CN107381580A - A kind of preparation method of the interior doping metal net shaped Biodegradable silica dioxide granule of polyphenol - Google Patents
A kind of preparation method of the interior doping metal net shaped Biodegradable silica dioxide granule of polyphenol Download PDFInfo
- Publication number
- CN107381580A CN107381580A CN201710570638.2A CN201710570638A CN107381580A CN 107381580 A CN107381580 A CN 107381580A CN 201710570638 A CN201710570638 A CN 201710570638A CN 107381580 A CN107381580 A CN 107381580A
- Authority
- CN
- China
- Prior art keywords
- polyphenol
- metal
- silica
- doped
- nanoparticles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 132
- 235000013824 polyphenols Nutrition 0.000 title claims abstract description 58
- 150000008442 polyphenolic compounds Chemical class 0.000 title claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 34
- 239000002184 metal Substances 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 239000008187 granular material Substances 0.000 title 1
- 239000002105 nanoparticle Substances 0.000 claims abstract description 65
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 61
- 230000015556 catabolic process Effects 0.000 claims abstract description 27
- 238000006731 degradation reaction Methods 0.000 claims abstract description 27
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 claims abstract description 26
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 20
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 16
- 229960003180 glutathione Drugs 0.000 claims abstract description 13
- 108010024636 Glutathione Proteins 0.000 claims abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 42
- 239000002245 particle Substances 0.000 claims description 33
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 239000000243 solution Substances 0.000 claims description 21
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 claims description 18
- 239000001263 FEMA 3042 Substances 0.000 claims description 18
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 claims description 18
- 235000015523 tannic acid Nutrition 0.000 claims description 18
- 229940033123 tannic acid Drugs 0.000 claims description 18
- 229920002258 tannic acid Polymers 0.000 claims description 18
- 239000002244 precipitate Substances 0.000 claims description 16
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 8
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 235000004515 gallic acid Nutrition 0.000 claims description 7
- 229940074391 gallic acid Drugs 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000003786 synthesis reaction Methods 0.000 claims description 6
- -1 iron ion Chemical class 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- XMOCLSLCDHWDHP-IUODEOHRSA-N epi-Gallocatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-IUODEOHRSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229940079593 drug Drugs 0.000 claims description 3
- 239000003814 drug Substances 0.000 claims description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- XMOCLSLCDHWDHP-UHFFFAOYSA-N L-Epigallocatechin Natural products OC1CC2=C(O)C=C(O)C=C2OC1C1=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-UHFFFAOYSA-N 0.000 claims description 2
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims description 2
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 claims description 2
- 229910001431 copper ion Inorganic materials 0.000 claims description 2
- DZYNKLUGCOSVKS-UHFFFAOYSA-N epigallocatechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3cc(O)c(O)c(O)c3 DZYNKLUGCOSVKS-UHFFFAOYSA-N 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims 2
- 229910052906 cristobalite Inorganic materials 0.000 claims 2
- 230000035484 reaction time Effects 0.000 claims 2
- 229910052682 stishovite Inorganic materials 0.000 claims 2
- 229910052905 tridymite Inorganic materials 0.000 claims 2
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims 1
- 229910052797 bismuth Inorganic materials 0.000 claims 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 1
- RJOJUSXNYCILHH-UHFFFAOYSA-N gadolinium(3+) Chemical compound [Gd+3] RJOJUSXNYCILHH-UHFFFAOYSA-N 0.000 claims 1
- LRBQNJMCXXYXIU-QWKBTXIPSA-N gallotannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@H]2[C@@H]([C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-QWKBTXIPSA-N 0.000 claims 1
- 229910001437 manganese ion Inorganic materials 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 230000002378 acidificating effect Effects 0.000 abstract description 7
- 238000006068 polycondensation reaction Methods 0.000 abstract description 7
- 239000002086 nanomaterial Substances 0.000 abstract description 5
- 206010028980 Neoplasm Diseases 0.000 abstract description 4
- 239000003937 drug carrier Substances 0.000 abstract description 3
- 239000012634 fragment Substances 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 3
- 230000001965 increasing effect Effects 0.000 abstract description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 abstract description 3
- 230000003301 hydrolyzing effect Effects 0.000 abstract description 2
- 230000001939 inductive effect Effects 0.000 abstract description 2
- 230000007281 self degradation Effects 0.000 abstract description 2
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 abstract description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 abstract description 2
- 230000000593 degrading effect Effects 0.000 abstract 2
- 230000003313 weakening effect Effects 0.000 abstract 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 62
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 17
- 239000011572 manganese Substances 0.000 description 16
- 239000002131 composite material Substances 0.000 description 12
- 239000011246 composite particle Substances 0.000 description 12
- 238000012512 characterization method Methods 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910021642 ultra pure water Inorganic materials 0.000 description 6
- 239000012498 ultrapure water Substances 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000012154 double-distilled water Substances 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001875 tumorinhibitory effect Effects 0.000 description 2
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000012930 cell culture fluid Substances 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 210000004565 granule cell Anatomy 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000005588 protonation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 150000004819 silanols Chemical class 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7024—Esters of saccharides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/005—Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
- C01P2004/34—Spheres hollow
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明属于纳米材料制备领域,具体涉及一种内掺杂多酚‑金属网状物的可降解二氧化硅纳米颗粒的制备方法。本发明通过将金属‑多酚配位络合网状结构以掺杂方式进入二氧化硅缩聚网络体系,提高二氧化硅的孔隙率并通过酚羟基与硅醇的氢键作用进一步削弱二氧化硅的缩聚程度,实现加速二氧化硅水解降解目的。在弱酸性及高谷胱甘肽环境下,金属‑多酚配位络合的网状结构可发生解离,诱导二氧化硅骨架结构坍塌,纳米颗粒降解成更小的碎片并进一步降解、抽离出硅酸分子、多酚分子和金属离子,从而实现肿瘤微环境内药物载体的自降解。
The invention belongs to the field of nanomaterial preparation, and in particular relates to a method for preparing degradable silica nanoparticles internally doped with polyphenol-metal mesh. In the present invention, the metal-polyphenol coordination complex network structure is incorporated into the silica polycondensation network system in a doping manner, thereby increasing the porosity of the silica and further weakening the silica through the hydrogen bond between the phenolic hydroxyl group and the silanol. The degree of polycondensation can achieve the purpose of accelerating the hydrolytic degradation of silica. In a weakly acidic and high glutathione environment, the metal-polyphenol coordination complex network structure can dissociate, inducing the collapse of the silica skeleton structure, degrading the nanoparticles into smaller fragments and further degrading and extracting The release of silicic acid molecules, polyphenol molecules and metal ions, so as to realize the self-degradation of the drug carrier in the tumor microenvironment.
Description
技术领域technical field
本发明属于纳米材料制备领域,具体涉及一种粒径均一、单分散、生物相容性好、生物可降解的内掺杂多酚-金属网状物的二氧化硅纳米颗粒的制备方法。The invention belongs to the field of nanomaterial preparation, and in particular relates to a method for preparing silicon dioxide nanoparticles with uniform particle size, monodispersity, good biocompatibility and biodegradability doped with polyphenol-metal mesh.
背景技术Background technique
纳米二氧化硅作为新兴纳米材料,在医疗和生物领域展现出众多傲人的特点,诸如生物相亲性好、表面易修饰等。但是因为二氧化硅的紧实结构特点,致使二氧化硅颗粒具有相当好的热稳定性,在细胞及活体内需要很长时间才能分解,易造成在组织器官中剂量累积,从而引起DNA损伤、蛋白质变性等并导致一系列的不良结果。因此,利用生物相关因素进行二氧化硅纳米材料的体内降解与清除已经变成世界范围的一个研究课题,是推动其能否成功向临床应用转化的重要先决条件,具有重要研究意义。As an emerging nanomaterial, nano-silicon dioxide exhibits many impressive characteristics in the medical and biological fields, such as good biological affinity and easy surface modification. However, due to the compact structure of silica, silica particles have quite good thermal stability, and it takes a long time to decompose in cells and living bodies, which can easily cause dose accumulation in tissues and organs, thereby causing DNA damage, Protein denaturation, etc. and lead to a series of bad results. Therefore, the in vivo degradation and clearance of silica nanomaterials using biologically relevant factors has become a research topic worldwide, which is an important prerequisite for promoting its successful transformation into clinical applications, and has important research significance.
二氧化硅颗粒的孔隙或者说颗粒的缩合聚集程度是实现有效降解的关键因素。因此,目前解决硅纳米材料的体内降解与清除的思路主要是利用掺杂手段增加二氧化硅的孔隙率或搭建可降解结构骨架,尤其是发展利用肿瘤微环境的内在因素(如高活性氧环境、低pH、高谷胱甘肽浓度)可降解型硅纳米载体。多酚类化合物富含邻位酚羟基结构,可以作为一种多基配体与金属离子发生络合反应从而形成金属-多酚配位络合网状结构,这类结构分子量大,网络孔隙率高,而在弱酸性及高谷胱甘肽环境下网状结构可发生解离。因此,本发明拟通过将金属-多酚配位络合网状结构以掺杂方式进入二氧化硅缩聚网络体系,提高二氧化硅的孔隙率并通过酚羟基与硅醇的氢键作用进一步削弱二氧化硅的缩聚程度,实现加速二氧化硅水解降解目的。在弱酸性及高谷胱甘肽环境下,金属-多酚配位络合的网状结构可发生解离,诱导二氧化硅骨架结构坍塌,从而实现肿瘤微环境内药物载体的自降解。The porosity of silica particles or the degree of condensation and aggregation of particles is the key factor to achieve effective degradation. Therefore, the current solution to the in vivo degradation and removal of silicon nanomaterials is mainly to use doping methods to increase the porosity of silicon dioxide or build a degradable structural framework, especially to develop and utilize the internal factors of the tumor microenvironment (such as high active oxygen environment , low pH, high glutathione concentration) degradable silicon nanocarriers. Polyphenolic compounds are rich in ortho-phenolic hydroxyl structures, which can be used as a complex reaction with metal ions to form a metal-polyphenol coordination complex network structure. This type of structure has a large molecular weight and a network porosity. High, and the network structure can be dissociated in weakly acidic and high glutathione environment. Therefore, the present invention intends to increase the porosity of silica by doping the metal-polyphenol coordination complex network structure into the silica polycondensation network system and further weaken the porosity through the hydrogen bond between phenolic hydroxyl groups and silanols. The degree of polycondensation of silica can achieve the purpose of accelerating the hydrolytic degradation of silica. In a weakly acidic and high glutathione environment, the metal-polyphenol coordination complex network structure can dissociate, inducing the collapse of the silica skeleton structure, thereby realizing the self-degradation of the drug carrier in the tumor microenvironment.
发明内容Contents of the invention
本发明的目的在于提供一种制备内掺杂多酚-金属配合物网络结构可降解二氧化硅纳米颗粒的方法。通过多酚-金属网状物掺杂二氧化硅骨架结构,提高二氧化硅的孔隙率,削弱二氧化硅的缩聚程度,实现加速二氧化硅水解降解目的。所获得的复合纳米颗粒具有良好的生物相亲性、单分散性、可降解等优点。这一工艺实现一步法合成可降解的二氧化硅纳米颗粒,合成过程中无需加入模板剂或是扩孔剂,合成步骤简单易行,成本低。The purpose of the present invention is to provide a method for preparing degradable silica nanoparticles with internally doped polyphenol-metal complex network structure. By doping the silica skeleton structure with the polyphenol-metal network, the porosity of the silica is increased, the polycondensation degree of the silica is weakened, and the purpose of accelerating the hydrolysis degradation of the silica is achieved. The obtained composite nanoparticles have the advantages of good biocompatibility, monodispersity, degradability and the like. This process realizes one-step synthesis of degradable silica nanoparticles, without adding template or pore expander during the synthesis process, the synthesis steps are simple and easy, and the cost is low.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种制备内掺杂多酚-金属网状物可降解二氧化硅纳米颗粒方法:包括将多酚分子与硅源在碱性溶液中先反应一定时间,形成内掺杂多酚低聚体的初级二氧化硅结构的合成步骤(1);在上述反应液中加入金属离子,继续反应一定时间,将反应物离心处理获得内掺杂多酚-金属网状物的二氧化硅纳米颗粒合成步骤(2)。A method for preparing internally doped polyphenol-metal network degradable silica nanoparticles: including reacting polyphenol molecules and silicon sources in an alkaline solution for a certain period of time to form internally doped polyphenol oligomers Synthesis step (1) of the primary silica structure; add metal ions to the above reaction solution, continue the reaction for a certain period of time, and centrifuge the reactant to obtain the synthesis step of silica nanoparticles internally doped with polyphenol-metal mesh (2).
本发明所述的内掺杂多酚-金属网状物可降解二氧化硅纳米颗粒的制备方法,具体实验步骤如下:The preparation method of the internally doped polyphenol-metal mesh degradable silica nanoparticles of the present invention, the specific experimental steps are as follows:
a)将TEOS和一定量的多酚加入到体积比为60:1的乙醇-水溶液中,搅拌10 min使其混合均匀;逐滴加入氨水,在25℃条件下反应0.5 h,通过多酚分子的酚羟基与硅醇的氢键作用,使多酚低聚体很容易掺杂进二氧化硅的缩聚网络结构,从而获得内掺杂多酚低聚体的初级SiO2颗粒。a) Add TEOS and a certain amount of polyphenols to the ethanol-water solution with a volume ratio of 60:1, stir for 10 minutes to make it evenly mixed; add ammonia water drop by drop, react at 25°C for 0.5 h, pass the polyphenol molecules The hydrogen bond between the phenolic hydroxyl group and the silanol makes the polyphenol oligomer easily doped into the polycondensation network structure of silica, thereby obtaining primary SiO 2 particles internally doped with polyphenol oligomer.
b)在上述混合液中加入金属离子,继续在25℃水浴下反应5.5 h,利用金属离子与多酚的儿茶酚基团的配位作用形成多酚-金属网状物,可以固定更多的多酚分子在硅球内部,同时进一步提高二氧化硅的孔隙率。离心处理,沉淀用无水乙醇及去离子水清洗,最后获得内掺杂多酚-金属网状物的二氧化硅纳米颗粒。b) Add metal ions to the above mixture, continue to react for 5.5 h in a water bath at 25°C, and use the coordination between metal ions and polyphenol catechol groups to form a polyphenol-metal network, which can immobilize more The polyphenol molecules are inside the silica spheres, while further increasing the porosity of the silica. After centrifugation, the precipitate is washed with absolute ethanol and deionized water, and finally silicon dioxide nanoparticles doped with polyphenol-metal mesh are obtained.
在本发明提供的制备方法中,多酚在最终所得的内掺杂多酚-金属网状物的二氧化硅纳米颗粒中掺杂质量比应小于20%。In the preparation method provided by the present invention, the doping mass ratio of polyphenols in the finally obtained polyphenol-metal mesh-doped silica nanoparticles should be less than 20%.
在本发明提供的制备方法中,多酚可以是表没食子儿茶素没食子酸(EGCG)、单宁酸(TA)、没食子酸(GA)中的任一种;金属离子可以是铁离子、锰离子、钆离子、铕离子、铜离子、锌离子、镉离子中的任一种或多种。In the preparation method provided by the present invention, the polyphenol can be any one of epigallocatechin gallic acid (EGCG), tannic acid (TA), and gallic acid (GA); the metal ion can be iron ion, manganese Any one or more of gadolinium ions, europium ions, copper ions, zinc ions, and cadmium ions.
在本发明提供的制备方法中,金属离子与多酚的摩尔比为1:4~1:10,最优选比例为1:5。In the preparation method provided by the present invention, the molar ratio of metal ions to polyphenols is 1:4-1:10, and the most preferred ratio is 1:5.
根据本发明提供的制备方法获得的内掺杂多酚-金属网状物二氧化硅纳米颗粒的形貌特征为:当多酚分子为EGCG、GA时,二氧化硅纳米颗粒为单分散的实心多孔球,当多酚分子为TA时,二氧化硅纳米颗粒形貌为单分散的中空偏心多孔球型,纳米颗粒尺寸为80-100 nm,电位-35±5 mv。The morphology characteristics of the internally doped polyphenol-metal mesh silica nanoparticles obtained according to the preparation method provided by the present invention are: when the polyphenol molecules are EGCG and GA, the silica nanoparticles are monodisperse solid Porous balls, when the polyphenol molecule is TA, the shape of the silica nanoparticles is a monodisperse hollow eccentric porous spherical shape, the size of the nanoparticles is 80-100 nm, and the potential is -35±5 mv.
本发明提供的制备方法,其内掺杂分子可以不局限于多酚分子,可扩展应用到含有多羟基或多巯基结构的化合物或药物分子;其金属离子也不局限于本发明所述的几种金属离子。In the preparation method provided by the present invention, the internal dopant molecules are not limited to polyphenol molecules, and can be extended to compounds or drug molecules containing polyhydroxyl or polymercapto structures; the metal ions are not limited to the few described in the present invention. a metal ion.
本发明提供的制备方法,未引入模板剂以及扩孔剂,所以无需后续去模板剂和去扩孔剂的过程,避免了颗粒的产率减低以及降解性变差的缺点。The preparation method provided by the present invention does not introduce a template agent and a pore-enlarging agent, so the subsequent process of removing the template agent and the pore-enlarging agent is not required, and the disadvantages of reduced particle yield and poor degradability are avoided.
根据本发明制备方法获得的内掺杂多酚-金属网状物的二氧化硅纳米颗粒具有生物可降解特性。在酸性及谷胱甘肽双重刺激响应条件下,二氧化硅纳米颗粒内部掺杂的多酚-金属网状物结构发生还原和质子化反应,网状物结构首先解离,导致SiO2结构崩塌,颗粒降解成更小的碎片并进一步降解、抽离出硅酸分子、多酚分子和金属离子。其降解条件为pH≤6,谷胱甘肽浓度为10 mM,降解时间为3-7天。The silica nano-particles doped with polyphenol-metal nets obtained according to the preparation method of the present invention have biodegradable properties. Under acidic and glutathione dual stimulus response conditions, the polyphenol-metal network structure doped inside the silica nanoparticles undergoes reduction and protonation reactions, and the network structure dissociates first, leading to the collapse of the SiO 2 structure , the particles degrade into smaller fragments and further degrade, extracting silicic acid molecules, polyphenol molecules and metal ions. The degradation condition is pH≤6, the glutathione concentration is 10 mM, and the degradation time is 3-7 days.
本发明提供的制备方法中,掺杂的多酚分子除了起到骨架掺杂作用外,本身还具有一定的抗氧化性及肿瘤抑制活性;另外掺杂的金属离子如Mn2+、Fe3+、Gd3+等的引入,可提供二氧化硅体系的核磁或荧光成像功能,使得复合颗粒可以应用于生物医学诊断治疗方面。In the preparation method provided by the present invention, the doped polyphenol molecules not only play the role of skeleton doping, but also have certain antioxidant and tumor inhibitory activities; in addition, doped metal ions such as Mn 2+ , Fe 3+ , Gd 3+ , etc., can provide the nuclear magnetic or fluorescence imaging function of the silica system, so that the composite particles can be used in biomedical diagnosis and treatment.
更具体地,一种制备制备内掺杂多酚-金属配合物网络结构可降解的二氧化硅纳米颗粒的方法,包括如下步骤:More specifically, a method for preparing degradable silica nanoparticles with internally doped polyphenol-metal complex network structure comprises the following steps:
SiO2-TA-Fe体系SiO 2 -TA-Fe system
a)将430 μL TEOS和1.2 mg TA(掺杂比为12%)加入到体积比为60:1的乙醇-水溶液中,搅拌10 min使其混合均匀;逐滴加入0.5 mL的氨水,在25℃条件下反应0.5 h,获得内含多酚低聚体的初级SiO2纳米颗粒。a) Add 430 μL TEOS and 1.2 mg TA (12% doping ratio) into ethanol-water solution with a volume ratio of 60:1, stir for 10 min to mix well; add 0.5 mL of ammonia water dropwise, at 25 The reaction was carried out at ℃ for 0.5 h to obtain primary SiO 2 nanoparticles containing polyphenol oligomers.
b)在反应液中再加入0.38 mg FeCl3·6H2O (摩尔比为TA:Fe=5:1),继续在25℃水浴下反应5.5 h,反应完成后。10000 rpm离心处理10 min,分别用无水乙醇、超纯水清洗沉淀两遍,将沉淀分散于10 mL 去离子水中,得到掺杂TA-Fe的可降解二氧化硅纳米颗粒。b) Add 0.38 mg FeCl 3 · 6H 2 O (molar ratio: TA: Fe = 5: 1) to the reaction solution, continue to react in a water bath at 25°C for 5.5 h, after the reaction is complete. Centrifuge at 10,000 rpm for 10 min, wash the precipitate twice with absolute ethanol and ultrapure water, and disperse the precipitate in 10 mL deionized water to obtain degradable silica nanoparticles doped with TA-Fe.
SiO2-EGCG-Fe体系SiO 2 -EGCG-Fe system
a)将430 μL TEOS和8.6 mg EGCG(掺杂比为8.66%)加入到体积比为60:1的乙醇-水溶液中,搅拌10 min使其混合均匀;逐滴加入0.5 mL的氨水,在25℃条件下反应0.5 h,获得内含多酚低聚体的初级SiO2纳米颗粒。a) Add 430 μL TEOS and 8.6 mg EGCG (doping ratio 8.66%) into ethanol-water solution with a volume ratio of 60:1, stir for 10 min to mix evenly; add 0.5 mL ammonia water dropwise, at 25 The reaction was carried out at ℃ for 0.5 h to obtain primary SiO 2 nanoparticles containing polyphenol oligomers.
b)在反应液中再加入1.01 mg FeCl3·6H2O(摩尔比为EGCG:Fe=5:1) ,继续在25℃水浴下反应5.5 h,反应完成后。10000 rpm离心处理10 min,分别用无水乙醇、超纯水清洗沉淀两遍,将沉淀分散于10 mL 去离子水中,得到掺杂EGCG-Fe的可降解二氧化硅纳米颗粒。b) Add 1.01 mg FeCl 3 · 6H 2 O (the molar ratio is EGCG:Fe=5:1) to the reaction solution, and continue to react in a water bath at 25°C for 5.5 h, after the reaction is completed. Centrifuge at 10,000 rpm for 10 min, wash the precipitate twice with absolute ethanol and ultrapure water, and disperse the precipitate in 10 mL deionized water to obtain degradable silica nanoparticles doped with EGCG-Fe.
与其他降解型二氧化硅颗粒的制备方法相比,本发明的显著优点在于:Compared with the preparation method of other degradable silica particles, the remarkable advantage of the present invention is:
(1)根据本发明方法获得内掺杂多酚-金属网状物二氧化硅纳米颗粒制备过程简单,合成颗粒尺寸均一,单分散好。本发明提供的制备方法未引入模板剂,所以无需后续去模板剂的过程,避免了颗粒的产率降低以及降解性变差的缺点。(1) According to the method of the present invention, the preparation process of the internally doped polyphenol-metal mesh silica nanoparticles is simple, the synthetic particle size is uniform, and the monodispersity is good. The preparation method provided by the invention does not introduce a template agent, so the subsequent process of removing the template agent is not required, and the disadvantages of reduced yield of particles and poor degradability are avoided.
(2)在合成硅球的过程中先引入多酚低聚体,再利用多酚与金属离子的快速络合能力掺杂进二氧化硅的缩聚网络结构。这一工艺实现了低聚物在硅球内部的掺杂,为后续在二氧化硅球内部掺杂其它低聚物提供了一种普适性方法。(2) In the process of synthesizing silicon spheres, polyphenol oligomers are first introduced, and then polyphenols are doped into the polycondensation network structure of silica by using the rapid complexation ability of polyphenols and metal ions. This process realizes the doping of oligomers inside the silicon spheres, and provides a universal method for subsequent doping of other oligomers inside the silica spheres.
(3)本发明方法所得的内掺杂金属-多酚网状物的二氧化硅复合纳米颗粒生物相容性好,易受酸性及谷胱甘肽双重刺激响应降解。内掺杂的多酚及金属离子不仅可起到增加SiO2纳米颗粒的孔隙率,多酚分子本身还具有一定的抗氧化性及肿瘤抑制活性,掺杂的金属离子如Mn2+、Fe3+、Gd3+等的引入,还可提供二氧化硅体系的核磁或荧光成像功能,方便其应用于肿瘤或炎症组织的药物缓释、核磁成像指导治疗等。(3) The silicon dioxide composite nanoparticles doped with metal-polyphenol network obtained by the method of the present invention have good biocompatibility and are easily degraded by acidic and glutathione dual stimulus responses. The internally doped polyphenols and metal ions can not only increase the porosity of SiO 2 nanoparticles, but also the polyphenol molecules themselves have a certain antioxidant and tumor inhibitory activity. Doped metal ions such as Mn 2+ , Fe 3 The introduction of + , Gd 3+ , etc. can also provide the nuclear magnetic or fluorescence imaging function of the silica system, which is convenient for its application in the sustained release of drugs in tumors or inflammatory tissues, and nuclear magnetic imaging-guided treatment.
附图说明Description of drawings
图1 为考察不同多酚分子掺杂时合成的复合纳米颗粒的低倍透射电镜表征:(A)SiO2-GA-Fe;(B)SiO2-EGCG-Fe;(C)SiO2-TA-Fe;多酚的掺杂比例是8.66%,多酚与金属的摩尔比均为5:1;Figure 1 shows the low magnification TEM characterization of composite nanoparticles synthesized when different polyphenol molecules are doped: (A) SiO 2 -GA-Fe; (B) SiO 2 -EGCG-Fe; (C) SiO 2 -TA -Fe; the doping ratio of polyphenols is 8.66%, and the molar ratio of polyphenols to metals is 5:1;
图2 为以TA为掺杂多酚分子,考察掺杂不同金属离子时合成的复合纳米颗粒的透射电镜表征:(A)SiO2-TA-Fe;(B)SiO2-TA-Mn;(C)SiO2-TA-Gd;Figure 2 shows the TEM characterization of the composite nanoparticles synthesized when doped with different metal ions using TA as the doped polyphenol molecule: (A) SiO 2 -TA-Fe; (B) SiO 2 -TA-Mn; ( C) SiO 2 -TA-Gd;
图3 为以TA为掺杂多酚分子,金属离子选定为Fe3+,考察TA不同掺杂比例时所获得的SiO2-TA-Fe复合纳米颗粒的形貌透射电镜表征:(A)4.33%;(B)8.66%;(C)12%;(D)17.2%;Figure 3 shows the transmission electron microscope characterization of the morphology of SiO 2 -TA-Fe composite nanoparticles obtained when TA is used as doped polyphenol molecules and the metal ion is selected as Fe 3+ , with different doping ratios of TA: (A) 4.33%; (B) 8.66%; (C) 12%; (D) 17.2%;
图4为考察SiO2-EGCG-Fe颗粒在pH=5.0+10 mM GSH条件下随时间的降解变化。(A)SiO2-EGCG-Fe颗粒的降解透射电镜图;(B)SiO2-EGCG-Fe 纳米颗粒的降解光学照片图;(C)SiO2-EGCG-Fe纳米颗粒降解后的元素释放图;横坐标为时间,纵坐标为元素释放百分率;Figure 4 is the investigation of the degradation of SiO 2 -EGCG-Fe particles over time under the condition of pH=5.0+10 mM GSH. (A) Transmission electron micrograph of degradation of SiO 2 -EGCG-Fe particles; (B) Optical photograph of degradation of SiO 2 -EGCG-Fe nanoparticles; (C) Element release diagram of SiO 2 -EGCG-Fe nanoparticles after degradation ; The abscissa is time, and the ordinate is the element release percentage;
图5为利用ICP-AES考察SiO2-TA-Mn+纳米颗粒在不同条件下降解后的元素释放图,横坐标为时间,纵坐标为元素释放百分率,(A)SiO2-TA-Fe;(B)SiO2-TA-Gd;(C)SiO2-TA-Mn;Figure 5 is a diagram of the element release of SiO 2 -TA-M n+ nanoparticles after degradation under different conditions using ICP-AES. The abscissa is time, and the ordinate is the percentage of element release. (A) SiO 2 -TA-Fe; (B) SiO 2 -TA-Gd; (C) SiO 2 -TA-Mn;
图6为考察掺杂不同金属及多酚后复合纳米颗粒的生物相亲性:横坐标为复合纳米颗粒浓度,纵坐标为细胞生存率;(A)SiO2-EGCG-Mn+;(B)SiO2-TA-Mn+。Figure 6 shows the biological compatibility of composite nanoparticles doped with different metals and polyphenols: the abscissa is the concentration of composite nanoparticles, and the ordinate is the cell survival rate; (A) SiO 2 -EGCG-M n+ ; (B) SiO 2 -TA-M n+ .
具体实施方式detailed description
下面以具体实施示例对本发明的技术方案做进一步说明,但是不能以此限制本发明的范围。The technical solution of the present invention will be further described below with specific implementation examples, but the scope of the present invention cannot be limited by this.
实施例1Example 1
一种制备内掺杂多酚-金属配合物网络结构的可降解二氧化硅纳米颗粒的方法,包括如下步骤:A method for preparing degradable silica nanoparticles internally doped with a polyphenol-metal complex network structure, comprising the steps of:
SiO2-EGCG-FeSiO 2 -EGCG-Fe
a)将430 μL TEOS和8.66 mg EGCG(掺杂质量比为8.66%)加入到体积比为60:1的乙醇-水溶液中,搅拌10 min使其混合均匀;逐滴加入0.5 mL的氨水,在25℃条件下反应0.5 h,获得内含多酚低聚体的初级SiO2。a) Add 430 μL TEOS and 8.66 mg EGCG (8.66% doped mass ratio) into ethanol-water solution with a volume ratio of 60:1, stir for 10 min to mix well; add 0.5 mL ammonia water dropwise, React at 25°C for 0.5 h to obtain primary SiO 2 containing polyphenol oligomers.
b)然后再加入1.01mg FeCl3·6H2O (摩尔比为EGCG:Fe=5:1),继续在25℃水浴下反应5.5 h,反应完成后。取出反应液置于离心管中,10000 rpm离心处理10min取出上清液,用无水乙醇清洗沉淀两遍,再用超纯水清洗两遍,将沉淀分散于10 mL 二次蒸馏水中,得到掺杂EGCG-Fe的可降解二氧化硅纳米颗粒。b) Then add 1.01mg FeCl 3 · 6H 2 O (the molar ratio is EGCG:Fe=5:1), and continue to react in a water bath at 25°C for 5.5 h, after the reaction is completed. The reaction solution was taken out and placed in a centrifuge tube, centrifuged at 10,000 rpm for 10 min, the supernatant was taken out, the precipitate was washed twice with absolute ethanol, and then washed twice with ultrapure water, and the precipitate was dispersed in 10 mL twice distilled water to obtain the mixed Degradable silica nanoparticles mixed with EGCG-Fe.
按上述步骤将EGCG多酚分子替换为对应摩尔比的TA可获得SiO2-TA-Fe纳米颗粒,将多酚分子替换为对应摩尔比的GA可获得SiO2-GA-Fe纳米颗粒。The SiO 2 -TA-Fe nanoparticles can be obtained by replacing the EGCG polyphenol molecules with the corresponding molar ratio of TA according to the above steps, and the SiO 2 -GA -Fe nanoparticles can be obtained by replacing the polyphenol molecules with the corresponding molar ratio of GA.
实施例2Example 2
以TA为掺杂多酚分子,Fe3+为金属离子,考察多酚掺杂比例对复合颗粒形貌及单分散性的影响。Taking TA as doped polyphenol molecules and Fe 3+ as metal ions, the effect of polyphenol doping ratio on the morphology and monodispersity of composite particles was investigated.
更具体的:SiO2-TA-FeMore specifically: SiO 2 -TA-Fe
a)将430 μL TEOS和8.66 mg TA(掺杂质量比为8.66%)加入到体积比为60:1的乙醇-水溶液中,搅拌10 min使其混合均匀;逐滴加入0.5 mL的氨水,在25℃条件下反应0.5 h,获得内含多酚低聚体的初级SiO2。a) Add 430 μL TEOS and 8.66 mg TA (doping mass ratio is 8.66%) to the ethanol-water solution with a volume ratio of 60:1, stir for 10 min to mix well; add 0.5 mL ammonia water dropwise, and React at 25°C for 0.5 h to obtain primary SiO 2 containing polyphenol oligomers.
b)然后再加入0.27 mg FeCl3·6H2O(摩尔比为TA:Fe=5:1) ,继续在25℃水浴下反应5.5 h,反应完成后。取出反应液置于离心管中,10000 rpm离心处理10 min取出上清液,用无水乙醇清洗沉淀两遍,再用超纯水清洗两遍,将沉淀分散于10 mL 二次蒸馏水中,得到掺杂了TA-Fe的可降解二氧化硅纳米颗粒。b) Then add 0.27 mg FeCl 3 · 6H 2 O (the molar ratio is TA:Fe=5:1), and continue to react in a water bath at 25°C for 5.5 h, after the reaction is completed. The reaction solution was taken out and placed in a centrifuge tube, centrifuged at 10,000 rpm for 10 min, the supernatant was taken out, the precipitate was washed twice with absolute ethanol, and then washed twice with ultrapure water, and the precipitate was dispersed in 10 mL double distilled water to obtain Degradable silica nanoparticles doped with TA-Fe.
按上述步骤可将TA的掺杂质量比调节为4.33%,12%,17.2%。According to the above steps, the doping mass ratio of TA can be adjusted to 4.33%, 12%, and 17.2%.
实施例3Example 3
固定多酚分子,保证多酚与金属离子的摩尔比为5:1,考察掺杂的金属离子不同时对复合颗粒的影响。The polyphenol molecules were fixed to ensure that the molar ratio of polyphenols to metal ions was 5:1, and the effects of different doped metal ions on the composite particles were investigated.
更具体的:SiO2-TA-MnMore specifically: SiO 2 -TA-Mn
a)将430 μL TEOS和12 mg TA(掺杂比为12%)加入到体积比为60:1的乙醇-水溶液中,搅拌10 min使其混合均匀;逐滴加入0.5 mL的氨水,在25℃条件下反应0.5 h,获得内含多酚低聚体的初级SiO2。a) Add 430 μL TEOS and 12 mg TA (12% doping ratio) into ethanol-water solution with a volume ratio of 60:1, stir for 10 min to mix well; add 0.5 mL of ammonia water dropwise, at 25 The reaction was carried out at ℃ for 0.5 h to obtain primary SiO 2 containing polyphenol oligomers.
b)然后再加入0.28 mg MnCl2·4H2O (摩尔比为TA:Mn=5:1),继续在25℃水浴下反应5.5 h,反应完成后。取出反应液置于离心管中,10000 rpm离心处理10 min取出上清液,用无水乙醇清洗沉淀两遍,再用超纯水清洗两遍,将沉淀分散于10 mL 二次蒸馏水中,得到掺杂TA-Mn的可降解二氧化硅纳米颗粒。b) Then add 0.28 mg MnCl 2 · 4H 2 O (the molar ratio is TA:Mn=5:1), and continue to react in a water bath at 25°C for 5.5 h, after the reaction is completed. The reaction solution was taken out and placed in a centrifuge tube, centrifuged at 10,000 rpm for 10 min, the supernatant was taken out, the precipitate was washed twice with absolute ethanol, and then washed twice with ultrapure water, and the precipitate was dispersed in 10 mL double distilled water to obtain Degradable silica nanoparticles doped with TA-Mn.
按上述步骤可将Mn2+替换为相对应摩尔比的Fe3+、Gd3+、Zn2+、Cd2+等,获得SiO2-TA-Fe、SiO2-TA-Gd、SiO2-TA-Zn、SiO2-TA-Cd等复合颗粒。According to the above steps, Mn 2+ can be replaced by Fe 3+ , Gd 3+ , Zn 2+ , Cd 2+ etc. in the corresponding molar ratio to obtain SiO 2 -TA-Fe, SiO 2 -TA-Gd, SiO 2 - TA-Zn, SiO 2 -TA-Cd and other composite particles.
更具体的:SiO2-EGCG-MnMore specifically: SiO 2 -EGCG-Mn
a)将430 μL TEOS和12 mg EGCG(掺杂比为12%)加入到体积比为60:1的乙醇-水溶液中,搅拌10 min使其混合均匀;逐滴加入0.5 mL的氨水,在25℃条件下反应0.5 h,获得内含多酚低聚体的初级SiO2。a) Add 430 μL TEOS and 12 mg EGCG (12% doping ratio) into ethanol-water solution with a volume ratio of 60:1, stir for 10 min to mix well; add 0.5 mL of ammonia water dropwise, at 25 The reaction was carried out at ℃ for 0.5 h to obtain primary SiO 2 containing polyphenol oligomers.
b)然后再加入1.03 mg MnCl2·4H2O (摩尔比为EGCG:Mn=5:1),继续在25℃水浴下反应5.5 h,反应完成后。取出反应液置于离心管中,10000 rpm离心处理10 min取出上清液,用无水乙醇清洗沉淀两遍,再用超纯水清洗两遍,将沉淀分散于10 mL 二次蒸馏水中,得到掺杂EGCG-Mn的可降解二氧化硅纳米颗粒。b) Then add 1.03 mg MnCl 2 · 4H 2 O (the molar ratio is EGCG:Mn=5:1), and continue to react in a water bath at 25°C for 5.5 h, after the reaction is completed. The reaction solution was taken out and placed in a centrifuge tube, centrifuged at 10,000 rpm for 10 min, the supernatant was taken out, the precipitate was washed twice with absolute ethanol, and then washed twice with ultrapure water, and the precipitate was dispersed in 10 mL double distilled water to obtain Degradable silica nanoparticles doped with EGCG-Mn.
按上述步骤可将Mn2+替换为相对应摩尔比的Fe3+、Gd3+、Zn2+、Cd2+等,获得SiO2-EGCG-Fe、SiO2-EGCG-Gd、SiO2- EGCG -Zn、SiO2- EGCG-Cd等复合颗粒According to the above steps, Mn 2+ can be replaced by Fe 3+ , Gd 3+ , Zn 2+ , Cd 2+ etc. in the corresponding molar ratio to obtain SiO 2 -EGCG-Fe, SiO 2 -EGCG-Gd, SiO 2 - EGCG -Zn, SiO 2 - EGCG-Cd and other composite particles
实施例4Example 4
将实施例1中制得的SiO2-EGCG-Fe纳米颗粒置于pH=5.0+10 mM GSH条件下,考察其在体外模拟环境下的降解。分别在降解时间为1天、3天、5天、7天时,对整个降解体系进行离心处理,取沉淀进行TEM表征,上清液用2% HNO3硝化利用ICP-AES进行元素分析。The SiO 2 -EGCG-Fe nanoparticles prepared in Example 1 were placed under the condition of pH=5.0+10 mM GSH, and their degradation in an in vitro simulated environment was investigated. When the degradation time was 1 day, 3 days, 5 days, and 7 days, the entire degradation system was centrifuged, and the precipitate was taken for TEM characterization. The supernatant was nitrated with 2% HNO 3 and analyzed by ICP-AES.
性能检测:Performance testing:
1、将实施例1制得纳米颗粒水溶液滴在铜网上,晾干后进行TEM表征,结果见图1所示,从图1中 A可以看出SiO2-GA-Fe颗粒为单分散的实心多孔球型,平均粒径约为85±5 nm;从图1中 B可以看出SiO2-EGCG-Fe颗粒为球形结构,尺寸均一,平均粒径约为100±10 nm。以上两种颗粒结构都为实心多孔球型,内部明显有较多的孔隙;从图1 中C 可以看出SiO2-TA-Fe纳米颗粒是明显的中空偏心结构,且孔隙分布比前两者多,这主要是由于TA分子量大,搭建出来的多酚金属结构较大造成的。1. Drop the nanoparticle aqueous solution prepared in Example 1 on the copper grid, and perform TEM characterization after drying. The results are shown in Figure 1. It can be seen from A in Figure 1 that the SiO 2 -GA-Fe particles are monodisperse and solid Porous and spherical, with an average particle size of about 85±5 nm; from Figure 1B, it can be seen that the SiO 2 -EGCG-Fe particles are spherical in structure, uniform in size, with an average particle size of about 100±10 nm. Both of the above two particle structures are solid porous spherical, and there are obviously more pores inside; it can be seen from C in Figure 1 that the SiO 2 -TA-Fe nanoparticles are obviously hollow and eccentric structures, and the pore distribution is larger than that of the former two. This is mainly due to the large molecular weight of TA and the large polyphenol metal structure built.
2、将实施例3制得纳米颗粒水溶液滴在铜网上,晾干后进行TEM表征,结果见图2所示。从图2中可以看出SiO2-TA-M n+颗粒均为单分散的中空偏心多孔球型,平均粒径约为100±10 nm。图2说明多酚的掺杂比固定,多酚与金属离子的摩尔比也固定时,复合颗粒的形貌及尺寸均相差不大,这也说明掺杂不同的金属离子不会影响复合颗粒的形貌及单分散性。2. The nanoparticle aqueous solution prepared in Example 3 was dropped on the copper grid, and then subjected to TEM characterization after drying. The results are shown in FIG. 2 . It can be seen from Fig. 2 that the SiO 2 -TA-M n+ particles are all monodisperse hollow eccentric porous spheres with an average particle size of about 100±10 nm. Figure 2 shows that when the doping ratio of polyphenols is fixed and the molar ratio of polyphenols to metal ions is also fixed, the morphology and size of the composite particles are not much different, which also shows that doping with different metal ions will not affect the composite particles. morphology and monodispersity.
3、将实施例2制得纳米颗粒水溶液滴在铜网上,晾干后进行TEM表征,结果见图3所示。从图3中可以看出内掺杂的多酚比例对复合颗粒的形貌有影响;在TA内掺杂比例为4.33%时,颗粒有部分表现出中空偏心结构,还有小部分为实心多孔结构;当比例提高到8.66%时,颗粒形貌都为中空偏心多孔球形结构;继续提高内掺杂多酚的比例,会发现颗粒的中空结构越来越大,颗粒的分散性有所降低。以上结果说明复合颗粒的形貌与加入的多酚浓度有关。3. The nanoparticle aqueous solution obtained in Example 2 was dropped on the copper grid, and then subjected to TEM characterization after drying. The results are shown in FIG. 3 . It can be seen from Figure 3 that the proportion of internal doped polyphenols has an effect on the morphology of composite particles; when the proportion of TA internal doping is 4.33%, some of the particles show a hollow eccentric structure, and a small part is solid porous structure; when the proportion increases to 8.66%, the particle morphology is hollow eccentric porous spherical structure; continue to increase the proportion of internal doped polyphenols, it will be found that the hollow structure of the particles is getting bigger and bigger, and the dispersion of the particles is reduced. The above results indicate that the morphology of composite particles is related to the concentration of polyphenols added.
4、将实施例4中经过体外模拟降解后的SiO2-EGCG-Fe沉淀重分散后滴在铜网上,晾干后进行TEM表征结果见图4 中A所示。从图4中 A可以看出经过第一天的降解,颗粒的骨架结构还很清晰,只有少数颗粒表面略显模糊;当降解时间为3天时,颗粒有少量不能保持完整粒径,TEM照片下出现大量粒径小于50 nm的颗粒;在5天和7天时候,明显看到大量的碎片已经产生,颗粒已经被完全降解,说明在10 mM GSH弱酸性缓冲溶液中,颗粒可以被很好的刺激响应使得内部骨架崩塌,裂解成碎片。从图4 中B可以发现随着降解时间的增加,SiO2复合颗粒的量越来越少,这也可以说明随着时间的增加,颗粒已经被降解了。将实施例4中酸化的上清液进行ICP-AES元素分析,图4中C的数据表明随降解时间的增加,降解液中Si元素与金属元素的含量也是增加的,这更进一步说明在10 mM GSH弱酸性缓冲溶液降解条件下,复合颗粒是可以被降解的。4. The SiO 2 -EGCG-Fe precipitate after in vitro simulated degradation in Example 4 was redispersed and dropped on the copper grid, and after drying, the TEM characterization results were shown in A in FIG. 4 . From Figure 4A, it can be seen that after the first day of degradation, the skeleton structure of the particles is still very clear, and only a few particles are slightly blurred on the surface; when the degradation time is 3 days, a small amount of particles cannot maintain the complete particle size, as shown in the TEM photo A large number of particles with a particle size of less than 50 nm appeared; at 5 days and 7 days, it was obvious that a large number of fragments had been produced, and the particles had been completely degraded, indicating that the particles could be well degraded in 10 mM GSH weakly acidic buffer solution. The stimulus response causes the internal skeleton to collapse, disintegrating into pieces. From Figure 4B, it can be found that with the increase of degradation time, the amount of SiO 2 composite particles becomes less and less, which can also explain that the particles have been degraded with the increase of time. The acidified supernatant in embodiment 4 is carried out ICP-AES elemental analysis, the data of C in Fig. 4 shows that along with the increase of degradation time, the content of Si element and metal element also increases in the degradation solution, this further illustrates that in 10 Under the degradation condition of mM GSH weakly acidic buffer solution, the composite particles can be degraded.
5、将实施例3制得纳米颗粒(SiO2-TA-Fe、 SiO2-TA-Mn、SiO2-TA-Gd)经过体外模拟降解后收集上清液进行硝化,利用ICP-AES进行上清液的元素分析。图5可以看出随着降解时间的增加,上清液中释放出的硅元素与金属元素的含量越来越多,说明在酸性和谷胱甘肽双重刺激下,复合颗粒实现了有效降解。5. The nanoparticles (SiO 2 -TA-Fe, SiO 2 -TA-Mn, SiO 2 -TA-Gd) prepared in Example 3 were subjected to simulated degradation in vitro, and the supernatant was collected for nitrification, and carried out by ICP-AES. Elemental analysis of serum. It can be seen from Figure 5 that as the degradation time increases, the content of silicon and metal elements released in the supernatant increases, indicating that the composite particles are effectively degraded under the dual stimulation of acidity and glutathione.
6、用HeLa细胞作为目标细胞评价掺杂了多酚-金属配合物的复合纳米颗粒的生物相亲性:取已消化成单分散的HeLa细胞悬浊液用培养液稀释,以100 μL/孔的密度接种到96孔板,每孔的细胞个数控制约为105个。将96孔板置于37 ℃,5% CO2的培养箱中培养24 h后,移去培养液。图6中 A加入多酚分子为EGCG,颗粒浓度都为100 μg/mL的SiO2-EGCG-Fe、SiO2-EGCG-Mn、SiO2-EGCG-Gd、SiO2-EGCG-Zn、SiO2-EGCG-Cd复合纳米颗粒细胞培养液。图6中 B是加入多酚分子为单宁酸的SiO2-TA-Fe、SiO2-TA-Mn、SiO2-TA-Gd、SiO2-TA-Zn、SiO2-TA-Cd复合纳米颗粒细胞培养液。每组设置4个重复孔,继续培养6 h后,移去培养液,用PBS缓冲液(pH=7.4)清洗两次,加入200 μL培养液继续培养18 h后,每孔分别加入10 μL浓度为5 mg/mL的MTT,继续培育4 h,小心移去培养液,加入150 μL DMSO,37oC培养25 min,震荡均匀后,在酶标仪上测490 nm处的吸收值,计算细胞存活率。图6显示复合纳米颗粒的细胞存活率均在80%以上,说明这一方法合成的复合纳米颗粒生物都具有很好的生物相亲性,适于当药物载体。6. Use HeLa cells as target cells to evaluate the biocompatibility of composite nanoparticles doped with polyphenol-metal complexes: Dilute the digested monodispersed HeLa cell suspension with culture medium, and dilute it with 100 μL/well The density was seeded in a 96-well plate, and the number of cells in each well was controlled to be about 10 5 . The 96-well plate was cultured in an incubator with 5% CO2 at 37 °C for 24 h, and then the culture medium was removed. In Figure 6, A added polyphenol molecules as EGCG, and the particle concentration was 100 μg/mL SiO 2 -EGCG-Fe, SiO 2 -EGCG-Mn, SiO 2 -EGCG-Gd, SiO 2 -EGCG-Zn, SiO 2 - EGCG-Cd composite nanoparticle cell culture fluid. B in Figure 6 is SiO 2 -TA-Fe, SiO 2 -TA-Mn, SiO 2 -TA-Gd, SiO 2 -TA-Zn, SiO 2 -TA-Cd composite nano Granule cell culture medium. Set up 4 replicate wells for each group, after continuing to culture for 6 h, remove the culture medium, wash twice with PBS buffer (pH=7.4), add 200 μL of culture medium and continue to culture for 18 h, then add 10 μL of concentration 5 mg/mL of MTT, continue to incubate for 4 h, carefully remove the culture medium, add 150 μL DMSO, incubate at 37 o C for 25 min, shake evenly, measure the absorbance at 490 nm on a microplate reader, and calculate the cell survival rate. Figure 6 shows that the cell survival rate of the composite nanoparticles is above 80%, indicating that the composite nanoparticles synthesized by this method have good biological compatibility and are suitable as drug carriers.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710570638.2A CN107381580B (en) | 2017-07-13 | 2017-07-13 | A method for preparing internally doped polyphenol-metal mesh degradable silica particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710570638.2A CN107381580B (en) | 2017-07-13 | 2017-07-13 | A method for preparing internally doped polyphenol-metal mesh degradable silica particles |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107381580A true CN107381580A (en) | 2017-11-24 |
CN107381580B CN107381580B (en) | 2019-09-13 |
Family
ID=60339478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710570638.2A Expired - Fee Related CN107381580B (en) | 2017-07-13 | 2017-07-13 | A method for preparing internally doped polyphenol-metal mesh degradable silica particles |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107381580B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107929736A (en) * | 2018-01-11 | 2018-04-20 | 福州大学 | A kind of degradable silicon-based nano diagnosis and treatment agent of NMR imaging and light power/chemotherapy and preparation method thereof |
CN108187739A (en) * | 2018-01-09 | 2018-06-22 | 福州大学 | A kind of currant bread Shi Jin-silica nanometer catalyst and its preparation and application |
CN108525659A (en) * | 2018-04-20 | 2018-09-14 | 江西省科学院应用化学研究所 | A method of preparing hud typed pucherite meso-porous titanium dioxide silicon composite using green peel of walnut crude extract |
CN109939246A (en) * | 2019-04-19 | 2019-06-28 | 西安交通大学 | A kind of small-sized gadolinium-polyphenol polymer nanoparticle and its preparation method and application |
CN111202091A (en) * | 2020-01-08 | 2020-05-29 | 华南理工大学 | Nano-silver loaded mesoporous silica antibacterial material and preparation method and application thereof |
CN111529510A (en) * | 2020-05-09 | 2020-08-14 | 重庆医科大学 | Application of nanoparticles as tumor microenvironment responsive drug or imaging agent |
CN111939174A (en) * | 2020-06-05 | 2020-11-17 | 山东大学 | Metal polyphenol nano-composite as well as preparation method and application thereof |
CN111954945A (en) * | 2018-05-09 | 2020-11-17 | 株式会社Lg化学 | Composition for coating negative electrode active material, negative electrode active material, and negative electrode for lithium secondary battery including the same |
CN114870025A (en) * | 2022-04-28 | 2022-08-09 | 云南大学 | Response slow-release polydopamine-Zn-natural polyphenol coordination nano-medicament and preparation method thereof |
CN116173223A (en) * | 2023-03-06 | 2023-05-30 | 西南交通大学 | A bionic three-dimensional polymer fiber network structure and its preparation method and application |
CN116173006A (en) * | 2021-11-29 | 2023-05-30 | 中南大学 | A kind of polyphenol self-polymerization nanoparticle and its preparation method and application |
CN116370434A (en) * | 2023-02-24 | 2023-07-04 | 中南大学 | Nanoparticle for targeted treatment of thrombotic diseases and preparation method and application thereof |
CN118767166A (en) * | 2024-06-07 | 2024-10-15 | 天津大学 | A method for preparing metal polyphenol-coated mesoporous silicon-selenium nanoparticles |
CN119490760A (en) * | 2024-11-26 | 2025-02-21 | 南京工业大学 | A universal method for synthesizing silicon oxide nanoparticles doped with dyes and drug molecules by coprecipitation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102600822A (en) * | 2012-02-17 | 2012-07-25 | 鲁东大学 | Carbon-doped silicon dioxide and titanium dioxide composite photocatalyst and preparation method thereof |
CN105963274A (en) * | 2016-05-25 | 2016-09-28 | 山东理工大学 | Preparation method of methylene blue containing silicon dioxide/tannin-iron particles promoting methylene blue monomer release |
CN107128929A (en) * | 2017-05-15 | 2017-09-05 | 浙江海洋大学 | A kind of preparation method of meso pore silicon oxide material and the meso pore silicon oxide material being made |
-
2017
- 2017-07-13 CN CN201710570638.2A patent/CN107381580B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102600822A (en) * | 2012-02-17 | 2012-07-25 | 鲁东大学 | Carbon-doped silicon dioxide and titanium dioxide composite photocatalyst and preparation method thereof |
CN105963274A (en) * | 2016-05-25 | 2016-09-28 | 山东理工大学 | Preparation method of methylene blue containing silicon dioxide/tannin-iron particles promoting methylene blue monomer release |
CN107128929A (en) * | 2017-05-15 | 2017-09-05 | 浙江海洋大学 | A kind of preparation method of meso pore silicon oxide material and the meso pore silicon oxide material being made |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108187739A (en) * | 2018-01-09 | 2018-06-22 | 福州大学 | A kind of currant bread Shi Jin-silica nanometer catalyst and its preparation and application |
CN108187739B (en) * | 2018-01-09 | 2019-12-17 | 福州大学 | A kind of raisin bread type gold-silica nano catalyst and its preparation and application |
CN107929736A (en) * | 2018-01-11 | 2018-04-20 | 福州大学 | A kind of degradable silicon-based nano diagnosis and treatment agent of NMR imaging and light power/chemotherapy and preparation method thereof |
CN108525659A (en) * | 2018-04-20 | 2018-09-14 | 江西省科学院应用化学研究所 | A method of preparing hud typed pucherite meso-porous titanium dioxide silicon composite using green peel of walnut crude extract |
CN108525659B (en) * | 2018-04-20 | 2020-10-23 | 江西省科学院应用化学研究所 | Method for preparing core-shell type bismuth vanadate @ mesoporous silica composite material by using walnut green husk crude extract |
US12021236B2 (en) | 2018-05-09 | 2024-06-25 | Lg Energy Solution, Ltd. | Composition for coating a negative electrode active material, negative electrode active material and negative electrode for lithium secondary battery including the same |
CN111954945B (en) * | 2018-05-09 | 2023-05-26 | 株式会社Lg新能源 | Composition for coating anode active material, and anode for lithium secondary battery including the anode active material |
CN111954945A (en) * | 2018-05-09 | 2020-11-17 | 株式会社Lg化学 | Composition for coating negative electrode active material, negative electrode active material, and negative electrode for lithium secondary battery including the same |
CN109939246B (en) * | 2019-04-19 | 2021-01-19 | 西安交通大学 | Small-sized gadolinium-polyphenol polymer nanoparticles and preparation method and application thereof |
CN109939246A (en) * | 2019-04-19 | 2019-06-28 | 西安交通大学 | A kind of small-sized gadolinium-polyphenol polymer nanoparticle and its preparation method and application |
CN111202091A (en) * | 2020-01-08 | 2020-05-29 | 华南理工大学 | Nano-silver loaded mesoporous silica antibacterial material and preparation method and application thereof |
CN111529510A (en) * | 2020-05-09 | 2020-08-14 | 重庆医科大学 | Application of nanoparticles as tumor microenvironment responsive drug or imaging agent |
CN111939174A (en) * | 2020-06-05 | 2020-11-17 | 山东大学 | Metal polyphenol nano-composite as well as preparation method and application thereof |
CN116173006A (en) * | 2021-11-29 | 2023-05-30 | 中南大学 | A kind of polyphenol self-polymerization nanoparticle and its preparation method and application |
CN116173006B (en) * | 2021-11-29 | 2024-05-03 | 中南大学 | Polyphenol self-polymerized nanoparticles and preparation method and application thereof |
CN114870025A (en) * | 2022-04-28 | 2022-08-09 | 云南大学 | Response slow-release polydopamine-Zn-natural polyphenol coordination nano-medicament and preparation method thereof |
CN114870025B (en) * | 2022-04-28 | 2023-06-30 | 云南大学 | Responsive slow-release polydopamine-Zn-natural polyphenol coordination nano-drug and preparation method thereof |
CN116370434A (en) * | 2023-02-24 | 2023-07-04 | 中南大学 | Nanoparticle for targeted treatment of thrombotic diseases and preparation method and application thereof |
CN116173223A (en) * | 2023-03-06 | 2023-05-30 | 西南交通大学 | A bionic three-dimensional polymer fiber network structure and its preparation method and application |
CN118767166A (en) * | 2024-06-07 | 2024-10-15 | 天津大学 | A method for preparing metal polyphenol-coated mesoporous silicon-selenium nanoparticles |
CN119490760A (en) * | 2024-11-26 | 2025-02-21 | 南京工业大学 | A universal method for synthesizing silicon oxide nanoparticles doped with dyes and drug molecules by coprecipitation |
Also Published As
Publication number | Publication date |
---|---|
CN107381580B (en) | 2019-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107381580B (en) | A method for preparing internally doped polyphenol-metal mesh degradable silica particles | |
Salehizadeh et al. | Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure | |
Zhu et al. | Magnetic SBA-15/poly (N-isopropylacrylamide) composite: Preparation, characterization and temperature-responsive drug release property | |
Hsu et al. | Relaxivity and toxicological properties of manganese oxide nanoparticles for MRI applications | |
Tabasi et al. | Synthesis and characterization of amine-functionalized Fe3O4/Mesoporous Silica Nanoparticles (MSNs) as potential nanocarriers in drug delivery systems | |
Li et al. | Size-dependent MRI relaxivity and dual imaging with Eu0. 2Gd0. 8PO4· H2O nanoparticles | |
Teng et al. | Ligand exchange triggered controlled-release targeted drug delivery system based on core–shell superparamagnetic mesoporous microspheres capped with nanoparticles | |
CN108096586A (en) | Double-bang firecracker based on manganese dioxide modification answers preparation method, product and the application of drug delivery system | |
Zhou et al. | Aptamer‐Directed Synthesis of Multifunctional Lanthanide‐Doped Porous Nanoprobes for Targeted Imaging and Drug Delivery | |
Chen et al. | Multifunctional core–shell structured nanocarriers for synchronous tumor diagnosis and treatment in vivo | |
Wu et al. | Synthesis of mesoporous core-shell structured GdPO4: Eu@ SiO2@ mSiO2 nanorods for drug delivery and cell imaging applications | |
Jia et al. | Magnetic silica nanosystems with NIR-responsive and redox reaction capacity for drug delivery and tumor therapy | |
Nguyen et al. | Analysis on development of magnetite hollow spheres through one‐pot solvothermal process | |
Szczeszak et al. | Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@ shell nanomaterial based on lanthanide-doped orthovanadates | |
Zhang et al. | Self-template synthesis of mesoporous and biodegradable Fe3O4 nanospheres as multifunctional nanoplatform for cancer therapy | |
CN105638729A (en) | Spherical silver/silver chloride composite material of hollow structure and preparation method thereof | |
Zhang et al. | A multifunctional magnetic composite material as a drug delivery system and a magnetic resonance contrast agent | |
Li et al. | Biomass-based magnetic fluorescent nanoparticles: One-step scalable synthesis, application as drug carriers and mechanism study | |
Sun et al. | Smart shape-controlled synthesis of poly (N-isopropylacrylamide)/chitosan/Fe3O4 microgels | |
Jeevakumari et al. | Comprehensive evaluation of solvothermally synthesized Fe3O4 and PEG capped Fe3O4 nanoparticles for magnetic and biomedical applications | |
CN106668878A (en) | A multifunctional mesoporous carbon sphere integrating T1 and T2 dual modes and its preparation method | |
Abramson et al. | Highly porous and monodisperse magnetic silica beads prepared by a green templating method | |
CN109867309B (en) | A kind of water-soluble magnetic iron oxide nanocrystal and preparation method thereof | |
Mao et al. | Synthesis of CoFe2O4/MoO2 dumbbell-shaped nanoparticles with enhanced AMF/NIR induced drug delivery for liver cancer treatment | |
TWI445550B (en) | Magnetic composite nanoparticles having multiple reactive functional groups of the method for its preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190913 |
|
CF01 | Termination of patent right due to non-payment of annual fee |