[go: up one dir, main page]

CN107399973A - 一种直接氮化法制备氮化铝粉末的工艺 - Google Patents

一种直接氮化法制备氮化铝粉末的工艺 Download PDF

Info

Publication number
CN107399973A
CN107399973A CN201610336622.0A CN201610336622A CN107399973A CN 107399973 A CN107399973 A CN 107399973A CN 201610336622 A CN201610336622 A CN 201610336622A CN 107399973 A CN107399973 A CN 107399973A
Authority
CN
China
Prior art keywords
powder
aluminium nitride
technique
nitride powder
nitridation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610336622.0A
Other languages
English (en)
Inventor
张红冉
吴诚
刘久明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Corefra Silicon Nitride Material Co Ltd
Original Assignee
Hebei Corefra Silicon Nitride Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Corefra Silicon Nitride Material Co Ltd filed Critical Hebei Corefra Silicon Nitride Material Co Ltd
Priority to CN201610336622.0A priority Critical patent/CN107399973A/zh
Publication of CN107399973A publication Critical patent/CN107399973A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

一种直接氮化法制备氮化铝粉末的工艺,属于非氧化物陶瓷粉体材料的制备技术领域。具体步骤为:1、将高纯Al粉、添加剂、稀释剂按一定的配比称重后,与无水乙醇一起放入球磨罐中,球磨3~20h。2、将球磨后的混合料在50~80℃环境中烘干。3、将原料置于坩埚内,放入烧结炉中,在温度800~1200℃下与高纯氮气进行氮化反应。4、氮化反应结束后对粉体进行热处理来改善形貌。该工艺获得的氮化铝粉体颜色均匀、结晶良好、形貌良好、转化率高,适于工业化生产。

Description

一种直接氮化法制备氮化铝粉末的工艺
技术领域
本发明属于非氧化物陶瓷粉体材料的制备技术领域,具体涉及一种直接氮化法制备氮化铝粉末的工艺技术。
背景技术
氮化铝是一种六方纤锌矿结构的共价键化合物,属于六方晶系,在常压下分解温度为2480℃。氮化铝特殊的晶格结构使其具有高导热率、低热膨胀系数、机械强度高、绝缘性能优良、耐高温、耐腐蚀、介电损耗小、无毒等诸多优异的性能。随着微电子技术的迅速发展,微电子产品向着高度集成化、布线微型化等方向发展,这对电子集成电路基板、散热元件、电子封装材料等的散热问题要求越来越高。氮化铝由于自身的优异性能,已经替代氧化铝和氧化铍而成为目前超大规模集成电路基板的首选材料。也是熔铸纯铁、铝、铜、银、铅等金属熔炼的坩埚和浇铸模具的理想材料。
目前工业上制备氮化铝粉体的方法主要有铝粉直接氮化法、碳热还原法、自蔓延高温合成法。碳热还原法得到的氮化铝粉末接近于球状,但其粒径一般较大,为亚微米左右。后期的除碳过程可能会增加氧杂质含量,这对后期陶瓷的导热率是不利的。另外,此法合成温度高(1600~1800℃),制备氮化铝粉体的成本较高。自蔓延合成技术是利用反应热来维持反应自发地进行,虽然反应速度快、能耗低、工艺简单、周期短,但是反应速度过快、燃烧温度过高以及存在温度梯度过大等问题使过程难易控制。而铝粉直接氮化法反应温度低(800~1200℃)、原料成本低、工艺简单、过程易控制,适于工业化生产。本文采用直接氮化法来获得结晶良好、形貌良好的氮化铝粉体。
发明内容
本发明提供一种直接氮化法制备氮化铝粉末的工艺技术,该工艺获得的氮化铝粉体颜色均匀、结晶良好、形貌良好、转化率高,适于工业化生产。本发明所采用的技术方案是:
(1)将高纯Al粉、添加剂、稀释剂按一定的配比称重后,与无水乙醇一起放入球磨罐中,球磨3~20h;
(2)将球磨后的混合料在50~80℃环境中烘干;
(3)将原料置于坩埚内,放入烧结炉中,在温度800~1200℃下与高纯氮气进行氮化反应;
(4)氮化反应结束后对粉体进行热处理来改善形貌。
步骤(1)中所述高纯Al粉的粒径不大于30μm,高纯Al粉与添加剂的质量比为1:(0.1~0.9),稀释剂占Al粉的0~70wt%。
步骤(1)中所述添加剂为NH4Cl、NH4F中的一种与KCl的混合物,稀释剂为AlN粉末,其中KCl与NH4Cl(或NH4F)的质量比为1:(2~15)。
步骤(4)中所述热处理温度为1400~1650℃,保温时间为1~5h。
本发明的制备方法得到的氮化铝粉体结晶良好、形貌良好,原料成本较低、生产周期短,适于工业化生产。在电子封装材料、集成电路基板、坩埚模具材料等应用方面发挥着重要的作用。
附图说明
图1是采用本发明的工艺制备得到的氮化铝粉体的XRD图。
图2是采用本发明的工艺制备得到的氮化铝粉体的SEM图。
具体实施方式
以下结合实施案例对本发明做进一步的说明,但不仅仅局限于实施例。
实施例 1
将高纯Al粉、NH4Cl、KCl分别100g、41.5g、8.5g放入球磨罐中,加入无水乙醇球磨5h。将混合浆料在干燥箱中60℃烘干后放入刚玉坩埚中,在850℃保温2h后升温至1450℃热处理3h。冷却后得到氮化铝疏松块体,碾磨得到氮化铝粉体。升温-保温-热处理整个过程始终保证氮气气氛,氮化反应前适当进行气体置换,以保证生成的氨气等不影响氮气的纯度。
实施例 2
将高纯Al粉、NH4Cl、KCl按100g、22g、3g的质量进行称量,再加入AlN粉末25g。在球磨罐中球磨6h,球磨介质为无水乙醇。70℃干燥后置于坩埚中,在多功能烧结炉中升温至950℃保温1h,随即缓慢升温至1600℃保温2h,制备得到形貌、结晶良好的氮化铝粉体。整个过程始终为氮气气氛。
实施例 3
将高纯Al粉、NH4F、KCl按100g、54g、6g放入球磨罐中,加入无水乙醇球磨10h。将混合浆料在干燥箱中烘干后放入刚玉坩埚中,在1000℃保温2h后升温至1500℃热处理1h。随炉冷却并碾磨得到氮化铝粉体。

Claims (5)

1.一种直接氮化法制备氮化铝粉末的工艺,其特征在于,包括以下步骤:
(1)将高纯Al粉、添加剂、稀释剂按一定的配比称重后,与无水乙醇一起放入球磨罐中,球磨3~20h;
(2)将球磨后的混合料在50~80℃环境中烘干;
(3)将原料置于坩埚内,放入烧结炉中,在温度800~1200℃下与高纯氮气进行氮化反应;
(4)氮化反应结束后对粉体进行热处理来改善形貌。
2.按照权利要求1所述的一种直接氮化法制备氮化铝粉末的工艺,其特征在于,步骤(1)中所述高纯Al粉的粒径不大于30μm,高纯Al粉与添加剂的质量比为1:(0.1~0.9),稀释剂占Al粉的0~70wt%。
3.按照权利要求1所述的一种直接氮化法制备氮化铝粉末的工艺,其特征在于,步骤(1)中所述添加剂为NH4Cl、NH4F中的一种与KCl的混合物,稀释剂为AlN粉末。
4.按照权利要求3所述的一种直接氮化法制备氮化铝粉末的工艺,其特征在于,所述的KCl与NH4Cl(或NH4F)的质量比为1:(2~15)。
5.按照权利要求1所述的一种直接氮化法制备氮化铝粉末的工艺,其特征在于,步骤(4)中所述热处理温度为1400~1650℃,保温时间为1~5h。
CN201610336622.0A 2016-05-20 2016-05-20 一种直接氮化法制备氮化铝粉末的工艺 Pending CN107399973A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610336622.0A CN107399973A (zh) 2016-05-20 2016-05-20 一种直接氮化法制备氮化铝粉末的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610336622.0A CN107399973A (zh) 2016-05-20 2016-05-20 一种直接氮化法制备氮化铝粉末的工艺

Publications (1)

Publication Number Publication Date
CN107399973A true CN107399973A (zh) 2017-11-28

Family

ID=60394639

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610336622.0A Pending CN107399973A (zh) 2016-05-20 2016-05-20 一种直接氮化法制备氮化铝粉末的工艺

Country Status (1)

Country Link
CN (1) CN107399973A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107698264A (zh) * 2016-08-09 2018-02-16 河北高富氮化硅材料有限公司 一种改性高α相氮化硅粉体的制备方法
CN110577198A (zh) * 2018-06-11 2019-12-17 河北高富氮化硅材料有限公司 一种去除氮化铝粉体中碎小颗粒的方法
CN115010100A (zh) * 2022-06-21 2022-09-06 西安交通大学 一种片状氮化铝粉体及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107698264A (zh) * 2016-08-09 2018-02-16 河北高富氮化硅材料有限公司 一种改性高α相氮化硅粉体的制备方法
CN110577198A (zh) * 2018-06-11 2019-12-17 河北高富氮化硅材料有限公司 一种去除氮化铝粉体中碎小颗粒的方法
CN115010100A (zh) * 2022-06-21 2022-09-06 西安交通大学 一种片状氮化铝粉体及其制备方法

Similar Documents

Publication Publication Date Title
JP6639733B2 (ja) 球状の窒化アルミニウム粉末を製造するための方法
JP7337804B2 (ja) 六方晶窒化ホウ素粉末、及び六方晶窒化ホウ素粉末の製造方法
CN102730690B (zh) 一种Al4SiC4材料的合成方法
CN111620679B (zh) 一种以熔融二氧化硅为硅源制备高纯莫来石材料的方法
CN108862391B (zh) 一种低费氏氧化钨及其制备方法
CN105836717B (zh) 氮化铝电子陶瓷粉末的制备方法
CN101428771A (zh) 一种微波碳热还原降温催化煅烧制备AlN粉末的方法
CN103979507A (zh) 一种利用高气压和氟化物添加剂辅助制备球形氮化铝粉体的方法
CN104945024A (zh) 一种新型氮化铝微球粉体的制备方法
CN107399973A (zh) 一种直接氮化法制备氮化铝粉末的工艺
CN105776158B (zh) 采用高气压和添加剂直接制备高球形度氮化硅粉体的方法
CN104725049B (zh) 一种氮化铝/氮化硼复合陶瓷粉末的制备方法
CN108689715B (zh) 一种氮化铝粉体及其制备方法
CN105884372B (zh) 有机网络法合成AlN陶瓷粉体方法
CN107698264A (zh) 一种改性高α相氮化硅粉体的制备方法
TWI646045B (zh) 一種製備球形氮化矽粉體的方法
CN106187203A (zh) 一种基于碳化铝制备氮化铝粉体的方法及其产品
CN100532327C (zh) 一种控制碳、氮含量合成AlN-SiC复合材料的方法
TW201943642A (zh) 一種製造微細球形氮化鋁粉末的方法
CN106220188A (zh) 一种窄粒度分布高纯氮化硅粉体的制备方法
CN101143782A (zh) 一种低温制备大块致密高纯单相Y2SiO5陶瓷块体材料的方法
US20240199421A1 (en) Method for preparing aluminum nitride powder based on aluminum metal
CN103074686B (zh) 蓝晶石精矿低温制备高纯莫来石单晶的方法
CN102731109B (zh) 一种AlON材料的合成方法
Fu Aluminum nitride wide band-gap semiconductor and its basic characteristics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171128