CN107327294A - A kind of porosity means of interpretation become based on fine and close oily reservoir under the conditions of matrix parameter - Google Patents
A kind of porosity means of interpretation become based on fine and close oily reservoir under the conditions of matrix parameter Download PDFInfo
- Publication number
- CN107327294A CN107327294A CN201710747940.0A CN201710747940A CN107327294A CN 107327294 A CN107327294 A CN 107327294A CN 201710747940 A CN201710747940 A CN 201710747940A CN 107327294 A CN107327294 A CN 107327294A
- Authority
- CN
- China
- Prior art keywords
- parameter
- fine
- porosity
- logging
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011159 matrix material Substances 0.000 title claims abstract 8
- 238000004458 analytical method Methods 0.000 claims abstract description 17
- 230000005251 gamma ray Effects 0.000 claims abstract description 17
- 239000011435 rock Substances 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims abstract description 8
- 239000002734 clay mineral Substances 0.000 claims abstract description 7
- 239000011148 porous material Substances 0.000 claims abstract description 3
- 239000000470 constituent Substances 0.000 claims abstract 3
- 238000000280 densification Methods 0.000 claims abstract 2
- 238000012417 linear regression Methods 0.000 claims description 7
- 239000004576 sand Substances 0.000 claims description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims 12
- 229910000019 calcium carbonate Inorganic materials 0.000 claims 6
- -1 chiltern Substances 0.000 claims 1
- 239000004927 clay Substances 0.000 claims 1
- 238000005553 drilling Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 238000010835 comparative analysis Methods 0.000 abstract 1
- 210000004884 grey matter Anatomy 0.000 abstract 1
- 238000011156 evaluation Methods 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000010459 dolomite Substances 0.000 description 3
- 229910000514 dolomite Inorganic materials 0.000 description 3
- 230000009897 systematic effect Effects 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Business, Economics & Management (AREA)
- Marine Sciences & Fisheries (AREA)
- Economics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Agronomy & Crop Science (AREA)
- Animal Husbandry (AREA)
- Environmental & Geological Engineering (AREA)
- Geophysics (AREA)
- Health & Medical Sciences (AREA)
- Fluid Mechanics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明属于勘探测井技术领域,具体涉及到一种基于致密油储层变骨架参数条件下的孔隙度解释方法。The invention belongs to the technical field of prospecting and logging, and in particular relates to a porosity interpretation method based on variable skeleton parameters of tight oil reservoirs.
背景技术Background technique
致密油(tight oil)是指来自页岩之外的致密储层(粉砂岩、砂岩、灰岩和白云岩等)的石油资源。当前,美国已经成功实现了对致密油勘探开发的突破,展示出良好的发展前景。中国主要含油气盆地也广泛分布致密油,主要发育与湖相生油岩共生或接触、大面积分布的致密砂岩油或致密碳酸盐岩油,致密油勘探是油气勘探的重要接替区,但是由于致密油形成的特殊油藏地质背景,储层岩石组分复杂多变进而导致岩石骨架参数复杂多变且难以确定,影响致密油储层测井孔隙度预测精度。Tight oil refers to oil resources from tight reservoirs (siltstone, sandstone, limestone, dolomite, etc.) other than shale. At present, the United States has successfully achieved a breakthrough in the exploration and development of tight oil, showing good development prospects. Tight oil is also widely distributed in major oil and gas-bearing basins in China, mainly developing tight sandstone oil or tight carbonate oil that coexists or contacts with lacustrine source rocks and is widely distributed. Tight oil exploration is an important successor area for oil and gas exploration, but due to Due to the special reservoir geological background of tight oil formation, the reservoir rock composition is complex and variable, which leads to complex and variable rock skeleton parameters and is difficult to determine, which affects the accuracy of tight oil reservoir logging porosity prediction.
测井资料在评价致密油孔隙度参数方面不可缺少,测井综合评价已经成为当前致密油勘探开发的技术支撑。中国致密油勘探实践揭示,致密油储层中粘土矿物含量以及岩石组分(包括砂质、石灰质、白云质等)及其含量复杂多变,导致运用测井资料评价孔隙度参数过程中骨架参数确定困难,进而影响致密油孔隙度预测精度。如柴达木盆地扎哈泉油区致密油主要位于上干柴沟组下段Ⅳ砂组。根据Ⅳ砂组储层岩心孔隙度、X衍射分析资料统计,孔隙度一般为0.3%~10.4%(主要为2.0~6.5%),粘土矿物含量一般为5.5%~49.9%,石英、长石和岩屑含量合计一般为12.5~77.9%,石灰质含量一般为0.0%~58.1%,白云质含量一般为0.0%~48.8%,致密油储层岩性主要为碎屑岩、化学岩及其过渡类型,岩石类型复杂多变必然导致测井骨架参数的多变且难以确定。利用致密油储层岩心分析孔隙度与测井声波时差、密度、中子测井参数对应分析,基于零孔隙度骨架参数选取方法,处理得到储层岩石骨架声波时差、骨架密度、骨架中子参数分别为164~197μs/m(主要为175~195μs/m)、2.65~2.83g/cm3(主要为2.67~2.79g/cm3)、-2~12.0p.u(主要为2.5~9.0p.u),骨架参数随深度变化范围大且难以确定,影响孔隙度测井预测精度。Well logging data is indispensable in evaluating the porosity parameters of tight oil, and the comprehensive evaluation of well logging has become the technical support for current tight oil exploration and development. The practice of tight oil exploration in China reveals that the content of clay minerals and rock components (including sandy, calcareous, dolomitic, etc.) The determination is difficult, which in turn affects the prediction accuracy of tight oil porosity. For example, the tight oil in the Zhahaquan Oilfield of the Qaidam Basin is mainly located in the IV Sha Formation of the lower member of the Shangganchaigou Formation. According to the porosity and X-ray diffraction analysis data of the reservoir cores of the IV sand group, the porosity is generally 0.3%-10.4% (mainly 2.0-6.5%), the content of clay minerals is generally 5.5%-49.9%, quartz, feldspar and rock The total clastic content is generally 12.5-77.9%, the calcareous content is generally 0.0%-58.1%, and the dolomitic content is generally 0.0%-48.8%. The lithology of tight oil reservoirs is mainly clastic rock, chemical rock and transitional types. Complex and changeable rock types will inevitably lead to changeable and difficult to determine logging skeleton parameters. Corresponding analysis of tight oil reservoir core porosity and logging acoustic time difference, density, and neutron logging parameters, based on the zero porosity skeleton parameter selection method, processing to obtain reservoir rock skeleton acoustic time difference, skeleton density, and skeleton neutron parameters They are 164~197μs/m (mainly 175~195μs/m), 2.65~2.83g/cm 3 (mainly 2.67~2.79g/cm 3 ), -2~12.0pu (mainly 2.5~9.0pu), Skeleton parameters vary widely with depth and are difficult to determine, which affects the prediction accuracy of porosity logging.
因此,充分考虑储层骨架参数变化特征对测井参数影响,形成一种适合致密油储层变骨架参数条件下的孔隙度解释方法,已成为一个迫切解决的现实问题。Therefore, it has become an urgent practical problem to fully consider the influence of the variation characteristics of reservoir framework parameters on logging parameters and to form a porosity interpretation method suitable for tight oil reservoirs under the condition of variable framework parameters.
发明内容Contents of the invention
为了克服上述现有技术的不足,本发明的目的是提供一种基于致密油储层变骨架参数条件下的孔隙度解释方法,孔隙度是致密油储层评价的关键参数之一,根据致密油孔隙度特征,从致密油勘探开发实践出发,充分利用测井参数预测具有变骨架参数特征的致密油储层孔隙度时需要考虑的主要影响因素,运用现代数学方法,形成基于致密油储层变骨架参数条件下的孔隙度解释方法。In order to overcome the above-mentioned deficiencies in the prior art, the object of the present invention is to provide a porosity interpretation method based on the variable framework parameters of tight oil reservoirs. Porosity is one of the key parameters for evaluation of tight oil reservoirs. Porosity characteristics, starting from the practice of tight oil exploration and development, make full use of logging parameters to predict the porosity of tight oil reservoirs with variable skeleton parameters. A Porosity Interpretation Method Subject to Skeleton Parameters.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种基于致密油储层变骨架参数条件下的孔隙度解释方法,包括以下步骤:A porosity interpretation method based on variable framework parameters of tight oil reservoirs, comprising the following steps:
1)首先,对致密油储层岩心进行归位处理,挑选有效的致密油储层岩心孔隙度分析资料并进行岩心刻度,对应分析有效的致密油储层岩心中粘土矿物含量、岩石组分(包括砂质、石灰质、白云质)、孔隙度参数特征及其变化在自然伽马测井相对值参数(ΔGR)、声波时差测井参数(Δt)、密度测井参数(ρb)和中子测井参数(ΦN)中对应的响应特征;1) First, homing the tight oil reservoir cores, selecting the effective porosity analysis data of the tight oil reservoir cores and performing core calibration, and correspondingly analyzing the clay mineral content and rock components in the effective tight oil reservoir cores ( Including sandy, calcareous, dolomitic), porosity parameter characteristics and their changes in the relative value parameters of natural gamma ray logging (ΔGR), acoustic time difference logging parameters (Δt), density logging parameters (ρ b ) and neutron The corresponding response characteristics in the logging parameters (Φ N );
2)然后,根据自然伽马测井、声波时差测井、密度测井、中子测井原理,自然伽马测井相对值参数(ΔGR)为致密油储层中泥质含量、砂质含量、石灰质含量、白云质含量及其放射性特征的综合反映,声波时差测井参数(Δt)、密度测井参数(ρb)、中子测井参数(ΦN)均是储层中砂质含量、石灰质含量、白云质含量、泥质含量、孔隙度及含油性综合反映,忽略致密油储层孔隙中含油性对声波时差测井参数(Δt)、密度测井参数(ρb)和中子测井参数(ΦN)的影响,分别根据自然伽马测井相对值参数(ΔGR)、声波时差测井参数(Δt)、密度测井参数(ρb)和中子测井参数(ΦN),建立上述各测井参数与储层中泥质含量、砂质含量、石灰质含量、白云质含量和孔隙度参数之间的函数关系,形成由4个测井响应方程加1个测井体积模型公式共同构成的方程组,对致密油储层中的泥质含量、砂质含量、石灰质含量、白云质含量和孔隙度参数进行求解,进而确定变骨架参数条件下的致密油储层孔隙度;2) Then, according to the principles of natural gamma ray logging, acoustic transit time logging, density logging, and neutron logging, the relative value parameter (ΔGR) of natural gamma ray logging is the shale content and sand content in tight oil reservoirs. , calcareous content, dolomitic content and their radioactive characteristics. Acoustic transit time logging parameters (Δt), density logging parameters (ρ b ), and neutron logging parameters (Φ N ) are all indicators of sand content in the reservoir. , calcareous content, dolomitic content, shale content, porosity and oiliness comprehensively reflect, ignoring the influence of oiliness in pores of tight oil reservoirs on acoustic time difference logging parameters (Δt), density logging parameters (ρ b ) and neutron The impact of logging parameters (Φ N ), according to the relative value parameters of natural gamma ray logging (ΔGR), acoustic time difference logging parameters (Δt), density logging parameters (ρ b ) and neutron logging parameters (Φ N ), establish the functional relationship between the above logging parameters and the shale content, sand content, calcareous content, dolomitic content and porosity parameters in the reservoir, forming a combination of 4 logging response equations plus 1 logging volume The equations composed of model formulas are used to solve the shale content, sand content, calcareous content, dolomite content and porosity parameters in tight oil reservoirs, and then determine the porosity of tight oil reservoirs under the condition of variable skeleton parameters ;
运用多元线性回归分析方法,建立基于致密油储层变骨架参数条件下的自然伽马测井相对值参数(ΔGR)、声波时差测井参数(Δt)、密度测井参数(ρb)和中子测井参数(ΦN),综合处理解释致密油储层孔隙度(Φ)的测井模型,具体公式为:Based on the multiple linear regression analysis method, the relative value parameters of natural gamma ray logging (ΔGR), acoustic time difference logging parameters (Δt), density logging parameters (ρ b ) and medium Sub-logging parameters (Φ N ), a logging model for comprehensive processing and interpretation of tight oil reservoir porosity (Φ), the specific formula is:
Φ=0.067Δt-10.129ρb-0.122ΦN-3.335ΔGR+19.696Φ=0.067Δt-10.129ρ b -0.122Φ N -3.335ΔGR+19.696
式中,相关系数R=0.8040;In the formula, the correlation coefficient R=0.8040;
3)在步骤1)和步骤2)的基础上,依据步骤1)中所挑选有效的致密油储层岩心中粘土矿物含量、岩石组分(包括砂质、石灰质、白云质)、孔隙度参数,以及所对应的自然伽马测井相对值参数(ΔGR)、声波时差测井参数(Δt)、密度测井参数(ρb)和中子测井参数(ΦN),根据步骤2)分析原理,进行多元线性回归分析处理,建立基于致密油储层变骨架参数条件下的孔隙度测井解释模型。3) On the basis of step 1) and step 2), according to the clay mineral content, rock composition (including sandy, calcareous, dolomitic), and porosity parameters in the effective tight oil reservoir cores selected in step 1), , and the corresponding relative value parameters of natural gamma ray logging (ΔGR), sonic transit time logging parameters (Δt), density logging parameters (ρ b ) and neutron logging parameters (Φ N ), according to step 2) analysis Based on the principle, multivariate linear regression analysis was performed to establish a porosity logging interpretation model based on the variable skeleton parameters of tight oil reservoirs.
本发明的有益效果是:The beneficial effects of the present invention are:
1)充分考虑了常规测井资料中各项参数对致密油储层孔隙度的响应特征,确保致密油孔隙度评价精度。1) The response characteristics of various parameters in conventional logging data to the porosity of tight oil reservoirs are fully considered to ensure the evaluation accuracy of tight oil porosity.
2)通过实施致密油储层孔隙度测井评价的各个步骤,由岩心标定、测井响应特征分析、数据分析、测井解释模型建立,聚焦在变骨架参数条件下孔隙度参数预测,最终提高测井评价致密油储层孔隙度精度,进而有利于致密油的系统评价。2) By implementing various steps of porosity logging evaluation of tight oil reservoirs, including core calibration, logging response characteristic analysis, data analysis, and logging interpretation model establishment, focusing on porosity parameter prediction under the condition of variable skeleton parameters, and finally improving Well logging evaluates the porosity accuracy of tight oil reservoirs, which is beneficial to the systematic evaluation of tight oil.
综上所述,本方案有助于聚焦对致密油储层变骨架参数条件下测井响应分析和提高测井评价致密油孔隙度的效率和精度,进而有利于致密油的系统评价。To sum up, this scheme helps to focus on the analysis of the logging response of tight oil reservoirs under the condition of variable framework parameters and improve the efficiency and accuracy of logging evaluation of tight oil porosity, which is beneficial to the systematic evaluation of tight oil.
具体实施方式detailed description
以下结合实施例对本发明进一步叙述,但本发明不局限于以下实施例。The present invention is further described below in conjunction with the examples, but the present invention is not limited to the following examples.
实施例1Example 1
以柴达木盆地扎哈泉油区上干柴沟组下段Ⅳ砂组致密油为例。Take the tight oil of the IV sand formation in the lower member of the Shangganchaigou Formation in the Zhahaquan oil area of the Qaidam Basin as an example.
第一步,根据柴达木盆地扎哈泉油区致密油重点探井ZP1井上干柴沟组下段Ⅳ砂组的致密油储层岩心中的粘土矿物含量、砂质含量、灰质含量、白云质含量、孔隙度分析资料,经岩心归位处理后,挑选有效致密油储层岩心孔隙度分析测试资料510个,对应分析ZP1井测井资料中的自然伽马相对值参数(ΔGR)、声波时差测井参数(Δt)、密度测井参数(ρb)和中子测井参数(ΦN)特征。In the first step, according to the clay mineral content, sand content, lime content and dolomite content in the core of the tight oil reservoir core of the tight oil reservoir core of the fourth sand group in the lower section of the Ganchaigou Formation in Well ZP1, the key exploration well for tight oil in the Zhahaquan oil area of the Qaidam Basin , porosity analysis data, after core homing processing, select 510 effective tight oil reservoir core porosity analysis test data, correspondingly analyze the natural gamma ray relative value parameter (ΔGR) and acoustic time difference measurement in the logging data of Well ZP1 Well parameters (Δt), density logging parameters (ρ b ) and neutron logging parameters (Φ N ) characteristics.
第二步,利用致密油储层岩心孔隙度分析参数与对应的自然伽马测井相对值参数(ΔGR)、声波时差测井参数(Δt)、密度测井参数(ρb)和中子测井参数(ΦN),分别进行一元线性回归和多元线性回归分析,致密油储层岩心孔隙度分别与声波时差测井参数(Δt)、密度测井参数(ρb)、中子测井参数(ΦN)单项参数相关系数分别为0.066、0.554和0.463,由于受致密油储层的变骨架参数影响,相关性整体差。运用多元线性回归分析方法,建立基于致密油储层变骨架参数条件下的自然伽马测井相对值参数(ΔGR)、声波时差测井参数(Δt)、密度测井参数(ρb)和中子测井参数(ΦN),综合处理解释致密油储层孔隙度(Φ)的测井模型,具体公式为:In the second step, using the core porosity analysis parameters of tight oil reservoirs and the corresponding natural gamma ray logging parameters (ΔGR), acoustic time difference logging parameters (Δt), density logging parameters (ρ b ) and neutron logging parameters Well parameters (Φ N ) were analyzed by linear regression and multiple linear regression respectively. The core porosity of tight oil reservoirs was correlated with acoustic transit time logging parameters (Δt), density logging parameters (ρ b ), and neutron logging parameters respectively. (Φ N ) The correlation coefficients of individual parameters are 0.066, 0.554 and 0.463, respectively. Due to the influence of variable framework parameters of tight oil reservoirs, the correlation is generally poor. Based on the multiple linear regression analysis method, the relative value parameters of natural gamma ray logging (ΔGR), acoustic time difference logging parameters (Δt), density logging parameters (ρ b ) and medium Sub-logging parameters (Φ N ), a logging model for comprehensive processing and interpretation of tight oil reservoir porosity (Φ), the specific formula is:
Φ=0.067Δt-10.129ρb-0.122ΦN-3.335ΔGR+19.696Φ=0.067Δt-10.129ρ b -0.122Φ N -3.335ΔGR+19.696
式中,相关系数R=0.8040。In the formula, the correlation coefficient R=0.8040.
由此可知,综合运用自然伽马测井相对值参数(ΔGR)、声波时差测井参数(Δt)、密度测井参数(ρb)和中子测井参数(ΦN)解释致密油储层孔隙度,相关系数达到有关行业要求。It can be seen that the comprehensive use of natural gamma ray logging parameters (ΔGR), acoustic time difference logging parameters (Δt), density logging parameters (ρ b ) and neutron logging parameters (Φ N ) to interpret tight oil reservoirs The porosity and correlation coefficient meet the requirements of relevant industries.
通过上述步骤,形成一种基于致密油储层变骨架参数条件下的孔隙度解释方法,有助于提高致密油储层孔隙度预测精度,进而有利于致密油储层的系统评价。Through the above steps, a porosity interpretation method based on the variable framework parameters of tight oil reservoirs is formed, which is helpful to improve the porosity prediction accuracy of tight oil reservoirs, and further facilitates the systematic evaluation of tight oil reservoirs.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710747940.0A CN107327294A (en) | 2017-08-28 | 2017-08-28 | A kind of porosity means of interpretation become based on fine and close oily reservoir under the conditions of matrix parameter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710747940.0A CN107327294A (en) | 2017-08-28 | 2017-08-28 | A kind of porosity means of interpretation become based on fine and close oily reservoir under the conditions of matrix parameter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107327294A true CN107327294A (en) | 2017-11-07 |
Family
ID=60228360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710747940.0A Pending CN107327294A (en) | 2017-08-28 | 2017-08-28 | A kind of porosity means of interpretation become based on fine and close oily reservoir under the conditions of matrix parameter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107327294A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108035709A (en) * | 2017-12-04 | 2018-05-15 | 中国石油天然气股份有限公司 | Shale reservoir quality determination method and device |
CN110532507A (en) * | 2019-08-30 | 2019-12-03 | 西安石油大学 | A method of the fine and close oily reservoir Drilling ratio of well of improving the standard |
CN111622753A (en) * | 2020-07-14 | 2020-09-04 | 陕西延长石油(集团)有限责任公司 | Logging identification method for fine sedimentary rock |
CN112327357A (en) * | 2019-08-05 | 2021-02-05 | 中国石油天然气股份有限公司 | Method and device for predicting maturity of hydrocarbon source rock based on three-dimensional seismic data |
CN112392471A (en) * | 2019-08-13 | 2021-02-23 | 中国石油化工股份有限公司 | Carbonate reservoir porosity calculation method and device |
CN113252867A (en) * | 2020-02-11 | 2021-08-13 | 中国石油天然气集团有限公司 | Clay content calculation method and device |
CN116699697A (en) * | 2022-02-25 | 2023-09-05 | 中国石油化工股份有限公司 | Sandstone logging interpretation method and device based on glauconite mineral double-structure model |
CN117709108A (en) * | 2023-12-19 | 2024-03-15 | 大庆油田有限责任公司 | Model building method for grape-flowered oilfield rest oil layer porosity |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4617825A (en) * | 1985-09-12 | 1986-10-21 | Halliburton Company | Well logging analysis methods for use in complex lithology reservoirs |
CN103197348A (en) * | 2013-03-26 | 2013-07-10 | 西北大学 | Method using internal samples at reservoirs to carry out weighting and compile logging crossplot |
CN105781539A (en) * | 2016-03-15 | 2016-07-20 | 中国石油大学(华东) | Saturability well logging calculation method of tight oil and gas reservoir |
-
2017
- 2017-08-28 CN CN201710747940.0A patent/CN107327294A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4617825A (en) * | 1985-09-12 | 1986-10-21 | Halliburton Company | Well logging analysis methods for use in complex lithology reservoirs |
CN103197348A (en) * | 2013-03-26 | 2013-07-10 | 西北大学 | Method using internal samples at reservoirs to carry out weighting and compile logging crossplot |
CN105781539A (en) * | 2016-03-15 | 2016-07-20 | 中国石油大学(华东) | Saturability well logging calculation method of tight oil and gas reservoir |
Non-Patent Citations (2)
Title |
---|
张丽艳: "砂砾岩储层孔隙度和渗透率预测方法", 《测井技术》 * |
张子介等: "柴达木盆地Z区致密储层测井孔隙度解释模型", 《国外测井技术》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108035709A (en) * | 2017-12-04 | 2018-05-15 | 中国石油天然气股份有限公司 | Shale reservoir quality determination method and device |
CN112327357A (en) * | 2019-08-05 | 2021-02-05 | 中国石油天然气股份有限公司 | Method and device for predicting maturity of hydrocarbon source rock based on three-dimensional seismic data |
CN112392471A (en) * | 2019-08-13 | 2021-02-23 | 中国石油化工股份有限公司 | Carbonate reservoir porosity calculation method and device |
CN112392471B (en) * | 2019-08-13 | 2024-02-02 | 中国石油化工股份有限公司 | Carbonate reservoir porosity calculation method and device |
CN110532507B (en) * | 2019-08-30 | 2022-10-11 | 西安石油大学 | Method for improving drilling rate of compact oil reservoir of horizontal well |
CN110532507A (en) * | 2019-08-30 | 2019-12-03 | 西安石油大学 | A method of the fine and close oily reservoir Drilling ratio of well of improving the standard |
CN113252867A (en) * | 2020-02-11 | 2021-08-13 | 中国石油天然气集团有限公司 | Clay content calculation method and device |
CN113252867B (en) * | 2020-02-11 | 2023-09-26 | 中国石油天然气集团有限公司 | Clay content calculating method and device |
CN111622753A (en) * | 2020-07-14 | 2020-09-04 | 陕西延长石油(集团)有限责任公司 | Logging identification method for fine sedimentary rock |
CN111622753B (en) * | 2020-07-14 | 2023-08-18 | 陕西延长石油(集团)有限责任公司 | Logging identification method for fine sedimentary rock |
CN116699697A (en) * | 2022-02-25 | 2023-09-05 | 中国石油化工股份有限公司 | Sandstone logging interpretation method and device based on glauconite mineral double-structure model |
CN116699697B (en) * | 2022-02-25 | 2024-05-07 | 中国石油化工股份有限公司 | Sandstone logging interpretation method and device based on glauconite mineral double-structure model |
CN117709108A (en) * | 2023-12-19 | 2024-03-15 | 大庆油田有限责任公司 | Model building method for grape-flowered oilfield rest oil layer porosity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107327294A (en) | A kind of porosity means of interpretation become based on fine and close oily reservoir under the conditions of matrix parameter | |
Al-Fares et al. | A new look at the Middle to Lower Cretaceous stratigraphy, offshore Kuwait | |
Chen et al. | The construction of shale rock physics effective model and prediction of rock brittleness | |
WO2017024530A1 (en) | Method for calculating content of organic carbon in hydrocarbon source rock | |
CN104678436B (en) | Method for predicting thickness of covering area compressive fracture zone | |
Alqudah et al. | Calcareous nannofossil biostratigraphy of Eocene oil shales from central Jordan | |
CN112965114B (en) | Dessert evaluation method for offshore deep natural gas reservoir | |
CN106951686A (en) | Shale gas selection and appraisal of exploration area method and device | |
Awolayo et al. | A cohesive approach at estimating water saturation in a low-resistivity pay carbonate reservoir and its validation | |
Malki et al. | Effect of mineralogy, pore geometry, and fluid type on the elastic properties of the Bakken formation | |
CN103343687B (en) | A kind of well-log information obtains the method for sandstone brine layer equivalence sodium chloride salinity | |
CN103744121B (en) | Method for logging well by saturability of C/H ratio to stratum fluid | |
Radwan et al. | Petroleum geology of conventional and unconventional resources: Introduction | |
CN113720745B (en) | Method for calculating porosity of carbon chip-containing clastic rock reservoir by geophysical well logging | |
Petersen et al. | Modeling of petroleum generation in the Vietnamese part of the Malay Basin using measured kinetics | |
Nie et al. | Oil Content Prediction Method Based on the TOC and Porosity of Organic‐Rich Shales from Wireline Logs: A Case Study of Lacustrine Intersalt Shale Plays in Qianjiang Sag, Jianghan Basin, China | |
CN116794746A (en) | Geophysical quantitative prediction method for sea shale lithofacies | |
Mou et al. | Lithofacies paleogeography and geological survey of shale gas | |
Belotti et al. | Geologic interpretation and assessment of early cretaceous shale oil and Gas potential in austral Basin, Santa Cruz, Argentina | |
CN118050820A (en) | Shale porosity quantitative evaluation method, data processing terminal and readable storage medium | |
Uluyuz et al. | Understanding Different Mineralization Near Faults and Exploring Far Field Fractures Network Using Full Logging Suite in Khuff formation-The Case Study from Offshore, UAE | |
Yildirim et al. | Petrophysical evaluation of shale gas reservoirs: a field case study of marcellus shale | |
Yu et al. | Geophysical exploration methods on bauxite reservoirs in L gasfield, Ordos Basin | |
Gunnarsson | 3D modeling in Petrel of geological CO2 storage site | |
Morrell et al. | Characterization of sub-log scale variability in mudstones and the effects of variable sampling scales on high resolution models; examples from bone spring formation, west Texas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171107 |