 2023-03-28 中国农业大学 Application of Substances Regulating ZmARP1 Gene Expression in Regulating Plant Drought Resistance
CN112725498A (en) * 2021-01-15 2021-04-30 甘肃省农业科学院作物研究所 SNP molecular marker related to soybean seedling stage/adult plant stage drought resistance and application thereof
CN112725498B (en) * 2021-01-15 2024-03-29 甘肃省农业科学院作物研究所 SNP molecular marker related to drought resistance in soybean seedling stage/adult stage and application thereof

Also Published As

Publication number Publication date
CN107459565B (en) 2020-01-21

Similar Documents

Publication Publication Date Title
CN107459565B (en) Application of soybean drought resistance-related proteins in regulating soybean drought resistance
WO2013092275A2 (en) Genes to enhance the defense against pathogens in plants
CN109111514B (en) Method for cultivating transgenic wheat with resistance to sheath blight and root rot and related biological material thereof
CN111218470B (en) Method for regulating and controlling stress resistance of plants
CN110408650A (en) Application of NOR-like1 gene and its encoded protein in regulating tomato fruit yield
CN105859860A (en) Application of disease resistance-related protein to regulation and control of plant disease resistance
US20190127755A1 (en) Construct and vector for intragenic plant transformation
CN113980106B (en) Small peptide for regulating and controlling sizes of plant seeds and organs, and coding gene and application thereof
CN110857316B (en) Anthocyanin synthesis related protein and application thereof in regulating and controlling plant anthocyanin content
JP2011507506A (en) Trichome-specific promoter
CN102399268B (en) Plant stress tolerance-related transcription factor GmNAC11, coding gene and application thereof
CN110563827A (en) Protein related to corn kernel yield and coding gene thereof
CN117264964A (en) Application of wheat TaGSKB protein and encoding gene thereof in regulation and control of plant stress tolerance
CN103540595B (en) Rice constitutive type promoter and application thereof
CN117106820A (en) Method for creating few lateral branches of tomatoes through genome editing and application of method
WO2011031370A1 (en) Enhancement of reproductive heat tolerance in plants
WO2009072676A1 (en) Transformed plant with promoted growth
CN113773375B (en) Application of soybean nuclear factor protein GmNF307 in plant salt tolerance regulation and control
CN107022011B (en) A kind of soybean transcription factor GmDISS1 and its encoding gene and application
CN110627887B (en) Application of SlTLFP8 protein and related biomaterials in regulating tomato drought resistance
CN108611365B (en) Application of Seed-Associated Proteins in Regulating Plant Seed Yield
CN105646683A (en) Application of slat-tolerant protein kit and related biomaterials in regulating and controlling salt tolerance in plants
US10047369B2 (en) Citrus derived transcription and translation regulatory elements for tissue specific expression
CN110373425A (en) Application of the protein of NOR-like1 gene and its coding after regulation tamato fruit is adopted in dehydration
CN107739403B (en) A protein related to plant flowering period and its encoding gene and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant