CN107402380A - A kind of quick self-adapted alternative manner for realizing Doppler beam sharpened imaging - Google Patents
A kind of quick self-adapted alternative manner for realizing Doppler beam sharpened imaging Download PDFInfo
- Publication number
- CN107402380A CN107402380A CN201710332374.7A CN201710332374A CN107402380A CN 107402380 A CN107402380 A CN 107402380A CN 201710332374 A CN201710332374 A CN 201710332374A CN 107402380 A CN107402380 A CN 107402380A
- Authority
- CN
- China
- Prior art keywords
- mrow
- matrix
- msub
- mtd
- msubsup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
- G01S13/9047—Doppler beam sharpening mode
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种实现多普勒波束锐化成像的快速迭代自适应方法,主要利用协方差矩阵快速计算和协方差矩阵快速求逆,实现飞机、导弹等飞行器前斜视区域的角超分辨多普勒波束锐化成像,解决了传统直接迭代自适应方法中求协方差矩阵和协方差矩阵求逆运算复杂度高的问题。其特点是针对迭代自适应中的协方差矩阵计算及矩阵求逆问题,利用其托普利兹矩阵和埃尔米特矩阵的性质,通过求解一列元素而快速得到矩阵,并利用Gohberg Semencul(GS)型分解方法,实现了协方差矩阵的逆矩阵的快速求解,使得利用迭代自适应方法实现多普勒波束锐化成像方法在工程应用中占用更少的运算资源,更加高效。
The invention discloses a fast iterative self-adaptive method for realizing Doppler beam sharpening imaging, which mainly utilizes the fast calculation of the covariance matrix and the fast inversion of the covariance matrix to realize multi-angle super-resolution in the front squint area of aircraft, missiles and the like. Puller beam sharpening imaging solves the problem of high complexity in calculating the covariance matrix and the inversion of the covariance matrix in the traditional direct iterative adaptive method. Its characteristic is to solve the problem of covariance matrix calculation and matrix inversion in iterative self-adaptation, using the properties of its Toeplitz matrix and Hermitian matrix to quickly obtain the matrix by solving a column of elements, and using Gohberg Semencul (GS) The type decomposition method realizes the fast solution of the inverse matrix of the covariance matrix, which makes the Doppler beam sharpening imaging method using the iterative adaptive method occupy less computing resources in engineering applications and is more efficient.
Description
技术领域technical field
本发明涉及雷达探测与成像领域,尤其适用于扫描雷达多普勒波束锐化成像。The invention relates to the field of radar detection and imaging, and is especially suitable for scanning radar Doppler beam sharpening imaging.
背景技术Background technique
现有脉冲多普勒雷达系统中,在载机斜前斜视方向,通常利用多普勒波束锐化成像方法实现前斜视区域的成像观测。该方法,利用载机与目标间相互运动所产的多普勒相位变化规律,通过信号处理方法提高雷达斜前斜视区域的方位向成像分辨率。在传统的多普勒波束锐化成像方法中,利用快速傅里叶变换(FFT)方法估计平台和目标相对运动所产生的多普勒相位变化,但由于雷达方位向回波因天线方向图作用所产生的低通滤波效应,导致利用FFT方法所实现的频谱分辨率较低。因此,采用超分辨谱估计的方法实现多普勒波束锐化成像,将会对成像分辨率及成像质量的提高起到帮助作用。In the existing pulse Doppler radar system, the Doppler beam sharpening imaging method is usually used to realize the imaging observation of the forward squint area in the forward squint direction of the carrier aircraft. In this method, the Doppler phase change law produced by the mutual motion between the carrier aircraft and the target is used, and the azimuth imaging resolution of the radar's oblique forward squint area is improved through a signal processing method. In the traditional Doppler beam sharpening imaging method, the fast Fourier transform (FFT) method is used to estimate the Doppler phase change caused by the relative motion of the platform and the target, but due to the influence of the radar azimuth echo due to the antenna pattern The resulting low-pass filtering effect results in a lower spectral resolution achieved by the FFT method. Therefore, using the method of super-resolution spectrum estimation to realize Doppler beam sharpening imaging will help improve the imaging resolution and imaging quality.
为提高多普勒波束锐化成像质量,在文献“Qi L,Zheng M,Yu W,et al.Super-resolution Doppler beam sharpening imaging based on an iterative adaptiveapproach[J].Remote Sensing Letters,2016,7(3):259-268.”中,采用了一种基于迭代自适应超分辨谱估计方法,将其运用于多普勒波束锐化成像中,与传统快速傅里叶变换(FFT)方法相比,该方法提高了成像分辨率,但其存在运算复杂度高、不利于工程实现的缺点。在文献“Yongchao Zhang,Wenchao Li,Yin Zhang.A Fast Iterative Adaptive Approachfor Scanning Radar Angular Superresolution, IEEE Journal of Selected Topicsin Applied Earth Observations and Remote Sensing.”中,作者提出了一种基于快速矩阵求逆的快速迭代自适应(F-IAA)方法,该方法的操作矩阵必须有特定要求,不适用于多普勒波束锐化成像时所构建的操作矩阵。In order to improve the imaging quality of Doppler beam sharpening, in the literature "Qi L, Zheng M, Yu W, et al. Super-resolution Doppler beam sharpening imaging based on an iterative adaptive approach [J]. Remote Sensing Letters, 2016, 7( 3):259-268.", a method based on iterative adaptive super-resolution spectrum estimation is adopted, which is applied to Doppler beam sharpening imaging, compared with the traditional Fast Fourier Transform (FFT) method , this method improves the imaging resolution, but it has the disadvantages of high computational complexity, which is not conducive to engineering implementation. In the paper "Yongchao Zhang, Wenchao Li, Yin Zhang. A Fast Iterative Adaptive Approach for Scanning Radar Angular Superresolution, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.", the author proposes a fast iterative approach based on fast matrix inversion Adaptive (F-IAA) method, the operation matrix of this method must have specific requirements, and is not suitable for the operation matrix constructed during Doppler beam sharpening imaging.
基于以上背景技术,发明人提出了一种快速迭代自适应(F-IAA)方法,用于实现雷达前斜视区域的多普勒波束锐化成像。首先,该方法利用协方差矩阵的托普利兹(Toeplitz) 及埃尔米特(Hermitian matrix)特性,通过求解一列元素而快速得到协方差矩阵,其次,利用Gohberg Semencul(GS)分解方法加速求得矩阵R的逆矩阵,解决原始的利用直接迭代自适应(brute force IAA)方法中求协方差矩阵和协方差矩阵求逆的过程中的运算复杂度高,耗时长的问题,最后,通过快速迭代自适应算法所求得的谱估计结果,获得雷达运动平台前斜视区域的波束锐化成像结果。Based on the above background technology, the inventor proposes a Fast Iterative Adaptive (F-IAA) method for realizing Doppler beam sharpening imaging in a radar forward squint area. First of all, this method utilizes the Toeplitz and Hermitian matrix characteristics of the covariance matrix to quickly obtain the covariance matrix by solving a column of elements. Secondly, the Gohberg Semencul (GS) decomposition method is used to accelerate the calculation of The inverse matrix of the matrix R solves the problem of high computational complexity and time-consuming in the process of calculating the covariance matrix and the inversion of the covariance matrix in the original direct iterative adaptive (brute force IAA) method. Finally, through fast iteration The spectrum estimation result obtained by the adaptive algorithm is used to obtain the beam sharpening imaging result of the forward squint area of the radar moving platform.
发明内容Contents of the invention
本发明为解决上述技术问题,本发明提出一种实现多普勒波束锐化成像的快速自适应迭代方法,采用迭代自适应方法,并通过回波协方差矩阵的快速计算和协方差矩阵的逆矩阵的快速求解,实现扫描雷达前斜视区域快速、高性能的波束锐化成像。In order to solve the above-mentioned technical problems, the present invention proposes a fast self-adaptive iterative method for Doppler beam sharpening imaging, adopts the iterative self-adaptive method, and adopts the rapid calculation of the echo covariance matrix and the inverse of the covariance matrix The fast solution of the matrix realizes fast and high-performance beam sharpening imaging in the forward squint area of the scanning radar.
本发明采用的技术方案是:一种实现多普勒波束锐化成像的快速自适应迭代方法,包括:The technical scheme adopted in the present invention is: a fast adaptive iterative method for realizing Doppler beam sharpening imaging, comprising:
S1、初始化雷达系统参数,具体为:飞机在离地面高H处,沿Y轴以恒定的速度V前进,目标点相对于飞机前进方向的方位角为θ(xi,yi),飞机与目标连线方向与飞机前进方向的夹角为α,目标相对于飞机的俯仰角为飞机初始时刻与目标之间的距离为R0,扫描雷达以恒定的角速度为ω扫描成像区域,假定目标所在的位置为(xi,yi);S1. Initialize the parameters of the radar system, specifically: the aircraft advances along the Y axis at a constant speed V at a height H above the ground, and the azimuth of the target point relative to the aircraft’s advancing direction is θ( xi , y i ). The angle between the direction of the target line and the forward direction of the aircraft is α, and the pitch angle of the target relative to the aircraft is The distance between the aircraft and the target at the initial moment is R 0 , the scanning radar scans the imaging area at a constant angular velocity ω, and the position of the target is assumed to be ( xi , y i );
S2、回波信号生成,具体为:根据步骤S1的雷达系统参数得到发射信号,对该发射信号进行离散化处理,得到离散化后的回波信号;S2. Echo signal generation, specifically: obtaining a transmission signal according to the radar system parameters in step S1, performing discretization processing on the transmission signal, and obtaining a discretized echo signal;
S3、回波信号预处理,具体为:构造波束扫描距离向脉冲压缩频域匹配函数;将波束扫描接收到的回波信号沿距离向做快速傅里叶变换,对得到的距离频域—方位时域信号与该匹配函数相乘,再通过快速傅里叶反变换(IFFT)得到距离向高分辨的二维信号;通过对二维脉压信号在频域乘以距离走动校正相位补偿因子;得到经预处理的回波信号;S3. Echo signal preprocessing, specifically: constructing a beam scanning range-to-pulse compression frequency-domain matching function; performing fast Fourier transform on the echo signal received by beam scanning along the distance direction, and performing a distance-frequency domain-azimuth The time domain signal is multiplied by the matching function, and then the two-dimensional signal with high resolution in the distance direction is obtained through the inverse fast Fourier transform (IFFT); the phase compensation factor is corrected by multiplying the two-dimensional pulse pressure signal in the frequency domain by the distance walk; obtaining a preprocessed echo signal;
S4、对步骤S3得到的回波信号,通过协方差矩阵进行快速求解得到回波信号的自相关矩阵R;S4. For the echo signal obtained in step S3, the autocorrelation matrix R of the echo signal is obtained by quickly solving the covariance matrix;
S5、协方差矩阵求逆快速实现;对步骤S4得到的自相关矩阵求逆,得到R-1;S5, rapid implementation of covariance matrix inversion; the autocorrelation matrix obtained in step S4 is inverted to obtain R -1 ;
S6、多普勒波束锐化成像;根据步骤S5的R-1得到单个距离向的成像结果;在回波距离—多普勒域中,沿多普勒频率方向,根据目标成像区域的回波多普勒分布范围,截取成像范围内的波束锐化成像结果,即可获得成像场景的多普勒波束锐化成像结果。S6, Doppler beam sharpening imaging; according to R -1 of step S5, the imaging result of a single range direction is obtained; in the echo distance-Doppler domain, along the Doppler frequency direction, according to the number of echoes in the target imaging area Doppler distribution range, intercept the beam sharpening imaging results within the imaging range, and then obtain the Doppler beam sharpening imaging results of the imaging scene.
进一步地,所述步骤S2具体为:Further, the step S2 is specifically:
假设发射信号为线性调频信号为:Assuming that the transmitted signal is a chirp signal:
其中,rect(·)表示矩形信号,且τ为距离向快时间变量,T表示发射脉冲持续时间,c为光速,λ表示波长,Kr为调频斜率;j表示虚数;Among them, rect( ) represents a rectangular signal, and τ is the distance fast time variable, T represents the duration of the transmitted pulse, c is the speed of light, λ represents the wavelength, K r is the frequency modulation slope; j represents an imaginary number;
当天线扫过前斜视区域Ω时,得到离散化后的回波信号表达式:When the antenna sweeps the front squint area Ω, the discretized echo signal expression is obtained:
其中,Ω表示雷达波束扫描的作用的区域,σ(xi,yj)表示点目标(xi,yj)的散射系数,θβ表示天线波束3dB宽度,θ(xi,yj)表示场景中的点(xi,yj)与机载平台连线与飞行方向的夹角,是慢时间域的窗函数,表示天线方向图函数在方位向的调制,R(xi,yi;t)表示目标点与机载平台之间的距离。Among them, Ω represents the area where the radar beam scans, σ( xi , y j ) represents the scattering coefficient of the point target ( xi , y j ), θ β represents the 3dB width of the antenna beam, θ( xi , y j ) Indicates the angle between the point (x i , y j ) in the scene and the line connecting the airborne platform and the flight direction, is the window function in the slow time domain, which represents the modulation of the antenna pattern function in the azimuth direction, and R( xi , y i ; t) represents the distance between the target point and the airborne platform.
进一步地,所述步骤S4具体为:Further, the step S4 is specifically:
将步骤S3得到的回波信号表示为离散形式,Expressing the echo signal obtained in step S3 as a discrete form,
其中,m=1,2,...,M;n=1,2,...,N,K表示信号在频域的采样点数,k表示采样点,k=0,1,2,…,K-1,表示归一化多普勒频率,σk(m)表示位于区域中方位向第m 个距离单元内的,归一化多普勒频为k的散射系数,e(m,n)表示加入的噪声;Among them, m=1,2,...,M; n=1,2,...,N, K represents the number of sampling points of the signal in the frequency domain, k represents the sampling point, k=0,1,2,... ,K-1, Indicates the normalized Doppler frequency, σ k (m) indicates the scattering coefficient of the normalized Doppler frequency k within the mth distance unit in the azimuth direction of the region, and e(m,n) indicates the added noise;
对于距离向位于第m个距离单元内的回波信号S=[s(m,1),...,e(m,N)]T,T表示转置运算;定义操作矩阵A=[a1,a2,...,ak,...,aK],ak=[ej2πk/K,ej2π2k/K,...,ej2πNk/K];噪声向量 e=[e(m,1),e(m,2),...,e(m,N)]T;基于加权最小二乘法的思想,定义代价函数:For the echo signal S=[s(m,1),...,e(m,N)] T in the distance direction located in the mth distance unit, T represents the transpose operation; define the operation matrix A=[a 1 ,a 2 ,...,a k ,...,a K ], a k =[e j2πk/K ,e j2π2k/K ,...,e j2πNk/K ]; noise vector e=[e (m,1),e(m,2),...,e(m,N)] T ; Based on the idea of weighted least squares, define the cost function:
其中,*表示共轭运算,Qk=R-pkak(ak)*为回波协方差矩阵,为回波自相关矩阵,P=diag(p),p=(p0,p1,p2,...,pk,...,pK-1)T,表示在频率网格点2πk/K处的功率估计值,v表示迭代次数,σk的最优化估计值可以表示为:Among them, * represents the conjugate operation, Q k = Rp k a k (a k ) * is the echo covariance matrix, is the echo autocorrelation matrix, P=diag(p), p=(p 0 ,p 1 ,p 2 ,...,p k ,...,p K-1 ) T , Indicates the estimated value of the power at the frequency grid point 2πk/K, v indicates the number of iterations, and the optimal estimated value of σ k can be expressed as:
根据矩阵Q和矩阵R之间的关系:Qk=R-pkak(ak)H;再根据矩阵求逆引理,σk的最优化估计值可以转化为: According to the relationship between matrix Q and matrix R: Q k =Rp k a k (a k ) H ; then according to the matrix inversion lemma, the optimal estimated value of σ k can be transformed into:
记回波信号的自相关矩阵可以表示为,remember The autocorrelation matrix of the echo signal can be expressed as,
其中, in,
根据pk计算得到rn,从而得到自相关矩阵R。Calculated according to p k to get r n , so as to get the autocorrelation matrix R.
进一步地,所述步骤S5具体为:Further, the step S5 is specifically:
首先,根据自相关矩阵R的托普利兹结构,将矩阵R通过行列的划分,可以表示为,First, according to the Toeplitz structure of the autocorrelation matrix R, the matrix R can be expressed as,
则其逆矩阵可以表示为,Then its inverse matrix can be expressed as,
其中,H表示共轭转置运算;in, H represents the conjugate transpose operation;
同时,自相关矩阵R也可以表示为,At the same time, the autocorrelation matrix R can also be expressed as,
此时,其逆矩阵可以表示为,At this point, its inverse matrix can be expressed as,
其中,JN-1JN-1=IN-1,IN-1为N阶单位矩阵;in, J N-1 J N-1 = I N-1 , I N-1 is an N-order identity matrix;
记和根据Gohberg-Semencul分解算法,R-1可以表示为如下形式,remember with According to the Gohberg-Semencul decomposition algorithm, R -1 can be expressed as the following form,
其中,L(u,D)=(u,Du,D2u,...,DN-1u),D表示转移矩阵。Among them, L(u,D)=(u,Du,D 2 u,...,D N-1 u), D represents the transfer matrix.
更进一步地,所述矩阵D的具体形式为,Furthermore, the specific form of the matrix D is,
本发明的有益效果:本发明的一种实现多普勒波束锐化成像的快速迭代自适应方法;利用自相关矩阵的托普利兹(Toeplitz)和埃尔米特(Hermitian matrix)数学特性,实现对自相关矩阵的快速求解,利用对自相关矩阵的Gohberg Semencul(GS)型分解,实现对自相关矩阵的逆矩阵的快速求解,达到降低算法运算复杂度,提高运算效率的目的。Beneficial effects of the present invention: a fast iterative adaptive method for realizing Doppler beam sharpening imaging of the present invention; utilizing the mathematical characteristics of Toeplitz and Hermitian matrix of the autocorrelation matrix to realize For the fast solution of the autocorrelation matrix, the Gohberg Semencul (GS) type decomposition of the autocorrelation matrix is used to realize the fast solution of the inverse matrix of the autocorrelation matrix, so as to reduce the complexity of the algorithm operation and improve the operation efficiency.
附图说明Description of drawings
图1为本发明所述方法流程图;Fig. 1 is a flow chart of the method of the present invention;
图2为本发明实施例提供的机载扫描雷达工作几何模型示意图;Fig. 2 is a schematic diagram of the working geometric model of the airborne scanning radar provided by the embodiment of the present invention;
图3为本发明实施例提供的目标场景分布图;FIG. 3 is a target scene distribution diagram provided by an embodiment of the present invention;
图4为本发明实施例提供在10db信噪比条件下,实波束成像结果;Fig. 4 provides real beam imaging results under the condition of 10db signal-to-noise ratio according to the embodiment of the present invention;
图5为本发明实施例提供的在10db信噪比条件下,利用本发明的成像结果;Fig. 5 is the imaging result using the present invention under the condition of 10db signal-to-noise ratio provided by the embodiment of the present invention;
图6为本发明实施例提供的在R=4980m位置目标的成像剖面对比。Fig. 6 is a comparison of the imaging sections of the target at the position R=4980m provided by the embodiment of the present invention.
具体实施方式detailed description
为便于本领域技术人员理解本发明的技术内容,下面结合附图对本发明内容进一步阐释。In order to facilitate those skilled in the art to understand the technical content of the present invention, the content of the present invention will be further explained below in conjunction with the accompanying drawings.
为了方便描述本发明的内容,本文对以下术语进行解释。For the convenience of describing the content of the present invention, the following terms are explained herein.
术语1:Toeplitz矩阵Term 1: Toeplitz matrix
Toeplitz矩阵(diagonal-constant matrix)是指,矩阵中每条自左上至右下的斜线上的元素相同。Toeplitz matrix (diagonal-constant matrix) means that the elements on each diagonal line from upper left to lower right in the matrix are the same.
术语2:Hermitian矩阵Term 2: Hermitian Matrix
埃尔米特矩阵(Hermitian Matrix)是指,复方阵A的对称单元互为共轭,即A的共轭转置矩阵等于它本身。The Hermitian Matrix means that the symmetric units of the complex matrix A are conjugate to each other, that is, the conjugate transpose matrix of A is equal to itself.
本发明提出了一种实现多普勒波束锐化成像的快速迭代自适应方法,利用协方差矩阵的托普利兹(Toeplitz)及埃尔米特(Hermitian matrix)特性,快速求解协方差矩阵;利用 Gohberg Semencul(GS)分解方法快速求解矩阵R的逆矩阵;利用快速迭代自适应算法实现波束锐化。具体步骤如下:The present invention proposes a fast iterative adaptive method for realizing Doppler beam sharpening imaging, using the Toeplitz (Toeplitz) and Hermitian (Hermitian matrix) characteristics of the covariance matrix to quickly solve the covariance matrix; Gohberg Semencul (GS) decomposition method quickly solves the inverse matrix of matrix R; uses fast iterative adaptive algorithm to realize beam sharpening. Specific steps are as follows:
S1、初始化雷达系统参数S1. Initialize radar system parameters
多普勒波束锐技术是利用机载平台与目标之间的相对运动产生的多普勒相位变化规律,实现方位向的高分辨。本实施方案中采用的雷达平台的系统参数如表1所示。The Doppler beam sharpening technology utilizes the Doppler phase change law generated by the relative motion between the airborne platform and the target to achieve high resolution in azimuth. The system parameters of the radar platform used in this embodiment are shown in Table 1.
表1雷达平台的系统参数Table 1 System parameters of the radar platform
首先,建立扫描雷达系统的工作模型,如图2所示,目标场景分布如图3所示,横轴Azimuth dimension(degree)表示方位向维度;纵轴表示距离向维度。飞机在离地面高H处,沿Y轴以恒定的速度V前进,目标点相对于飞机前进方向的方位角为θ(xi,yi),飞机与目标连线方向与飞机前进方向的夹角为α,目标相对于飞机的俯仰角为飞机初始时刻与目标之间的距离为R0,扫描雷达以恒定的角速度为ω扫描成像区域,假定目标所在的位置为(xi,yi),First, the working model of the scanning radar system is established, as shown in Figure 2, and the target scene distribution is shown in Figure 3, the horizontal axis Azimuth dimension (degree) represents the azimuth dimension; the vertical axis represents the distance dimension. The aircraft is at a height H above the ground, and is moving forward at a constant speed V along the Y axis. The azimuth angle of the target point relative to the aircraft's advancing direction is θ( xi , y i ). The angle is α, and the pitch angle of the target relative to the aircraft is The distance between the aircraft and the target at the initial moment is R 0 , the scanning radar scans the imaging area at a constant angular velocity ω, assuming that the position of the target is ( xi , y i ),
根据初始化的额雷达系统参数建立回波模型;具体为:Establish the echo model according to the initialized radar system parameters; specifically:
在t时刻机载平台与目标之间的距离历史R(xi,yi;t)为:The distance history R(x i , y i ; t) between the airborne platform and the target at time t is:
将该距离历史的表达式进行泰勒展开,二阶以上的高阶项对于前斜视区域成像的影响是非常小的,将其忽略可以后得到距离历史的表达式为:The expression of the distance history is carried out by Taylor expansion, and the higher-order terms above the second order have very little influence on the imaging of the front squint area, and the expression of the distance history can be obtained after ignoring it:
其中,符号表示约等于,R(xi,yi)雷达距离场景中目标(xi,yi)的距离。in, The symbol represents approximately equal to, R( xi , y i ) the distance from the radar to the target ( xi , y i ) in the scene.
S2、回波信号生成;具体为:S2, echo signal generation; specifically:
在多普勒波束锐化成像过程中,能够通过天线发射大时宽带宽积的线性调频(LFM) 信号与参考信号进行匹配滤波,实现距离向高分辨。假设发射信号为线性调频信号为:In the Doppler beam sharpening imaging process, the linear frequency modulation (LFM) signal with a large time-width bandwidth product can be transmitted through the antenna and the reference signal can be matched and filtered to achieve high resolution in the range direction. Assuming that the transmitted signal is a chirp signal:
其中,rect(·)表示矩形信号,其定义为:其中τ为距离向快时间变量,T表示发射脉冲持续时间,c为光速,λ表示波长,Kr为调频斜率。当天线扫过前斜视区域Ω时,可以得到离散化后的回波解析表达式:Among them, rect( ) represents a rectangular signal, which is defined as: Among them, τ is the fast time variable in the distance direction, T represents the duration of the transmitted pulse, c is the speed of light, λ represents the wavelength, and K r is the frequency modulation slope. When the antenna sweeps the front squint area Ω, the discretized echo analytical expression can be obtained:
其中,Ω表示雷达波束扫描的作用的区域,σ(xi,yj)表示点目标(xi,yj)的散射系数,θβ表示天线波束3dB宽度,θ(xi,yj)表示场景中的点(xi,yj)与机载平台连线与飞行方向的夹角,是慢时间域的窗函数,表示天线方向图函数在方位向的调制,R(xi,yi;t)表示目标点与机载平台之间的距离。Among them, Ω represents the area where the radar beam scans, σ( xi , y j ) represents the scattering coefficient of the point target ( xi , y j ), θ β represents the 3dB width of the antenna beam, θ( xi , y j ) Indicates the angle between the point (x i , y j ) in the scene and the line connecting the airborne platform and the flight direction, is the window function in the slow time domain, which represents the modulation of the antenna pattern function in the azimuth direction, and R( xi , y i ; t) represents the distance between the target point and the airborne platform.
S3、回波信号预处理,具体为:S3. Echo signal preprocessing, specifically:
构造波束扫描距离向脉冲压缩频域匹配函数将波束扫描接收到的回波信号沿距离向做快速傅里叶变换,对得到的距离频域—方位时域信号与该匹配函数相乘,再通过快速傅里叶反变换(IFFT)得到距离向高分辨的二维信号:Constructing beam-scanning range-to-pulse compression frequency-domain matching function Perform fast Fourier transform on the echo signal received by beam scanning along the distance direction, and match the obtained distance frequency domain-azimuth time domain signal with the matching function Multiply, and then through the inverse fast Fourier transform (IFFT) to obtain a two-dimensional signal with high resolution in the distance direction:
其中,B表示发射线性调频信号的带宽。随后,通过对二维脉压信号在频域乘以距离走动校正相位补偿因子: t表示扫描雷达波束通过某一点目标经历的时间。故可以得到多波束扫描目标场景所得回波信号的信号表达式为:Among them, B represents the bandwidth of transmitting chirp signal. Subsequently, the phase compensation factor is corrected by multiplying the two-dimensional pulse pressure signal by the distance walking in the frequency domain: t represents the time that the scanning radar beam passes through a certain target. Therefore, the signal expression of the echo signal obtained by multi-beam scanning target scene can be obtained as:
其中,sinc[·]为距离脉压响应函数。Among them, sinc[·] is the distance pulse pressure response function.
S4、协方差矩阵的快速求解;S4, fast solution of covariance matrix;
基于步骤S3的推导结果,为实现方位高分辨处理,将距离向高分辨二维回波信号表示为离散形式,对于距离向位于m处,方位向位于n处的目标点。其回波在经步骤S3的预处理后,可以表示为:Based on the derivation result of step S3, in order to realize high-resolution azimuth processing, the two-dimensional high-resolution echo signal in the range direction is expressed in a discrete form, for a target point located at m in the range direction and n in the azimuth direction. Its echo can be expressed as:
其中,m=1,2,...,M;n=1,2,...,N,K表示信号在频域的采样点数,表示归一化多普勒频率,σk(m)表示位于区域中方位向第m个距离单元内的,归一化多普勒频为k的散射系数,e(m,n)表示加入的噪声。对于距离向位于第m个距离单元内的回波信号 S=[s(m,1),...,e(m,N)]T,其中T表示转置运算,为了准确地估计信号S的频谱分布,定义操作矩阵A=[a1,a2,...,ak,...,aK],其中ak=[ej2πk/K,ej2π2k/K,...,ej2πNk/K]。再定义噪声向量 e=[e(m,1),e(m,2),...,e(m,N)]T,在公式(6)建立的模型的基础上,基于加权最小二乘法的思想,定义代价函数:Among them, m=1,2,...,M; n=1,2,...,N, K represents the number of sampling points of the signal in the frequency domain, Indicates the normalized Doppler frequency, σ k (m) indicates the scattering coefficient of the normalized Doppler frequency k within the mth distance unit in the azimuth direction of the region, and e(m,n) indicates the added noise. For the echo signal S=[s(m,1),...,e(m,N)] T in the distance direction located in the mth distance unit, where T represents the transpose operation, in order to accurately estimate the signal S Spectrum distribution of , define operation matrix A=[a 1 ,a 2 ,...,a k ,...,a K ], where a k =[e j2πk/K ,e j2π2k/K ,..., e j2πNk/K ]. Then define the noise vector e=[e(m,1),e(m,2),...,e(m,N)] T , based on the model established by formula (6), based on the weighted least squares The idea of multiplication defines the cost function:
其中,*表示共轭运算,Qk=R-pkak(ak)*为回波协方差矩阵,为回波自相关矩阵,P=diag(p),p=(p0,p1,p2,...,pk,...,pK-1)T,表示在频率网格点2πk/K处的功率估计值,v表示迭代次数,v的取值范围为10~20,σk的最优化估计值可以表示为:Among them, * represents the conjugate operation, Q k = Rp k a k (a k ) * is the echo covariance matrix, is the echo autocorrelation matrix, P=diag(p), p=(p 0 ,p 1 ,p 2 ,...,p k ,...,p K-1 ) T , Indicates the estimated value of the power at the frequency grid point 2πk/K, v indicates the number of iterations, the range of v is 10-20, and the optimal estimated value of σ k can be expressed as:
根据矩阵Q和矩阵R之间的关系:Qk=R-pkak(ak)H,再根据矩阵求逆引理,σk的最优化估计值可以转化为:在该公式中,记分子为分母为在公式的分子分母的计算过程中,回波自相关矩阵可以表示为,According to the relationship between matrix Q and matrix R: Q k =Rp k a k (a k ) H , and then according to the matrix inversion lemma, the optimal estimated value of σ k can be transformed into: In this formula, the score is The denominator is numerator in the formula denominator In the calculation process of , the echo autocorrelation matrix can be expressed as,
其中,观察矩阵R的基本形式可知,自相关矩阵R具有托普利兹(Toeplitz)矩阵结构和埃尔米特矩阵(Hermitian matrix)的性质,因此可通过一行元素的计算,获得整个矩阵的计算结果。再根据计算公式可得,矩阵R的首行元素的计算可以通过FFT方法获得,因此,在自相关矩阵的计算中,通过FFT运算获得自相关矩阵首行元素的值,再根据自相关矩阵的性质获得R的值。in, Observing the basic form of the matrix R, we can see that the autocorrelation matrix R has the Toeplitz matrix structure and the properties of the Hermitian matrix, so the calculation result of the entire matrix can be obtained through the calculation of one row of elements. Then according to the calculation formula It can be obtained that the calculation of the elements in the first row of the matrix R can be obtained by the FFT method. Therefore, in the calculation of the autocorrelation matrix, the value of the elements in the first row of the autocorrelation matrix is obtained through the FFT operation, and then the value of R is obtained according to the properties of the autocorrelation matrix. value.
在自相关矩阵R的计算过程中,若采用传统直接迭代自适应(brute force IAA)方法中的计算公式计算自相关矩阵,随着观测点数的N和频域采样点数 K的增加,计算复杂度为O(N2K)。而利用快速迭代自适应(F-IAA)的方法中,通过FFT 方法求得矩阵R的首行元素值,根据自相关矩阵性质得到整个矩阵元素值,该方法的运算复杂度为O(K log2K)。In the calculation process of the autocorrelation matrix R, if the calculation formula in the traditional direct iterative adaptive (brute force IAA) method is used To calculate the autocorrelation matrix, as the number of observation points N and the number of sampling points K in the frequency domain increase, the computational complexity is O(N 2 K). In the fast iterative adaptive (F-IAA) method, the element values of the first row of the matrix R are obtained by the FFT method, and the entire matrix element values are obtained according to the properties of the autocorrelation matrix. The computational complexity of this method is O(K log 2K ) .
S5、协方差矩阵求逆快速实现;S5. Fast implementation of covariance matrix inversion;
为计算自相关矩阵的逆R-1,首先,根据自相关矩阵R的托普利兹(Toeplitz)结构,将矩阵R通过行列的划分,可以表示为,In order to calculate the inverse R -1 of the autocorrelation matrix, first, according to the Toeplitz structure of the autocorrelation matrix R, the matrix R is divided by rows and columns, which can be expressed as,
则其逆矩阵可以表示为,Then its inverse matrix can be expressed as,
其中,H表示共轭转置运算。in, H represents the conjugate transpose operation.
同时,自相关矩阵R也可以表示为,At the same time, the autocorrelation matrix R can also be expressed as,
此时,其逆矩阵可以表示为,At this point, its inverse matrix can be expressed as,
其中,JN-1JN-1=IN-1,IN-1为N阶单位矩阵。in, J N-1 J N-1 = I N-1 , where I N-1 is an N-order identity matrix.
在上述公式(11)及公式(13)中,记和根据Gohberg-Semencul(GS)分解算法,R-1可以表示为如下形式,In the above formula (11) and formula (13), record with According to the Gohberg-Semencul (GS) decomposition algorithm, R -1 can be expressed as the following form,
其中,L(u,D)=(u,Du,D2u,...,DN-1u),D表示转移矩阵。G-S分解算法为本领域的常用算法,在此不做详细阐述。Among them, L(u,D)=(u,Du,D 2 u,...,D N-1 u), D represents the transfer matrix. The GS decomposition algorithm is a commonly used algorithm in this field, and will not be described in detail here.
矩阵D的具体形式为,The specific form of the matrix D is,
向量u和可以通过对R利用Levinson-Durbin算法求得。vector u and It can be obtained by using the Levinson-Durbin algorithm for R.
在矩阵R-1的求解过程中,若采用传统直接迭代自适应(brute force IAA)方法中的矩阵求逆运算,计算复杂度为O(N2K)。而利用快速迭代自适应(F-IAA)的方法中,通过Levinson-Durbin算法求得矩阵R的逆矩阵,该方法的运算复杂度为O(N2)。In the process of solving the matrix R -1 , if the matrix inversion operation in the traditional direct iterative adaptive (brute force IAA) method is used, the computational complexity is O(N 2 K). In the fast iterative adaptive (F-IAA) method, the inverse matrix of the matrix R is obtained by the Levinson-Durbin algorithm, and the computational complexity of this method is O(N 2 ).
S6、多普勒波束锐化成像;S6, Doppler beam sharpening imaging;
根据步骤S4及步骤S5的计算,为求解根据矩阵的运算关系,将求解公式中分子与分母的运算,均利用时域与频域变换关系求解。即将公式的求解,转换为ΦN=F-1(R-1S)K,将公式的求解,转换为ΦD=F-1(R-1)K,其中,F-1(·)K表示K点的逆傅里叶变换,获得了在回波距离—多普勒域中的运算结果,至此,可得到单个距离向的成像结果。取实波束回波中每距离向数据代入步骤S4及步骤S5进行运算,最后,在回波距离—多普勒域中,沿多普勒频率方向,根据目标成像区域的回波多普勒分布范围,截取成像范围内的波束锐化成像结果,即可获得成像场景的多普勒波束锐化成像结果,如附图5所示。R=4980m位置,其成像剖面的对比结果如附图6所示。According to the calculation of step S4 and step S5, in order to solve According to the operation relationship of the matrix, the numerator in the formula will be solved with denominator The calculations are solved using the transform relationship between the time domain and the frequency domain. upcoming formula The solution of , converted to Φ N =F -1 (R -1 S) K , the formula The solution of , converted to Φ D =F -1 (R -1 ) K , where, F -1 (·) K represents the inverse Fourier transform of K point, obtained The calculation result in the echo range-Doppler domain, so far, the imaging result of a single range direction can be obtained. Take the data of each distance in the real beam echo and substitute it into step S4 and step S5 for calculation. Finally, in the echo range-Doppler domain, along the Doppler frequency direction, according to the echo Doppler distribution range of the target imaging area , intercepting the beam-sharpening imaging result within the imaging range, the Doppler beam-sharpening imaging result of the imaging scene can be obtained, as shown in Fig. 5 . At the position of R=4980m, the comparison results of the imaging sections are shown in Figure 6.
如图4所示,在10db信噪比条件下,为系统实波束成像结果,对比图6可以发现,在雷达实孔径成像时,场景中目标不能实现分辨。As shown in Figure 4, under the condition of 10db signal-to-noise ratio, it is the real beam imaging result of the system. Compared with Figure 6, it can be found that when the radar real aperture imaging is performed, the target in the scene cannot be resolved.
为验证本发明所提出方法对传统迭代自适应多普勒波束锐化算法的运算速度的提升,在表2的硬件仿真环境下,在不同的矩阵维数下,表3给出了利用传统迭代自适应算法与快速迭代自适应算法的运算时间对比。In order to verify that the method proposed in the present invention improves the operation speed of the traditional iterative adaptive Doppler beam sharpening algorithm, under the hardware simulation environment of Table 2, under different matrix dimensions, Table 3 provides Comparing the operation time of the adaptive algorithm and the fast iterative adaptive algorithm.
表2实验仿真硬件及软件平台条件Table 2 Experimental simulation hardware and software platform conditions
表3利用传统迭代自适应算法与快速迭代自适应算法的运算时间对比Table 3 Comparison of operation time between traditional iterative adaptive algorithm and fast iterative adaptive algorithm
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Various modifications and variations of the present invention will occur to those skilled in the art. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the scope of the claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710332374.7A CN107402380A (en) | 2017-05-12 | 2017-05-12 | A kind of quick self-adapted alternative manner for realizing Doppler beam sharpened imaging |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710332374.7A CN107402380A (en) | 2017-05-12 | 2017-05-12 | A kind of quick self-adapted alternative manner for realizing Doppler beam sharpened imaging |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107402380A true CN107402380A (en) | 2017-11-28 |
Family
ID=60404370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710332374.7A Pending CN107402380A (en) | 2017-05-12 | 2017-05-12 | A kind of quick self-adapted alternative manner for realizing Doppler beam sharpened imaging |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107402380A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318879A (en) * | 2017-12-29 | 2018-07-24 | 哈尔滨工业大学 | ISAR image transverse direction calibrating methods based on IAA Power estimation technologies |
CN108318857A (en) * | 2018-02-09 | 2018-07-24 | 电子科技大学 | Multiple non-cooperation emission source Passive Locations based on Fourier Transform of Fractional Order |
CN109613532A (en) * | 2019-01-02 | 2019-04-12 | 电子科技大学 | A real-time Doppler beam sharpening super-resolution imaging method for airborne radar |
CN110865345A (en) * | 2019-11-22 | 2020-03-06 | 北京理工大学 | Rapid self-adaptive pulse compression method |
CN113640790A (en) * | 2021-06-08 | 2021-11-12 | 西安电子科技大学 | Wide-bandwidth pulse high-speed target detection method based on two-dimensional adaptive spectrum estimation |
CN113708817A (en) * | 2021-10-22 | 2021-11-26 | 广州慧睿思通科技股份有限公司 | Matrix inversion method, device, equipment and storage medium for multi-antenna system |
CN113779795A (en) * | 2021-09-13 | 2021-12-10 | 中国科学院声学研究所 | Array design method and device |
CN116027293A (en) * | 2023-01-04 | 2023-04-28 | 电子科技大学 | Rapid sparse angle super-resolution method for scanning radar |
CN119902200A (en) * | 2025-03-27 | 2025-04-29 | 浙江大学 | A joint multi-beam angular radar high-resolution imaging method based on least squares method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11218574A (en) * | 1998-02-02 | 1999-08-10 | Mitsubishi Electric Corp | Radar device |
CN102866388A (en) * | 2012-06-28 | 2013-01-09 | 北京理工大学 | Iterative computation method for self-adaptive weight number in space time adaptive processing (STAP) |
CN103412305A (en) * | 2013-07-15 | 2013-11-27 | 电子科技大学 | Scanning radar super-resolution imaging method |
CN104950305A (en) * | 2015-06-17 | 2015-09-30 | 电子科技大学 | Real beam scanning radar angle super-resolution imaging method based on sparse constraint |
CN105425234A (en) * | 2015-10-30 | 2016-03-23 | 西安电子科技大学 | Distance-Doppler imaging method based on multi-task Bayes compression sensing |
CN106291543A (en) * | 2016-07-19 | 2017-01-04 | 电子科技大学 | A kind of motion platform scanning radar super-resolution imaging method |
-
2017
- 2017-05-12 CN CN201710332374.7A patent/CN107402380A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11218574A (en) * | 1998-02-02 | 1999-08-10 | Mitsubishi Electric Corp | Radar device |
CN102866388A (en) * | 2012-06-28 | 2013-01-09 | 北京理工大学 | Iterative computation method for self-adaptive weight number in space time adaptive processing (STAP) |
CN103412305A (en) * | 2013-07-15 | 2013-11-27 | 电子科技大学 | Scanning radar super-resolution imaging method |
CN104950305A (en) * | 2015-06-17 | 2015-09-30 | 电子科技大学 | Real beam scanning radar angle super-resolution imaging method based on sparse constraint |
CN105425234A (en) * | 2015-10-30 | 2016-03-23 | 西安电子科技大学 | Distance-Doppler imaging method based on multi-task Bayes compression sensing |
CN106291543A (en) * | 2016-07-19 | 2017-01-04 | 电子科技大学 | A kind of motion platform scanning radar super-resolution imaging method |
Non-Patent Citations (4)
Title |
---|
LIJUAN QI等: "Super-resolution Doppler beam sharpening imaging based on an iterative adaptive approach", 《REMOTE SENSING LETTERS》 * |
MING XUE等: "IAA Spectral Estimation: Fast Implementation Using the Gohberg–Semencul Factorization", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》 * |
YONGCHAO ZHANG等: "A Fast Iterative Adaptive Approach for Scanning Radar Angular Superresolution", 《IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING》 * |
管金称等: "机载雷达前视探测方位超分辨算法", 《雷达信号》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318879A (en) * | 2017-12-29 | 2018-07-24 | 哈尔滨工业大学 | ISAR image transverse direction calibrating methods based on IAA Power estimation technologies |
CN108318879B (en) * | 2017-12-29 | 2021-08-31 | 哈尔滨工业大学 | ISAR Image Lateral Calibration Method Based on IAA Spectral Estimation Technology |
CN108318857A (en) * | 2018-02-09 | 2018-07-24 | 电子科技大学 | Multiple non-cooperation emission source Passive Locations based on Fourier Transform of Fractional Order |
CN108318857B (en) * | 2018-02-09 | 2020-04-07 | 电子科技大学 | Passive positioning method for multiple non-cooperative emission sources based on fractional Fourier transform |
CN109613532A (en) * | 2019-01-02 | 2019-04-12 | 电子科技大学 | A real-time Doppler beam sharpening super-resolution imaging method for airborne radar |
CN109613532B (en) * | 2019-01-02 | 2020-11-10 | 电子科技大学 | A real-time Doppler beam sharpening super-resolution imaging method for airborne radar |
CN110865345B (en) * | 2019-11-22 | 2021-07-30 | 北京理工大学 | A Fast Adaptive Pulse Compression Method |
CN110865345A (en) * | 2019-11-22 | 2020-03-06 | 北京理工大学 | Rapid self-adaptive pulse compression method |
CN113640790A (en) * | 2021-06-08 | 2021-11-12 | 西安电子科技大学 | Wide-bandwidth pulse high-speed target detection method based on two-dimensional adaptive spectrum estimation |
CN113779795A (en) * | 2021-09-13 | 2021-12-10 | 中国科学院声学研究所 | Array design method and device |
CN113779795B (en) * | 2021-09-13 | 2023-06-30 | 中国科学院声学研究所 | Array design method and device |
CN113708817A (en) * | 2021-10-22 | 2021-11-26 | 广州慧睿思通科技股份有限公司 | Matrix inversion method, device, equipment and storage medium for multi-antenna system |
CN116027293A (en) * | 2023-01-04 | 2023-04-28 | 电子科技大学 | Rapid sparse angle super-resolution method for scanning radar |
CN119902200A (en) * | 2025-03-27 | 2025-04-29 | 浙江大学 | A joint multi-beam angular radar high-resolution imaging method based on least squares method |
CN119902200B (en) * | 2025-03-27 | 2025-06-10 | 浙江大学 | Combined multi-beam angle radar high-resolution imaging method based on least square method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107402380A (en) | A kind of quick self-adapted alternative manner for realizing Doppler beam sharpened imaging | |
CN107462887B (en) | Imaging method of wide-field spaceborne synthetic aperture radar based on compressed sensing | |
CN104950306B (en) | Method for realizing angular super-resolution imaging of forward-looking sea surface targets in sea clutter background | |
CN103869311B (en) | Real beam scanning radar super-resolution imaging method | |
CN104977582B (en) | A kind of deconvolution method for realizing the imaging of scanning radar Azimuth super-resolution | |
Zhang et al. | BP algorithm for the multireceiver SAS | |
CN109613532B (en) | A real-time Doppler beam sharpening super-resolution imaging method for airborne radar | |
CN111060909B (en) | Airborne radar oblique forward-looking super-resolution imaging method | |
CN108226891B (en) | Scanning radar echo calculation method | |
CN113671492B (en) | SAMP reconstruction method for forward-looking imaging of maneuvering platform | |
CN108008389B (en) | A Fast Frequency Domain Backprojection 3D Imaging Method Based on GPU | |
CN105699969A (en) | A maximum posterior estimated angle super-resolution imaging method based on generalized Gaussian constraints | |
CN108535724A (en) | The moving target focus method of quadratic function is converted and integrated based on chockstone | |
Zhang et al. | Fast imaging algorithm for the multiple receiver synthetic aperture sonars | |
CN109597075B (en) | Imaging method and imaging device based on sparse array | |
CN102798861B (en) | Bistatic synthetic aperture radar (SAR) imaging method based on optimal image space | |
CN109031299B (en) | ISAR translation compensation method based on phase difference under the condition of low signal-to-noise ratio | |
CN108196251A (en) | Accelerated iteration regularization super-resolution imaging method based on vector extrapolation | |
CN113203998B (en) | ISAR translation compensation and imaging method, system, medium and device | |
CN105137425A (en) | Scanning radar forward-looking angular superresolution method based on convolution inversion principle | |
CN108061882A (en) | ISAR transverse calibration and Doppler-crossing walking correction method based on modified Newton iteration | |
Yang et al. | Doppler beam sharpening imaging based on fast iterative adaptive approach | |
CN103076608B (en) | Contour-enhanced beaming-type synthetic aperture radar imaging method | |
CN105759264A (en) | Micro-motion target defect echo high-resolution imaging method based on time-frequency dictionary | |
Yang et al. | Novel compressive sensing‐based Dechirp‐Keystone algorithm for synthetic aperture radar imaging of moving target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171128 |
|
RJ01 | Rejection of invention patent application after publication |