[go: up one dir, main page]

CN107390278A - A kind of radioactivity mineral exploration method - Google Patents

A kind of radioactivity mineral exploration method Download PDF

Info

Publication number
CN107390278A
CN107390278A CN201710568367.7A CN201710568367A CN107390278A CN 107390278 A CN107390278 A CN 107390278A CN 201710568367 A CN201710568367 A CN 201710568367A CN 107390278 A CN107390278 A CN 107390278A
Authority
CN
China
Prior art keywords
data
image
video
physical model
deflection angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710568367.7A
Other languages
Chinese (zh)
Inventor
龙汉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Institute of Technology
Original Assignee
Guizhou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Institute of Technology filed Critical Guizhou Institute of Technology
Priority to CN201710568367.7A priority Critical patent/CN107390278A/en
Publication of CN107390278A publication Critical patent/CN107390278A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/271Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects using a network, e.g. a remote expert, accessing remote data or the like

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种放射性矿产勘查方法,包括如下步骤:在勘查区内进行传感器组、视频采集模块的埋设,构成矿产勘查数据实时更新储存模块;完成所采集到的矿产勘查数据的预测分析,并完成视频数据的预处理;采用FLAC3D技术进行勘查区物理模型的构建;在构建的物理模型中进行虚拟作动器、虚拟传感器以及仿真分析模块的设计;通过虚拟作动器循环执行仿真分析模块,将结果反馈给虚拟传感器,虚拟传感器接收结果并自动显示数据;完成勘查区的三维重构。本发明提高了勘查区物理模型建立的精确度;系统自带数据分析功能,使得监测结果一目了然;实现了整体勘查区模型的显示,同时通过数据的实时更新,实现了模型的动态变化。The invention discloses a radioactive mineral prospecting method, comprising the following steps: embedding a sensor group and a video acquisition module in the prospecting area to form a real-time update storage module for mineral prospecting data; completing the prediction and analysis of the collected mineral prospecting data, And complete the preprocessing of video data; use FLAC3D technology to construct the physical model of the survey area; design the virtual actuator, virtual sensor and simulation analysis module in the constructed physical model; execute the simulation analysis module through the virtual actuator cycle , Feedback the result to the virtual sensor, the virtual sensor receives the result and automatically displays the data; completes the three-dimensional reconstruction of the survey area. The invention improves the accuracy of establishing the physical model of the survey area; the system has a data analysis function, so that the monitoring results are clear at a glance; the display of the overall survey area model is realized, and the dynamic change of the model is realized through the real-time update of the data.

Description

一种放射性矿产勘查方法A method of radioactive mineral exploration

技术领域technical field

本发明涉及矿产勘查领域,具体涉及一种放射性矿产勘查方法。The invention relates to the field of mineral exploration, in particular to a radioactive mineral exploration method.

背景技术Background technique

放射性勘探又称放射性测量或“伽玛法”。借助于地壳内天然放射性元素衰变放出的α、β、γ射线,穿过物质时,将产生游离、荧光等特殊的物理现象,人们根据放射性射线的物理性质利用专门仪器(如辐射仪、射气仪等),通过测量放射性元素的射线强度或射气浓度来寻找放射性矿床以及解决有关地质问题的一种物探方法。也是寻找与放射性元素共生的稀有元素、稀土元素以及多金属元素矿床的辅助手段。放射性物探方法有γ测量、辐射取样、γ测井、射气测量、径迹测量和物理分析等。Radiation prospecting is also known as radiometry or "gamma method". With the help of α, β, and γ rays released by the decay of natural radioactive elements in the earth’s crust, when passing through the material, special physical phenomena such as ionization and fluorescence will be produced. According to the physical properties of radioactive rays, people use special instruments (such as radiometers, emanators, instrument, etc.), a geophysical prospecting method to find radioactive deposits and solve related geological problems by measuring the ray intensity or emanation concentration of radioactive elements. It is also an auxiliary means for finding deposits of rare elements, rare earth elements and polymetallic elements symbiotic with radioactive elements. Radioactive geophysical methods include gamma measurement, radiation sampling, gamma logging, jet gas measurement, track measurement and physical analysis.

发明内容Contents of the invention

本发明的目的是提供一种放射性矿产勘查方法,通过图像和参数相结合的方式建模,提高了建立勘查区的物理模型的精确度;系统自带数据分析功能,使得监测结果一目了然;通过三维图像重构实现了整体勘查区模型的显示,同时通过数据的实时更新,实现了模型的动态变化,方便了工作人员对勘查区情况的观察。The purpose of the present invention is to provide a radioactive mineral exploration method, which improves the accuracy of establishing the physical model of the exploration area through the combination of images and parameters; the system has its own data analysis function, so that the monitoring results are clear at a glance; The image reconstruction realizes the display of the overall survey area model, and realizes the dynamic change of the model through real-time data update, which facilitates the observation of the survey area by the staff.

为实现上述目的,本发明采取的技术方案为:In order to achieve the above object, the technical scheme that the present invention takes is:

一种放射性矿产勘查方法,包括如下步骤:A radioactive mineral prospecting method, comprising the steps of:

S1、通过钻探、坑探和槽探在勘查区内进行传感器组、视频采集模块的埋设,架设网络数据传输系统,从而构成矿产勘查数据实时更新储存模块;其中传感器与视频采集模块采用一一对应布设;S1. Embed sensor groups and video acquisition modules in the exploration area through drilling, pitting and trenching, and set up a network data transmission system to form a real-time update storage module for mineral exploration data; the sensors and video acquisition modules use one-to-one correspondence layout;

S2、通过数据分析模块对所采集到的矿产勘查数据进行预测分析;并通过视频预处理模块完成视频数据的预处理;S2. Predict and analyze the collected mineral exploration data through the data analysis module; and complete the preprocessing of video data through the video preprocessing module;

S3、采用FLAC3D技术根据所采集到的矿产勘查数据以及预处理完成后的视频数据进行勘查区物理模型的构建;S3. Using FLAC3D technology to construct the physical model of the exploration area according to the collected mineral exploration data and the pre-processed video data;

S4、在所得的物理模型中进行虚拟作动器、虚拟传感器以及仿真分析模块的设计;S4. Design virtual actuators, virtual sensors and simulation analysis modules in the obtained physical model;

S5、通过虚拟作动器循环执行仿真分析模块,将结果反馈给虚拟传感器,虚拟传感器接收结果并自动显示数据;S5. The simulation analysis module is cyclically executed through the virtual actuator, and the result is fed back to the virtual sensor, and the virtual sensor receives the result and automatically displays the data;

S6、用于将所获得的视频深度图像进行三角化,然后在尺度空间中融合所有三角化的深度图像构建分层有向距离场,对距离场中所有的体素应用整体三角剖分算法产生一个涵盖所有体素的凸包,并利用Marching Tetrahedra算法构造等值面,将获得的勘查区域等值面按勘查区域的地理坐标进行拼接,从而完成勘查区的三维重构,并将所得的重构图像发送到显示屏进行显示。S6. It is used to triangulate the obtained video depth image, and then fuse all triangulated depth images in the scale space to construct a layered directed distance field, and apply the overall triangulation algorithm to all voxels in the distance field to generate A convex hull covering all voxels, using the Marching Tetrahedra algorithm to construct isosurfaces, splicing the obtained isosurfaces of the survey area according to the geographic coordinates of the survey area, so as to complete the three-dimensional reconstruction of the survey area, and the obtained reconstructed The composition image is sent to the monitor for display.

其中,所述虚拟作动器用于驱动参数变化的,与物理模型构建模块中的各元素建立关系后,可以在指定的范围内对参数进行变动,从而可以驱动仿真分析方法针对不同的参数进行计算求解;并用于改变转移节点的位置、方向设置,使物理模型运动;还用于根据接收的控制命令进行物理模型的分解、切割、放大和缩小;Wherein, the virtual actuator is used to drive parameter changes, and after establishing a relationship with each element in the physical model building block, the parameters can be changed within a specified range, so that the simulation analysis method can be driven to calculate different parameters Solving; it is also used to change the position and direction setting of the transfer node to make the physical model move; it is also used to decompose, cut, enlarge and reduce the physical model according to the received control command;

其中,所述虚拟传感器为在物理模型中插入的能直接获取相应的结果或信息的目标的逻辑单元。Wherein, the virtual sensor is a target logic unit inserted into the physical model that can directly obtain corresponding results or information.

其中,所述仿真分析模块,用于输入可以分解为设计变量、设计目标和设计约束的参数、算法,并将输入参数、算法划分为单元、特性和载荷,分别作用到指定的物理模型元素上。Wherein, the simulation analysis module is used to input parameters and algorithms that can be decomposed into design variables, design objectives and design constraints, and divide the input parameters and algorithms into units, characteristics and loads, and act on specified physical model elements respectively .

其中,所述预测分析模块内储存有各类典型的勘查区相关数据以及其所可能代表的矿产情况,采用统计回归和数据驱动方法建立数据分析单元,利用根据采集到的数据生成短期勘查区检测结果信息,发送到对应的数据库进行储存,并发送到人机交互模块进行显示;还用于将接收到的勘查区数据与所存储的数据进行类似度对比,并将比对结果按照相似度进行升序或降序排序后,发送给显示屏。Among them, the predictive analysis module stores all kinds of typical exploration area-related data and the mineral conditions it may represent, adopts statistical regression and data-driven methods to establish a data analysis unit, and uses the collected data to generate short-term exploration area detection The result information is sent to the corresponding database for storage, and sent to the human-computer interaction module for display; it is also used to compare the similarity between the received survey area data and the stored data, and compare the comparison results according to the similarity After sorting in ascending or descending order, send to the display.

其中,所述传感器组至少包括霍尔传感器、放射性同位素探测器和超声波传感器。Wherein, the sensor group includes at least a Hall sensor, a radioisotope detector and an ultrasonic sensor.

其中,所述视频数据包括多个连续的视频帧、与每一个视频帧对应的坐标信息和时间信息,坐标信息与时间信息唯一对应。Wherein, the video data includes a plurality of consecutive video frames, coordinate information and time information corresponding to each video frame, and the coordinate information is uniquely corresponding to the time information.

其中,所述视频预处理模块通过以下步骤完成视频数据的预处理:Wherein, the video preprocessing module completes the preprocessing of video data through the following steps:

对所获取的视频文件进行解析,得到至少两个图像A,确定每个图像A的偏转角度,并根据每个图像A的偏转角度计算每个图像A的补充偏转角度,根据每个图像A的补充偏转角度重新绘制每个图像A,得到每个图像A对应的图像A1,然后将所有图像A1按坐标信息和时间信息合成视频,得到预处理后的视频。Analyzing the acquired video file to obtain at least two images A, determining the deflection angle of each image A, and calculating the supplementary deflection angle of each image A according to the deflection angle of each image A, according to the deflection angle of each image A Redraw each image A by supplementing the deflection angle to obtain the image A1 corresponding to each image A, and then combine all the images A1 into a video according to the coordinate information and time information to obtain the preprocessed video.

其中,通过多角度物体识别确定每个图像A的偏转角度,具体包括Among them, the deflection angle of each image A is determined through multi-angle object recognition, specifically including

从所有图像A中选取预设数量的图像A;Select a preset number of images A from all images A;

对每个被选图像A进行多角度物体识别;Perform multi-angle object recognition for each selected image A;

根据识别结果确定每个被选图像A的偏转角度,并根据每个被选图像A的偏转角度确定每个未选图像A的偏转角度。The deflection angle of each selected image A is determined according to the recognition result, and the deflection angle of each unselected image A is determined according to the deflection angle of each selected image A.

本发明具有以下有益效果:The present invention has the following beneficial effects:

通过图像和参数相融合的方式建立勘查区的物理模型,提高了建模的精确度;系统自带数据分析功能,使得监测结果一目了然;通过三维图像重构实现了整体勘查区模型的显示,同时通过数据的实时更新,实现了模型的动态变化;通过自定义的虚拟作动器、虚拟传感器和仿真分析模块的建立,实现了勘查区情况的仿真模拟分析,进一步方便了工作人员对勘查区情况的研究。The physical model of the survey area is established through the fusion of images and parameters, which improves the accuracy of the modeling; the system has its own data analysis function, which makes the monitoring results clear at a glance; the display of the overall survey area model is realized through 3D image reconstruction, and at the same time Through the real-time update of data, the dynamic change of the model is realized; through the establishment of self-defined virtual actuators, virtual sensors and simulation analysis modules, the simulation analysis of the survey area is realized, which further facilitates the staff to understand the survey area Research.

具体实施方式detailed description

为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objects and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the examples. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

本发明实施例提供了一种放射性矿产勘查方法,包括如下步骤:Embodiments of the present invention provide a radioactive mineral exploration method, comprising the following steps:

S1、通过钻探、坑探和槽探在勘查区内进行传感器组、视频采集模块的埋设,架设网络数据传输系统,从而构成矿产勘查数据实时更新储存模块;其中传感器与视频采集模块采用一一对应布设;所述传感器组至少包括霍尔传感器、放射性同位素探测器和超声波传感器。所述视频数据包括多个连续的视频帧、与每一个视频帧对应的坐标信息和时间信息,坐标信息与时间信息唯一对应。S1. Embed sensor groups and video acquisition modules in the exploration area through drilling, pitting and trenching, and set up a network data transmission system to form a real-time update storage module for mineral exploration data; the sensors and video acquisition modules use one-to-one correspondence Layout; the sensor group includes at least a Hall sensor, a radioisotope detector and an ultrasonic sensor. The video data includes a plurality of continuous video frames, coordinate information and time information corresponding to each video frame, and the coordinate information is uniquely corresponding to the time information.

S2、通过数据分析模块对所采集到的矿产勘查数据进行预测分析;所述预测分析模块内储存有各类典型的勘查区相关数据以及其所可能代表的矿产情况,采用统计回归和数据驱动方法建立数据分析单元,利用根据采集到的数据生成短期勘查区检测结果信息,发送到对应的数据库进行储存,并发送到人机交互模块进行显示;还用于将接收到的勘查区数据与所存储的数据进行类似度对比,并将比对结果按照相似度进行升序或降序排序后,发送给显示屏,其中所述数据分析模块内的数据可通过数据更新模块实现更新;通过视频预处理模块完成视频数据的预处理,具体的,对所获取的视频文件进行解析,得到至少两个图像A,确定每个图像A的偏转角度,并根据每个图像A的偏转角度计算每个图像A的补充偏转角度,根据每个图像A的补充偏转角度重新绘制每个图像A,得到每个图像A对应的图像A1,然后将所有图像A1按坐标信息和时间信息合成视频,得到预处理后的视频;其中,通过多角度物体识别确定每个图像A的偏转角度,具体包括S2. Predict and analyze the collected mineral exploration data through the data analysis module; the predict analysis module stores various types of typical exploration area-related data and the mineral conditions it may represent, using statistical regression and data-driven methods Establish a data analysis unit, use the collected data to generate short-term survey area detection result information, send it to the corresponding database for storage, and send it to the human-computer interaction module for display; it is also used to compare the received survey area data with the stored The similarity comparison of the data, and the comparison results are sorted in ascending or descending order according to the similarity, and then sent to the display screen, wherein the data in the data analysis module can be updated through the data update module; completed through the video preprocessing module Preprocessing of video data, specifically, analyzing the acquired video file to obtain at least two images A, determining the deflection angle of each image A, and calculating the supplement of each image A according to the deflection angle of each image A deflection angle, redraw each image A according to the supplementary deflection angle of each image A, obtain the image A1 corresponding to each image A, and then synthesize all the images A1 into video according to the coordinate information and time information, and obtain the preprocessed video; Among them, the deflection angle of each image A is determined through multi-angle object recognition, specifically including

从所有图像A中选取预设数量的图像A;Select a preset number of images A from all images A;

对每个被选图像A进行多角度物体识别;Perform multi-angle object recognition for each selected image A;

根据识别结果确定每个被选图像A的偏转角度,并根据每个被选图像A的偏转角度确定每个未选图像A的偏转角度。The deflection angle of each selected image A is determined according to the recognition result, and the deflection angle of each unselected image A is determined according to the deflection angle of each selected image A.

S3、采用FLAC3D技术根据所采集到的矿产勘查数据以及预处理完成后的视频数据进行勘查区物理模型的构建;S3. Using FLAC3D technology to construct the physical model of the exploration area according to the collected mineral exploration data and the pre-processed video data;

S4、在所得的物理模型中进行虚拟作动器、虚拟传感器以及仿真分析模块的设计;所述虚拟作动器用于驱动参数变化的,与物理模型构建模块中的各元素建立关系后,可以在指定的范围内对参数进行变动,从而可以驱动仿真分析方法针对不同的参数进行计算求解;并用于改变转移节点的位置、方向设置,使物理模型运动;还用于根据接收的控制命令进行物理模型的分解、切割、放大和缩小;所述虚拟传感器为在物理模型中插入的能直接获取相应的结果或信息的目标的逻辑单元。所述仿真分析模块,用于输入可以分解为设计变量、设计目标和设计约束的参数、算法,并将输入参数、算法划分为单元、特性和载荷,分别作用到指定的物理模型元素上。S4. Design virtual actuators, virtual sensors, and simulation analysis modules in the resulting physical model; the virtual actuators are used to drive parameter changes. After establishing a relationship with each element in the physical model building block, they can be Change the parameters within the specified range, so that the simulation analysis method can be driven to calculate and solve different parameters; it is also used to change the position and direction settings of the transfer node to make the physical model move; it is also used to perform the physical model according to the received control command Decomposition, cutting, enlargement and reduction; the virtual sensor is a logical unit inserted into the physical model that can directly obtain corresponding results or information. The simulation analysis module is used to input parameters and algorithms that can be decomposed into design variables, design objectives and design constraints, and divide the input parameters and algorithms into units, characteristics and loads, and act on specified physical model elements respectively.

S5、通过虚拟作动器循环执行仿真分析模块,将结果反馈给虚拟传感器,虚拟传感器接收结果并自动显示数据;S5. The simulation analysis module is cyclically executed through the virtual actuator, and the result is fed back to the virtual sensor, and the virtual sensor receives the result and automatically displays the data;

S6、用于将所获得的视频深度图像进行三角化,然后在尺度空间中融合所有三角化的深度图像构建分层有向距离场,对距离场中所有的体素应用整体三角剖分算法产生一个涵盖所有体素的凸包,并利用Marching Tetrahedra算法构造等值面,将获得的勘查区域等值面按勘查区域的地理坐标进行拼接,从而完成勘查区的三维重构,并将所得的重构图像发送到显示屏进行显示。S6. It is used to triangulate the obtained video depth image, and then fuse all triangulated depth images in the scale space to construct a layered directed distance field, and apply the overall triangulation algorithm to all voxels in the distance field to generate A convex hull covering all voxels, using the Marching Tetrahedra algorithm to construct isosurfaces, splicing the obtained isosurfaces of the survey area according to the geographic coordinates of the survey area, so as to complete the three-dimensional reconstruction of the survey area, and the obtained reconstructed The composition image is sent to the monitor for display.

所述设计变量、设计目标以及设计约束与仿真分析模块中相关元素有着直接或间接的对应关系,从而可以建立起元素间的对应关系,从而打破两模块间的隔阂,并可以驱动起仿真分析模块,并从中直接得到想要的数据,从而大大的提升效率和数据质量。所述仿真分析模块内设有Element:广义单元为仿真分析的真实对象;Property:特性为一些分析对象上静态的共用属性信息;Load:载荷为加载在这些分析载荷上外部影响因素或条件;Analysis:分析为各类具体的仿真分析方法和评估方法;Result:计算得到的数据以及基于数据处理的表格、云图、报告;Variable:设计变量是模型中可变量的标识;Target:设计目标是最终用于衡量模型的好坏或合理性的指标或指标的处理结果;Constraint:设计约束是系统在考虑优化时需要遵守的规则;The design variables, design goals, and design constraints have direct or indirect correspondence with relevant elements in the simulation analysis module, so that the correspondence between elements can be established, thereby breaking the gap between the two modules, and driving the simulation analysis module , and directly obtain the desired data from it, thereby greatly improving efficiency and data quality. The simulation analysis module is provided with Element: the generalized unit is the real object of the simulation analysis; Property: the characteristic is the static shared attribute information on some analysis objects; Load: the load is the external influencing factors or conditions loaded on these analysis loads; Analysis : analysis is various specific simulation analysis methods and evaluation methods; Result: calculated data and tables, cloud diagrams, reports based on data processing; Variable: design variables are the identifiers of variable variables in the model; Constraint: Design constraints are the rules that the system needs to obey when considering optimization;

OptAlgorithm:优化设计方法是各类进行优化设计的具体算法;OptResult:优化结果通过优化计算得到的设计变量的最优取值。OptAlgorithm: The optimization design method is a specific algorithm for various types of optimization design; OptResult: the optimal value of the design variable obtained through optimization calculation of the optimization result.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.

Claims (9)

1.一种放射性矿产勘查方法,其特征在于,包括如下步骤:1. A radioactive mineral prospecting method, characterized in that, comprises the steps: S1、通过钻探、坑探和槽探在勘查区内进行传感器组、视频采集模块的埋设,架设网络数据传输系统,从而构成矿产勘查数据实时更新储存模块;其中传感器与视频采集模块采用一一对应布设;S1. Embed sensor groups and video acquisition modules in the exploration area through drilling, pitting and trenching, and set up a network data transmission system to form a real-time update storage module for mineral exploration data; the sensors and video acquisition modules use one-to-one correspondence layout; S2、通过数据分析模块对所采集到的矿产勘查数据进行预测分析;并通过视频预处理模块完成视频数据的预处理;S2. Predict and analyze the collected mineral exploration data through the data analysis module; and complete the preprocessing of video data through the video preprocessing module; S3、采用FLAC3D技术根据所采集到的矿产勘查数据以及预处理完成后的视频数据进行勘查区物理模型的构建;S3. Using FLAC3D technology to construct the physical model of the exploration area according to the collected mineral exploration data and the pre-processed video data; S4、在所得的物理模型中进行虚拟作动器、虚拟传感器以及仿真分析模块的设计;S4. Design virtual actuators, virtual sensors and simulation analysis modules in the obtained physical model; S5、通过虚拟作动器循环执行仿真分析模块,将结果反馈给虚拟传感器,虚拟传感器接收结果并自动显示数据;S5. The simulation analysis module is cyclically executed through the virtual actuator, and the result is fed back to the virtual sensor, and the virtual sensor receives the result and automatically displays the data; S6、用于将所获得的视频深度图像进行三角化,然后在尺度空间中融合所有三角化的深度图像构建分层有向距离场,对距离场中所有的体素应用整体三角剖分算法产生一个涵盖所有体素的凸包,并利用Marching Tetrahedra算法构造等值面,将获得的勘查区域等值面按勘查区域的地理坐标进行拼接,从而完成勘查区的三维重构,并将所得的重构图像发送到显示屏进行显示。S6. It is used to triangulate the obtained video depth image, and then fuse all triangulated depth images in the scale space to construct a layered directed distance field, and apply the overall triangulation algorithm to all voxels in the distance field to generate A convex hull covering all voxels, using the Marching Tetrahedra algorithm to construct isosurfaces, splicing the obtained isosurfaces of the survey area according to the geographic coordinates of the survey area, so as to complete the three-dimensional reconstruction of the survey area, and the obtained reconstructed The composition image is sent to the monitor for display. 2.如权利要求1所述的一种放射性矿产勘查方法,其特征在于,所述虚拟作动器用于驱动参数变化,与物理模型构建模块中的各元素建立关系后,可以在指定的范围内对参数进行变动,从而可以驱动仿真分析方法针对不同的参数进行计算求解;并用于改变转移节点的位置、方向设置,使物理模型运动;还用于根据接收的控制命令进行物理模型的分解、切割、放大和缩小。2. A kind of radioactive mineral prospecting method as claimed in claim 1, is characterized in that, described virtual actuator is used for driving parameter change, and after setting up relation with each element in the physical model building block, can be within the specified range Change the parameters, so that the simulation analysis method can be driven to calculate and solve different parameters; it can also be used to change the position and direction settings of the transfer node to make the physical model move; it can also be used to decompose and cut the physical model according to the received control commands , zoom in and zoom out. 3.如权利要求1所述的一种放射性矿产勘查方法,其特征在于,所述虚拟传感器为在物理模型中插入的能直接获取相应的结果或信息的目标的逻辑单元。3. A radioactive mineral prospecting method according to claim 1, characterized in that the virtual sensor is a logical unit inserted into the physical model that can directly obtain corresponding results or information. 4.如权利要求1所述的一种放射性矿产勘查方法,其特征在于,所述仿真分析模块,用于输入可以分解为设计变量、设计目标和设计约束的参数、算法,并将输入参数、算法划分为单元、特性和载荷,分别作用到指定的物理模型元素上。4. A kind of radioactive mineral prospecting method as claimed in claim 1, is characterized in that, described simulation analysis module is used for inputting and can be decomposed into parameter, algorithm of design variable, design target and design constraint, and input parameter, Algorithms are divided into elements, properties, and loads, which act on specified physical model elements. 5.如权利要求1所述的一种放射性矿产勘查方法,其特征在于,所述预测分析模块内储存有各类典型的勘查区相关数据以及其所可能代表的矿产情况,采用统计回归和数据驱动方法建立数据分析单元,利用根据采集到的数据生成短期勘查区检测结果信息,发送到对应的数据库进行储存,并发送到人机交互模块进行显示;还用于将接收到的勘查区数据与所存储的数据进行类似度对比,并将比对结果按照相似度进行升序或降序排序后,发送给显示屏。5. A kind of radioactive mineral prospecting method as claimed in claim 1, it is characterized in that, in the described predictive analysis module, there are all kinds of typical prospecting area related data and the mineral situation that it may represent, adopt statistical regression and data The driving method establishes a data analysis unit, uses the collected data to generate short-term survey area detection result information, sends it to the corresponding database for storage, and sends it to the human-computer interaction module for display; it is also used to combine the received survey area data with the The stored data is compared in similarity, and the comparison results are sorted in ascending or descending order according to the similarity, and then sent to the display screen. 6.如权利要求1所述的一种放射性矿产勘查方法,其特征在于,所述传感器组至少包括霍尔传感器、放射性同位素探测器和超声波传感器。6. A radioactive mineral prospecting method according to claim 1, characterized in that the sensor group at least includes a Hall sensor, a radioisotope detector and an ultrasonic sensor. 7.如权利要求1所述的一种放射性矿产勘查方法,其特征在于,所述视频数据包括多个连续的视频帧、与每一个视频帧对应的坐标信息和时间信息,坐标信息与时间信息唯一对应。7. A kind of radioactive mineral prospecting method as claimed in claim 1, is characterized in that, described video data comprises a plurality of continuous video frames, coordinate information and time information corresponding to each video frame, coordinate information and time information unique correspondence. 8.如权利要求1所述的一种放射性矿产勘查方法,其特征在于,所述视频预处理模块通过以下步骤完成视频数据的预处理:8. A kind of radioactive mineral prospecting method as claimed in claim 1, is characterized in that, described video preprocessing module completes the preprocessing of video data by the following steps: 对所获取的视频文件进行解析,得到至少两个图像A,确定每个图像A的偏转角度,并根据每个图像A的偏转角度计算每个图像A的补充偏转角度,根据每个图像A的补充偏转角度重新绘制每个图像A,得到每个图像A对应的图像A1,然后将所有图像A1按坐标信息和时间信息合成视频,得到预处理后的视频。Analyzing the acquired video file to obtain at least two images A, determining the deflection angle of each image A, and calculating the supplementary deflection angle of each image A according to the deflection angle of each image A, according to the deflection angle of each image A Redraw each image A by supplementing the deflection angle to obtain the image A1 corresponding to each image A, and then combine all the images A1 into a video according to the coordinate information and time information to obtain the preprocessed video. 9.如权利要求8所述的一种放射性矿产勘查方法,其特征在于,通过多角度物体识别确定每个图像A的偏转角度,具体包括9. A kind of radioactive mineral prospecting method as claimed in claim 8, is characterized in that, the deflection angle of each image A is determined through multi-angle object recognition, specifically comprises 从所有图像A中选取预设数量的图像A;Select a preset number of images A from all images A; 对每个被选图像A进行多角度物体识别;Perform multi-angle object recognition for each selected image A; 根据识别结果确定每个被选图像A的偏转角度,并根据每个被选图像A的偏转角度确定每个未选图像A的偏转角度。The deflection angle of each selected image A is determined according to the recognition result, and the deflection angle of each unselected image A is determined according to the deflection angle of each selected image A.
CN201710568367.7A 2017-07-08 2017-07-08 A kind of radioactivity mineral exploration method Pending CN107390278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710568367.7A CN107390278A (en) 2017-07-08 2017-07-08 A kind of radioactivity mineral exploration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710568367.7A CN107390278A (en) 2017-07-08 2017-07-08 A kind of radioactivity mineral exploration method

Publications (1)

Publication Number Publication Date
CN107390278A true CN107390278A (en) 2017-11-24

Family

ID=60340485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710568367.7A Pending CN107390278A (en) 2017-07-08 2017-07-08 A kind of radioactivity mineral exploration method

Country Status (1)

Country Link
CN (1) CN107390278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110866348A (en) * 2019-11-29 2020-03-06 咸阳职业技术学院 Fault early warning method for wind turbine generator gearbox

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202815237U (en) * 2012-10-27 2013-03-20 东北石油大学 Remote detection device for mineral exploration
CN104836978A (en) * 2014-03-10 2015-08-12 腾讯科技(北京)有限公司 Video processing method and device
CN105704398A (en) * 2016-03-11 2016-06-22 咸阳师范学院 Video processing method
CN105759320A (en) * 2016-04-22 2016-07-13 周丹 Underground mineral product detector provided with magnetic field intensity detector
CN105785474A (en) * 2016-04-22 2016-07-20 周丹 Underground mineral detector
CN105869372A (en) * 2016-04-22 2016-08-17 周丹 Underground mineral product detector with video acquisition unit
CN105893655A (en) * 2016-03-17 2016-08-24 西安石油大学 Physical simulation method for petroleum reservoir architecture
CN106228513A (en) * 2016-07-18 2016-12-14 黄河科技学院 A kind of Computerized image processing system
CN106251249A (en) * 2016-07-28 2016-12-21 内蒙古科技大学 A kind of construction informationization dynamic monitoring system
CN106560820A (en) * 2016-10-09 2017-04-12 钦州学院 Shale gas reservoir logging evaluating method
CN106593534A (en) * 2016-12-18 2017-04-26 河北科技大学 Intelligent tunnel construction security monitoring system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202815237U (en) * 2012-10-27 2013-03-20 东北石油大学 Remote detection device for mineral exploration
CN104836978A (en) * 2014-03-10 2015-08-12 腾讯科技(北京)有限公司 Video processing method and device
CN105704398A (en) * 2016-03-11 2016-06-22 咸阳师范学院 Video processing method
CN105893655A (en) * 2016-03-17 2016-08-24 西安石油大学 Physical simulation method for petroleum reservoir architecture
CN105759320A (en) * 2016-04-22 2016-07-13 周丹 Underground mineral product detector provided with magnetic field intensity detector
CN105785474A (en) * 2016-04-22 2016-07-20 周丹 Underground mineral detector
CN105869372A (en) * 2016-04-22 2016-08-17 周丹 Underground mineral product detector with video acquisition unit
CN106228513A (en) * 2016-07-18 2016-12-14 黄河科技学院 A kind of Computerized image processing system
CN106251249A (en) * 2016-07-28 2016-12-21 内蒙古科技大学 A kind of construction informationization dynamic monitoring system
CN106560820A (en) * 2016-10-09 2017-04-12 钦州学院 Shale gas reservoir logging evaluating method
CN106593534A (en) * 2016-12-18 2017-04-26 河北科技大学 Intelligent tunnel construction security monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110866348A (en) * 2019-11-29 2020-03-06 咸阳职业技术学院 Fault early warning method for wind turbine generator gearbox

Similar Documents

Publication Publication Date Title
Chen et al. Machine learning-based classification of rock discontinuity trace: SMOTE oversampling integrated with GBT ensemble learning
CN115879648B (en) A method and system for ternary deep mineralization prediction based on machine learning
CN105469443B (en) Based on geotraverse(PRB)The method that process Data fuse generates three-dimensional geological figure
CN102609986A (en) Ore body modeling system in digital mine and modeling and detecting method of ore body modeling system
NO20111053A1 (en) Simultaneous removal of structural inclination angle data
MX2015003997A (en) Analyzing microseismic data from a fracture treatment.
CN102160087A (en) Systems and methods for visualizing multiple volumetric data sets in real time
AU2008222299A1 (en) Model-based time-preserving tomography
CN107944086A (en) A kind of fast modeling method based on borehole data
CN109345140A (en) An auxiliary method for early warning of coal mine water inrush disaster
CN108829717A (en) A kind of Database Systems and method carrying out the quantitative analysis of deep water water channel configuration and morphological Simulation based on seismic data
Li et al. Digital-twin-enabled JIT design of rock tunnel: Methodology and application
CN106560820A (en) Shale gas reservoir logging evaluating method
CN117688628A (en) Method for establishing three-dimensional visualization model of geological structure
CN117369254A (en) Gas prevention and control robot cluster control method and system based on complex geological conditions
Zehner Constructing geometric models of the subsurface for finite element simulation
Shi et al. Semi-universal geo-crack detection by machine learning
CN107390278A (en) A kind of radioactivity mineral exploration method
Coggan et al. Comparison of hand-mapping with remote data capture systems for effective rock mass characterisation
CN119047310A (en) Surface mine geological modeling method and system based on multiple data sources
Kopeć et al. WebGL based visualisation and analysis of stratigraphic data for the purposes of the mining industry
CN116166988B (en) Coal-bearing stratum abnormal structure identification and classification method
Wang et al. Complex 3D geological modeling based on digital twin
EP3035088B1 (en) Harmonized intelligent modeler
CN108072898A (en) Geological boundry recognition methods based on panel data density estimation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination