[go: up one dir, main page]

CN107332528A - A kind of tunable multiple frequency section power amplifier - Google Patents

A kind of tunable multiple frequency section power amplifier Download PDF

Info

Publication number
CN107332528A
CN107332528A CN201710683702.8A CN201710683702A CN107332528A CN 107332528 A CN107332528 A CN 107332528A CN 201710683702 A CN201710683702 A CN 201710683702A CN 107332528 A CN107332528 A CN 107332528A
Authority
CN
China
Prior art keywords
impedance matching
matching network
power amplifier
microstrip
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710683702.8A
Other languages
Chinese (zh)
Inventor
毕晓君
宁城枭
谢雨沁
符致铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201710683702.8A priority Critical patent/CN107332528A/en
Publication of CN107332528A publication Critical patent/CN107332528A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)

Abstract

The invention discloses a kind of tunable multiple frequency section power amplifier, it can effectively amplify the signal of multiple frequency ranges in wider frequency range.Including input resistant matching network, amplifier tube and the output impedance matching networks being sequentially connected;Input resistant matching network is to constitute matching network using electric capacity, inductance, resistance, microstrip line or their any combination with output impedance matching networks, realizes impedance matching, and is not limited solely to the matched form using microstrip line.And change the matching network of power amplifier by RF switch so that power amplifier can be operated in multiple frequency ranges, while not reducing performance of the power amplifier in each working frequency range.In addition, the present invention can be generalized to other frequency ranges or other kinds of high frequency power amplifier, have broad application prospects and practical value.

Description

一种可调多频段功率放大器An adjustable multi-band power amplifier

技术领域technical field

本发明属于功率放大器领域,更具体地,涉及一种可调多频段功率放大器。The invention belongs to the field of power amplifiers, and more specifically relates to an adjustable multi-band power amplifier.

背景技术Background technique

近年来,无线通信系统演变出了各式各样广泛的标准,这些并存的标准对无线网络进行着动态的管理,这就使得专用单载波频率的无线电系统向通用和自适应系统转变,以便能有效地处理广泛的频带。换言之,未来的无线电系统应该能够应付不同的标准所规定的不同的中心频率和信号带宽,同时保持具有竞争力的性能指标。近年来的研究都主要集中在单一标准无线电系统的效率增强技术,提高峰均功率比,比如漏极电压调制的包络跟踪技术以及负载调制的Doherty技术,但是这些技术都有频率带宽限制,因此主要局限于单一标准的部署方案。于是开始有针对多个标准的宽频带或者多频带功率放大器设计,比如J类功率放大器和变容二极管的动态负载调制技术等等,实现在宽频带或者多频带高峰值输出效率,但是这些技术在功率回退区域内的效率较低。图1描述了一种常用的超宽频带功率放大器结构框图,通过引入超宽带的匹配网络或采用新的负载牵引技术,使得所设计功放的频率响应宽度得到拓展。然而,带宽和效率的矛盾性使得设计出高效率、高线性度的超宽带功率放大器成为难题。In recent years, wireless communication systems have evolved a wide variety of standards. These coexisting standards dynamically manage the wireless network, which makes the radio system of a dedicated single-carrier frequency change to a general-purpose and adaptive system. Efficiently handles a wide frequency band. In other words, future radio systems should be able to cope with different center frequencies and signal bandwidths specified by different standards, while maintaining competitive performance indicators. Researches in recent years have mainly focused on efficiency enhancement technologies for single-standard radio systems to improve peak-to-average power ratio, such as envelope tracking technology for drain voltage modulation and Doherty technology for load modulation, but these technologies have frequency bandwidth limitations, so Primarily limited to single-standard deployment scenarios. So began to design wide-band or multi-band power amplifiers for multiple standards, such as class J power amplifiers and dynamic load modulation technology of varactor diodes, etc., to achieve high peak output efficiency in wide-band or multi-band, but these technologies are in Efficiency is lower in the power backoff region. Figure 1 depicts a structural block diagram of a commonly used ultra-wideband power amplifier. By introducing an ultra-wideband matching network or using a new load-pull technology, the frequency response width of the designed power amplifier is expanded. However, the contradiction between bandwidth and efficiency makes it difficult to design ultra-wideband power amplifiers with high efficiency and high linearity.

发明内容Contents of the invention

针对现有技术的以上缺陷或改进需求,本发明提供了一种可调多频段功率放大器,其目的在于解决现有多频段功率放大器由于仅采用微带调谐阻抗导致频率带宽窄效率低的技术问题。In view of the above defects or improvement needs of the prior art, the present invention provides an adjustable multi-band power amplifier, which aims to solve the technical problem of narrow frequency bandwidth and low efficiency of the existing multi-band power amplifier due to the use of only microstrip tuning impedance .

为实现上述目的,本发明的提供了一种可调多频段功率放大器,包括:To achieve the above object, the present invention provides an adjustable multi-band power amplifier, comprising:

依次连接的输入阻抗匹配网络、放大管和输出阻抗匹配网络;放大管用于对可调多频段功率放大器输入端接收的传输信号进行放大处理;The input impedance matching network, the amplifier tube and the output impedance matching network connected in sequence; the amplifier tube is used to amplify the transmission signal received by the input terminal of the adjustable multi-band power amplifier;

输入阻抗匹配网络包括第一微带、第二微带、输入开关模块和n个次级输入阻抗匹配网路;输入开关模块有n+1个端,第一微带的后端与第二微带的前端连接,输入开关模块的第n+1端与第二微带的前端连接,输入开关模块的第i端与第i个次级输入阻抗匹配网络的端口连接,当传输信号频率为第i个频率时,第i次级输入阻抗匹配网络、第一微带与第二微带实现可调多频段功率放大器输入端阻抗与放大管输入端阻抗匹配;The input impedance matching network includes a first microstrip, a second microstrip, an input switch module and n secondary input impedance matching networks; the input switch module has n+1 terminals, and the back end of the first microstrip is connected to the second microstrip The front end of the strip is connected, the n+1th end of the input switch module is connected to the front end of the second microstrip, the i-th end of the input switch module is connected to the port of the i-th secondary input impedance matching network, when the transmission signal frequency is the first For an i frequency, the i-th secondary input impedance matching network, the first microstrip and the second microstrip realize the impedance matching of the input terminal of the adjustable multi-band power amplifier and the impedance of the input terminal of the amplifier tube;

输出阻抗匹配网络包括第三微带、第四微带、输出开关模块和n个次级输出阻抗匹配网路;输出开关模块有n+1个端,第三微带的后端与第四微带的前端连接,输出开端模块的第n+1端与第四微带的前端连接,输出开关模块的第i端与第i个次级输出阻抗匹配网络的端口连接,当传输信号频率为第i个频率时,第i次级输出阻抗匹配网络、第三微带与第四微带实现可调多频段功率放大器输出端阻抗与放大管输出端阻抗匹配,其中,1≤i≤n。The output impedance matching network includes a third microstrip, a fourth microstrip, an output switch module and n secondary output impedance matching networks; the output switch module has n+1 terminals, and the back end of the third microstrip is connected to the fourth microstrip The front end of the strip is connected, the n+1th end of the output open-end module is connected to the front end of the fourth microstrip, the i-th end of the output switch module is connected to the port of the i-th secondary output impedance matching network, when the transmission signal frequency is the first For i frequency, the i-th secondary output impedance matching network, the third microstrip and the fourth microstrip realize the impedance matching of the output end of the adjustable multi-band power amplifier and the output end of the amplifier tube, wherein, 1≤i≤n.

优选地,第i个次级输出阻抗匹配网络为电阻、电容、电感与微带的任意组合。Preferably, the i-th secondary output impedance matching network is any combination of resistors, capacitors, inductors and microstrips.

优选地,第i个次级输入阻抗匹配网络为一个电阻、一个电感、一个电容或一个微带线。Preferably, the i-th secondary input impedance matching network is a resistor, an inductor, a capacitor or a microstrip line.

优选地,第i个次级输入阻抗匹配网络为串联的电阻和电感、串联的电阻和电容、串联的电感和电容、并联的电阻和电感、并联的电阻和电容或并联的电感和电容。Preferably, the i-th secondary input impedance matching network is a series resistor and inductor, a series resistor and capacitor, a series inductor and capacitor, a parallel resistor and inductor, a parallel resistor and capacitor, or a parallel inductor and capacitor.

优选地,第i个次级输入阻抗匹配网络为依次串联的电阻、电感和电容或并联的电阻、电感和电容。Preferably, the i-th secondary input impedance matching network is sequentially connected in series with resistors, inductors and capacitors or connected in parallel with resistors, inductors and capacitors.

优选地,第i个次级输出阻抗匹配网络为电阻、电容、电感与微带的任意组合。Preferably, the i-th secondary output impedance matching network is any combination of resistors, capacitors, inductors and microstrips.

优选地,第i个次级输出阻抗匹配网络为一个电阻、一个电感、一个电容或一个微带线。Preferably, the i-th secondary output impedance matching network is a resistor, an inductor, a capacitor or a microstrip line.

优选地,第i个次级输出阻抗匹配网络为串联的电阻和电感、串联的电阻和电容、串联的电感和电容、并联的电阻和电感、并联的电阻和电容或并联的电感和电容。Preferably, the i-th secondary output impedance matching network is a resistor and inductor in series, a resistor and capacitor in series, an inductor and capacitor in series, a resistor and inductor in parallel, a resistor and capacitor in parallel, or an inductor and capacitor in parallel.

优选地,第i个次级输出阻抗匹配网络为依次串联的电阻、电感和电容或并联的电阻、电感和电容。Preferably, the i-th secondary output impedance matching network is sequentially connected in series with resistors, inductors and capacitors or connected in parallel with resistors, inductors and capacitors.

总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得以下有益效果:Generally speaking, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:

由于提出了将射频开关用于阻抗匹配网络结构,其中阻抗匹配网络为电阻、电容、微带、电感任意组合,通过开关切换不同的次级匹配网络能够消除功率放大器工作在不同频段时产生的阻抗失配,从而提高功率放大器的工作性能。相比于单元选择型功放,超宽频带功放等这些多波段功率放大器,本发明同时解决了带宽和效率的矛盾以及随着工作频段数目的增加,电路的体积增加,导致成本增加的问题。同时,本发明能够推广到其他频段或其他种类的高频功率放大器,设计非常灵活,应用非常广泛,拥有很大的实用价值。Since the RF switch is proposed for the impedance matching network structure, where the impedance matching network is any combination of resistors, capacitors, microstrips, and inductors, the impedance generated when the power amplifier operates in different frequency bands can be eliminated by switching different secondary matching networks. mismatch, thereby improving the performance of the power amplifier. Compared with multi-band power amplifiers such as unit-selective power amplifiers and ultra-wideband power amplifiers, the present invention simultaneously solves the problem of the contradiction between bandwidth and efficiency and the increase in the volume of the circuit with the increase in the number of operating frequency bands, resulting in an increase in cost. At the same time, the invention can be extended to other frequency bands or other types of high-frequency power amplifiers, has very flexible design, wide application and great practical value.

附图说明Description of drawings

图1是背景技术的超宽频带功率放大器结构框图;Fig. 1 is the structural block diagram of ultra-wideband power amplifier of background technology;

图2是本发明提供的可调多频段功率放大器的结构示意图;Fig. 2 is the structural representation of adjustable multi-band power amplifier provided by the present invention;

图3是本发明提供的可调多频段功率放大器实施例的结构示意图;Fig. 3 is a structural schematic diagram of an embodiment of an adjustable multi-band power amplifier provided by the present invention;

图4是本发明提供的可调多频段功率放大器实施例中阻抗匹配网络的结构示意图;FIG. 4 is a schematic structural diagram of an impedance matching network in an embodiment of an adjustable multi-band power amplifier provided by the present invention;

图5是本发明提供的可调多频段功率放大器实施例中输出阻抗的史密斯原图。Fig. 5 is a Smith original diagram of the output impedance in the embodiment of the adjustable multi-band power amplifier provided by the present invention.

具体实施方式detailed description

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.

图2为本发明提供的可调多频段功率放大器的结构示意图,可调多频段功率放大器包括依次连接的输入阻抗匹配网络、放大管和输出阻抗匹配网络;输入阻抗匹配网络用于实现放大管输入端阻抗匹配,输出阻抗匹配网络用于实现放大管输出端阻抗匹配。Fig. 2 is the structure schematic diagram of the adjustable multi-band power amplifier provided by the present invention, the adjustable multi-band power amplifier comprises the input impedance matching network, the amplifying tube and the output impedance matching network connected in sequence; the input impedance matching network is used to realize the input of the amplifying tube End impedance matching, the output impedance matching network is used to achieve impedance matching at the output end of the amplifier tube.

输入阻抗匹配网络包括第一微带、第二微带、输入开关模块和n个次级输入阻抗匹配网路;输入开关模块有n+1个端,第一微带的后端与第二微带的前端连接,输入开关模块的第n+1端与第二微带的前端连接,输入开关模块的第i端与第i个次级输入阻抗匹配网络的端口连接,第一微带的前端为输入阻抗匹配网络的输入端,第二微带的后端为输入阻抗匹配网络的输出端。当传输信号频率为第i个频率时,第i次级输入阻抗匹配网络、第一微带与第二微带实现可调多频段功率放大器输入端阻抗与放大管输入端阻抗匹配;其中,1≤i≤n。The input impedance matching network includes a first microstrip, a second microstrip, an input switch module and n secondary input impedance matching networks; the input switch module has n+1 terminals, and the back end of the first microstrip is connected to the second microstrip The front end of the strip is connected, the n+1th end of the input switch module is connected to the front end of the second microstrip, the i-th end of the input switch module is connected to the port of the i-th secondary input impedance matching network, the front end of the first microstrip is the input end of the input impedance matching network, and the rear end of the second microstrip is the output end of the input impedance matching network. When the transmission signal frequency is the i-th frequency, the i-th secondary input impedance matching network, the first microstrip and the second microstrip realize the impedance matching of the input end of the adjustable multi-band power amplifier and the impedance of the input end of the amplifier tube; where, 1 ≤i≤n.

输出阻抗匹配网络包括第三微带、第四微带、输出开关模块和n个次级输出阻抗匹配网路;第三微带的后端与第四微带的前端连接,输出开端模块的第n+1端与第四微带的前端连接,输出开关模块的第i端与第i个次级输出阻抗匹配网络的端口连接,第三微带的前端为输出阻抗匹配网络的输入端,第四微带的后端为输出阻抗匹配网络的输出端。当传输信号频率为第i个频率时,第i次级输出阻抗匹配网络、第三微带与第四微带实现可调多频段功率放大器输出端阻抗与放大管输出端阻抗匹配。The output impedance matching network includes a third microstrip, a fourth microstrip, an output switch module and n secondary output impedance matching networks; the rear end of the third microstrip is connected to the front end of the fourth microstrip, and the first The n+1 end is connected to the front end of the fourth microstrip, the i-th end of the output switch module is connected to the port of the i-th secondary output impedance matching network, the front end of the third microstrip is the input end of the output impedance matching network, and the i-th end of the output switch module is connected to the port of the i-th secondary output impedance matching network. The back end of the four microstrips is the output end of the output impedance matching network. When the transmission signal frequency is the i-th frequency, the i-th secondary output impedance matching network, the third microstrip and the fourth microstrip realize the impedance matching of the output end of the adjustable multi-band power amplifier and the output end of the amplifier tube.

输入开关模块和输出开关模块为单刀多掷开关,并联在阻抗匹配网络中,并同时连接多个通路,当可调多频段功率放大器中传输第i个工作频段信号时,仅仅第i个次级输出阻抗匹配网络与第三微带连接,第i个次级输入阻抗匹配网络与第一微带连接,实现第i个频段上的阻抗匹配。工作频段切换时,开关切换至另一条通路导通,实现匹配网络切换,保证另一个频段上的阻抗匹配。The input switch module and the output switch module are single-pole multi-throw switches, which are connected in parallel in the impedance matching network and connected to multiple channels at the same time. When the i-th working frequency band signal is transmitted in the adjustable multi-band power amplifier, only the i-th secondary The output impedance matching network is connected to the third microstrip, and the i-th secondary input impedance matching network is connected to the first microstrip to realize impedance matching on the i-th frequency band. When the working frequency band is switched, the switch is switched to another path to conduct, so as to realize the switching of the matching network and ensure the impedance matching on the other frequency band.

下面对不同结构的第i个次级输入阻抗匹配网络的端口进行分析:The following analyzes the ports of the i-th secondary input impedance matching network with different structures:

当第i个次级输入阻抗匹配网络为一个电阻时,电阻一端为第i个次级输入阻抗匹配网络的端口,电阻另一端接地。当第i个次级输入阻抗匹配网络为一个电感时,电感一端为第i个次级输入阻抗匹配网络的端口,电感另一端接地。当第i个次级输入阻抗匹配网络为一个电容时,电容一端为第i个次级输入阻抗匹配网络的端口,电容另一端接地。当第i个次级输入阻抗匹配网络为一个微带时,微带一端为第i个次级输入阻抗匹配网络的端口,微带另一端开路或者接地。When the i-th secondary input impedance matching network is a resistor, one end of the resistor is a port of the i-th secondary input impedance matching network, and the other end of the resistor is grounded. When the i-th secondary input impedance matching network is an inductor, one end of the inductor is a port of the i-th secondary input impedance matching network, and the other end of the inductor is grounded. When the i-th secondary input impedance matching network is a capacitor, one end of the capacitor is a port of the i-th secondary input impedance matching network, and the other end of the capacitor is grounded. When the i-th secondary input impedance matching network is a microstrip, one end of the microstrip is a port of the i-th secondary input impedance matching network, and the other end of the microstrip is open or grounded.

第i个次级输入阻抗匹配网络可以为串联的电阻和电感,当电阻的后端与电感的前端连接时,电阻的前端为第i个次级输入阻抗匹配网络的端口,电感的后端接地;当电阻的前端与电感的后端连接时,电感的前端为第i个次级输入阻抗匹配网络的端口,电阻的后端接地。第i个次级输入阻抗匹配网络可以为串联的电感和电容,当电容的后端与电感的前端连接时,电容的前端为第i个次级输入阻抗匹配网络的端口,电感的后端接地;当电容的前端与电感的后端连接时,电感的前端为第i个次级输入阻抗匹配网络的端口,电容的后端接地。第i个次级输入阻抗匹配网络可以为串联的电阻和电容,当电阻的后端与电容的前端连接时,电阻的前端为第i个次级输入阻抗匹配网络的端口,电容的后端接地;当电阻的前端与电容的后端连接时,电容的前端为第i个次级输入阻抗匹配网络的端口,电阻的后端接地。The i-th secondary input impedance matching network can be a resistor and an inductor connected in series. When the back end of the resistor is connected to the front end of the inductor, the front end of the resistor is the port of the i-th secondary input impedance matching network, and the back end of the inductor is grounded. ; When the front end of the resistor is connected to the back end of the inductor, the front end of the inductor is the port of the i-th secondary input impedance matching network, and the back end of the resistor is grounded. The i-th secondary input impedance matching network can be an inductor and a capacitor connected in series. When the back end of the capacitor is connected to the front end of the inductor, the front end of the capacitor is the port of the i-th secondary input impedance matching network, and the back end of the inductor is grounded. ; When the front end of the capacitor is connected to the back end of the inductor, the front end of the inductor is the port of the i-th secondary input impedance matching network, and the back end of the capacitor is grounded. The i-th secondary input impedance matching network can be a resistor and capacitor connected in series. When the back end of the resistor is connected to the front end of the capacitor, the front end of the resistor is the port of the i-th secondary input impedance matching network, and the back end of the capacitor is grounded. ; When the front end of the resistor is connected to the back end of the capacitor, the front end of the capacitor is the port of the i-th secondary input impedance matching network, and the back end of the resistor is grounded.

当第i个次级输入阻抗匹配网络为并联的电阻和电感时,电阻的一端为第i个次级输入阻抗匹配网络的端口,电阻的另一端接地;当第i个次级输入阻抗匹配网络为并联的电阻和电容时,电容的一端为第i个次级输入阻抗匹配网络的端口,电容的另一端接地;当第i个次级输入阻抗匹配网络为并联的电容和电感时,电感的一端为第i个次级输入阻抗匹配网络的端口,电感的另一端接地。When the i-th secondary input impedance matching network is a parallel resistor and inductor, one end of the resistor is the port of the i-th secondary input impedance matching network, and the other end of the resistor is grounded; when the i-th secondary input impedance matching network When it is a resistor and capacitor connected in parallel, one end of the capacitor is the port of the i-th secondary input impedance matching network, and the other end of the capacitor is grounded; when the i-th secondary input impedance matching network is a parallel capacitor and inductor, the inductance One end is the port of the i-th secondary input impedance matching network, and the other end of the inductor is grounded.

当第i个次级输入阻抗匹配网络为微带线时,微带线的后端接地,微带线的前端为第i个次级输入阻抗匹配网络的端口。When the i-th secondary input impedance matching network is a microstrip line, the rear end of the microstrip line is grounded, and the front end of the microstrip line is a port of the i-th secondary input impedance matching network.

当第i个次级输入阻抗匹配网络为首末端依次串联的电阻、电感和电容时,电阻前端为第i个次级输入阻抗匹配网络的端口时,电容的后端接地。第i个次级输入阻抗匹配网络也可以为并联的电阻、电感和电容,电容的一端为第i个次级输入阻抗匹配网络的端口,电容的另一端接地。When the i-th secondary input impedance matching network is a resistor, an inductor and a capacitor connected in series at the head end, and the front end of the resistor is the port of the i-th secondary input impedance matching network, the rear end of the capacitor is grounded. The i-th secondary input impedance matching network may also be a resistor, an inductor and a capacitor connected in parallel, one end of the capacitor is a port of the i-th secondary input impedance matching network, and the other end of the capacitor is grounded.

第i个次级输出阻抗匹配网络为一个电阻、一个电感、一个电容或一个微带线。第i个次级输出阻抗匹配网络也可以为串联的电阻和电感、串联的电阻和电容、串联的电感和电容、并联的电阻和电感、并联的电阻和电容、并联的电感和电容或者可以为微带线。第i个次级输出阻抗匹配网络也可以为依次串联的电阻、电感和电容或者为并联的电阻、电感和电容。第i个次级输入阻抗匹配网络端口分析同第i个次级输出阻抗匹配网络端口分析相同。The i-th secondary output impedance matching network is a resistor, an inductor, a capacitor or a microstrip line. The i-th secondary output impedance matching network can also be resistors and inductors in series, resistors and capacitors in series, inductors and capacitors in series, resistors and inductors in parallel, resistors and capacitors in parallel, inductors and capacitors in parallel, or can be microstrip line. The i-th secondary output impedance matching network can also be a resistor, an inductor and a capacitor connected in series in sequence or a resistor, an inductor and a capacitor connected in parallel. The analysis of the port of the i-th secondary input impedance matching network is the same as that of the port of the i-th secondary output impedance matching network.

由于每个次级输出阻抗匹配网络为单一电阻、单一电感、单一电容、单一微带或者电阻、电感、电容以及微带的任意组合或微带线任意方案中一种,可以实现每个输出阻抗匹配网络在一个工作频率下的阻抗匹配,通过输出开关模块切换接入放大电路的次级输出阻抗匹配网络,实现该工作频率下的阻抗匹配,使得输出阻抗调谐的范围变大。同时第i个次级输入阻抗匹配网络为单一电阻、单一电感、单一电容、单一微带或者电阻、电感、电容以及微带的任意组合或微带线任意方案中一种,可以实现每个次级输入阻抗匹配网络在一个工作频率下的阻抗匹配,通过输入开关模块切换接入放大电路的次级输入阻抗匹配网络,实现该工作频率下的阻抗匹配,使得输入阻抗调谐的范围变大。由此实现多频段上的阻抗匹配,扩大了放大器的工作带宽。Since each secondary output impedance matching network is a single resistor, a single inductor, a single capacitor, a single microstrip or any combination of resistors, inductors, capacitors and microstrips or any scheme of the microstrip line, each output impedance can be realized For impedance matching of the matching network at a working frequency, the secondary output impedance matching network connected to the amplifying circuit is switched through the output switch module to realize impedance matching at the working frequency, so that the output impedance tuning range becomes larger. At the same time, the i-th secondary input impedance matching network is a single resistor, a single inductor, a single capacitor, a single microstrip or any combination of resistors, inductors, capacitors and microstrips or any scheme of a microstrip line, which can realize each secondary The impedance matching of the primary input impedance matching network at a working frequency is switched through the input switch module to the secondary input impedance matching network connected to the amplifying circuit to realize the impedance matching at the working frequency, so that the range of input impedance tuning becomes larger. In this way, impedance matching on multiple frequency bands is realized, and the operating bandwidth of the amplifier is expanded.

图3为本发明提供的应用在GaN Doherty功率放大器中的结构示意图;电路基本结构由载波放大器A和峰值放大器B两个放大器构成。对于工作类别的选择,通常将载波放大器工作在增益较高的AB类,峰值放大器一般工作在C类。载波放大器的后面接有一段起到阻抗变化作用的四分之一波长传输线TL1,将低输入功率状态下的负载阻抗100ohm变换为高输入功率状态下的50ohm,实现负载调制;同时,峰值功放后的补偿线TL2使得低输入功率状态下峰值功放的阻抗无穷大,由此实现Doherty功率放大器的负载调制原理,其中一般认为阻值超过500欧姆为无穷大。峰值放大器前面也接有一段的四分之一波长传输线TL3,起到平衡相位的作用。一般采用功分器或耦合器来分配载波放大器和峰值放大器的输入功率。合路网络由四分之一波长传输线TL4与TL5组成,两路信号经过载波放大器和峰值放大器放大后通过合路网络合成输出,合路网络起到负载调制的作用。由于功率放大器工作在不同频率点处的源阻抗Zin、负载阻抗Zout不一样,而阻抗匹配网络的作用是将射频电路的输入、输出终端负载阻抗Z1,Z2分别匹配到功率放大器的源阻抗Zin、负载阻抗Zout。在阻抗匹配网络不变的情况下,功率放大器的工作频段如果发生改变,功率放大器的源阻抗Zin、负载阻抗Zout就会发生改变,原有的匹配网络将不再实现阻抗匹配,从而影响功率放大器的性能指标。FIG. 3 is a schematic structural diagram of the GaN Doherty power amplifier provided by the present invention; the basic structure of the circuit is composed of two amplifiers, a carrier amplifier A and a peak amplifier B. For the selection of the working category, the carrier amplifier usually works in the AB class with higher gain, and the peak amplifier generally works in the C class. There is a quarter-wavelength transmission line TL1 behind the carrier amplifier, which can change the load impedance of 100ohm in the low input power state to 50ohm in the high input power state to realize load modulation; at the same time, after the peak power amplifier The compensation line TL2 makes the impedance of the peak power amplifier infinite in the low input power state, thereby realizing the load modulation principle of the Doherty power amplifier, in which it is generally considered that the resistance value exceeds 500 ohms to be infinite. A section of quarter-wavelength transmission line TL3 is also connected in front of the peak amplifier to balance the phase. Generally, a power splitter or a coupler is used to distribute the input power of the carrier amplifier and the peak amplifier. The combination network is composed of quarter-wavelength transmission lines TL4 and TL5. The two signals are amplified by the carrier amplifier and the peak amplifier and then synthesized and output through the combination network. The combination network plays the role of load modulation. Because the source impedance Z in and load impedance Z out of the power amplifier work at different frequency points are different, and the function of the impedance matching network is to match the input and output terminal load impedance Z 1 and Z 2 of the radio frequency circuit to the power amplifier's Source impedance Z in , load impedance Z out . When the impedance matching network remains unchanged, if the working frequency band of the power amplifier changes, the source impedance Z in and load impedance Z out of the power amplifier will change, and the original matching network will no longer achieve impedance matching, thus affecting Performance indicators of power amplifiers.

因此我们利用如图4所示的阻抗匹配网络,在载波放大器A前方、载波放大器A后方、峰值放大器B前方以及峰值放大器B后方均串联阻抗匹配网络,阻抗匹配网络包括第一微带、第二微带、射频开关、电容、电感、电阻以及第三微带和第四微带。电容、电感和电阻依次构成第1个次级阻抗匹配网络至第3个次级阻抗匹配网络。利用射频开关在功率放大器工作频段发生改变时同时切换匹配网络,使功率放大器在各个工作频段上都能实现阻抗匹配,从而实现在每个工作频段上都能有良好的性能指标。Therefore, we use the impedance matching network shown in Figure 4 to connect the impedance matching network in series in front of the carrier amplifier A, behind the carrier amplifier A, in front of the peak amplifier B, and behind the peak amplifier B. The impedance matching network includes the first microstrip, the second Microstrips, RF switches, capacitors, inductors, resistors, and third and fourth microstrips. Capacitors, inductors and resistors constitute the first to third secondary impedance matching networks in sequence. The RF switch is used to switch the matching network at the same time when the working frequency band of the power amplifier changes, so that the power amplifier can achieve impedance matching in each working frequency band, so as to achieve good performance indicators in each working frequency band.

图5是本发明提供的GaN Doherty功率放大器实施例中输出阻抗的史密斯原图。GaN Doherty功率放大器工作在不同频段时最佳输出负载阻抗不相同,分别用负载1,负载2和负载3表示频段1,频段2和频段3的放大管的最佳输出阻抗。我们利用如图4所示的非统一调谐网络来实现不同频段下由终端负载阻抗(50ohm)到GaN Doherty功率放大器最佳输出负载的阻抗匹配。首先射频电路终端阻抗经过微带线Z1匹配到a点,然后在不同的频段1、2、3分别通过电感C1,电容L1和电感C2匹配到b点,最后再通过微带线Z2匹配到各个频段所需要的最佳输出阻抗点负载1,负载2和负载3。可以看到,两段串联微带线Z1和Z2长度不变,只是利用射频开关通过切换次级匹配网络的并联支路,使之导通至不同的元件,就能实现将射频电路特征阻抗50ohm匹配到GaN Doherty功率放大器不同工作频段时的输出阻抗,输入匹配也是如此。Fig. 5 is a Smith original diagram of the output impedance in the embodiment of the GaN Doherty power amplifier provided by the present invention. GaN Doherty power amplifiers work in different frequency bands with different optimal output load impedances. Load 1, load 2, and load 3 represent the optimal output impedances of amplifier tubes in frequency band 1, frequency band 2, and frequency band 3, respectively. We use the non-uniform tuning network shown in Figure 4 to achieve impedance matching from the terminal load impedance (50ohm) to the optimal output load of the GaN Doherty power amplifier in different frequency bands. First, the terminal impedance of the radio frequency circuit is matched to point a through the microstrip line Z1, and then matched to point b through the inductor C1, capacitor L1 and inductor C2 in different frequency bands 1, 2, and 3, and finally matched to each point through the microstrip line Z2 The optimum output impedances required for the frequency bands are load 1, load 2 and load 3. It can be seen that the lengths of the two series microstrip lines Z 1 and Z 2 remain unchanged, but the RF circuit characteristics can be realized by switching the parallel branch of the secondary matching network by using the RF switch to conduct it to different components. The impedance 50ohm is matched to the output impedance of GaN Doherty power amplifiers in different operating frequency bands, and the same is true for input matching.

此外,本发明还可以应用至不同的功率放大器类型上,如Doherty功率放大器。由于Doherty功率放大器工作在不同频段时补偿线以及合路结构的阻抗值也不相同,因此同样需要射频开关进行阻抗变换,此时可以将Doherty功率放大器的补偿线,匹配网络以及合路结构视为一个整体,用一个切换网络同时调制三个部分,可以最小化射频开关数量,降低了射频功放的复杂度和成本。Furthermore, the present invention can also be applied to different power amplifier types, such as Doherty power amplifiers. Since the impedance values of the compensation line and the combining structure of the Doherty power amplifier are different when working in different frequency bands, a radio frequency switch is also required for impedance conversion. At this time, the compensation line, matching network and combining structure of the Doherty power amplifier can be regarded as As a whole, a switching network is used to modulate three parts at the same time, which can minimize the number of radio frequency switches and reduce the complexity and cost of the radio frequency power amplifier.

对应于不同的实施例,射频开关可以有多重形式,如:SPDT,SP3T,SP4T等等。射频开关的控制极接同一控制电压源,用于接入外加控制高低电平,从而控制开关通路的导通与关闭,并保证每个开关的一致性。针对具体实施例进行设计时,可以根据具体需求选择阻抗匹配网络的形式,如T型网络或者π型网络,同时可以根据具体设计选择开关插入的位置以及开关数量。开关通路上的次级阻抗匹配网络可以是由电容、电感、电阻、微带线或者它们的任意组合构成,只要能实现匹配功能即可。开关也可以由其他可重配置元器件包括PIN二极管、微机电开关(MEMS)、MOS开关和变容二极管等进行替换,只要能实现匹配切换功能即可。利用射频开关对功率放大器的输入输出匹配网络进行匹配切换,以实现对多个频段射频信号进行高效率的放大,同时,最小化射频开关数量,降低了射频功放的复杂度和成本,不增加放大管数目和电路体积。另外,随着MEMS变容二极管、射频开关等调谐器件的成熟商用,其工作带宽会越来越宽,从而适应当代移动通信系统多种通信标准并存、多个通信频段划分的局面。Corresponding to different embodiments, the radio frequency switch can have multiple forms, such as: SPDT, SP3T, SP4T and so on. The control pole of the radio frequency switch is connected to the same control voltage source, which is used to access the external control high and low levels, so as to control the on and off of the switch path, and ensure the consistency of each switch. When designing for a specific embodiment, the form of the impedance matching network, such as a T-type network or a π-type network, can be selected according to specific requirements, and the location of the switch insertion and the number of switches can be selected according to the specific design. The secondary impedance matching network on the switch path can be composed of capacitors, inductors, resistors, microstrip lines or any combination thereof, as long as the matching function can be realized. The switch can also be replaced by other reconfigurable components including PIN diodes, microelectromechanical switches (MEMS), MOS switches, and varactor diodes, as long as the matching switching function can be realized. Use the RF switch to match and switch the input and output matching network of the power amplifier to achieve high-efficiency amplification of RF signals in multiple frequency bands. At the same time, the number of RF switches is minimized, reducing the complexity and cost of the RF power amplifier without increasing the amplification. Tube number and circuit volume. In addition, with the mature commercialization of tuning devices such as MEMS varactor diodes and radio frequency switches, their operating bandwidth will become wider and wider, so as to adapt to the situation where multiple communication standards coexist and multiple communication frequency bands are divided in contemporary mobile communication systems.

本发明提供了一种可调多频段功率放大器,输入阻抗匹配网络和输出阻抗匹配网络为利用电容、电感、电阻、微带线或者它们的任意组合构成匹配网络,通过匹配网络把放大管的源阻抗Zin、负载阻抗Zout分别匹配到输入阻抗Z1与输出阻抗Z2,从而实现阻抗匹配。本发明不仅仅局限于使用微带线的匹配形式,其目的在于利用射频开关切换功率放大器工作在不同频段时的匹配网络,在各个频段都能保证输入、输出阻抗分别与放大管源阻抗、负载阻抗相匹配,频率带宽更大、效率更高,由此解决功率放大器具有频率带宽限制,无法适应当代移动通信系统多种通信标准并存、多个通信频段划分的局面的技术问题。由于使用电容电感等微小的元件比使用微带更能缩减电路体积。The invention provides an adjustable multi-band power amplifier. The input impedance matching network and the output impedance matching network use capacitance, inductance, resistance, microstrip line or any combination thereof to form a matching network. The impedance Z in and the load impedance Z out are respectively matched to the input impedance Z 1 and the output impedance Z 2 , thereby realizing impedance matching. The present invention is not only limited to the matching form using microstrip lines, but its purpose is to use a radio frequency switch to switch the matching network of the power amplifier when it works in different frequency bands, and can ensure that the input and output impedances are respectively in line with the source impedance of the amplifier tube and the load in each frequency band. The impedance is matched, the frequency bandwidth is larger, and the efficiency is higher, thereby solving the technical problem that the power amplifier has frequency bandwidth limitations and cannot adapt to the situation where multiple communication standards coexist and multiple communication frequency bands are divided in contemporary mobile communication systems. Due to the use of tiny components such as capacitors and inductors, the circuit volume can be reduced more than the use of microstrips.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.

Claims (9)

1.一种可调多频段功率放大器,其特征在于,包括:1. An adjustable multi-band power amplifier, characterized in that, comprising: 依次连接的输入阻抗匹配网络、放大管和输出阻抗匹配网络;放大管用于对可调多频段功率放大器输入端接收的传输信号进行放大处理;The input impedance matching network, the amplifier tube and the output impedance matching network connected in sequence; the amplifier tube is used to amplify the transmission signal received by the input terminal of the adjustable multi-band power amplifier; 所述输入阻抗匹配网络包括第一微带、第二微带、输入开关模块和n个次级输入阻抗匹配网路;所述输入开关模块有n+1个端,所述第一微带的后端与所述第二微带的前端连接,所述输入开关模块的第n+1端与所述第二微带的前端连接,所述输入开关模块的第i端与所述第i个次级输入阻抗匹配网络的端口连接,当传输信号频率为第i个频率时,第i次级输入阻抗匹配网络、第一微带与第二微带实现所述可调多频段功率放大器输入端阻抗与放大管输入端阻抗匹配;The input impedance matching network includes a first microstrip, a second microstrip, an input switch module and n secondary input impedance matching networks; the input switch module has n+1 terminals, and the first microstrip The rear end is connected to the front end of the second microstrip, the n+1th end of the input switch module is connected to the front end of the second microstrip, and the i-th end of the input switch module is connected to the i-th The port connection of the secondary input impedance matching network, when the transmission signal frequency is the i-th frequency, the i-th secondary input impedance matching network, the first microstrip and the second microstrip realize the adjustable multi-band power amplifier input The impedance matches the impedance of the amplifier tube input; 所述输出阻抗匹配网络包括第三微带、第四微带、输出开关模块和n个次级输出阻抗匹配网路;所述输出开关模块有n+1个端,所述第三微带的后端与所述第四微带的前端连接,所述输出开端模块的第n+1端与所述第四微带的前端连接,所述输出开关模块的第i端与所述第i个次级输出阻抗匹配网络的端口连接,当传输信号频率为第i个频率时,第i次级输出阻抗匹配网络、第三微带与第四微带实现所述可调多频段功率放大器输出端阻抗与放大管输出端阻抗匹配,其中,1≤i≤n。The output impedance matching network includes a third microstrip, a fourth microstrip, an output switch module and n secondary output impedance matching networks; the output switch module has n+1 terminals, and the third microstrip The rear end is connected to the front end of the fourth microstrip, the n+1th end of the output open-end module is connected to the front end of the fourth microstrip, and the i-th end of the output switch module is connected to the i-th The port connection of the secondary output impedance matching network, when the transmission signal frequency is the i-th frequency, the i-th secondary output impedance matching network, the third microstrip and the fourth microstrip realize the adjustable multi-band power amplifier output The impedance matches the impedance of the output end of the amplifier tube, where 1≤i≤n. 2.如权利要求1所述的可调多频段功率放大器,其特征在于,所述第i个次级输入阻抗匹配网络为电阻、电容、电感与微带的任意组合。2. The adjustable multi-band power amplifier according to claim 1, wherein the ith secondary input impedance matching network is any combination of resistors, capacitors, inductors and microstrips. 3.如权利要求1所述的可调多频段功率放大器,其特征在于,所述第i个次级输入阻抗匹配网络为一个电阻、一个电感、一个电容或一个微带线。3. The adjustable multi-band power amplifier according to claim 1, wherein the i-th secondary input impedance matching network is a resistor, an inductor, a capacitor or a microstrip line. 4.如权利要求1所述的可调多频段功率放大器,其特征在于,所述第i个次级输入阻抗匹配网络为串联的电阻和电感、串联的电阻和电容、串联的电感和电容、并联的电阻和电感、并联的电阻和电容或者为并联的电感和电容。4. adjustable multi-band power amplifier as claimed in claim 1, is characterized in that, described i-th secondary input impedance matching network is resistance and inductance connected in series, resistance and capacitance connected in series, inductance and capacitance connected in series, Parallel resistors and inductors, parallel resistors and capacitors, or parallel inductors and capacitors. 5.如权利要求1所述的可调多频段功率放大器,其特征在于,所述第i个次级输入阻抗匹配网络为依次串联的电阻、电感和电容或者为并联的电阻、电感和电容。5 . The adjustable multi-band power amplifier according to claim 1 , wherein the ith secondary input impedance matching network is sequentially connected in series with resistors, inductors and capacitors or is connected in parallel with resistors, inductors and capacitors. 6.如权利要求1所述的可调多频段功率放大器,其特征在于,所述第i个次级输出阻抗匹配网络为电阻、电容、电感与微带的任意组合。6. The adjustable multi-band power amplifier according to claim 1, wherein the i-th secondary output impedance matching network is any combination of resistors, capacitors, inductors and microstrips. 7.如权利要求1所述的可调多频段功率放大器,其特征在于,所述第i个次级输出阻抗匹配网络为一个电阻、一个电感、一个电容或一个微带线。7. The adjustable multi-band power amplifier according to claim 1, wherein the i-th secondary output impedance matching network is a resistor, an inductor, a capacitor or a microstrip line. 8.如权利要求1所述的可调多频段功率放大器,其特征在于,所述第i个次级输出阻抗匹配网络为串联的电阻和电感、串联的电阻和电容、串联的电感和电容、并联的电阻和电感、并联的电阻和电容或者为并联的电感和电容。8. adjustable multi-band power amplifier as claimed in claim 1, is characterized in that, described i-th secondary output impedance matching network is resistance and inductance connected in series, resistance and capacitance connected in series, inductance and capacitance connected in series, Parallel resistors and inductors, parallel resistors and capacitors, or parallel inductors and capacitors. 9.如权利要求1所述的可调多频段功率放大器,其特征在于,所述第i个次级输出阻抗匹配网络为依次串联的电阻、电感和电容或者为并联的电阻、电感和电容。9 . The adjustable multi-band power amplifier according to claim 1 , wherein the i-th secondary output impedance matching network is sequentially connected in series with resistors, inductors and capacitors or is connected in parallel with resistors, inductors and capacitors.
CN201710683702.8A 2017-08-11 2017-08-11 A kind of tunable multiple frequency section power amplifier Pending CN107332528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710683702.8A CN107332528A (en) 2017-08-11 2017-08-11 A kind of tunable multiple frequency section power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710683702.8A CN107332528A (en) 2017-08-11 2017-08-11 A kind of tunable multiple frequency section power amplifier

Publications (1)

Publication Number Publication Date
CN107332528A true CN107332528A (en) 2017-11-07

Family

ID=60200302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710683702.8A Pending CN107332528A (en) 2017-08-11 2017-08-11 A kind of tunable multiple frequency section power amplifier

Country Status (1)

Country Link
CN (1) CN107332528A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111153A (en) * 2017-11-27 2018-06-01 海宁海微电子科技有限公司 A kind of radio-frequency switch circuit
CN108173557A (en) * 2018-03-01 2018-06-15 汽-大众汽车有限公司 A kind of active matching network equipment
CN108233886A (en) * 2018-03-12 2018-06-29 锐石创芯(深圳)科技有限公司 Wideband impedance matching module and the device for including it
CN108923868A (en) * 2018-07-18 2018-11-30 Oppo广东移动通信有限公司 Radio circuit adjustment method and relevant apparatus
CN108964695A (en) * 2018-07-18 2018-12-07 Oppo广东移动通信有限公司 Radio circuit adjustment method and relevant apparatus
CN109041096A (en) * 2018-07-18 2018-12-18 Oppo广东移动通信有限公司 radio frequency circuit simulation method and related device
CN109039369A (en) * 2018-08-16 2018-12-18 Oppo(重庆)智能科技有限公司 Radio circuit and electronic equipment
CN109860155A (en) * 2018-12-12 2019-06-07 江苏博普电子科技有限责任公司 A kind of GaN microwave power device comprising π type matching network
CN110266274A (en) * 2018-03-12 2019-09-20 派赛公司 Doherty amplifier with adjustable alpha factor
CN110971207A (en) * 2019-11-19 2020-04-07 普联技术有限公司 Impedance tuning device, antenna device and terminal
CN111147029A (en) * 2020-01-22 2020-05-12 深圳飞骧科技有限公司 Radio frequency power amplification device and radio frequency power amplification method for 5G-NR frequency band
CN112054775A (en) * 2020-08-19 2020-12-08 深圳市广和通无线股份有限公司 Radio frequency matching unit, radio frequency matching circuit and wireless radio frequency system
CN112152648A (en) * 2020-09-08 2020-12-29 Oppo广东移动通信有限公司 Radio frequency circuit, power adjustment method and communication terminal
CN112469144A (en) * 2020-11-23 2021-03-09 辽宁工程技术大学 Reconfigurable four-band power amplifier based on mobile base station
CN112636011A (en) * 2019-10-08 2021-04-09 川升股份有限公司 Radio frequency assembly combination and antenna device
CN112787605A (en) * 2020-12-31 2021-05-11 四川天巡半导体科技有限责任公司 Power device based on integrated internal matching circuit and processing method thereof
CN113206644A (en) * 2021-03-24 2021-08-03 电子科技大学 High-efficiency distributed power amplifier with reconfigurable bandwidth
CN113285697A (en) * 2021-05-31 2021-08-20 电子科技大学 Matching reconfigurable ultra-wideband single-pole multi-throw radio frequency switch
CN113708783A (en) * 2021-08-27 2021-11-26 福州昆硕宸信息科技有限公司 Frequency-adjustable microwave signal source device
CN113726304A (en) * 2021-08-30 2021-11-30 华中科技大学 Zero-reflection network based on complex impedance matching
CN114337553A (en) * 2021-12-16 2022-04-12 上海矽昌微电子有限公司 Passive radio frequency switch circuit, radio frequency control system and control method thereof
CN114614771A (en) * 2022-01-25 2022-06-10 电子科技大学 Ultra-wideband radio frequency power amplifier based on frequency continuous adjustment
CN114928368A (en) * 2022-01-07 2022-08-19 西安海云物联科技有限公司 A matching circuit structure that is used for radio frequency impedance convergence of 5G frequency channel WIFI6
WO2024055760A1 (en) * 2022-09-16 2024-03-21 深圳飞骧科技股份有限公司 Multi-band low-noise amplifier, integrated circuit chip and electronic device
WO2024060900A1 (en) * 2022-01-17 2024-03-28 深圳市晶准通信技术有限公司 Impedance transformation network, radio frequency switch unit, single-pole multi-throw radio frequency switch, and chip
CN119232100A (en) * 2024-11-29 2024-12-31 荣耀终端有限公司 Amplifier circuits and electronic devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330500A (en) * 2000-06-27 2002-01-09 国际商业机器公司 Circuit of effective generating low-power radio frequency signal
CN101467346A (en) * 2006-06-07 2009-06-24 韩商·维潘股份有限公司 Doherty power amplifier
CN102355221A (en) * 2011-06-17 2012-02-15 雷良军 Multi-frequency band power amplifier and output matching circuit thereof
CN104113286A (en) * 2014-07-10 2014-10-22 大唐移动通信设备有限公司 Doherty power amplification circuit
CN106253865A (en) * 2016-08-01 2016-12-21 上海华虹宏力半导体制造有限公司 Multi-frequency band radio-frequency power amplifier
CN106501609A (en) * 2016-10-18 2017-03-15 兰州空间技术物理研究所 A kind of semiconductor laser hyperfrequency Microwave Impedance matching process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1330500A (en) * 2000-06-27 2002-01-09 国际商业机器公司 Circuit of effective generating low-power radio frequency signal
CN101467346A (en) * 2006-06-07 2009-06-24 韩商·维潘股份有限公司 Doherty power amplifier
CN102355221A (en) * 2011-06-17 2012-02-15 雷良军 Multi-frequency band power amplifier and output matching circuit thereof
CN104113286A (en) * 2014-07-10 2014-10-22 大唐移动通信设备有限公司 Doherty power amplification circuit
CN106253865A (en) * 2016-08-01 2016-12-21 上海华虹宏力半导体制造有限公司 Multi-frequency band radio-frequency power amplifier
CN106501609A (en) * 2016-10-18 2017-03-15 兰州空间技术物理研究所 A kind of semiconductor laser hyperfrequency Microwave Impedance matching process

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111153A (en) * 2017-11-27 2018-06-01 海宁海微电子科技有限公司 A kind of radio-frequency switch circuit
CN108173557A (en) * 2018-03-01 2018-06-15 汽-大众汽车有限公司 A kind of active matching network equipment
CN108173557B (en) * 2018-03-01 2023-09-26 一汽-大众汽车有限公司 Active matching network device
CN110266274A (en) * 2018-03-12 2019-09-20 派赛公司 Doherty amplifier with adjustable alpha factor
CN108233886A (en) * 2018-03-12 2018-06-29 锐石创芯(深圳)科技有限公司 Wideband impedance matching module and the device for including it
CN108923868A (en) * 2018-07-18 2018-11-30 Oppo广东移动通信有限公司 Radio circuit adjustment method and relevant apparatus
CN109041096A (en) * 2018-07-18 2018-12-18 Oppo广东移动通信有限公司 radio frequency circuit simulation method and related device
CN108964695A (en) * 2018-07-18 2018-12-07 Oppo广东移动通信有限公司 Radio circuit adjustment method and relevant apparatus
CN108923868B (en) * 2018-07-18 2021-04-09 Oppo广东移动通信有限公司 Radio frequency circuit debugging method and related device
CN108964695B (en) * 2018-07-18 2021-06-08 Oppo广东移动通信有限公司 Radio frequency circuit debugging method and related device
CN109041096B (en) * 2018-07-18 2021-04-13 Oppo广东移动通信有限公司 Radio frequency circuit simulation method and related device
CN109039369A (en) * 2018-08-16 2018-12-18 Oppo(重庆)智能科技有限公司 Radio circuit and electronic equipment
CN109860155A (en) * 2018-12-12 2019-06-07 江苏博普电子科技有限责任公司 A kind of GaN microwave power device comprising π type matching network
CN112636011A (en) * 2019-10-08 2021-04-09 川升股份有限公司 Radio frequency assembly combination and antenna device
CN110971207A (en) * 2019-11-19 2020-04-07 普联技术有限公司 Impedance tuning device, antenna device and terminal
CN110971207B (en) * 2019-11-19 2023-11-24 普联技术有限公司 Impedance tuning device, antenna device and terminal
CN111147029B (en) * 2020-01-22 2024-05-07 深圳飞骧科技股份有限公司 Radio frequency power amplification device and radio frequency power amplification method for 5G-NR frequency band
CN111147029A (en) * 2020-01-22 2020-05-12 深圳飞骧科技有限公司 Radio frequency power amplification device and radio frequency power amplification method for 5G-NR frequency band
CN112054775A (en) * 2020-08-19 2020-12-08 深圳市广和通无线股份有限公司 Radio frequency matching unit, radio frequency matching circuit and wireless radio frequency system
CN112152648A (en) * 2020-09-08 2020-12-29 Oppo广东移动通信有限公司 Radio frequency circuit, power adjustment method and communication terminal
CN112469144B (en) * 2020-11-23 2024-05-31 辽宁工程技术大学 Reconfigurable four-band power amplifier based on mobile base station
CN112469144A (en) * 2020-11-23 2021-03-09 辽宁工程技术大学 Reconfigurable four-band power amplifier based on mobile base station
CN112787605A (en) * 2020-12-31 2021-05-11 四川天巡半导体科技有限责任公司 Power device based on integrated internal matching circuit and processing method thereof
CN113206644B (en) * 2021-03-24 2022-05-27 电子科技大学 High-efficiency distributed power amplifier with reconfigurable bandwidth
CN113206644A (en) * 2021-03-24 2021-08-03 电子科技大学 High-efficiency distributed power amplifier with reconfigurable bandwidth
CN113285697A (en) * 2021-05-31 2021-08-20 电子科技大学 Matching reconfigurable ultra-wideband single-pole multi-throw radio frequency switch
CN113708783A (en) * 2021-08-27 2021-11-26 福州昆硕宸信息科技有限公司 Frequency-adjustable microwave signal source device
CN113726304A (en) * 2021-08-30 2021-11-30 华中科技大学 Zero-reflection network based on complex impedance matching
CN113726304B (en) * 2021-08-30 2024-04-23 华中科技大学 A zero reflection network based on complex impedance matching
CN114337553A (en) * 2021-12-16 2022-04-12 上海矽昌微电子有限公司 Passive radio frequency switch circuit, radio frequency control system and control method thereof
CN114337553B (en) * 2021-12-16 2022-11-22 上海矽昌微电子有限公司 Passive radio frequency switch circuit, radio frequency control system and control method thereof
CN114928368A (en) * 2022-01-07 2022-08-19 西安海云物联科技有限公司 A matching circuit structure that is used for radio frequency impedance convergence of 5G frequency channel WIFI6
WO2024060900A1 (en) * 2022-01-17 2024-03-28 深圳市晶准通信技术有限公司 Impedance transformation network, radio frequency switch unit, single-pole multi-throw radio frequency switch, and chip
CN114614771A (en) * 2022-01-25 2022-06-10 电子科技大学 Ultra-wideband radio frequency power amplifier based on frequency continuous adjustment
WO2024055760A1 (en) * 2022-09-16 2024-03-21 深圳飞骧科技股份有限公司 Multi-band low-noise amplifier, integrated circuit chip and electronic device
CN119232100A (en) * 2024-11-29 2024-12-31 荣耀终端有限公司 Amplifier circuits and electronic devices

Similar Documents

Publication Publication Date Title
CN107332528A (en) A kind of tunable multiple frequency section power amplifier
KR102677033B1 (en) Systems and methods related to linear and efficient broadband power amplifiers
CN102986134B (en) A kind of many Hulls carry Doherty power amplifier and signal processing method
CN114050792A (en) Novel broadband Doherty radio frequency power amplifier
CN216390920U (en) Doherty radio frequency power amplifier
WO2016124707A2 (en) Doherty amplifier
WO2012079542A1 (en) Doherty power amplifier
CN111740703B (en) pseudo-Doherty self-input-control load modulation balance type power amplifier and implementation method thereof
US9698731B2 (en) Power amplifier, transceiver, and base station
CN106411267A (en) Novel broadband three-path Doherty power amplifier and implementation method thereof
CN111586896B (en) Integrated double-frequency Doherty power amplifier, base station and mobile terminal
CN106411275B (en) Improve the three tunnel Doherty power amplifiers and implementation method of bandwidth
WO2024141109A1 (en) Power amplifier circuit
CN113381699B (en) A concurrent dual-frequency high-efficiency Doherty power amplifier and its design method
CN112543006A (en) Ultra-wideband reconfigurable power amplifier monolithic microwave integrated circuit
CN115765636A (en) Dual-frequency large-back-off load modulation order power amplifier and design method thereof
CN115001406A (en) A dual-frequency large fallback Doherty power amplifier and its design method
CN107689777B (en) A Broadband Doherty Power Amplifier
CN216390917U (en) Doherty radio frequency power amplifier
CN112838831B (en) Novel rear matching structure Doherty power amplifier
CN217406496U (en) Doherty power amplifier
CN217469895U (en) Dual frequency Doherty power amplifier based on left and right hand composite wire structure
CN110445471A (en) A kind of restructural radio-frequency power amplifier of two waveband and its control method
CN217607779U (en) Double-frequency large-back-off Doherty power amplifier
CN117424562A (en) Dual-frequency Doherty power amplifier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171107

RJ01 Rejection of invention patent application after publication