CN107425781A - A SRM Position Prediction Method Based on Linear Flux Model and Linear Regression Analysis - Google Patents
A SRM Position Prediction Method Based on Linear Flux Model and Linear Regression Analysis Download PDFInfo
- Publication number
- CN107425781A CN107425781A CN201610851091.9A CN201610851091A CN107425781A CN 107425781 A CN107425781 A CN 107425781A CN 201610851091 A CN201610851091 A CN 201610851091A CN 107425781 A CN107425781 A CN 107425781A
- Authority
- CN
- China
- Prior art keywords
- linear
- flux linkage
- phase
- region
- rotor position
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000004907 flux Effects 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000012417 linear regression Methods 0.000 title claims abstract description 20
- 238000005070 sampling Methods 0.000 claims abstract description 11
- 230000001186 cumulative effect Effects 0.000 claims abstract description 5
- 230000014509 gene expression Effects 0.000 claims description 6
- 230000005284 excitation Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000000819 phase cycle Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/14—Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/08—Reluctance motors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
本发明公开了一种基于线性磁链模型和线性回归分析的SRM位置预估方法。该方法只需线性区内任意两个转子位置处的磁链特性数据,从而得到线性区两个端点处的磁链值,并作为参考。检测导通相电压、电流值,计算得到磁链值。若该值位于两个参考磁链值之间,表明转子位置位于线性区,则运用线性磁链模型进行位置预估。否则,表明转子位置位于非线性区,在假设短时间内电机转速恒定的前提下,对线性区位置数据及采样序号进行线性回归分析,进而用于对非线性区转子位置的预估。如需进一步减小单相预估中的累积误差,可采用多相磁链特性代替单相磁链特性进行位置预估。该方法精度高、易于实现、适用性好,且能够避免或降低相间互感和磁路饱和的影响。
The invention discloses an SRM position estimation method based on a linear flux linkage model and linear regression analysis. This method only needs the flux linkage characteristic data at any two rotor positions in the linear region, so as to obtain the flux linkage values at the two ends of the linear region and use it as a reference. Detect the conduction phase voltage and current value, and calculate the flux linkage value. If the value is between two reference flux linkage values, indicating that the rotor position is in the linear region, the linear flux linkage model is used for position estimation. Otherwise, it indicates that the rotor position is in the nonlinear region. On the premise that the motor speed is constant in a short period of time, linear regression analysis is performed on the position data and sampling numbers in the linear region, and then used to estimate the rotor position in the nonlinear region. To further reduce the cumulative error in single-phase estimation, multi-phase flux linkage characteristics can be used instead of single-phase flux linkage characteristics for position estimation. The method has the advantages of high precision, easy realization and good applicability, and can avoid or reduce the influence of mutual inductance between phases and saturation of magnetic circuit.
Description
技术领域technical field
本发明涉及一种基于线性磁链模型和线性回归分析的开关磁阻电机(SRM)精确位置预估方法,属于电机无位置传感器控制领域。The invention relates to an accurate position estimation method of a switched reluctance motor (SRM) based on a linear flux model and linear regression analysis, and belongs to the field of motor position sensorless control.
背景技术Background technique
位置信息是开关磁阻电机运行的基础。通常,位置信息由机械位置传感器获得,如旋转变压器、霍尔传感器、光电编码器等。然而,这些机械位置传感器不但增加了驱动系统的成本和复杂度,而且它们的精度和可靠性易受温度、粉尘和震动等环境因素的影响。因此,研究低成本、高精度、高可靠性的无位置传感器控制方法是非常有必要的。Position information is fundamental to the operation of switched reluctance motors. Usually, position information is obtained by mechanical position sensors, such as resolvers, Hall sensors, photoelectric encoders, etc. However, these mechanical position sensors not only increase the cost and complexity of the drive system, but also their accuracy and reliability are easily affected by environmental factors such as temperature, dust and vibration. Therefore, it is very necessary to study a position sensorless control method with low cost, high precision and high reliability.
为了实现无位置传感器控制,研究者提出了大量的位置预估方法。这些方法主要分为两类:一类是非导通相位置预估方法,一类是导通相位置预估方法。In order to realize position sensorless control, researchers have proposed a large number of position estimation methods. These methods are mainly divided into two categories: one is the position estimation method of the non-conducting phase, and the other is the position estimation method of the conducting phase.
第一类方法主要通过给非励磁相注入高频电压脉冲,检测电流的幅值或上升时间来确定不饱和区域的电感值,进而得到转子位置值或所在区域。该类方法的缺点是:当其他相有电流时,脉冲注入相的电流可能受到其他相互感作用的影响;非导通相注入脉冲电流可能产生负转矩;此外,高速时,励磁电流波形占整个相周期的主要部分,限制了脉冲注入的时间。故该类方法只适用于起动和低速工况。The first type of method mainly determines the inductance value of the unsaturated region by injecting high-frequency voltage pulses into the non-excitation phase and detecting the amplitude or rise time of the current, and then obtains the rotor position value or the region where it is located. The disadvantages of this type of method are: when there is current in other phases, the pulse current injected into the phase may be affected by other interactions; the pulse current injected into the non-conductive phase may generate negative torque; in addition, at high speed, the excitation current waveform occupies The main part of the entire phase cycle, limiting the time of pulse injection. Therefore, this type of method is only suitable for starting and low-speed conditions.
第二类方法主要根据测量得到的励磁相电压、电流值,通过查询表、数学模型、观测器或智能算法等估计转子位置。该类方法优势在于既不产生额外的功率损耗,又不需要附加硬件。但现有导通相位置预估法大多需要全部或很多转子位置处的磁链特性数据,加大了数据获取及处理的难度和工作量,且往往需要大的存储空间。另外,该类方法的预估精度易于受到相间互感和磁场饱和的影响。The second type of method mainly estimates the rotor position through look-up tables, mathematical models, observers or intelligent algorithms based on the measured excitation phase voltage and current values. The advantage of this type of method is that neither additional power loss is generated nor additional hardware is required. However, most of the existing conduction phase position estimation methods require the flux linkage characteristic data at all or many rotor positions, which increases the difficulty and workload of data acquisition and processing, and often requires a large storage space. In addition, the prediction accuracy of this type of method is easily affected by the mutual inductance between phases and magnetic field saturation.
发明内容Contents of the invention
本发明将开关磁阻电机相磁链与转子位置的关系曲线划分为两个区域,并针对不同区域分别采用线性磁链模型与线性回归分析进行转子位置预估。技术方案如下:The invention divides the relationship curve between the phase flux linkage and the rotor position of the switched reluctance motor into two regions, and uses a linear flux model and a linear regression analysis for different regions to estimate the rotor position. The technical solution is as follows:
步骤一:在开关磁阻电机相磁链与转子位置的关系曲线中,将区间[θ1,θhr]定义为线性区,剩余区间为非线性区。θ1和θhr可由式(1)和(2)得到。Step 1: In the relationship curve between the phase flux linkage and the rotor position of the switched reluctance motor, define the interval [θ 1 ,θ hr ] as the linear region, and the remaining intervals as the nonlinear region. θ 1 and θ hr can be obtained by formulas (1) and (2).
θ1=θa-(βs+βr)/2 (1)θ 1 =θ a -(β s +β r )/2 (1)
θhr=θa-βr/2 (2)θ hr = θ a -β r /2 (2)
其中,θa、βs和βr分别为电机的对齐位置、定子极弧和转子极弧。where θ a , β s and β r are the alignment position, stator pole arc and rotor pole arc of the motor, respectively.
获取线性区内任意两个转子位置θx和θy处的磁链特性数据ψx和ψy,通过式(3) 获得线性区两个端点处的磁链特性,其中,ψ为相磁链,θ为转子位置,同时通过拟合得到端点处相磁链与相电流的解析表达式。Obtain the flux linkage characteristic data ψ x and ψ y at any two rotor positions θ x and θ y in the linear region, and obtain the flux linkage characteristics at the two end points of the linear region by formula (3), where ψ is the phase flux linkage , θ is the rotor position, and the analytical expressions of phase flux linkage and phase current at the endpoints are obtained by fitting.
步骤二:检测导通相电压、电流值,利用上一步得到的磁链与相电流的解析表达式,获取此时线性区端点处的磁链值ψ1和ψhr,并设定为参考磁链。Step 2: Detect the conduction phase voltage and current value, use the analytical expressions of flux linkage and phase current obtained in the previous step to obtain the flux linkage values ψ 1 and ψ hr at the end points of the linear region at this time, and set them as the reference magnetic flux chain.
利用式(4)计算得到此时的相磁链值。Use formula (4) to calculate the phase flux linkage value at this time.
其中,ψ(0)是初始磁链,u,i和r分别为开关磁阻电机的相电压、相电流和相电阻。Among them, ψ(0) is the initial flux linkage, u, i and r are the phase voltage, phase current and phase resistance of the switched reluctance motor, respectively.
步骤三:若ψ1≤ψ≤ψhr,表明转子位置位于线性区,则可通过线性磁链模型得到转子位置角,如式(5)所示。Step 3: If ψ 1 ≤ψ≤ψ hr , it means that the rotor position is in the linear region, then the rotor position angle can be obtained through the linear flux linkage model, as shown in formula (5).
步骤四:若不满足ψ1≤ψ≤ψhr,表明转子位置位于非线性区,此时在假设短时间内电机转速恒定的前提下,对线性区位置数据及采样序号进行线性回归分析,确定式(6) 所示一元线性回归函数的系数,进而用于对非线性区转子位置的预估。Step 4: If ψ 1 ≤ψ≤ψ hr is not satisfied, it indicates that the rotor position is in the nonlinear region. At this time, under the assumption that the motor speed is constant in a short period of time, perform linear regression analysis on the position data and sampling numbers in the linear region to determine The coefficients of the unary linear regression function shown in formula (6) are used to estimate the rotor position in the nonlinear region.
其中,为第k个采样点处转子位置的预估值,k为采样点序号。 为系数,可基于线性区的数据,由式(7)计算得到。in, is the estimated value of the rotor position at the kth sampling point, and k is the number of the sampling point. is a coefficient, which can be calculated by formula (7) based on the data in the linear region.
其中,θk为线性区内第k个采样点处的转子位置值。Among them, θ k is the rotor position value at the kth sampling point in the linear region.
步骤五:如需进一步减小非线性区转子位置预估时引入的累积误差,可采用多相磁链特性代替单相磁链特性进行预估。相选取原则为:利用各相的线性区,缩短单相预估时的非线性区。Step 5: If it is necessary to further reduce the cumulative error introduced when estimating the rotor position in the nonlinear region, multi-phase flux linkage characteristics can be used instead of single-phase flux linkage characteristics for estimation. The principle of phase selection is: use the linear region of each phase to shorten the nonlinear region in single-phase estimation.
本发明的有益效果:①方法简单,易于实现。采用简单的线性模型,仅需两个转子位置处的磁链特性数据,而且只需要少量的物理内存;②精度高,鲁棒性强。线性区磁链特性分辨率高,对磁链误差敏感度低,且能够有效避免相间互感以及降低磁路饱和对预估结果的影响。另外,通过多相预估法,减小了累积误差;③适用性好。角度位置控制、电流斩波控制和电压PWM控制工况下均具有良好的精度,也适用于不同的开关磁阻电机拓扑。Beneficial effects of the present invention: ①The method is simple and easy to realize. Using a simple linear model, only two flux linkage characteristic data at two rotor positions are required, and only a small amount of physical memory is required; ② High precision and strong robustness. The flux linkage characteristics in the linear region have high resolution, low sensitivity to flux linkage errors, and can effectively avoid phase-to-phase mutual inductance and reduce the influence of magnetic circuit saturation on the estimated results. In addition, the cumulative error is reduced through the multi-phase estimation method; ③ the applicability is good. Angular position control, current chopping control and voltage PWM control all have good accuracy and are also suitable for different switched reluctance motor topologies.
附图说明Description of drawings
图1为一定电流下开关磁阻电机单相磁链与转子位置的关系曲线图。Figure 1 is a curve diagram of the relationship between the single-phase flux linkage and the rotor position of the switched reluctance motor under a certain current.
图2为一定电流下三相开关磁阻电机三相磁链与转子位置的关系曲线图。Fig. 2 is a graph showing the relationship between three-phase flux linkage and rotor position of a three-phase switched reluctance motor under a certain current.
图3为基于线性磁链模型和线性回归分析的SRM位置预估方法流程图。Fig. 3 is a flow chart of the SRM position estimation method based on the linear flux linkage model and linear regression analysis.
具体实施方式detailed description
以下结合附图和具体实例,对本发明的技术方案进行详细说明。实例所用电机为一个1kW三相12/8极的开关磁阻电机。The technical solutions of the present invention will be described in detail below in conjunction with the accompanying drawings and specific examples. The motor used in the example is a 1kW three-phase 12/8-pole switched reluctance motor.
步骤一:在图1所示一定电流下开关磁阻电机单相磁链与转子位置的关系曲线中,将线性区[θ1,θhr]定义为线性区,剩余区间为非线性区。对于实例给定的开关磁阻电机,βs,βr和θa分别为15°,17°和22.5°。由式(1)和(2),可以得出θ1和θhr分别为6.5°和14°。Step 1: In the relationship curve between the single-phase flux linkage and the rotor position of the switched reluctance motor under a certain current shown in Figure 1, the linear region [θ 1 ,θ hr ] is defined as the linear region, and the remaining interval is the nonlinear region. For the example given switched reluctance motor, β s , β r and θ a are 15°, 17° and 22.5°, respectively. From formulas (1) and (2), it can be concluded that θ 1 and θ hr are 6.5° and 14°, respectively.
利用转矩平衡测试法可以方便的获得该开关磁阻电机在7.5°和15°处的磁链特性数据,由于15°与14°接近,因此选[6.5°,15°]为线性区,其余为非线性区。6.5°处的磁链可由式(8)得到:The flux linkage characteristic data of the switched reluctance motor at 7.5° and 15° can be easily obtained by using the torque balance test method. Since 15° is close to 14°, [6.5°, 15°] is selected as the linear region, and the rest is a non-linear region. The flux linkage at 6.5° can be obtained by formula (8):
通过拟合得到磁链ψ6.5°和ψ15°与相电流i的解析表达式ψ6.5°(i)和ψ15°(i)。The analytical expressions ψ 6.5° (i) and ψ 15° (i) of flux linkage ψ 6.5° and ψ 15° and phase current i are obtained by fitting.
步骤二:检测导通相电压、电流值,利用上一步拟合得到的解析表达式ψ6.5°(i)和ψ15°(i),获取此时线性区端点处的磁链值ψ6.5°(i*)和ψ15°(i*),并设定为参考磁链,其中 i*为此时的相电流值。同时,利用式(4)计算得到此时的相磁链值ψ(i*)。Step 2: Detect the conduction phase voltage and current value, and use the analytical expressions ψ 6.5° (i) and ψ 15° (i) obtained by fitting in the previous step to obtain the flux linkage value ψ 6.5° at the end of the linear region at this time (i * ) and ψ 15° (i * ), and set as the reference flux linkage, where i * is the phase current value at this time. At the same time, the phase flux linkage value ψ(i * ) at this time is calculated by using formula (4).
步骤三:若ψ6.5°(i*)≤ψ(i*)≤ψ15°(i*),表明转子位置位于线性区,则可通过线性磁链模型得到转子位置角,如式(9)所示。Step 3: If ψ 6.5° (i * )≤ψ(i * )≤ψ 15° (i * ), it indicates that the rotor position is in the linear region, and the rotor position angle can be obtained through the linear flux linkage model, as shown in formula (9) shown.
步骤四:若不满足ψ6.5°(i*)≤ψ(i*)≤ψ15°(i*),表明转子位置位于非线性区,此时首先基于在上一步得到的线性区位置数据与采样点序号,由式(7)得到系数和而后代入式(6)所示一元线性回归函数,并利用该式对非线性区内不同采样点处的转子位置进行预估。Step 4: If ψ 6.5° (i * )≤ψ(i * )≤ψ 15° (i * ) is not satisfied, it indicates that the rotor position is in the nonlinear region. The serial number of the sampling point, the coefficient can be obtained from formula (7) with Then substitute into the unary linear regression function shown in formula (6), and use this formula to predict the rotor position at different sampling points in the nonlinear region.
步骤五:为了进一步减小非线性区位置预估时引入的累积误差,采用三相磁链特性代替单相磁链特性进行预估。依据选取原则,制定一种相选取策略,如表1所示。Step 5: In order to further reduce the cumulative error introduced when estimating the position of the nonlinear region, the three-phase flux linkage characteristic is used instead of the single-phase flux linkage characteristic for estimation. According to the selection principle, formulate a phase selection strategy, as shown in Table 1.
在表1中,ψref为给定的一个参考磁链,本实例中选取ψref=ψ6.5°。另外,当三相磁链值均大于ψref时,选取的相保持不变。在图2所示一定电流下三相开关磁阻电机三相磁链与转子位置的关系曲线中,粗实线表示依据表1确定的各相参与位置预估的部分。In Table 1, ψ ref is a given reference flux linkage, and ψ ref =ψ 6.5° is selected in this example. In addition, when the three-phase flux linkage values are greater than ψref , the selected phase remains unchanged. In the relationship curve between the three-phase flux linkage and the rotor position of the three-phase switched reluctance motor under a certain current shown in Figure 2, the thick solid line represents the part of each phase involved in position estimation determined according to Table 1.
表1.一种相选取策略Table 1. A phase selection strategy
在表1中,ψref为给定的一个参考磁链,本实例中选取ψref=ψ6.5°。另外,当三相磁链值均大于ψref时,选取的相保持不变。在图2所示一定电流下三相开关磁阻电机三相磁链与转子位置的关系曲线中,粗实线表示依据表1确定的各相参与位置预估的部分。In Table 1, ψ ref is a given reference flux linkage, and ψ ref =ψ 6.5° is selected in this example. In addition, when the three-phase flux linkage values are greater than ψref , the selected phase remains unchanged. In the relationship curve between the three-phase flux linkage and the rotor position of the three-phase switched reluctance motor under a certain current shown in Figure 2, the thick solid line represents the part of each phase involved in position estimation determined according to Table 1.
该基于线性磁链模型和线性回归分析的SRM位置预估方法的流程图如图3 所示。The flowchart of the SRM position estimation method based on the linear flux linkage model and linear regression analysis is shown in FIG. 3 .
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610005280 | 2016-01-06 | ||
CN2016100052804 | 2016-01-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107425781A true CN107425781A (en) | 2017-12-01 |
CN107425781B CN107425781B (en) | 2019-02-26 |
Family
ID=60422925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610851091.9A Active CN107425781B (en) | 2016-01-06 | 2016-09-27 | A SRM Position Estimation Method Based on Linear Flux Model and Linear Regression Analysis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107425781B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108429505A (en) * | 2018-03-01 | 2018-08-21 | 西北工业大学 | An Online Identification Method of Instantaneous Torque of Switched Reluctance Motor |
CN108875168A (en) * | 2018-06-04 | 2018-11-23 | 同济大学 | A kind of switched reluctance machines magnetic field Analytic Calculation Method considering saturation |
CN109672386A (en) * | 2018-11-13 | 2019-04-23 | 江苏大学 | A kind of switch magnetoresistance motor rotor position detection method |
CN110334386A (en) * | 2019-05-09 | 2019-10-15 | 深圳大学 | A Planar Motor Control Method and Terminal Equipment Based on Parameter Regression |
CN110661467A (en) * | 2018-06-29 | 2020-01-07 | 北京自动化控制设备研究所 | Switched reluctance motor position estimation method based on flux linkage characteristic coordinate transformation |
CN111190128A (en) * | 2018-11-15 | 2020-05-22 | 北京自动化控制设备研究所 | Detection algorithm for BH characteristics of ferromagnetic material of reluctance motor |
CN112580209A (en) * | 2020-12-21 | 2021-03-30 | 湖南科技大学 | On-line torque estimation method of switched reluctance motor based on segmented analytical modeling |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604946A (en) * | 2009-07-09 | 2009-12-16 | 南京航空航天大学 | A position sensorless control method suitable for high speed switched reluctance motor |
US20130069577A1 (en) * | 2011-09-20 | 2013-03-21 | Samsung Electro-Mechanics Co., Ltd. | Speed control apparatus for the switched reluctance motor |
-
2016
- 2016-09-27 CN CN201610851091.9A patent/CN107425781B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101604946A (en) * | 2009-07-09 | 2009-12-16 | 南京航空航天大学 | A position sensorless control method suitable for high speed switched reluctance motor |
US20130069577A1 (en) * | 2011-09-20 | 2013-03-21 | Samsung Electro-Mechanics Co., Ltd. | Speed control apparatus for the switched reluctance motor |
Non-Patent Citations (1)
Title |
---|
司利云等: "基于回声状态网络的开关磁阻电动机转子位置估计", 《微特电机》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108429505A (en) * | 2018-03-01 | 2018-08-21 | 西北工业大学 | An Online Identification Method of Instantaneous Torque of Switched Reluctance Motor |
CN108875168A (en) * | 2018-06-04 | 2018-11-23 | 同济大学 | A kind of switched reluctance machines magnetic field Analytic Calculation Method considering saturation |
CN108875168B (en) * | 2018-06-04 | 2021-03-26 | 同济大学 | Switched reluctance motor magnetic field analysis calculation method considering saturation |
CN110661467A (en) * | 2018-06-29 | 2020-01-07 | 北京自动化控制设备研究所 | Switched reluctance motor position estimation method based on flux linkage characteristic coordinate transformation |
CN110661467B (en) * | 2018-06-29 | 2021-09-14 | 北京自动化控制设备研究所 | Switched reluctance motor position estimation method based on flux linkage characteristic coordinate transformation |
CN109672386A (en) * | 2018-11-13 | 2019-04-23 | 江苏大学 | A kind of switch magnetoresistance motor rotor position detection method |
CN111190128A (en) * | 2018-11-15 | 2020-05-22 | 北京自动化控制设备研究所 | Detection algorithm for BH characteristics of ferromagnetic material of reluctance motor |
CN111190128B (en) * | 2018-11-15 | 2022-10-18 | 北京自动化控制设备研究所 | Detection algorithm for BH characteristics of ferromagnetic material of reluctance motor |
CN110334386A (en) * | 2019-05-09 | 2019-10-15 | 深圳大学 | A Planar Motor Control Method and Terminal Equipment Based on Parameter Regression |
CN112580209A (en) * | 2020-12-21 | 2021-03-30 | 湖南科技大学 | On-line torque estimation method of switched reluctance motor based on segmented analytical modeling |
Also Published As
Publication number | Publication date |
---|---|
CN107425781B (en) | 2019-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107425781B (en) | A SRM Position Estimation Method Based on Linear Flux Model and Linear Regression Analysis | |
EP1535389B1 (en) | Motor drive control | |
CN101902190B (en) | Method for estimating rotor position of switched reluctance motor without position sensor | |
CN109462348B (en) | SRM position sensorless control method and device based on characteristic point of line inductance | |
CN107659237B (en) | A model-free deadbeat current predictive control device and method for a permanent magnet synchronous motor | |
CN108712127B (en) | Method and device for controlling switched reluctance motor without position sensor | |
CN104518714A (en) | Resolver calibration for permanent magnet synchronous motor | |
CN101969292B (en) | Method for identifying stator resistance parameters | |
CN107395072A (en) | A kind of method of position-sensor-free DC brushless motor phase compensation | |
CN108322105A (en) | Permanent magnet synchronous motor stationary state method for detecting initial position of rotor | |
CN110912482A (en) | Permanent magnet synchronous motor flux linkage and temperature estimation method | |
CN104579040A (en) | Position-sensorless control method suitable for running of switched reluctance motor in whole-speed range | |
CN104316876B (en) | Method for rapidly obtaining three-phase 12/8 pole SRM magnetic linkage characteristics with consideration on mutual inductance coupling | |
KR102437244B1 (en) | Method and apparatus for real-time estimation of full parameters of permanent magnet synchronous motor | |
CN103376362B (en) | Method and device for detecting resistance value and commutation position of reluctance motor winding | |
Lee | A new method to minimize overall torque ripple in the presence of phase current shift error for three-phase BLDC motor drive | |
Schubert et al. | A novel online current-and voltage-sensor offset adaption scheme utilizing the effect of inverter voltage distortion | |
CN104201948B (en) | Control device and method of position-free sensor of switched reluctance motor | |
CN109039208A (en) | A kind of switched reluctance machines incremental inductance characteristic online test method | |
CN110034709B (en) | A Rotor Position Estimation Method for Surface Mount Permanent Magnet Synchronous Motors | |
CN107979311B (en) | Measurement method of rotor position of transverse flux switched reluctance motor without position sensor | |
CN103155400B (en) | The motor constant computational methods of PM motor and motor constant calculation element | |
Cai et al. | Sensorless control of switched reluctance motor based on dynamic thresholds of phase inductance | |
CN1326318C (en) | Control method of double-salient-pole electric machine without position sensor | |
CN108429504B (en) | A Torque Control Method of Switched Reluctance Motor Based on Low-cost Position Sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |