[go: up one dir, main page]

CN107346426A - A kind of face information collection method based on video camera recognition of face - Google Patents

A kind of face information collection method based on video camera recognition of face Download PDF

Info

Publication number
CN107346426A
CN107346426A CN201710557708.0A CN201710557708A CN107346426A CN 107346426 A CN107346426 A CN 107346426A CN 201710557708 A CN201710557708 A CN 201710557708A CN 107346426 A CN107346426 A CN 107346426A
Authority
CN
China
Prior art keywords
face
camera
image
face image
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710557708.0A
Other languages
Chinese (zh)
Other versions
CN107346426B (en
Inventor
周波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Haiqing Zhiyuan Technology Co ltd
Original Assignee
Shenzhen HQVT Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen HQVT Technology Co Ltd filed Critical Shenzhen HQVT Technology Co Ltd
Priority to CN202110438587.4A priority Critical patent/CN113205021B/en
Priority to CN202110438119.7A priority patent/CN113205020B/en
Priority to CN201710557708.0A priority patent/CN107346426B/en
Publication of CN107346426A publication Critical patent/CN107346426A/en
Application granted granted Critical
Publication of CN107346426B publication Critical patent/CN107346426B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/161Detection; Localisation; Normalisation
    • G06V40/166Detection; Localisation; Normalisation using acquisition arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/94Hardware or software architectures specially adapted for image or video understanding
    • G06V10/95Hardware or software architectures specially adapted for image or video understanding structured as a network, e.g. client-server architectures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Studio Devices (AREA)
  • Image Processing (AREA)

Abstract

一种基于摄像机人脸识别的人脸信息收集方法,其方法为:主控制器采集视频数据并缓存至主存储器,主控制器将主存储器中的分段视频数据传输至图像运算芯片,主控制器接收图像运算芯片解析的分段视频数据中的人脸信息及人脸图像的质量参数,主控制器根据人脸信息及人脸图像的质量参数达到预设指标抓拍人脸照片并存储及上传,本发明通过添加图像运算芯片承担简单但大量的人脸识别工作,并使用通用处理器根据人脸识别的结果进行人脸照片的获取和上传,能够取代原先直接上传原始视频码流供服务器进行人脸识别造成的带宽浪费,以及服务器的硬件资源浪费,适合同时监控和跟踪更多的人脸提升监控效果。

A face information collection method based on camera face recognition, the method is as follows: the main controller collects video data and caches it in the main memory, the main controller transmits the segmented video data in the main memory to the image computing chip, the main controller The device receives the face information in the segmented video data analyzed by the image computing chip and the quality parameters of the face image, and the main controller captures the face photos according to the face information and the quality parameters of the face image reach the preset index and stores and uploads them , the present invention undertakes a simple but large amount of face recognition work by adding an image computing chip, and uses a general-purpose processor to acquire and upload face photos according to the results of face recognition, which can replace the original direct upload of the original video code stream for the server to perform The waste of bandwidth caused by face recognition and the waste of hardware resources of the server are suitable for monitoring and tracking more faces at the same time to improve the monitoring effect.

Description

一种基于摄像机人脸识别的人脸信息收集方法A face information collection method based on camera face recognition

技术领域technical field

本发明涉及一种人脸信息的收集方法,具体涉及一种基于摄像机人脸识别的人脸信息收集方法。The invention relates to a method for collecting face information, in particular to a method for collecting face information based on camera face recognition.

背景技术Background technique

当今社会,出于安全方面的考虑,视频监控设备越来越多地应用到平安城市监控,以及小区,工厂等各种场所的监控中。监控过程多数情况下是针对人的识别,而随着人脸识别技术的成熟,使得由人工智能来自动消化监控视频数据中的人脸成为可能。随着监控设备越来越普及,并且人脸识别对视频质量的要求较高,相应的监控数据也越来越大。In today's society, due to security considerations, video surveillance equipment is more and more applied to the monitoring of safe cities, as well as the monitoring of various places such as communities and factories. In most cases, the monitoring process is aimed at the identification of people, and with the maturity of face recognition technology, it is possible to automatically digest the faces in the monitoring video data by artificial intelligence. As monitoring equipment becomes more and more popular, and face recognition has higher requirements for video quality, the corresponding monitoring data is also increasing.

目前,在监控系统中运用人脸识别,绝大部分情况下,采用的方式是摄像机把视频数据发给后台服务器,后台服务器再依赖其强大的硬件、复杂的软件做智能分析。如此监控网络的数据吞吐量惊人;在摄像机越来越多的条件下,后台服务器的存储能力和运算能力也备受考验,使得成本极大提升;此外监控环境复杂多样,摄像机的参数设置并不能保证实时完好,会导致无法识别和收集人像的情况发生,而使用远端服务器解析图像判断图像质量并返回摄像机参数修改要求,摄像机再调整拍照,会对硬件开销造成极大的压力,时间上也来不及。At present, when using face recognition in surveillance systems, in most cases, the camera sends video data to the background server, and the background server relies on its powerful hardware and complex software for intelligent analysis. The data throughput of such a monitoring network is astonishing; under the condition of more and more cameras, the storage capacity and computing power of the background server are also put to the test, which greatly increases the cost; in addition, the monitoring environment is complex and diverse, and the parameter settings of the cameras cannot Ensuring real-time integrity will lead to failure to recognize and collect portraits. Using remote servers to analyze images to judge image quality and return camera parameter modification requirements, and camera adjustments to take pictures will cause great pressure on hardware costs and time. too late.

近年来算法的改进和硬件性能的提升为摄像机识别人脸提供了可能,传统上采用cortex或基于X86的atom等常见移动端架构的通用处理器并不适用于进行视频处理和硬件管理的同时再进行人工智能所需的大规模简单运算。In recent years, the improvement of algorithms and the improvement of hardware performance have made it possible for cameras to recognize faces. Traditionally, general-purpose processors using common mobile architectures such as cortex or X86-based atom are not suitable for simultaneous video processing and hardware management. Perform large-scale simple calculations required for artificial intelligence.

发明内容Contents of the invention

为了克服现有技术监控系统网络开销大,硬件开销分布严重不均的情况,本发明的目的旨在提供一种基于摄像机人脸识别的人脸信息收集方法。In order to overcome the large network overhead and severely uneven distribution of hardware overhead in the prior art monitoring system, the purpose of the present invention is to provide a face information collection method based on camera face recognition.

本发明提供的方法如下:The method provided by the invention is as follows:

一种基于摄像机人脸识别的人脸信息收集方法,其方法为:摄像机采集视频数据的过程中,同时对每一帧视频数据进行人脸信息识别获得当前帧内所有人物的人脸图像和对应的人脸图像的质量参数,最后确定所述当前帧内所有人物中人脸图像的人脸信息及质量参数达到预设标准的人物,并且对该人物抓拍人脸照片。A face information collection method based on camera face recognition, the method is: in the process of collecting video data by the camera, face information recognition is performed on each frame of video data at the same time to obtain the face images and corresponding faces of all people in the current frame Finally, determine the person whose face information and quality parameters of the face image of all people in the current frame reach the preset standard, and capture a photo of the person's face.

所述对每一帧视频数据进行人脸信息识别获得当前帧内所有人物的人脸图像和对应的人脸图像的质量参数,具体为:所述摄像机根据视频数据的其中一帧中的亮度分布拾取人脸信息,之后根据人脸信息中的人脸图像的亮度、清晰度及正脸下人脸特征匹配程度确定人脸图像的质量参数。The face information recognition of each frame of video data to obtain the face images of all people in the current frame and the quality parameters of the corresponding face images is specifically: the camera according to the brightness distribution in one frame of the video data Pick up the face information, and then determine the quality parameters of the face image according to the brightness and clarity of the face image in the face information and the matching degree of face features under the front face.

所述摄像机根据视频数据的其中一帧中的亮度分布拾取人脸信息之后还包括:所述摄像机根据当前人脸信息与邻近若干帧中拾取人脸信息对比情况判断当前人脸图像是否为新人,如果确定为新人,为当前人脸图像分配人脸ID,反之,将当前人脸图像与已有的人脸ID建立对应关系。After the camera picks up the face information according to the brightness distribution in one frame of the video data, it also includes: the camera judges whether the current face image is a new person according to the comparison between the current face information and the face information picked up in several adjacent frames, If it is determined to be a new person, assign a face ID to the current face image; otherwise, establish a corresponding relationship between the current face image and an existing face ID.

所述确定所述当前帧内所有人物中人脸图像的人脸信息及质量参数达到预设标准的人物,并且对该人物抓拍人脸照片,具体为:当确定为新人且人脸图像的质量参数大于或等于预设阈值时,所述摄像机抓拍人脸照片并存储。The determination of the person whose face information and quality parameters of the face image of all the characters in the current frame reach the preset standard, and taking a photo of the face of the person, specifically: when it is determined to be a new person and the quality of the face image When the parameter is greater than or equal to the preset threshold, the camera captures and stores a face photo.

对每一帧视频数据进行人脸信息识别获得当前帧内所有人物的人脸图像和对应的人脸图像的质量参数之后,该方法还包括:当确定为新人但人脸图像的质量参数小于预设阈值时,所述摄像机根据人脸信息调整摄像机参数,同时丢弃人脸图像并继续判断后续视频数据产生的人脸图像的质量参数直至人脸图像的质量参数大于或等于预设阈值。After performing face information recognition on each frame of video data to obtain the face images of all people in the current frame and the quality parameters of the corresponding face images, the method also includes: When the threshold is set, the camera adjusts the camera parameters according to the face information, discards the face image and continues to judge the quality parameter of the face image generated by subsequent video data until the quality parameter of the face image is greater than or equal to the preset threshold.

确定所述当前帧内所有人物中人脸图像的人脸信息及质量参数达到预设标准的人物,并且对该人物抓拍人脸照片,具体为:当确定为原有人脸且人脸图像的质量参数大于或等于预设阈值时,所述摄像机判断人脸图像的质量参数或人脸正脸程度大于原有人脸照片,最后抓拍人脸照片并替换原有人脸照片。Determine the person whose face information and quality parameters of the face image of all the characters in the current frame reach the preset standard, and capture a photo of the face of the person, specifically: when it is determined to be the original face and the quality of the face image When the parameter is greater than or equal to the preset threshold, the camera judges that the quality parameter of the face image or the frontal degree of the face is greater than the original face photo, and finally captures the face photo and replaces the original face photo.

对每一帧视频数据进行人脸信息识别获得当前帧内所有人物的人脸图像和对应的人脸图像的质量参数之后,该方法还包括:当确定为原有人脸但人脸图像的质量参数小于预设阈值时,所述摄像机根据人脸信息调整摄像机参数,同时丢弃人脸图像并继续判断后续视频数据产生的人脸图像的质量参数直至人脸图像的质量参数大于或等于预设阈值。After performing face information recognition on each frame of video data to obtain the face images of all people in the current frame and the quality parameters of the corresponding face images, the method also includes: When it is less than the preset threshold, the camera adjusts the camera parameters according to the face information, discards the face image and continues to judge the quality parameter of the face image generated by subsequent video data until the quality parameter of the face image is greater than or equal to the preset threshold.

人脸图像的质量参数大于或等于预设阈值时后,该方法还包括:所述摄像机记录人脸图像的质量参数大于或等于阈值时的曝光参数,之后判断摄像机在预设时间内未检测到人脸信息,则根据最近一次人脸图像参数大于或等于预设阈值时记录的曝光参数调整摄像机。After the quality parameter of the face image is greater than or equal to the preset threshold, the method further includes: the camera records the exposure parameter when the quality parameter of the face image is greater than or equal to the threshold, and then judges that the camera does not detect For face information, the camera is adjusted according to the exposure parameters recorded when the last face image parameter is greater than or equal to the preset threshold.

确定所述当前帧内所有人物中人脸图像的人脸信息及质量参数达到预设标准的人物,并且对该人物抓拍人脸照片同时,该方法还包括:摄像机检测到存储容量少于预警值,之后删除部分人脸照片,具体为:摄像机根据人脸ID对应的人脸照片的存取状态、上传状态和跟踪状态确定人脸ID的优先级并做实时调整,同时根据优先级排序删除人脸ID对应的人脸照片并注销该人脸ID,最后检测到存储容量高于预设阈值停止删除工作。Determine the person whose face information and quality parameters of the face images of all the characters in the current frame reach the preset standard, and capture the face photo of the person at the same time, the method also includes: the camera detects that the storage capacity is less than the warning value , and then delete some face photos, specifically: the camera determines the priority of the face ID according to the access status, upload status, and tracking status of the face photo corresponding to the face ID and makes real-time adjustments, and deletes the face photos according to the priority. The face photo corresponding to the face ID and log out the face ID, and finally detect that the storage capacity is higher than the preset threshold and stop the deletion work.

根据人脸信息及人脸图像的质量参数达到预设指标抓拍人脸照片并上传,具体为,摄像机根据远端服务器需求选择人脸照片的抓拍方式。According to the face information and the quality parameters of the face image reaching the preset index, the face photo is captured and uploaded. Specifically, the camera selects the face photo capture method according to the requirements of the remote server.

根据权利要求1所述的一种基于摄像机人脸识别的人脸信息收集方法,其特征在于:根据人脸信息及人脸图像的质量参数达到预设指标抓拍人脸照片并上传,具体为,摄像机根据远端服务器需求选择人脸照片的上传策略。A method for collecting face information based on camera face recognition according to claim 1, characterized in that: according to the face information and the quality parameters of the face image reaching the preset index, the photo of the face is captured and uploaded, specifically, The camera selects the upload strategy of face photos according to the requirements of the remote server.

与现有技术相比,本发明通过添加图像运算芯片承担简单但大量的人脸识别工作,并使用通用处理器根据人脸识别的结果进行人脸照片的获取和上传,取代原先直接上传原始视频码流供服务器进行人脸识别造成的带宽浪费,以及服务器的硬件资源浪费,适合同时监控和跟踪更多的人脸提升监控效果。Compared with the prior art, the present invention undertakes simple but massive face recognition work by adding an image computing chip, and uses a general-purpose processor to acquire and upload face photos according to the results of face recognition, instead of directly uploading the original video The bandwidth waste caused by the code stream for the server to perform face recognition, as well as the waste of hardware resources of the server, are suitable for monitoring and tracking more faces at the same time to improve the monitoring effect.

附图说明Description of drawings

图1为一种基于摄像机人脸识别的人脸信息收集方法的流程图。FIG. 1 is a flow chart of a face information collection method based on camera face recognition.

图2位一种基于摄像机人脸识别的人脸信息收集方法的一种具体实施方式的流程图。FIG. 2 is a flow chart of a specific embodiment of a face information collection method based on camera face recognition.

具体实施方式detailed description

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

本发明实施例提供一种基于摄像机的人脸识别方法,步骤包括:摄像机采集视频数据,在采集数据的同时对每一帧视频数据进行人脸信息识别以获取人脸人脸图像的人脸信息和人脸图像的质量参数,确定人脸图像达到预设指标,对人脸达到预设指标的人脸进行拍照。An embodiment of the present invention provides a camera-based face recognition method, the steps include: the camera collects video data, and performs face information recognition on each frame of video data while collecting data to obtain face information of a face image and the quality parameters of the face image, determine that the face image reaches the preset index, and take a photo of the face whose face reaches the preset index.

为具体实现该方法,所述摄像机内部包括了用于控制摄像机操作、图像编解码及通信等工作的主控制器,以及对应的主存储器,还包括用于使用人脸识别算法进行人脸图像识别的图像运算芯片及其对应的存储器等外接部件,摄像机还可以加设外存,用于存储抓拍所得的照片,降低主存储器的存储压力。在此基础之上该方法的具体步骤包括:In order to implement this method specifically, the camera includes a main controller for controlling camera operation, image encoding and decoding, and communication, as well as a corresponding main memory, and also includes a face recognition algorithm for face image recognition. The image computing chip and its corresponding memory and other external components, the camera can also be equipped with an external memory to store the captured photos and reduce the storage pressure of the main memory. On this basis, the specific steps of the method include:

步骤100:主控制器采集传感器的视频数据并缓存至主存储器。Step 100: the main controller collects the video data of the sensor and caches it in the main memory.

步骤200:主控制器将分段视频数据传输至图像运算芯片。Step 200: The main controller transmits the segmented video data to the image computing chip.

步骤300:图像运算芯片分析分段视频数据中的人脸,识别人脸并将人脸信息返回给主控制器。Step 300: The image computing chip analyzes the face in the segmented video data, recognizes the face and returns the face information to the main controller.

步骤301:图像运算芯片根据收到的分段视频数据中某一帧当中人脸图像的亮度分布,拾取人脸信息。Step 301: The image computing chip picks up face information according to the brightness distribution of the face image in a certain frame of the received segmented video data.

步骤302:图像运算芯片根据当前检测的人脸信息与向前邻近若干帧中检测到的人脸图像的人脸信息进行比对,判断二者相似度,并根据相似度和设定的阈值判断当前被检测的人脸是否为新人,根据判断结果将已经出现过的人脸图像的人脸信息与相应人脸ID相对应,或者为新人设置新的人脸ID。Step 302: The image computing chip compares the currently detected face information with the face information of the face images detected in several frames forward, judges the similarity between the two, and judges according to the similarity and the set threshold Whether the currently detected face is a new person, according to the judgment result, the face information of the face image that has appeared is corresponding to the corresponding face ID, or a new face ID is set for the new person.

步骤303;图像运算芯片根据当前人脸图像的亮度、清晰度以及与正脸下人脸特征的匹配程度给出当前人脸图像的质量参数。Step 303: The image computing chip provides the quality parameters of the current face image according to the brightness and clarity of the current face image and the degree of matching with the features of the face under the front face.

步骤304:将人脸图像及质量参数信息传输至主控制器。Step 304: Transmitting the face image and quality parameter information to the main controller.

步骤400:主控制器根据人脸信息调整环境外设。Step 400: The main controller adjusts the environmental peripherals according to the face information.

步骤401:主控制器根据人脸图像的质量参数及当前人脸的亮度判断是否需要调整曝光参数及需要的调整步长。Step 401: The main controller judges whether the exposure parameter needs to be adjusted and the required adjustment step according to the quality parameter of the face image and the brightness of the current face.

步骤402:人脸图像的质量参数达到设定阈值时,主控制器记录一段时间内的曝光参数。Step 402: When the quality parameter of the face image reaches the set threshold, the main controller records the exposure parameters within a period of time.

步骤403:当检测不到人脸时,主控制器使用记录的曝光参数设置摄像机。Step 403: When no human face is detected, the main controller uses the recorded exposure parameters to set the camera.

步骤500:主控制器抓拍人脸并存储在主存储器或外存中。Step 500: The main controller captures the face and stores it in the main memory or external memory.

步骤501:根据人脸ID,当收到新人人脸图像的质量参数高于预设阈值时,主控制器控制摄像机抓怕人脸照片并存储。Step 501: According to the face ID, when the quality parameter of the received face image of a new person is higher than the preset threshold, the main controller controls the camera to capture and store the photo of the face.

具体的,主控制器根据设定,控制摄像机抓拍人脸图、人体图或原图,或三者的自由组合。Specifically, the main controller controls the camera to capture a face image, a human body image or an original image, or a free combination of the three, according to settings.

步骤502:根据人脸ID,当收到已保存人脸照片的人脸图像信息时,主控制器判断当前人脸图像并非正脸时,当前人脸图像与已经保存过的人脸照片的正脸面积相比更大,且当前人脸图像的质量参数高于阈值,或者当前人脸图像的质量参数高于已保存人脸照片则抓怕人脸照片并存储替换原有人脸照片并记录人脸照片的质量参数。Step 502: According to the face ID, when the main controller judges that the current face image is not a frontal face when receiving the face image information of the saved face photo, the current face image and the saved face photo The face area is relatively larger, and the quality parameter of the current face image is higher than the threshold, or the quality parameter of the current face image is higher than the saved face photo, then capture the face photo and store it to replace the original face photo and record the face The quality parameter of the photo.

步骤503:根据人脸ID,当收到已保存人脸照片的人脸图像信息时,主控制器判断当已保存人脸照片为正脸时,当前人脸图像的质量参数大于已保存人脸则抓拍人脸照片并存储替换原有人脸照片并记录人脸照片的质量参数。Step 503: According to the face ID, when receiving the face image information of the saved face photo, the main controller judges that when the saved face photo is a positive face, the quality parameter of the current face image is greater than the saved face Then capture the photo of the face, store and replace the original photo of the face, and record the quality parameters of the photo of the face.

步骤600:上传并清理人脸照片。Step 600: Upload and clean up face photos.

步骤601:当人脸照片质量超过设定值时,主控制器上传人脸照片。Step 601: When the quality of the face photo exceeds the set value, the main controller uploads the face photo.

具体的,主控制器优先上传照片质量参数达到上传标准的照片并且与当前时间间隔更短的人脸照片,及所有人脸照片中质量参数更高的人脸照片。Specifically, the main controller preferentially uploads photos whose photo quality parameters meet the uploading standard and whose time interval is shorter than the current face photo, and the face photo whose quality parameter is higher among all the face photos.

具体的,主控制器根据设定,控制摄像机进行实时上传、人离开后上传和间隔上传三种上传方式,其中实时上传是在人脸照片产生变动后马上上传人脸照片,人离开后上传是当人离开检测区域后上传最优照片,间隔上传是人脸ID 对应人脸图像在检测区域中出现时,定期上传最优照片。Specifically, according to the settings, the main controller controls the camera to perform three upload methods: real-time upload, upload after people leave, and upload at intervals. When the person leaves the detection area, upload the best photo, and the interval upload means that when the face image corresponding to the face ID appears in the detection area, the best photo is uploaded regularly.

步骤602:当主存储器或外存的使用容量达到设定值时,主控制器根据人脸ID对应人脸照片当前存取情况,当前上传情况,当前跟踪情况及最后跟踪时间为每个人脸ID设置优先级。Step 602: When the usage capacity of the main memory or the external storage reaches the set value, the main controller sets the ID for each face ID according to the current access situation of the face photo, the current upload situation, the current tracking situation and the last tracking time according to the face ID. priority.

具体的,当前正在存取的人脸照片具有最高的优先级,当前尚未上传的人脸照片获得较高优先级,当前正在跟踪的人脸照片获得较高优先级,最后跟踪时间与当前时间间隔更长的人脸照片获得较低优先级。Specifically, the face photo currently being accessed has the highest priority, the face photo that has not been uploaded currently has a higher priority, the face photo that is currently being tracked has a higher priority, and the last tracking time and the current time interval Longer face photos get lower priority.

步骤603:根据人脸ID的优先级,优先删除和覆盖优先级更低的人脸照片,并注销被覆盖人脸照片对应的人脸ID。Step 603: According to the priority of the face ID, priority is given to deleting and covering face photos with lower priority, and canceling the face ID corresponding to the covered face photo.

实施例一:Embodiment one:

摄像机对所在检测区域进行录像,并存储在内存中,ARM处理器将分段视频数据通过BT1120标准视频数据接口传输至所述FPGA运算芯片。The camera records the video of the detection area and stores it in the memory, and the ARM processor transmits the segmented video data to the FPGA computing chip through the BT1120 standard video data interface.

FPGA运算芯片将分段视频数据缓存在FPGA运算芯片的内存中并对分段数据逐帧分析,拾取图像中人脸区域的亮度分布,抓取人脸图像并记录人脸信息。 FPGA运算芯片使用当前记录的人脸信息与最近若干帧记录的人脸信息对比,判断该人脸是否与在先记录的人脸相一致,如果该人脸被判断是新人人脸则分配新的人脸ID,如果该人脸被判断是原有人脸,则将当前记录的人脸信息与原有人脸对应的人脸ID相关联。The FPGA computing chip caches the segmented video data in the memory of the FPGA computing chip and analyzes the segmented data frame by frame, picks up the brightness distribution of the face area in the image, captures the face image and records the face information. The FPGA computing chip uses the currently recorded face information to compare with the face information recorded in the last few frames to determine whether the face is consistent with the previously recorded face. If the face is judged to be a new face, a new face is assigned. Face ID, if the face is judged to be the original face, the currently recorded face information is associated with the face ID corresponding to the original face.

FPGA运算芯片根据当前人脸信息的亮度、清晰度以及正脸下人脸特征的匹配程度给出当前人脸图像的质量参数并将质量参数和人脸信息传输至ARM处理器。The FPGA computing chip gives the quality parameters of the current face image according to the brightness and clarity of the current face information and the matching degree of the face features under the front face, and transmits the quality parameters and face information to the ARM processor.

ARM处理器根据当前人脸信息的人脸亮度和质量参数判断是否需要调整曝光参数及其它摄像机参数,并确认调整的步长,控制摄像机完成拍摄参数的修改,同时监测FPGA运算芯片传输的后续人脸图像中的人脸信息,直至亮度足够,质量参数达到标准。The ARM processor judges whether exposure parameters and other camera parameters need to be adjusted according to the face brightness and quality parameters of the current face information, and confirms the adjusted step size, controls the camera to complete the modification of the shooting parameters, and monitors the follow-up person transmitted by the FPGA computing chip Face information in the face image until the brightness is sufficient and the quality parameters reach the standard.

在人脸图像质量参数达到预设阈值的前提下,ARM处理器抓拍人脸照片并存储在内存中。On the premise that the face image quality parameter reaches the preset threshold, the ARM processor captures the face photo and stores it in the memory.

具体的,ARM处理器将缓存中的人脸图像提取作为人脸照片,同时添加对该文件的说明信息,记录拍摄时间和人脸ID。Specifically, the ARM processor extracts the face image in the cache as a face photo, adds description information to the file, and records the shooting time and face ID.

ARM处理器将内存中存储的人脸照片上传至远端服务器。The ARM processor uploads the face photos stored in the memory to the remote server.

该方案的优势在于:使用人脸ID判断人脸图像的获取情况,便于精确的控制和记录人脸信息的收集状况,并且无需获取并上传大量的图片,大大的节省了硬件的开销。The advantages of this solution are: using face ID to judge the acquisition of face images, it is convenient to accurately control and record the collection of face information, and there is no need to acquire and upload a large number of pictures, which greatly saves hardware costs.

根据人脸照片的人脸信息和质量参数获取照片拍摄情况,实时调整摄像机参数,有利于拍出质量更高的照片。According to the face information and quality parameters of the face photo, the photo shooting situation is obtained, and the camera parameters are adjusted in real time, which is conducive to taking photos with higher quality.

实施例二:Embodiment two:

在实施例一的基础之上,FPGA运算芯片检测不到任何人脸时,ARM处理器回溯最近拍出达到标准的人脸照片是,调整的曝光参数,用于设定摄像机。On the basis of Embodiment 1, when the FPGA computing chip cannot detect any human face, the ARM processor traces back to when the most recent standard human face photo was taken, and the adjusted exposure parameters are used to set the camera.

该方案便于在检测检测区域下没有人脸时将摄像机的曝光状态设置在最合理的状态下,便于再次检测到人脸后更快捷的调整到合适的曝光位置。This solution is convenient to set the exposure state of the camera to the most reasonable state when there is no face in the detection area, and it is convenient to adjust to the appropriate exposure position more quickly after the face is detected again.

实施例三:Embodiment three:

在实施例一的基础之上,ARM控制器收到人脸图像信息后判断人脸ID,当人脸该人脸ID已抓拍并存储照片,则对应存储的人脸照片的质量参数以及正脸面积和当前人脸图像信息中包含的质量参数及人脸面积,若质量参数更高或正脸面积更大,则再次抓拍人脸照片并替换原先的人脸照片。On the basis of Embodiment 1, the ARM controller judges the face ID after receiving the face image information. When the face ID has been captured and stored, the quality parameters of the corresponding stored face photo and the front face area and the quality parameters and face area contained in the current face image information, if the quality parameter is higher or the frontal face area is larger, the face photo is captured again and the original face photo is replaced.

若存储的人脸照片为正脸则仅对比该人脸照片的质量参数及当前人脸图像的质量参数。若当前人脸图像的质量参数高于已存储人脸照片的质量参数,则抓拍并存储新的人脸照片,替换老的人脸照片。If the stored face photo is a frontal face, only the quality parameters of the face photo are compared with the quality parameters of the current face image. If the quality parameter of the current face image is higher than the quality parameter of the stored face photo, a new face photo is captured and stored to replace the old face photo.

平均而言正脸面积较大的照片,人脸图像的质量参数也相应较高,所以该方案适合筛选出更能辨识出人员的图像及照片。该方案便于快捷的对比和得到质量更高的人脸照片,便于保存质量更优的人脸照片。On average, photos with a larger frontal area have correspondingly higher quality parameters of the face image, so this solution is suitable for filtering out images and photos that are more recognizable to people. The scheme is convenient for fast comparison and obtaining a higher-quality face photo, and is convenient for saving a better-quality face photo.

实施例四:Embodiment four:

在实施例三的基础之上,ARM处理器还接收来自于远端服务器的指令,根据远端服务器的需求调整抓怕规则。Based on the third embodiment, the ARM processor also receives instructions from the remote server, and adjusts the grasping rules according to the requirements of the remote server.

具体的,包括但不限于如下图片样式:Specifically, including but not limited to the following image styles:

当前场景原图,跟踪人脸所属人体图或跟踪人脸的人脸图或三者的任意组合;The original image of the current scene, the human body image to which the face is tracked or the face image of the tracked face, or any combination of the three;

还包括但不限于如下抓拍策略:It also includes but is not limited to the following capture strategies:

当人脸图像的质量参数达到阈值后,马上抓拍并上传;When the quality parameter of the face image reaches the threshold, capture and upload it immediately;

当人脸所属人员离开检测区域后,上传该人脸对应的最优人脸照片;When the person whose face belongs to leaves the detection area, upload the optimal face photo corresponding to the face;

当人脸所属人员在检测区域出现后定期传输最优人脸图片。When the person to whom the face belongs appears in the detection area, the optimal face picture is regularly transmitted.

该方案使得摄像机更适应日常的监控任务,在没有视频资料作为存档的情况下保留更合理的资料。This solution makes the camera more suitable for daily monitoring tasks, and retains more reasonable information when there is no video material as an archive.

实施例五:Embodiment five:

在实施例一的基础之上,加设TF卡或ROM存储器作为外部存储与ARM处理器连接,ARM处理器将人脸照片存储在TF卡或ROM存储器中。On the basis of Embodiment 1, a TF card or a ROM memory is added as an external storage to connect with the ARM processor, and the ARM processor stores the photo of the face in the TF card or the ROM memory.

该方案优化了人脸照片的存储环境,防止上传不及时,而造成照片没有上传被丢弃或,新抓拍的照片无法存储的情况。This solution optimizes the storage environment of face photos to prevent untimely uploads, resulting in photos that are not uploaded and discarded, or newly captured photos that cannot be stored.

实施例六:Embodiment six:

在实施例一或五的基础之上,当ARM处理器监测到内存或外存的存储空间小于预设阈值,对存储的人脸照片进行优先级排序。On the basis of Embodiment 1 or 5, when the ARM processor detects that the storage space of the internal memory or the external storage is less than the preset threshold, the stored face photos are prioritized.

具体的,根据人脸ID,判断人脸ID对应的人脸照片是否正在存取,为正在存取的人脸照片设置高优先级,判断人脸ID对应人脸照片的上传情况,为已经上传的人脸照片设置低优先级,判断人脸ID对应的人脸图像跟踪情况,为正在跟踪的人脸图像对应的人脸ID设置高优先级,根据最后跟踪时间从近到远顺次设置从高到低的优先级。Specifically, according to the face ID, it is judged whether the face photo corresponding to the face ID is being accessed, and a high priority is set for the face photo being accessed, and the upload status of the face photo corresponding to the face ID is judged as already uploaded. Set a low priority for the face photo, determine the tracking status of the face image corresponding to the face ID, set a high priority for the face ID corresponding to the face image being tracked, and set the sequence from the nearest to the farthest according to the last tracking time High to low priority.

ARM处理器根据实时变化的优先级信息,删除内存或外存中优先级较低的人脸ID对应的人脸照片,并注销该人脸ID。当内存或外存的存储空间高于一个预设阈值,停止删除工作。According to the priority information changed in real time, the ARM processor deletes the face photo corresponding to the face ID with a lower priority in the internal memory or external memory, and cancels the face ID. When the storage space of the internal memory or external storage is higher than a preset threshold, the deletion work is stopped.

该方案在网络状况极端恶劣的情况下,保证了高价值的人脸照片更有效的保存同时不妨碍监控工作的正常进行。In the case of extremely bad network conditions, this solution ensures more effective preservation of high-value face photos without hindering the normal progress of monitoring work.

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.

Claims (10)

1.一种基于摄像机人脸识别的人脸信息收集方法,其特征在于,其方法为:摄像机采集视频数据的过程中,同时对每一帧视频数据进行人脸信息识别获得当前帧内所有人物的人脸图像的人脸信息和对应的人脸图像的质量参数,最后确定所述当前帧内所有人物中人脸图像的人脸信息及质量参数达到预设标准的人物,并且对该人物抓拍人脸照片。1. A face information collection method based on camera face recognition, characterized in that, the method is: in the process of video data collection by camera, simultaneously carry out face information recognition to each frame of video data to obtain all characters in the current frame The face information of the face image and the quality parameter of the corresponding face image, finally determine the person whose face information and quality parameters of the face image of all the characters in the current frame reach the preset standard, and capture the person face photos. 2.根据权利要求1所述的一种基于摄像机人脸识别的人脸信息收集方法,其特征在于:所述对每一帧视频数据进行人脸信息识别获得当前帧内所有人物的人脸图像和对应的人脸图像的质量参数,具体为:所述摄像机根据视频数据的其中一帧中的亮度分布拾取人脸信息,之后根据人脸信息中的人脸图像的亮度、清晰度及正脸下人脸特征匹配程度确定人脸图像的质量参数。2. A method for collecting face information based on camera face recognition according to claim 1, characterized in that: said face information recognition is carried out to each frame of video data to obtain the face images of all people in the current frame And the quality parameters of the corresponding face image, specifically: the camera picks up the face information according to the brightness distribution in one frame of the video data, and then according to the brightness, clarity and front face image of the face image in the face information The matching degree of the lower face features determines the quality parameters of the face image. 3.根据权利要求2所述的一种基于摄像机人脸识别的人脸信息收集方法,其特征在于:所述摄像机根据视频数据的其中一帧中的亮度分布拾取人脸信息之后还包括:所述摄像机根据当前人脸信息与邻近若干帧中拾取人脸信息对比情况判断当前人脸图像是否为新人,如果确定为新人,为当前人脸图像分配人脸ID,反之,将当前人脸图像与已有的人脸ID建立对应关系。3. A method for collecting face information based on camera face recognition according to claim 2, characterized in that: after the camera picks up the face information according to the brightness distribution in one frame of the video data, it also includes: The camera judges whether the current face image is a new person according to the comparison between the current face information and the face information picked up in several adjacent frames. If it is determined to be a new person, assign a face ID to the current face image; The existing face ID establishes a corresponding relationship. 4.根据权利要求3所述的一种基于摄像机人脸识别的人脸信息收集方法,其特征在于:所述确定所述当前帧内所有人物中人脸图像的人脸信息及质量参数达到预设标准的人物,并且对该人物抓拍人脸照片,具体为:当确定为新人且人脸图像的质量参数大于或等于预设阈值时,所述摄像机抓拍人脸照片并存储。4. a kind of face information collection method based on camera face recognition according to claim 3, is characterized in that: the face information and the quality parameter of the face images of all characters in the described current frame are determined to reach a predetermined level. Set a standard person, and capture a face photo of the person, specifically: when it is determined to be a new person and the quality parameter of the face image is greater than or equal to a preset threshold, the camera captures a face photo and stores it. 5.根据权利要求3所述的一种基于摄像机人脸识别的人脸信息收集方法,其特征在于:对每一帧视频数据进行人脸信息识别获得当前帧内所有人物的人脸图像和对应的人脸图像的质量参数之后,该方法还包括:当确定为新人但人脸图像的质量参数小于预设阈值时,所述摄像机根据人脸信息调整摄像机参数,同时丢弃人脸图像并继续判断后续视频数据产生的人脸图像的质量参数直至人脸图像的质量参数大于或等于预设阈值。5. A method for collecting face information based on camera face recognition according to claim 3, characterized in that: carry out face information recognition to each frame of video data to obtain the face images and corresponding images of all characters in the current frame. After the quality parameters of the face image, the method also includes: when it is determined to be a new person but the quality parameter of the face image is less than a preset threshold, the camera adjusts the camera parameters according to the face information, discards the face image and continues to judge The quality parameter of the face image generated from the subsequent video data until the quality parameter of the face image is greater than or equal to a preset threshold. 6.根据权利要求3所述的一种基于摄像机人脸识别的人脸信息收集方法,其特征在于:确定所述当前帧内所有人物中人脸图像的人脸信息及质量参数达到预设标准的人物,并且对该人物抓拍人脸照片,具体为:当确定为原有人脸且人脸图像的质量参数大于或等于预设阈值时,所述摄像机判断人脸图像的质量参数或人脸正脸程度大于原有人脸照片,最后抓拍人脸照片并替换原有人脸照片。6. A method for collecting face information based on camera face recognition according to claim 3, characterized in that: it is determined that the face information and quality parameters of the face images of all people in the current frame reach a preset standard person, and take a photo of the face of the person, specifically: when it is determined to be the original face and the quality parameter of the face image is greater than or equal to the preset threshold, the camera determines whether the quality parameter of the face image or the face is correct The face level is greater than the original face photo, and finally the face photo is captured and the original face photo is replaced. 7.根据权利要求3所述的一种基于摄像机人脸识别的人脸信息收集方法,其特征在于:对每一帧视频数据进行人脸信息识别获得当前帧内所有人物的人脸图像和对应的人脸图像的质量参数之后,该方法还包括:当确定为原有人脸但人脸图像的质量参数小于预设阈值时,所述摄像机根据人脸信息调整摄像机参数,同时丢弃人脸图像并继续判断后续视频数据产生的人脸图像的质量参数直至人脸图像的质量参数大于或等于预设阈值。7. A method for collecting face information based on camera face recognition according to claim 3, characterized in that: carry out face information recognition for each frame of video data to obtain the face images and corresponding images of all people in the current frame. After the quality parameter of the face image, the method also includes: when it is determined to be the original face but the quality parameter of the face image is less than a preset threshold, the camera adjusts the camera parameters according to the face information, discards the face image and Continue to judge the quality parameter of the face image generated by the subsequent video data until the quality parameter of the face image is greater than or equal to a preset threshold. 8.根据权利要求4或6所述的一种基于摄像机人脸识别的人脸信息收集方法,其特征在于:人脸图像的质量参数大于或等于预设阈值时后,该方法还包括:所述摄像机记录人脸图像的质量参数大于或等于阈值时的曝光参数,之后判断摄像机在预设时间内未检测到人脸信息,则根据最近一次人脸图像参数大于或等于预设阈值时记录的曝光参数调整摄像机。8. A method for collecting face information based on camera face recognition according to claim 4 or 6, characterized in that: after the quality parameter of the face image is greater than or equal to a preset threshold, the method also includes: The above-mentioned camera records the exposure parameters when the quality parameter of the face image is greater than or equal to the threshold, and then judges that the camera has not detected face information within the preset time, based on the last face image parameter recorded when the face image parameter is greater than or equal to the preset threshold Exposure parameters to adjust the camera. 9.根据权利要求3所述的一种基于摄像机人脸识别的人脸信息收集方法,其特征在于:确定所述当前帧内所有人物中人脸图像的人脸信息及质量参数达到预设标准的人物,并且对该人物抓拍人脸照片同时,该方法还包括:摄像机检测到存储容量少于预警值,之后删除部分人脸照片,具体为:摄像机根据人脸ID对应的人脸照片的存取状态、上传状态和跟踪状态确定人脸ID的优先级并做实时调整,同时根据优先级排序删除人脸ID对应的人脸照片并注销该人脸ID,最后检测到存储容量高于预设阈值停止删除工作。9. A method for collecting face information based on camera face recognition according to claim 3, characterized in that: it is determined that the face information and quality parameters of the face images of all people in the current frame reach a preset standard person, and at the same time of capturing a face photo of the person, the method also includes: the camera detects that the storage capacity is less than the warning value, and then deletes part of the face photo, specifically: the camera stores the face photo according to the face ID Take status, upload status and tracking status to determine the priority of the face ID and make real-time adjustments. At the same time, delete the face photos corresponding to the face ID according to the priority order and log out the face ID. Finally, it is detected that the storage capacity is higher than the preset Threshold stops deletion from working. 10.根据权利要求1所述的一种基于摄像机人脸识别的人脸信息收集方法,其特征在于:根据人脸信息及人脸图像的质量参数达到预设指标抓拍人脸照片并上传,具体为,摄像机根据远端服务器需求选择人脸照片的上传策略。10. A method for collecting face information based on camera face recognition according to claim 1, characterized in that: according to the quality parameters of the face information and the face image, the preset index is reached to capture a photo of the face and upload it, specifically For, the camera selects the upload strategy of face photos according to the requirements of the remote server.
CN201710557708.0A 2017-07-10 2017-07-10 Face information collection method based on camera face recognition Active CN107346426B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110438587.4A CN113205021B (en) 2017-07-10 Camera and face information collection method based on camera face recognition
CN202110438119.7A CN113205020B (en) 2017-07-10 2017-07-10 Camera and face information collection method based on camera face recognition
CN201710557708.0A CN107346426B (en) 2017-07-10 2017-07-10 Face information collection method based on camera face recognition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710557708.0A CN107346426B (en) 2017-07-10 2017-07-10 Face information collection method based on camera face recognition

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202110438587.4A Division CN113205021B (en) 2017-07-10 Camera and face information collection method based on camera face recognition
CN202110438119.7A Division CN113205020B (en) 2017-07-10 2017-07-10 Camera and face information collection method based on camera face recognition

Publications (2)

Publication Number Publication Date
CN107346426A true CN107346426A (en) 2017-11-14
CN107346426B CN107346426B (en) 2021-03-16

Family

ID=60256883

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110438119.7A Active CN113205020B (en) 2017-07-10 2017-07-10 Camera and face information collection method based on camera face recognition
CN201710557708.0A Active CN107346426B (en) 2017-07-10 2017-07-10 Face information collection method based on camera face recognition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202110438119.7A Active CN113205020B (en) 2017-07-10 2017-07-10 Camera and face information collection method based on camera face recognition

Country Status (1)

Country Link
CN (2) CN113205020B (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107948472A (en) * 2017-11-29 2018-04-20 北京星云环影科技有限责任公司 Intelligent monitoring pick-up head and safety-protection system
CN108345861A (en) * 2018-06-01 2018-07-31 北京晨赢科技有限公司 A kind of identification equipment and its system based on face recognition algorithms comparison data
CN108513110A (en) * 2018-07-05 2018-09-07 郑永春 Recognition of face monitoring camera
CN108540707A (en) * 2018-07-05 2018-09-14 郑永春 Recognition of face crime scene investigation device
CN108875512A (en) * 2017-12-05 2018-11-23 北京旷视科技有限公司 Face identification method, device, system, storage medium and electronic equipment
CN109086670A (en) * 2018-07-03 2018-12-25 百度在线网络技术(北京)有限公司 Face identification method, device and equipment
CN109376743A (en) * 2018-09-28 2019-02-22 北京旷视科技有限公司 Image processing method, device, image recognition apparatus and storage medium
CN109376716A (en) * 2018-12-13 2019-02-22 深圳市信义科技有限公司 A kind of preferred method of the recognition of face based on consecutive image
CN109376645A (en) * 2018-10-18 2019-02-22 深圳英飞拓科技股份有限公司 A kind of face image data preferred method, device and terminal device
CN109508648A (en) * 2018-10-22 2019-03-22 成都臻识科技发展有限公司 A kind of face snap method and apparatus
CN109558839A (en) * 2018-11-29 2019-04-02 徐州立讯信息科技有限公司 Adaptive face identification method and the equipment and system for realizing this method
CN109636960A (en) * 2018-11-23 2019-04-16 深圳奥比中光科技有限公司 3D Intelligent door lock capable of recognizing face and 3D face unlocking method
CN109672858A (en) * 2018-11-23 2019-04-23 深圳奥比中光科技有限公司 3D recognition of face monitoring system
CN109873951A (en) * 2018-06-20 2019-06-11 成都市喜爱科技有限公司 A kind of video capture and method, apparatus, equipment and the medium of broadcasting
CN110121055A (en) * 2018-02-07 2019-08-13 罗伯特·博世有限公司 Method and apparatus for Object identifying
CN110232323A (en) * 2019-05-13 2019-09-13 特斯联(北京)科技有限公司 A kind of parallel method for quickly identifying of plurality of human faces for crowd and its device
CN110263680A (en) * 2019-06-03 2019-09-20 北京旷视科技有限公司 Image processing method, device and system and storage medium
CN110276314A (en) * 2019-06-26 2019-09-24 苏州万店掌网络科技有限公司 Face identification method and recognition of face video camera
CN110321378A (en) * 2019-06-03 2019-10-11 梁勇 A kind of mobile monitor image identification system and method
CN110719398A (en) * 2018-07-12 2020-01-21 浙江宇视科技有限公司 Face snapshot object determination method and device
WO2020056545A1 (en) * 2018-09-17 2020-03-26 深圳鲲云信息科技有限公司 Ai implementation method using fpga hardware, and related product
CN111161206A (en) * 2018-11-07 2020-05-15 杭州海康威视数字技术股份有限公司 Image capturing method, monitoring camera and monitoring system
CN111652139A (en) * 2020-06-03 2020-09-11 浙江大华技术股份有限公司 Face snapshot method, snapshot device and storage device
CN111914781A (en) * 2020-08-10 2020-11-10 杭州海康威视数字技术股份有限公司 Method and device for processing face image
CN112437278A (en) * 2020-11-23 2021-03-02 杭州海康威视数字技术股份有限公司 Cooperative monitoring system, device and method
CN112637567A (en) * 2020-12-24 2021-04-09 中标慧安信息技术股份有限公司 Multi-node edge computing device-based cloud data uploading method and system
CN113033521A (en) * 2021-05-25 2021-06-25 南京甄视智能科技有限公司 Perimeter dynamic early warning method and system based on target analysis
US11627248B2 (en) 2019-02-03 2023-04-11 Chengdu Sioeye Technology Co., Ltd. Shooting method for shooting device, and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103942525A (en) * 2013-12-27 2014-07-23 高新兴科技集团股份有限公司 Real-time face optimal selection method based on video sequence
US20150379330A1 (en) * 2014-06-26 2015-12-31 Cisco Technology Inc. Entropy-Reducing Low Pass Filter for Face-Detection
CN105243373A (en) * 2015-10-27 2016-01-13 北京奇虎科技有限公司 Method for filtering facial images to prevent repeated snapshot, server, intelligent monitoring device and system
CN105868735A (en) * 2016-04-25 2016-08-17 南京大学 Human face-tracking preprocessing method and video-based intelligent health monitoring system
CN105930822A (en) * 2016-05-11 2016-09-07 北京格灵深瞳信息技术有限公司 Human face snapshot method and system
EP3098755A1 (en) * 2015-05-29 2016-11-30 Accenture Global Services Limited Local caching for object recognition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000172852A (en) * 1998-09-28 2000-06-23 Canon Inc Method, device, and recording medium for processing image
CN104778446A (en) * 2015-03-19 2015-07-15 南京邮电大学 Method for constructing image quality evaluation and face recognition efficiency relation model

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103942525A (en) * 2013-12-27 2014-07-23 高新兴科技集团股份有限公司 Real-time face optimal selection method based on video sequence
US20150379330A1 (en) * 2014-06-26 2015-12-31 Cisco Technology Inc. Entropy-Reducing Low Pass Filter for Face-Detection
EP3098755A1 (en) * 2015-05-29 2016-11-30 Accenture Global Services Limited Local caching for object recognition
CN105243373A (en) * 2015-10-27 2016-01-13 北京奇虎科技有限公司 Method for filtering facial images to prevent repeated snapshot, server, intelligent monitoring device and system
CN105868735A (en) * 2016-04-25 2016-08-17 南京大学 Human face-tracking preprocessing method and video-based intelligent health monitoring system
CN105930822A (en) * 2016-05-11 2016-09-07 北京格灵深瞳信息技术有限公司 Human face snapshot method and system

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107948472A (en) * 2017-11-29 2018-04-20 北京星云环影科技有限责任公司 Intelligent monitoring pick-up head and safety-protection system
CN108875512B (en) * 2017-12-05 2021-04-23 北京旷视科技有限公司 Face recognition method, device, system, storage medium and electronic equipment
CN108875512A (en) * 2017-12-05 2018-11-23 北京旷视科技有限公司 Face identification method, device, system, storage medium and electronic equipment
CN110121055A (en) * 2018-02-07 2019-08-13 罗伯特·博世有限公司 Method and apparatus for Object identifying
CN108345861A (en) * 2018-06-01 2018-07-31 北京晨赢科技有限公司 A kind of identification equipment and its system based on face recognition algorithms comparison data
CN109873952B (en) * 2018-06-20 2021-03-23 成都市喜爱科技有限公司 Shooting method, device, equipment and medium
US11245838B2 (en) 2018-06-20 2022-02-08 Chengdu Sioeye Technology Co., Ltd. Shooting method for shooting device, and electronic equipment
CN109873951A (en) * 2018-06-20 2019-06-11 成都市喜爱科技有限公司 A kind of video capture and method, apparatus, equipment and the medium of broadcasting
CN109873952A (en) * 2018-06-20 2019-06-11 成都市喜爱科技有限公司 A kind of method, apparatus of shooting, equipment and medium
CN109086670A (en) * 2018-07-03 2018-12-25 百度在线网络技术(北京)有限公司 Face identification method, device and equipment
CN109086670B (en) * 2018-07-03 2019-10-11 百度在线网络技术(北京)有限公司 Face identification method, device and equipment
CN108540707A (en) * 2018-07-05 2018-09-14 郑永春 Recognition of face crime scene investigation device
CN108513110A (en) * 2018-07-05 2018-09-07 郑永春 Recognition of face monitoring camera
CN110719398B (en) * 2018-07-12 2021-07-20 浙江宇视科技有限公司 A method and device for determining a face capture object
CN110719398A (en) * 2018-07-12 2020-01-21 浙江宇视科技有限公司 Face snapshot object determination method and device
WO2020056545A1 (en) * 2018-09-17 2020-03-26 深圳鲲云信息科技有限公司 Ai implementation method using fpga hardware, and related product
CN109376743A (en) * 2018-09-28 2019-02-22 北京旷视科技有限公司 Image processing method, device, image recognition apparatus and storage medium
CN109376645A (en) * 2018-10-18 2019-02-22 深圳英飞拓科技股份有限公司 A kind of face image data preferred method, device and terminal device
CN109508648A (en) * 2018-10-22 2019-03-22 成都臻识科技发展有限公司 A kind of face snap method and apparatus
CN111161206A (en) * 2018-11-07 2020-05-15 杭州海康威视数字技术股份有限公司 Image capturing method, monitoring camera and monitoring system
CN109672858A (en) * 2018-11-23 2019-04-23 深圳奥比中光科技有限公司 3D recognition of face monitoring system
CN109636960A (en) * 2018-11-23 2019-04-16 深圳奥比中光科技有限公司 3D Intelligent door lock capable of recognizing face and 3D face unlocking method
CN109558839A (en) * 2018-11-29 2019-04-02 徐州立讯信息科技有限公司 Adaptive face identification method and the equipment and system for realizing this method
CN109376716A (en) * 2018-12-13 2019-02-22 深圳市信义科技有限公司 A kind of preferred method of the recognition of face based on consecutive image
US11627248B2 (en) 2019-02-03 2023-04-11 Chengdu Sioeye Technology Co., Ltd. Shooting method for shooting device, and electronic equipment
CN110232323A (en) * 2019-05-13 2019-09-13 特斯联(北京)科技有限公司 A kind of parallel method for quickly identifying of plurality of human faces for crowd and its device
CN110321378A (en) * 2019-06-03 2019-10-11 梁勇 A kind of mobile monitor image identification system and method
CN110263680A (en) * 2019-06-03 2019-09-20 北京旷视科技有限公司 Image processing method, device and system and storage medium
CN110263680B (en) * 2019-06-03 2022-01-28 北京旷视科技有限公司 Image processing method, device and system and storage medium
CN110276314A (en) * 2019-06-26 2019-09-24 苏州万店掌网络科技有限公司 Face identification method and recognition of face video camera
CN111652139A (en) * 2020-06-03 2020-09-11 浙江大华技术股份有限公司 Face snapshot method, snapshot device and storage device
CN111914781A (en) * 2020-08-10 2020-11-10 杭州海康威视数字技术股份有限公司 Method and device for processing face image
CN111914781B (en) * 2020-08-10 2024-03-19 杭州海康威视数字技术股份有限公司 Face image processing method and device
CN112437278A (en) * 2020-11-23 2021-03-02 杭州海康威视数字技术股份有限公司 Cooperative monitoring system, device and method
CN112637567A (en) * 2020-12-24 2021-04-09 中标慧安信息技术股份有限公司 Multi-node edge computing device-based cloud data uploading method and system
CN113033521A (en) * 2021-05-25 2021-06-25 南京甄视智能科技有限公司 Perimeter dynamic early warning method and system based on target analysis

Also Published As

Publication number Publication date
CN113205021A (en) 2021-08-03
CN113205020B (en) 2025-02-07
CN113205020A (en) 2021-08-03
CN107346426B (en) 2021-03-16

Similar Documents

Publication Publication Date Title
CN107346426A (en) A kind of face information collection method based on video camera recognition of face
WO2020094091A1 (en) Image capturing method, monitoring camera, and monitoring system
WO2020057355A1 (en) Three-dimensional modeling method and device
CN109040709B (en) Video monitoring method and device, monitoring server and video monitoring system
CN109271961B (en) Behavior pattern judgment method based on figure identity feature recognition
US9432581B2 (en) Information processing device and recording medium for face recognition
CN102568146B (en) A kind of fire alarm based on thermal-induced imagery with eliminate system in early days
JP5213105B2 (en) Video network system and video data management method
CN103226694B (en) A kind of portrait in real time obtains comparison and early warning cloth Ore-controlling Role and using method thereof
CN111050114A (en) Low-power-consumption camera, monitoring management control system and control method thereof
CN109195011B (en) Video processing method, device, equipment and storage medium
CN109376601B (en) Object tracking method based on high-speed ball, monitoring server and video monitoring system
CN111553231B (en) Face snapshot and deduplication system, method, terminal and medium based on information fusion
CN110648319A (en) Equipment image acquisition and diagnosis system and method based on double cameras
CN117280708A (en) Shutter value adjustment of monitoring camera using AI-based object recognition
CN116456061A (en) Intelligent community monitoring management method, system and medium based on dynamic target detection
CN113129934B (en) Double-recording system with face recognition and identity verification functions
CN115410304A (en) Safety prevention and control method and system for poultry house breeding based on self-learning
CN114118271A (en) Image determination method, device, storage medium and electronic device
CN118762413A (en) Patrol monitoring method, device, electronic equipment and storage medium
CN107124577A (en) A kind of real-time alarm system for guarding against theft based on moving object detection
CN113205021B (en) Camera and face information collection method based on camera face recognition
CN208691422U (en) face recognition surveillance camera
CN111432175A (en) Intelligent recognition abnormal behavior alarm system
CN110597114A (en) Monitoring system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A face information collection method based on camera face recognition

Effective date of registration: 20210714

Granted publication date: 20210316

Pledgee: Shenzhen hi tech investment small loan Co.,Ltd.

Pledgor: SHENZHEN HIVT TECHNOLOGY Co.,Ltd.

Registration number: Y2021980006125

PE01 Entry into force of the registration of the contract for pledge of patent right
CP01 Change in the name or title of a patent holder

Address after: 518100 Shenzhen famous industrial products, Baosheng Industrial Park, Laodong community, Xixiang street, Bao'an District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen Haiqing Zhiyuan Technology Co.,Ltd.

Address before: 518100 Shenzhen famous industrial products, Baosheng Industrial Park, Laodong community, Xixiang street, Bao'an District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN HIVT TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20210316

Pledgee: Shenzhen hi tech investment small loan Co.,Ltd.

Pledgor: SHENZHEN HIVT TECHNOLOGY Co.,Ltd.

Registration number: Y2021980006125

PC01 Cancellation of the registration of the contract for pledge of patent right