CN107403928A - 一种棒状核壳结构的四氧化三锰/碳复合材料及其制备方法和应用 - Google Patents
一种棒状核壳结构的四氧化三锰/碳复合材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN107403928A CN107403928A CN201710585128.2A CN201710585128A CN107403928A CN 107403928 A CN107403928 A CN 107403928A CN 201710585128 A CN201710585128 A CN 201710585128A CN 107403928 A CN107403928 A CN 107403928A
- Authority
- CN
- China
- Prior art keywords
- rod
- composite material
- manganese
- tetraoxide
- carbon composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 64
- 239000002131 composite material Substances 0.000 title claims abstract description 62
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 title claims abstract description 52
- 239000011258 core-shell material Substances 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title claims description 13
- KVGMATYUUPJFQL-UHFFFAOYSA-N manganese(2+) oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[Mn++].[Mn++].[Mn++] KVGMATYUUPJFQL-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 27
- LQKOJSSIKZIEJC-UHFFFAOYSA-N manganese(2+) oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mn+2].[Mn+2].[Mn+2].[Mn+2] LQKOJSSIKZIEJC-UHFFFAOYSA-N 0.000 claims abstract description 26
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 9
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 239000008367 deionised water Substances 0.000 claims description 26
- 229910021641 deionized water Inorganic materials 0.000 claims description 26
- 239000011259 mixed solution Substances 0.000 claims description 24
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 17
- 238000003756 stirring Methods 0.000 claims description 16
- 239000002243 precursor Substances 0.000 claims description 15
- 239000006185 dispersion Substances 0.000 claims description 14
- 239000000725 suspension Substances 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 12
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 10
- 238000012546 transfer Methods 0.000 claims description 10
- 239000007773 negative electrode material Substances 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 150000002696 manganese Chemical class 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 8
- 239000007800 oxidant agent Substances 0.000 claims description 8
- 150000007524 organic acids Chemical class 0.000 claims description 7
- 229910001870 ammonium persulfate Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 6
- 235000006748 manganese carbonate Nutrition 0.000 claims description 4
- 239000011656 manganese carbonate Substances 0.000 claims description 4
- 229940093474 manganese carbonate Drugs 0.000 claims description 4
- 229940099596 manganese sulfate Drugs 0.000 claims description 4
- 235000007079 manganese sulphate Nutrition 0.000 claims description 4
- 239000011702 manganese sulphate Substances 0.000 claims description 4
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 claims description 4
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 4
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 claims description 4
- 239000011247 coating layer Substances 0.000 claims description 3
- 238000005087 graphitization Methods 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 239000007772 electrode material Substances 0.000 abstract description 5
- 238000009830 intercalation Methods 0.000 abstract description 5
- 238000009831 deintercalation Methods 0.000 abstract description 4
- 230000002687 intercalation Effects 0.000 abstract description 4
- 150000002500 ions Chemical class 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 238000013508 migration Methods 0.000 abstract description 3
- 230000005012 migration Effects 0.000 abstract description 3
- 239000010405 anode material Substances 0.000 abstract description 2
- 238000004458 analytical method Methods 0.000 description 14
- 239000000243 solution Substances 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 5
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 5
- 238000001237 Raman spectrum Methods 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000000634 powder X-ray diffraction Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- PUZPNGOUOAKZCU-UHFFFAOYSA-N [O-2].[O-2].O.O.[Mn+2].[Mn+2] Chemical compound [O-2].[O-2].O.O.[Mn+2].[Mn+2] PUZPNGOUOAKZCU-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000001757 thermogravimetry curve Methods 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及一种棒状核壳结构的四氧化三锰/碳复合材料,所述复合材料为部分石墨化的无定形碳包覆在棒状四氧化三锰表面得到的一维棒状结构,长度为300~800nm,横截面直径为40~90nm。本发明制备的四氧化三锰/碳复合材料尺寸均一,由部分石墨化的无定形碳包覆棒状四氧化三锰得到核壳结构,在钠离子电池电极材料应用中缩短了离子和电子的迁移距离,有效缓解了钠离子嵌入脱出带来的电极材料体积膨胀的问题,而且碳的加入增强了四氧化三锰的电导率。该复合材料作为负极材料在钠离子电池中表现出稳定的循环性能和良好的倍率性能。
Description
技术领域
本发明属于电池负极材料技术领域,具体涉及一种棒状核壳结构的四氧化三锰/碳复合材料及其制备方法和应用。
背景技术
随着电动汽车和大规模智能电网的快速发展,锂资源储量将无法满足锂离子电池的巨大需求,因此,亟需发展下一代综合性能优异的电池体系。而和锂处于同一族的钠,和锂具有相似的物化性质,而且钠资源储量大,价格便宜,分布广泛,易于获取,非常适合电网和其它大规模储能应用,有可能成为锂离子电池的替代品之一。由于钠离子和锂离子相似的化学性质,所以在钠离子电池电极材料的研发过程中可以借鉴锂离子电池的经验,过渡金属氧化物因为具有较高的容量早已被广泛研究作为锂离子电池的电极材料,该类型材料也可以作为有潜力的钠离子电池嵌钠材料。
四氧化三锰的低成本和高比容量特性使其成为钠离子电池理想的候选材料。同时,与其他过渡金属氧化物相比电压电位低也使其适合作为钠离子电池的负极材料。然而由于较差的循环稳定性和衰减较快使得四氧化三锰的应用受到严重限制,这主要是因为在充放电过程中,钠离子的嵌入脱出使电极材料体积发生很大变化,从而使微观结构坍塌。目前通常采用两种方法来克服这些缺点。一种是设计合成不同结构和形貌的四氧化三锰,例如纳米棒,纳米线,中空球等。第二种方法是合成多孔四氧化三锰。这两种方法不能有效改善四氧化三锰的循环和倍率性能,本发明通过烧结二氧化锰的方式,合成出纯度较高的碳包覆的四氧化三锰/碳复合材料,有效提高了四氧化三锰的循环和倍率性能。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种包覆效果好,不易坍塌的棒状核壳结构的四氧化三锰/碳复合材料及其制备方法。
为解决上述技术问题,本发明提供的技术方案是:
提供一种棒状核壳结构的四氧化三锰/碳复合材料,所述复合材料为部分石墨化的无定形碳包覆在棒状四氧化三锰表面得到的一维棒状结构,长度为300~800nm,横截面直径为40~90nm。
优选的是,所述四氧化三锰/碳复合材料表面部分石墨化的无定形碳包覆层厚度为5-10nm。
本发明还提供上述棒状核壳结构的四氧化三锰/碳复合材料的制备方法,其步骤如下:
1)制备棒状二氧化锰:将锰盐水溶液和氧化剂水溶液混合均匀,然后将得到的混合溶液转移到具有聚四氟乙烯内衬的水热反应釜中,经水热反应得到棒状二氧化锰;
2)制备前驱体:将步骤1)所得棒状二氧化锰超声分散于去离子水中并置于冰浴中降温,得到二氧化锰分散液,将去离子水和有机酸超声分散均匀后加入苯胺单体,搅拌均匀得到混合液,将所得混合液缓慢滴加到所述二氧化锰分散液中,0~5℃下搅拌得到悬浮液,将悬浮液进行抽滤并分别用去离子水和无水乙醇洗涤后干燥得到前驱体;
3)制备棒状核壳结构的四氧化三锰/碳复合材料:将步骤2)所得前驱体烧结得到棒状核壳结构的四氧化三锰/碳复合材料。
按上述方案,步骤1)所述锰盐为硫酸锰或碳酸锰,所述锰盐水溶液的浓度为0.1~0.5mol/L。
按上述方案,步骤1)所述氧化剂为过硫酸铵,所述氧化剂水溶液的浓度为0.1~0.5mol/L。
按上述方案,步骤1)所述混合溶液中锰盐和氧化剂的摩尔比为1:0.8~1.5;所述水热反应条件为:120~150℃下反应10~12h。
按上述方案,步骤2)所述二氧化锰分散液质量浓度为0.1~0.5%。
按上述方案,步骤2)所述混合液中有机酸的浓度为0.08~0.15mol/L,有机酸和苯胺单体的摩尔比为1:2~3;所述悬浮液中二氧化锰和苯胺单体的摩尔比为1:0.5~1。
按上述方案,步骤3)所述烧结工艺条件为:惰性气氛和室温条件下升温至400~600℃,并保温4~10h,随后自然冷却至室温。
优选的是,步骤3)升温速率为2~5℃/min。
本发明还包括上述棒状核壳结构的四氧化三锰/碳复合材料作为钠离子电池负极材料的应用。
本发明的有益效果在于:本发明先合成出前驱体二氧化锰/聚苯胺复合材料,然后经过热处理,得到具有棒状核壳结构的四氧化三锰/碳复合材料,制备过程简单,原材料廉价易得,安全环保,制备的四氧化三锰/碳复合材料尺寸均一,由部分石墨化的无定形碳包覆四氧化三锰颗粒得到核壳结构,有效缓解了钠离子嵌入脱出带来的电极材料体积膨胀的问题,因为其特殊的棒状结构,具有较小的径向尺寸和较大的轴向尺寸,保证电子能够沿轴向较好的传导的同时,离子也能在径向更快地嵌入脱出,因而缩短了充放电过程中离子和电子的迁移距离,有利于提高电池的稳定性,而且碳的加入增强了四氧化三锰的电导率。本发明制备的四氧化三锰/碳复合材料作为负极材料在钠离子电池中表现出稳定的循环性能和良好的倍率性能,在50mAh/g的电流密度下,首圈放电比容量为520mAh/g,200圈恒流充放电循环后比容量保持在100mAh/g左右,从第2圈到第200圈容量保持率在80%左右。
附图说明
图1为本发明实施例1所制备的四氧化三锰/碳复合材料的X射线衍射图;
图2为实施例1所制备的四氧化三锰/碳复合材料的扫描电镜图;
图3为实施例1-4制备的四氧化三锰/碳复合材料的拉曼光谱图;
图4为实施例2制备的四氧化三锰/碳复合材料的X射线衍射图;
图5为实施例2制备的四氧化三锰/碳复合材料的扫描电镜图;
图6为实施例2制备的四氧化三锰/碳复合材料的同步热分析图;
图7为实施例2制备的四氧化三锰/碳复合材料的透射电镜分析图和高分辨透射电镜分析图;
图8为实施例3制备的四氧化三锰/碳复合材料的X射线衍射图;
图9为实施例3制备的四氧化三锰/碳复合材料的扫描电镜图;
图10为实施例4制备的四氧化三锰/碳复合材料的X射线衍射图;
图11为实施例4制备的四氧化三锰/碳复合材料的扫描电镜图;
图12为实施例4制备的四氧化三锰/碳复合材料的透射电子显微镜分析图;
图13为实施例4制备的四氧化三锰/碳复合材料组装成的钠离子半电池的比容量测试图;
图14为实施例4制备的四氧化三锰/碳复合材料组装成的钠离子半电池的循环性能图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。
实施例1
一种用于钠离子电池负极的棒状核壳结构的四氧化三锰/碳复合材料的制备方法,具体步骤如下:
(1)将0.6040g硫酸锰和0.9120g过硫酸铵分别溶解在40mL去离子水中,搅拌均匀,得到溶液R1,R2;
(2)将上述步骤(1)所述的两种溶液R1,R2混合并搅拌均匀,得到混合溶液R3;
(3)将上述步骤(2)所得混合溶液R3转移到具有聚四氟乙烯内衬的水热反应釜中,在140℃保温反应10h;
(4)将上述步骤(3)的反应釜自然冷却至室温,得到黑色沉淀二氧化锰;分别用去离子水和无水乙醇洗涤数次后在70℃烘箱干燥过夜得到棒状二氧化锰;
(5)将0.1740g上述步骤(4)制备的二氧化锰超声分散于80mL去离子水中并置于冰浴中降温,得到分散均匀的分散液A;
(6)将0.001mol有机酸PSS(聚苯乙烯磺酸)超声分散于10mL去离子水中后加入0.002mol苯胺单体,搅拌均匀得到混合液B;
(7)将上述步骤(6)所得的混合液B缓慢滴加到步骤(5)所得的分散液A中,零度下搅拌5个小时,得到墨绿色悬浮液C;
(8)将上述步骤(7)得到的墨绿色悬浮液C进行抽滤并分别用去离子水和无水乙醇洗涤5次后,转入70℃烘箱中干燥过夜,得到前驱体D;
(9)室温下,将上述步骤(8)制备的前驱体D置于高温炉中,在氩气保护下,以2℃/min的升温速率升温至400℃,保温4小时,随后随炉冷却至室温后得到最终的复合物E,即用于钠离子电池负极材料的棒状核壳结构的四氧化三锰/碳复合材料。
将上述方法制备的四氧化三锰/碳复合材料进行粉体X射线衍射分析,其谱图如图1所示,样品的衍射峰属于标准的四方晶系四氧化三锰(标准卡片号:01-075-1560),其他的杂质峰没有检测到,说明合成出的是纯相的四氧化三锰。样品扫描电镜照片如图2所示,可见产物形貌均一,为长度500nm、直径70nm左右的一维棒状结构。样品拉曼图谱如图3所示,在647cm-1处的振动吸收峰是四氧化三锰四方晶系的特征峰,1250cm-1和1320cm-1波数处对应的是碳的D峰(无定形碳,sp3)和G峰(石墨,sp2),说明烧结过程中部分无定形碳发生石墨化反应,并且石墨化程度较高。
实施例2
一种用于钠离子电池负极的棒状核壳结构的四氧化三锰/碳复合材料的制备方法,具体步骤如下:
(1)将0.6795g碳酸锰和1.0620g过硫酸铵分别溶解在40mL去离子水中,搅拌均匀,得到溶液R1,R2;
(2)将上述步骤(1)所述的两种溶液R1,R2混合并搅拌均匀,得到混合溶液R3;
(3)将上述步骤(2)所得混合溶液R3转移到具有聚四氟乙烯内衬的水热反应釜中,在130℃保温反应11h;
(4)将上述步骤(3)的反应釜自然冷却至室温,得到黑色沉淀二氧化锰;分别用去离子水和无水乙醇洗涤数次后在70℃烘箱干燥过夜得到棒状二氧化锰;
(5)将0.1740g上述步骤(4)制备的二氧化锰超声分散于90mL去离子水中并置于冰浴中降温,得到分散均匀的分散液A;
(6)将0.001mol PSS超声分散于10mL去离子水中后加入0.002mol苯胺单体,搅拌均匀得到混合液B;
(7)将上述步骤(6)所得的混合液B缓慢滴加到步骤(5)所得的分散液A中,5℃下搅拌6个小时,得到墨绿色悬浮液C;
(8)将上述步骤(7)得到的墨绿色悬浮液C进行抽滤并分别用去离子水和无水乙醇洗涤5次后,转入70℃烘箱中干燥过夜,最终得到前驱体D;
(9)室温下,将上述步骤(8)制备的前驱体D置于高温炉中,在氩气保护下,以4℃/min的升温速率升温至500℃,保温6小时,随后随炉冷却至室温后得到最终的复合物E,即用于钠离子电池负极材料的棒状核壳结构的四氧化三锰/碳复合材料。
将上述方法制备的四氧化三锰/碳复合材料进行粉体X射线衍射,其谱图如图4所示,样品的衍射峰归属于标准的四方晶系四氧化三锰(标准卡片号:01-075-1560),其他的杂质峰没有检测到。扫描电镜分析如图5所示,产物形貌均一,为长度800nm左右、直径90nm左右的一维棒状结构。拉曼光谱分析如图3所示,在647cm-1处的振动吸收峰是四方晶系四氧化三锰的特征峰,为了估算样品中的碳含量,对样品进行了TG测试,同步热分析图如图6所示,在280℃之前,样品约失重1.5wt%,这是因为四氧化三锰/碳中脱附了物理吸附的水;在280~470℃之间,样品失重约为1.8wt%,这是因为在此过程中四氧化三锰/碳的碳层被氧化成二氧化碳,由此可知四氧化三锰/碳中碳含量约为1.8wt%。为了进一步确定复合材料中碳的包覆层厚度,对样品进行了透射电镜分析和高分辨透射电镜分析测试,如图7所示,其中a,b为透射电镜分析图,c为高分辨透射电镜分析图,四氧化三锰的(101)晶面对应的晶格条纹间距是0.49nm,(112)晶面对应的晶格条纹间距是0.30nm,而且可以观察到有均匀的无定型态包覆层(厚度约8nm)位于晶体表面,形成核壳结构。
实施例3
一种用于钠离子电池负极材料的棒状核壳结构的四氧化三锰/碳复合材料的制备方法,具体步骤如下:
(1)将0.6795g碳酸锰和1.0620g过硫酸铵分别溶解在40mL去离子水中,搅拌均匀,得到溶液R1,R2;
(2)将上述步骤(1)所述的两种溶液R1,R2混合并搅拌均匀,得到混合溶液R3;
(3)将上述步骤(2)所得混合溶液R3转移到具有聚四氟乙烯内衬的水热反应釜中,在150℃保温反应12h;
(4)将上述步骤(3)的反应釜自然冷却至室温,得到黑色沉淀二氧化锰;分别用去离子水和无水乙醇洗涤数次后在70℃烘箱干燥过夜得到棒状二氧化锰;
(5)将0.1740g上述步骤(4)制备的二氧化锰超声分散在100mL去离子水中并置于冰浴中降温,得到分散均匀的分散液A;
(6)将0.001mol PSS超声分散于10mL去离子水中后加入0.0023mol苯胺单体,搅拌均匀得到混合液B;
(7)将上述步骤(6)所得的混合液B缓慢滴加到步骤(5)所得的分散液A中,2℃下搅拌7个小时,得到墨绿色悬浮液C;
(8)将上述步骤(7)得到的墨绿色悬浮液C进行抽滤并分别用去离子水和无水乙醇洗涤5次后,转入70℃烘箱中干燥过夜,最终得到前驱体D;
(9)室温下,将上述步骤(8)制备的前驱体D置于高温炉中,在氩气保护下,以5℃/min的升温速率升温至600℃,保温8小时,随后随炉冷却至室温后得到最终的复合物E,即用于钠离子电池负极材料的棒状核壳结构的四氧化三锰/碳复合材料。
将上述方法制备的四氧化三锰/碳复合材料进行粉体X射线衍射,其谱图由图8所示,样品的衍射峰归属于标准的四方晶系四氧化三锰(标准卡片号:01-075-1560)。扫描电镜分析如图9所示,可见产物形貌均一,仍保持均一的棒状核壳结构。拉曼光谱分析如图3所示,在647cm-1处的振动吸收峰是四方晶系四氧化三锰的特征峰。
实施例4
一种用于钠离子电池负极的棒状核壳结构的四氧化三锰/碳复合材料的制备方法,具体步骤如下:
(1)将0.6795g硫酸锰和1.0620g过硫酸铵分别溶解在40mL去离子水中,搅拌均匀,得到溶液R1,R2;
(2)将上述步骤(1)所述的两种溶液R1,R2混合并搅拌均匀,得到混合溶液R3;
(3)将上述步骤(2)所得混合溶液R3转移到具有聚四氟乙烯内衬的水热反应釜中,在120℃保温反应11h;
(4)将上述步骤(3)的反应釜自然冷却至室温,得到黑色沉淀二氧化锰;分别用去离子水和无水乙醇洗涤数次后在70℃烘箱干燥过夜得到棒状二氧化锰;
(5)将0.3480g上述步骤(4)制备的二氧化锰超声分散于120mL去离子水中并置于冰浴中降温,得到分散均匀的分散液A;
(6)将0.001mol PSS超声分散于10mL去离子水中后加入0.002mol苯胺单体,搅拌均匀得到混合液B;
(7)将上述步骤(6)所得的混合液B缓慢滴加到步骤(5)所得的分散液A中,零度搅拌7个小时,得到墨绿色悬浮液C;
(8)将上述步骤(7)得到的墨绿色悬浮液C进行抽滤并分别用去离子水和无水乙醇洗涤5次后,转入70℃烘箱中干燥过夜,最终得到前驱体D;
(9)室温下,将上述步骤(8)制备的前驱体D置于高温炉中,在氩气保护下,以5℃/min的升温速率升温至600℃,保温10小时,随后随炉冷却至室温后得到最终的复合物E,即用于钠离子电池负极材料的棒状核壳结构的四氧化三锰/碳复合材料。
将上述方法制备的四氧化三锰/碳复合材料进行粉体X射线衍射,其谱图由图10所示,样品的衍射峰归属于标准的四方晶系四氧化三锰(标准卡片号:01-075-1560)。扫描电镜分析如图11所示,产物形貌均一,长度在300~700nm,直径在40~70nm之间的一维棒状结构。拉曼光谱分析如图3所示,在647cm-1处的振动吸收峰是四方晶系四氧化三锰的特征峰,对样品进行了透射电镜分析和高分辨透射电镜分析测试,如图12所示,其中d,e为透射电镜分析图,f为高分辨透射电镜分析图,间距为0.30nm的晶格条纹相对应的是四氧化三锰的(200)晶面,同时可以观察到有均匀的无定型态包覆层位于晶体表面形成核壳结构。
实施例5
用实施例4制备的四氧化三锰/碳复合材料、超级导电碳、粘结剂按质量比7:2:1制备成钠离子电池正极电极片,组装电池,组装成的钠离子半电池的比容量测试图见图13,循环性能图见图14,在50mAh/g的电流密度下,首圈放电比容量为520mAh/g,200圈恒流充放电循环后比容量保持在100mAh/g左右,前200圈容量保持率在80%左右,结果显示本发明制备的四氧化三锰/碳复合材料具有优异的循环性能和倍率性能。
本发明制备的四氧化三锰/碳复合材料的显著的稳定性得益于所制备的四氧化三锰/碳复合材料表面包覆的碳材料缩短了离子和电子的迁移距离,有效地缓解了钠离子嵌入脱出带来的体积膨胀,而且增强了四氧化三锰的电导率,在钠离子电池中表现出稳定的循环性能和良好的倍率性能。
Claims (10)
1.一种棒状核壳结构的四氧化三锰/碳复合材料,其特征在于:所述复合材料为部分石墨化的无定形碳包覆在棒状四氧化三锰表面得到的一维棒状结构,长度为300~800nm,横截面直径为40~90nm。
2.根据权利要求1所述的四氧化三锰/碳复合材料,其特征在于,四氧化三锰/碳复合材料表面部分石墨化的无定形碳包覆层厚度为5-10nm。
3.一种权利要求1或2所述的棒状核壳结构的四氧化三锰/碳复合材料的制备方法,其特征在于步骤如下:
1)制备棒状二氧化锰:将锰盐水溶液和氧化剂水溶液混合均匀,然后将得到的混合溶液转移到具有聚四氟乙烯内衬的水热反应釜中,经水热反应得到棒状二氧化锰;
2)制备前驱体:将步骤1)所得棒状二氧化锰超声分散于去离子水中并置于冰浴中降温,得到二氧化锰分散液,将去离子水和有机酸超声分散均匀后加入苯胺单体,搅拌均匀得到混合液,将所得混合液缓慢滴加到所述二氧化锰分散液中,0~5℃下搅拌得到悬浮液,将悬浮液进行抽滤并分别用去离子水和无水乙醇洗涤后干燥得到前驱体;
3)制备棒状核壳结构的四氧化三锰/碳复合材料:将步骤2)所得前驱体烧结得到棒状核壳结构的四氧化三锰/碳复合材料。
4.根据权利要求3所述的制备方法,其特征在于步骤1)所述锰盐为硫酸锰或碳酸锰,所述锰盐水溶液的浓度为0.1~0.5mol/L。
5.根据权利要求3所述的制备方法,其特征在于步骤1)所述氧化剂为过硫酸铵,所述氧化剂水溶液的浓度为0.1~0.5mol/L。
6.根据权利要求3所述的制备方法,其特征在于步骤1)所述混合溶液中锰盐和氧化剂的摩尔比为1:0.8~1.5;所述水热反应条件为:120~150℃下反应10~12h。
7.根据权利要求3所述的制备方法,其特征在于步骤2)所述二氧化锰分散液质量浓度为0.1~0.5%。
8.根据权利要求3所述的制备方法,其特征在于步骤2)所述混合液中有机酸的浓度为0.08~0.15mol/L,有机酸和苯胺单体的摩尔比为1:2~3;所述悬浮液中二氧化锰和苯胺单体的摩尔比为1:0.5~1。
9.根据权利要求3所述的制备方法,其特征在于步骤3)所述烧结工艺条件为:惰性气氛和室温条件下,升温至400~600℃,并保温4~10h,随后自然冷却至室温。
10.一种权利要求1或2所述的棒状核壳结构的四氧化三锰/碳复合材料作为钠离子电池负极材料的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710585128.2A CN107403928A (zh) | 2017-07-18 | 2017-07-18 | 一种棒状核壳结构的四氧化三锰/碳复合材料及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710585128.2A CN107403928A (zh) | 2017-07-18 | 2017-07-18 | 一种棒状核壳结构的四氧化三锰/碳复合材料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107403928A true CN107403928A (zh) | 2017-11-28 |
Family
ID=60400848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710585128.2A Pending CN107403928A (zh) | 2017-07-18 | 2017-07-18 | 一种棒状核壳结构的四氧化三锰/碳复合材料及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107403928A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109437341A (zh) * | 2018-12-17 | 2019-03-08 | 深圳先进技术研究院 | 金属氧化物或其复合材料的制备方法、金属氧化物或其复合材料和应用、电池 |
CN110040782A (zh) * | 2019-05-06 | 2019-07-23 | 东北大学秦皇岛分校 | 一种二氧化锰、及其制备方法和用途 |
CN111640926A (zh) * | 2020-06-17 | 2020-09-08 | 郑州轻工业大学 | 一种核鞘纳米电缆结构的碳纳米管/Mn3O4复合材料及其制备方法 |
CN113937266A (zh) * | 2021-09-30 | 2022-01-14 | 江苏理工学院 | 一种水系锌离子电池正极材料及其制备方法 |
CN114975931A (zh) * | 2022-05-31 | 2022-08-30 | 华南师范大学 | 一种有机酸衍生碳改性氧化锰复合材料及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102113152A (zh) * | 2008-08-06 | 2011-06-29 | 独立行政法人产业技术综合研究所 | 电极材料前体的制造方法以及使用所得到的电极材料前体的电极材料的制造方法 |
CN103647068A (zh) * | 2013-12-26 | 2014-03-19 | 齐鲁工业大学 | 一种钠离子电池负极材料的制备方法 |
CN105470481A (zh) * | 2015-11-30 | 2016-04-06 | 武汉理工大学 | 一维多孔核壳结构氮掺杂碳包覆一氧化锰复合材料及制备方法 |
CN106505246A (zh) * | 2017-01-05 | 2017-03-15 | 江苏大学 | 一种多级多孔结构四氧化三锰/碳纳米片锂离子电池负极材料的制备方法 |
CN106684331A (zh) * | 2016-07-22 | 2017-05-17 | 武汉理工大学 | 一种棒状二氧化锰/聚苯胺复合材料及其制备方法和应用 |
-
2017
- 2017-07-18 CN CN201710585128.2A patent/CN107403928A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102113152A (zh) * | 2008-08-06 | 2011-06-29 | 独立行政法人产业技术综合研究所 | 电极材料前体的制造方法以及使用所得到的电极材料前体的电极材料的制造方法 |
CN103647068A (zh) * | 2013-12-26 | 2014-03-19 | 齐鲁工业大学 | 一种钠离子电池负极材料的制备方法 |
CN105470481A (zh) * | 2015-11-30 | 2016-04-06 | 武汉理工大学 | 一维多孔核壳结构氮掺杂碳包覆一氧化锰复合材料及制备方法 |
CN106684331A (zh) * | 2016-07-22 | 2017-05-17 | 武汉理工大学 | 一种棒状二氧化锰/聚苯胺复合材料及其制备方法和应用 |
CN106505246A (zh) * | 2017-01-05 | 2017-03-15 | 江苏大学 | 一种多级多孔结构四氧化三锰/碳纳米片锂离子电池负极材料的制备方法 |
Non-Patent Citations (1)
Title |
---|
CHANGBIN WANG,ET AL.: "Uniform Carbon Layer Coated Mn3O4 Nanorod Anodes with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries", 《ACS APPLIED MATERIALS & INTERFACES》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109437341A (zh) * | 2018-12-17 | 2019-03-08 | 深圳先进技术研究院 | 金属氧化物或其复合材料的制备方法、金属氧化物或其复合材料和应用、电池 |
CN109437341B (zh) * | 2018-12-17 | 2020-06-16 | 深圳先进技术研究院 | 金属氧化物或其复合材料的制备方法、金属氧化物或其复合材料和应用、电池 |
CN110040782A (zh) * | 2019-05-06 | 2019-07-23 | 东北大学秦皇岛分校 | 一种二氧化锰、及其制备方法和用途 |
CN110040782B (zh) * | 2019-05-06 | 2021-07-27 | 东北大学秦皇岛分校 | 一种二氧化锰、及其制备方法和用途 |
CN111640926A (zh) * | 2020-06-17 | 2020-09-08 | 郑州轻工业大学 | 一种核鞘纳米电缆结构的碳纳米管/Mn3O4复合材料及其制备方法 |
CN113937266A (zh) * | 2021-09-30 | 2022-01-14 | 江苏理工学院 | 一种水系锌离子电池正极材料及其制备方法 |
CN113937266B (zh) * | 2021-09-30 | 2023-03-10 | 江苏理工学院 | 一种水系锌离子电池正极材料及其制备方法 |
CN114975931A (zh) * | 2022-05-31 | 2022-08-30 | 华南师范大学 | 一种有机酸衍生碳改性氧化锰复合材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111628155A (zh) | 一种锂离子/钠离子电池的负极材料钼锡双金属硫化物及其制备方法 | |
CN105470481A (zh) | 一维多孔核壳结构氮掺杂碳包覆一氧化锰复合材料及制备方法 | |
CN107492655B (zh) | 一种二硫化钼/碳复合材料及其制备方法和应用 | |
CN104600315A (zh) | 一种片状MoS2/石墨烯复合气凝胶及其制备方法 | |
CN107403928A (zh) | 一种棒状核壳结构的四氧化三锰/碳复合材料及其制备方法和应用 | |
CN105304958A (zh) | 一种长寿命锂硫电池正极的制作方法 | |
CN105958033B (zh) | 一种非石墨化碳纳米管/硫复合材料的制备方法及应用 | |
CN105977484B (zh) | 一种三氧化二铁纳米管材料及其制备方法与应用 | |
CN104466155B (zh) | 一种高库伦效率锂离子电池负极材料菊花形状纳米二氧化钛的制备方法 | |
CN103208619B (zh) | 钾离子预嵌入型五氧化二钒纳米线及其制备方法和应用 | |
CN108298588A (zh) | 一种制备δ-MnO2纳米片的方法 | |
CN105958037A (zh) | 钠离子电池负极用硫化铜/石墨烯复合材料及制备方法 | |
CN106299344B (zh) | 一种钠离子电池钛酸镍负极材料及其制备方法 | |
CN103474629B (zh) | 半中空双连续h2v3o8/石墨烯管中线结构同轴纳米线材料及其制备方法和应用 | |
CN105084425B (zh) | 一种具有无定型结构二硫化钴微米球的制备方法及应用 | |
CN103094572B (zh) | 一种钒酸锂正极材料及其制备方法 | |
CN108258238B (zh) | 一种纳米片状结构的钠离子电池负极材料NiCo2S4及其制备方法 | |
CN108011087A (zh) | 一种二氧化钛修饰的二氧化锰负极材料及其制备方法 | |
CN105609325B (zh) | 一种具有中空结构的LaNiO3亚米级微球电极材料制备方法 | |
CN105118683B (zh) | 一种钼酸钴复合二氧化锰电极材料的制备方法 | |
CN104852042A (zh) | 一种用于锂离子电池负极材料的钴铁复合氧化物纳米棒的制备方法及应用 | |
CN107275627A (zh) | Mn掺杂CuS中空多孔分级纳米球电极材料及其制备方法和应用 | |
CN106848254A (zh) | 一种钠离子电池负极材料及其制备方法、钠离子电池 | |
CN107697912A (zh) | 一种生物质基多孔无定型碳纳米球电极材料的制备方法 | |
CN107316749A (zh) | Co3O4@CoWO4纳米线阵列核壳结构材料的制备方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171128 |
|
RJ01 | Rejection of invention patent application after publication |