CN107323030A - A kind of light metal-based laminar composite and preparation method thereof - Google Patents
A kind of light metal-based laminar composite and preparation method thereof Download PDFInfo
- Publication number
- CN107323030A CN107323030A CN201710462903.5A CN201710462903A CN107323030A CN 107323030 A CN107323030 A CN 107323030A CN 201710462903 A CN201710462903 A CN 201710462903A CN 107323030 A CN107323030 A CN 107323030A
- Authority
- CN
- China
- Prior art keywords
- light metal
- composite material
- rolling
- graphene nanosheets
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/017—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/38—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B47/00—Auxiliary arrangements, devices or methods in connection with rolling of multi-layer sheets of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B33/00—Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/38—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
- B21B2001/386—Plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/06—Coating on the layer surface on metal layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/558—Impact strength, toughness
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种轻金属基层状复合材料及制备方法,包括层状轻金属与分布于该层状金属中的石墨烯纳米片,所述轻金属基层状复合材料包括至少两层异质轻金属基板金属层与至少一层复合层交替排布,复合层位于两层异质轻金属基板金属层之间;所述轻金属基层状复合材料通过冷轧,或温轧,或热轧,或电致塑性轧制,或温轧+电致塑性轧制的方法制备获得。采用本发明方法制备的轻金属基层状复合材料具有更高的强韧性,而且能够实现大尺寸层状复合板材的规模生产,工艺简单,成本相对较低。The invention relates to a light metal-based composite material and a preparation method thereof, comprising a layered light metal and graphene nanosheets distributed in the layered metal, the light metal-based composite material comprising at least two heterogeneous light metal substrate metal layers and At least one composite layer is alternately arranged, and the composite layer is located between two layers of heterogeneous light metal substrate metal layers; the light metal-based composite material is cold rolled, or warm rolled, or hot rolled, or electroplastically rolled, or It is prepared by the method of warm rolling + electroplastic rolling. The light metal base layer composite material prepared by the method of the invention has higher strength and toughness, and can realize large-scale production of layered composite boards, with simple process and relatively low cost.
Description
技术领域technical field
本发明涉及一种金属层状复合材料及其制备方法,尤其涉及一种基于石墨烯增强型轻金属基层状复合材料及其制备方法。The invention relates to a metal layered composite material and a preparation method thereof, in particular to a graphene-enhanced light metal layered composite material and a preparation method thereof.
背景技术Background technique
金属层状复合材料是指两种或多种金属利用材料的复合技术实现冶金结合制备形成的一种材料。金属层状复合材料中的异种金属之间呈层状分布,具备比每个单一金属更优异的性能,形成复合效应。可通过合理利用不同金属之间组合,使金属层状复合材料具有特殊性能,从而在许多特殊领域具有广阔的应用前景。Metal layered composite material refers to a material formed by the metallurgical combination of two or more metals using material composite technology. The dissimilar metals in the metal layered composite material are distributed in layers, which have better performance than each single metal, forming a composite effect. The metal layered composite material can have special properties by rationally utilizing the combination of different metals, so it has broad application prospects in many special fields.
镁及镁合金是目前实际应用中最轻的金属结构材料之一,具有低的密度、高的比强度和比刚度、良好的耐高温性、耐磨性、减震性等优异的性能,将会在汽车制造,航空航天、国防等领域得到广泛应用。但存在强度和弹性模量低、成形性和耐腐蚀性较差等缺点,限制其大规模工业化应用。而铝及铝合金具有较高的强度、良好的成形性和耐蚀性,且具有轻质,导电性好、耐蚀,美观及价廉的特点,被广泛用于电器材料、容器和建筑材料;金属钛具有轻质、高强、耐蚀、耐磨的特性,在航空、航天及化工设备上有广泛的应用。将镁和铝或镁和钛结合起来制备成层状复合材料,结合铝、钛密度低、抗腐蚀的优点弥补了镁合金表面耐蚀性差的不足,同时充分发挥了镁合金轻质高强的优势,是具有发展应用前景的结构功能型复合材料。钛和铝复合在一起形成的钛/铝层状复合板,同时具有两层金属的特性,充分发挥了两者的优点,是一种重量轻,高耐磨性,高耐蚀性,高强度,高刚度的优质材料。Magnesium and magnesium alloys are currently one of the lightest metal structural materials in practical applications, with low density, high specific strength and specific stiffness, good high temperature resistance, wear resistance, shock absorption and other excellent properties. It will be widely used in automobile manufacturing, aerospace, national defense and other fields. However, there are disadvantages such as low strength and elastic modulus, poor formability and corrosion resistance, which limit its large-scale industrial application. Aluminum and aluminum alloys have high strength, good formability and corrosion resistance, and have the characteristics of light weight, good electrical conductivity, corrosion resistance, beauty and low price, and are widely used in electrical materials, containers and building materials ; Metal titanium has the characteristics of light weight, high strength, corrosion resistance and wear resistance, and is widely used in aviation, aerospace and chemical equipment. Combining magnesium and aluminum or magnesium and titanium to prepare a layered composite material, combining the advantages of aluminum and titanium with low density and corrosion resistance makes up for the lack of poor corrosion resistance on the surface of magnesium alloys, and at the same time gives full play to the advantages of light weight and high strength of magnesium alloys , is a structural and functional composite material with development and application prospects. The titanium/aluminum layered composite plate formed by compounding titanium and aluminum has the characteristics of two layers of metal at the same time, giving full play to the advantages of both. It is a light weight, high wear resistance, high corrosion resistance, high strength , high-quality materials with high rigidity.
目前添加在轻金属基层状复合材料中增强相主要是纳米颗粒,包括碳纳米管、金属或非金属氧化物颗粒等。石墨烯因其优异的物理、化学和力学性能近几年引起材料界广泛的关注,可作为增强体应用于金属基复合材料,将会增强轻金属基层状复合材料的各方面性能。轻金属基层状复合材料的制备方法目前主要有扩散连接、爆炸复合、搅拌摩擦焊、通道挤压、热压和轧制复合等。前面几种方法制备添加石墨烯的轻金属基层状复合材料会存在石墨烯分布不均匀或不能制备大尺寸的板材或成本太高,而轧制复合法能够解决以上问题。At present, the reinforcing phase added to light metal-based matrix composites is mainly nanoparticles, including carbon nanotubes, metal or non-metal oxide particles, and the like. Due to its excellent physical, chemical and mechanical properties, graphene has attracted widespread attention in the material industry in recent years. It can be used as a reinforcement in metal matrix composites, which will enhance the performance of light metal matrix composites in all aspects. The preparation methods of light metal-based matrix composites mainly include diffusion bonding, explosive bonding, friction stir welding, channel extrusion, hot pressing and rolling bonding, etc. The previous methods for preparing graphene-added light metal-based composite materials may have uneven distribution of graphene or cannot prepare large-sized plates or the cost is too high, but the rolling composite method can solve the above problems.
发明内容Contents of the invention
本发明的目的在于提供一种石墨烯增强型的轻金属基层状复合材料及其制备方法,一方面能够提高轻金属基层状复合板材的各方面性能,另一方面能够实现大尺寸轻金属基层状复合板材的大规模、低成本生产。The purpose of the present invention is to provide a graphene-enhanced light metal-based composite material and its preparation method, which can improve the performance of light metal-based composite plates on the one hand, and can realize the performance of large-scale light metal-based composite plates on the other hand. Large-scale, low-cost production.
本发明通过以下技术方案实现:The present invention is realized through the following technical solutions:
本发明提供一种轻金属基层状复合材料,包括层状轻金属与分布于该层状金属中的石墨烯纳米片,其特征在于,所述轻金属层状复合材料包括至少两层异质轻金属基板层与至少一层复合层交替排布,复合层位于两层异质轻金属层之间。The invention provides a light metal layered composite material, comprising layered light metal and graphene nanosheets distributed in the layered metal, characterized in that the light metal layered composite material includes at least two heterogeneous light metal substrate layers and At least one composite layer is arranged alternately, and the composite layer is located between two heterogeneous light metal layers.
优选地,所述轻金属基层状复合材料,其特征在于,所述的轻金属为纯镁或镁合金,纯铝或铝合金,纯钛或钛合金。Preferably, the light metal-based matrix composite material is characterized in that the light metal is pure magnesium or magnesium alloy, pure aluminum or aluminum alloy, pure titanium or titanium alloy.
优选地,所述轻金属基层状复合材料,其特征在于,所述石墨烯纳米片为单层石墨烯或多层石墨烯;所述单层轻金属基板厚度为0.01mm-10mm。Preferably, the light metal-based composite material is characterized in that the graphene nanosheets are single-layer graphene or multi-layer graphene; the thickness of the single-layer light metal substrate is 0.01mm-10mm.
优选地,所述轻金属基层状复合材料,其特征在于,所述轻金属基层状复合材料中石墨烯纳米片的质量百分比为3%以下。Preferably, the light metal-based composite material is characterized in that the mass percentage of graphene nanosheets in the light metal-based composite material is 3% or less.
优选地,所述轻金属基层状复合材料,其特征在于,所述复合层为异质轻金属渗入到石墨烯纳米片的间隙中,与石墨烯纳米片复合,形成的一层复合层。Preferably, the light metal-based composite material is characterized in that the composite layer is a composite layer formed by infiltrating heterogeneous light metals into the gaps of graphene nanosheets and compounding with graphene nanosheets.
优选地,所述所述轻金属基层状复合材料,其特征在于,所述石墨烯纳米片均匀分布于复合层中。Preferably, the light metal-based layered composite material is characterized in that the graphene nanosheets are evenly distributed in the composite layer.
本发明还提供一种轻金属基层状复合材料的制备方法,其特征在于,包括以下步骤:The present invention also provides a method for preparing a light metal-based matrix composite material, which is characterized in that it comprises the following steps:
步骤一:对两块异质轻金属基板的表面进行处理,去除表面氧化物和油脂等,晾干后用钢丝刷对表面进行打磨;Step 1: Treat the surface of two heterogeneous light metal substrates, remove surface oxides and grease, etc., and polish the surface with a wire brush after drying;
步骤二:将石墨烯纳米片加入到丙酮中,利用超声设备将石墨烯纳米片在丙酮中分散均匀,时间0.1h以上,利用喷枪将石墨烯纳米片均匀喷洒覆盖到步骤一的一块轻金属基板上,再覆盖上步骤一的另一块轻金属基板,获得石墨烯纳米片与步骤一的两块异质轻金属基板交替排布的复合板;Step 2: Add graphene nanosheets into acetone, use ultrasonic equipment to disperse graphene nanosheets evenly in acetone for more than 0.1h, use a spray gun to evenly spray graphene nanosheets onto a light metal substrate in step 1 , and then cover another light metal substrate in step 1 to obtain a composite plate in which graphene nanosheets and two heterogeneous light metal substrates in step 1 are alternately arranged;
步骤三;将步骤二获得的复合板利用金属丝将其固定,在压力机上进行室温预压制,压制时间为0.1-10h,压制压力为1t以上;Step 3: Fix the composite plate obtained in step 2 with a metal wire, and pre-press it at room temperature on a press for a pressing time of 0.1-10 hours and a pressing pressure of more than 1 ton;
步骤四:将步骤三的获得的复合板进行叠轧,形成轻金属基层状复合材料。Step 4: Carry out stacking and rolling of the composite plates obtained in Step 3 to form a light metal-based composite material.
优选地,所述一种轻金属基层状复合材料的制备方法,其特征在于,所述步骤四后,还包括步骤五:对步骤四的复合板进行退火处理后从中间位置切割分成两块复合板,重复步骤一至四,其中石墨烯纳米片与异质轻金属是交替排布的,并可根据实际所需多次重复步骤五,最终可得到石墨烯纳米片均匀分布的多层轻金属基层状复合材料。Preferably, the method for preparing a light metal-based composite material is characterized in that, after step 4, step 5 is also included: after the composite board in step 4 is annealed, it is cut into two composite boards from the middle position , repeating steps 1 to 4, wherein the graphene nanosheets and heterogeneous light metals are arranged alternately, and step 5 can be repeated as many times as needed, and finally a multilayer light metal-based composite material with uniform distribution of graphene nanosheets can be obtained .
优选地,所述一种轻金属基层状复合材料的制备方法,其特征在于,所述轧制的方法为冷轧,或温轧,或热轧,或电致塑性轧制,或温轧+电致塑性轧制,其中,Mg/Al基复合板的温轧温度为50-250℃,热轧的温度为250-600℃;Al/Ti基复合板的温轧温度为100-350℃,热轧的温度为350-600℃;Mg/Ti基复合板的温轧温度为100-300℃,热轧的温度为300-600℃;复合板的热轧须在惰性气体的保护下进行,电致塑性轧制的脉冲电流参数为:脉冲宽度为50-300μs,频率为150-1000Hz,电流密度幅值为50-1500A/mm2。Preferably, the method for preparing a light metal-based matrix composite material is characterized in that the rolling method is cold rolling, or warm rolling, or hot rolling, or electroplastic rolling, or warm rolling + electroplastic rolling. Plastic rolling, wherein, the warm rolling temperature of Mg/Al base composite plate is 50-250℃, the temperature of hot rolling is 250-600℃; the warm rolling temperature of Al/Ti based composite plate is 100-350℃, hot rolling The rolling temperature is 350-600°C; the warm rolling temperature of the Mg/Ti-based composite plate is 100-300°C, and the hot rolling temperature is 300-600°C; the hot rolling of the composite plate must be carried out under the protection of an inert gas. The pulse current parameters of plastic rolling are: pulse width 50-300μs, frequency 150-1000Hz, current density amplitude 50-1500A/mm 2 .
优选地,所述一种轻金属基层状复合材料的制备方法,其特征在于,还包括对原始轻金属基板及轻金属基层状复合材料的退火处理过程。Preferably, the method for preparing a light metal-based composite material is characterized in that it also includes an annealing process for the original light metal substrate and the light metal-based composite material.
与现有的技术相比,所述轻金属基层状复合材料采用将性能优异的石墨烯纳米片涂覆与轻金属基板之间进行室温静压后,通过冷轧,或温轧,或热轧,或电致塑性轧制,或温轧+电致塑性轧制的方式,形成层状复合材料,石墨烯纳米片均匀分布于复合层中,解决了石墨烯纳米片在复合材料中不易分散的问题,能够实现大尺寸层状复合板材的规模生产,工艺简单,成本相对较低,同时异质轻金属基板层与复合层交替排列,提高了轻金属基层状复合材料的强度和韧性,复合层数目越多,对轻金属基层状复合材料的增强增塑的效果越明显。Compared with the existing technology, the light metal-based matrix composite material is coated with graphene nanosheets with excellent performance and subjected to room temperature static pressure on the light metal substrate, and then cold-rolled, warm-rolled, or hot-rolled, or Electroplastic rolling, or warm rolling + electroplastic rolling, forms a layered composite material, and graphene nanosheets are evenly distributed in the composite layer, which solves the problem that graphene nanosheets are not easy to disperse in composite materials. It can realize large-scale production of laminated composite panels with simple process and relatively low cost. At the same time, the alternate arrangement of heterogeneous light metal substrate layers and composite layers improves the strength and toughness of light metal substrate composite materials. The more composite layers, The effect of strengthening and plasticizing the light metal-based matrix composites is more obvious.
具体实施方式detailed description
下面对本发明的实施例做详细说明,本实施例在本发明技术方案为前提下进行实施,给出详细的实施方式和具体操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below, and the present embodiments are implemented on the premise of the technical solution of the present invention, providing detailed implementation and specific operation process, but the protection scope of the present invention is not limited to the following embodiments.
实施例1Example 1
本实施例提供了一种纯镁/纯铝层状金属复合材料的制备方法,包括以下步骤:This embodiment provides a method for preparing a pure magnesium/pure aluminum layered metal composite material, comprising the following steps:
步骤一:对纯镁板与纯铝板的表面进行处理,去除表面氧化物和油脂等,晾干后用钢丝刷对表面进行打磨,获得一定粗糙度的待加工的金属基板;其中纯镁板和纯铝板厚度均为2mm;Step 1: Treat the surface of the pure magnesium board and the pure aluminum board, remove surface oxides and grease, etc., and polish the surface with a wire brush after drying to obtain a metal substrate to be processed with a certain roughness; the pure magnesium board and The thickness of pure aluminum plate is 2mm;
步骤二:将石墨烯纳米片加入到丙酮中,利用超声设备将石墨烯纳米片在丙酮中分散均匀,时间2h,利用喷枪将石墨烯纳米片均匀喷洒覆盖到步骤一的纯镁板上,再覆盖步骤一的纯铝板,获得石墨烯纳米片与步骤一的镁板、铝板交替排布的复合板;其中石墨烯纳米片占复合板整体的质量百分比为1.5%;Step 2: Add graphene nanosheets into acetone, use ultrasonic equipment to disperse graphene nanosheets evenly in acetone for 2 hours, use a spray gun to evenly spray graphene nanosheets on the pure magnesium plate in step 1, and then Covering the pure aluminum plate in step 1 to obtain a composite plate in which graphene nanosheets are alternately arranged with magnesium plates and aluminum plates in step 1; wherein the graphene nanosheets account for 1.5% of the overall mass percentage of the composite plate;
步骤三;将步骤二获得的复合板利用金属丝将其固定,在压力机上进行室温预压制,压制时间为2h,压制压力为50t;Step 3: Fix the composite plate obtained in step 2 with a metal wire, and pre-press it at room temperature on a press, the pressing time is 2 hours, and the pressing pressure is 50t;
步骤四:将步骤三的获得的复合板进行热轧,压下量为85%,热轧温度400℃,在惰性气体保护下进行,最终形成石墨烯纳米片均匀分布的镁/铝层状金属复合材料。Step 4: Hot-roll the composite plate obtained in Step 3, the reduction is 85%, the hot-rolling temperature is 400°C, and it is carried out under the protection of an inert gas, finally forming a magnesium/aluminum layered metal with uniform distribution of graphene nanosheets composite material.
实施例2Example 2
本实施例提供了一种铝合金/钛合金层状金属复合材料的制备方法,包括以下步骤:This embodiment provides a method for preparing an aluminum alloy/titanium alloy layered metal composite material, comprising the following steps:
步骤一:对铝合金板与钛合金板的表面进行处理,去除表面氧化物和油脂等,晾干后用钢丝刷对表面进行打磨,获得一定粗糙度的待加工的金属基板;其中铝合金板和钛合金板厚度为1mm;Step 1: Treat the surface of the aluminum alloy plate and titanium alloy plate to remove surface oxides and grease, etc. After drying, polish the surface with a wire brush to obtain a metal substrate to be processed with a certain roughness; the aluminum alloy plate And the thickness of the titanium alloy plate is 1mm;
步骤二:将石墨烯纳米片加入到丙酮中,利用超声设备将石墨烯纳米片在丙酮中分散均匀,时间2h,利用喷枪将石墨烯纳米片均匀喷洒覆盖到步骤一的铝合金板上,再覆盖步骤一的钛合金板,获得石墨烯纳米片与步骤一的铝合金板、钛合金板交替排布的复合板;其中石墨烯纳米片占复合板整体的质量百分比为1%;Step 2: Add graphene nanosheets into acetone, use ultrasonic equipment to disperse graphene nanosheets evenly in acetone, time 2h, use spray gun to evenly spray graphene nanosheets on the aluminum alloy plate in step 1, and then Covering the titanium alloy plate in step 1 to obtain a composite plate in which graphene nanosheets are alternately arranged with the aluminum alloy plate and titanium alloy plate in step 1; wherein the graphene nanosheet accounts for 1% of the overall mass percentage of the composite plate;
步骤三;将步骤二获得的复合板利用金属丝将其固定,在压力机上进行室温预压制,压制时间为2h,压制压力为60t;Step 3: Fix the composite plate obtained in step 2 with a metal wire, and pre-press it at room temperature on a press, with a pressing time of 2 hours and a pressing pressure of 60t;
步骤四:将步骤三的获得的复合板进行电致塑性轧制,形成复合板,其中,电致塑性轧制的压下量为35%,脉冲宽度为80μs,频率为600Hz,电流密度幅值为1000A/mm2;Step 4: Perform electroplastic rolling on the composite plate obtained in step 3 to form a composite plate, wherein the electroplastic rolling reduction is 35%, the pulse width is 80 μs, the frequency is 600 Hz, and the current density amplitude is 1000A/mm 2 ;
步骤五:对步骤四的复合板进行退火处理后从中间位置切割分成两块复合板,重复步骤一至四6次,其中石墨烯纳米片与铝基板、钛基板是交替排布的,加上步骤四的1次共7次电塑性叠轧,形成石墨烯纳米片均匀分布的多层铝/钛层状金属复合材料;Step 5: After annealing the composite board in step 4, cut it into two composite boards from the middle position, repeat steps 1 to 4 6 times, in which graphene nanosheets, aluminum substrates and titanium substrates are arranged alternately, plus step 4, 1 time, a total of 7 times of electroplastic rolling to form a multi-layer aluminum/titanium layered metal composite material with uniform distribution of graphene nanosheets;
步骤六:对步骤五形成的多层复合材料进行退火处理,退火温度为200℃,退火时间为2h,消除复合板的内应力,得到石墨烯纳米片均匀分布的多层铝/钛层状金属复合材料。Step 6: Anneal the multilayer composite material formed in step 5. The annealing temperature is 200°C and the annealing time is 2h to eliminate the internal stress of the composite plate and obtain a multilayer aluminum/titanium layered metal with uniform distribution of graphene nanosheets composite material.
实施例3Example 3
本实施例提供了一种镁合金/纯钛层状金属复合材料的制备方法,包括以下步骤:This embodiment provides a method for preparing a magnesium alloy/pure titanium layered metal composite material, comprising the following steps:
步骤一:对镁合金板与纯钛板的表面进行处理,去除表面氧化物和油脂等,晾干后用钢丝刷对表面进行打磨,获得一定粗糙度的待加工的金属基板;其中镁合金板和纯钛板厚度为1.5mm;Step 1: Treat the surface of the magnesium alloy plate and pure titanium plate to remove surface oxides and grease, etc. After drying, polish the surface with a wire brush to obtain a metal substrate to be processed with a certain roughness; the magnesium alloy plate And the thickness of pure titanium plate is 1.5mm;
步骤二:将石墨烯纳米片加入到丙酮中,利用超声设备将石墨烯纳米片在丙酮中分散均匀,时间2h,利用喷枪将石墨烯纳米片均匀喷洒覆盖到步骤一的镁合金板上,再覆盖步骤一的纯钛板,获得石墨烯纳米片与步骤一的镁合金板、纯钛板交替排布的复合板;其中石墨烯纳米片占复合板整体的质量百分比为1%;Step 2: Add the graphene nanosheets into acetone, use ultrasonic equipment to disperse the graphene nanosheets evenly in the acetone for 2 hours, use a spray gun to evenly spray the graphene nanosheets on the magnesium alloy plate in step 1, and then Covering the pure titanium plate in step 1 to obtain a composite plate in which graphene nanosheets are alternately arranged with magnesium alloy plates and pure titanium plates in step 1; wherein the graphene nanosheets account for 1% of the overall mass percentage of the composite plate;
步骤三;将步骤二获得的复合板利用金属丝将其固定,在压力机上进行室温预压制,压制时间为2h,压制压力为80t;Step 3: Fix the composite plate obtained in step 2 with a metal wire, and pre-press it at room temperature on a press, with a pressing time of 2 hours and a pressing pressure of 80t;
步骤四:将步骤三的获得的复合板进行温轧+电致塑性轧制,形成复合板,其中,轧制的压下量为35%,温轧温度为250℃,脉冲宽度为60μs,频率为400Hz,电流密度幅值为1200A/mm2;Step 4: Perform warm rolling + electroplastic rolling on the composite plate obtained in step 3 to form a composite plate, wherein the rolling reduction is 35%, the warm rolling temperature is 250°C, the pulse width is 60μs, and the frequency 400Hz, the current density amplitude is 1200A/mm 2 ;
步骤五:对步骤四的复合板进行退火处理后从中间位置切割分成两块复合板,重复步骤一至四8次,其中石墨烯纳米片与镁基板、纯钛板是交替排布的,加上步骤四的1次共9次叠轧,形成石墨烯纳米片均匀分布的多层镁/钛层状金属复合材料;Step 5: After annealing the composite board in step 4, cut it into two composite boards from the middle position, repeat steps 1 to 4 8 times, wherein graphene nanosheets, magnesium substrates, and pure titanium sheets are arranged alternately, plus 1 time of step 4 is stacked and rolled a total of 9 times to form a multilayer magnesium/titanium layered metal composite material with evenly distributed graphene nanosheets;
步骤六:对步骤五形成的多层复合材料进行退火处理,退火温度为200℃,退火时间为2.5h,消除复合板的内应力,得到石墨烯纳米片均匀分布的多层镁/钛层状金属复合材料。Step 6: Anneal the multilayer composite material formed in step 5. The annealing temperature is 200°C and the annealing time is 2.5h to eliminate the internal stress of the composite plate and obtain a multilayer magnesium/titanium layer with uniform distribution of graphene nanosheets. metal composites.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710462903.5A CN107323030A (en) | 2017-06-19 | 2017-06-19 | A kind of light metal-based laminar composite and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710462903.5A CN107323030A (en) | 2017-06-19 | 2017-06-19 | A kind of light metal-based laminar composite and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107323030A true CN107323030A (en) | 2017-11-07 |
Family
ID=60195870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710462903.5A Pending CN107323030A (en) | 2017-06-19 | 2017-06-19 | A kind of light metal-based laminar composite and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107323030A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108126991A (en) * | 2017-12-01 | 2018-06-08 | 中南大学 | A kind of compound variable-thickness strip pulse current asynchronous rolling process of bimetallic |
CN108273847A (en) * | 2018-01-17 | 2018-07-13 | 云南民族大学 | A kind of method that the vacuum rolling of electric current auxiliary prepares composite metal plate |
CN108296288A (en) * | 2018-01-12 | 2018-07-20 | 中南大学 | A kind of rolling preparation method improving aluminum laminate titanium composite material interface bond strength using nano metal powder |
CN108717887A (en) * | 2018-04-04 | 2018-10-30 | 北京石墨烯技术研究院有限公司 | A kind of anisotropic graphite alkene metal composite conducting wire and preparation method thereof |
CN108723087A (en) * | 2018-05-07 | 2018-11-02 | 哈尔滨工业大学 | A kind of multi-layer metal composite plate pulse current auxiliary milling method and device |
CN108823626A (en) * | 2018-05-27 | 2018-11-16 | 中南大学 | A kind of Al2O3/ Al/Mg stratiform density gradient material and its preparation method and application |
CN109078983A (en) * | 2018-06-27 | 2018-12-25 | 河南科技大学 | A kind of preparation method of ultra-thin Copper-Aluminum compound foil |
CN109177426A (en) * | 2018-10-26 | 2019-01-11 | 同济大学 | A kind of hot pressing complex method of magnalium clad plate |
CN110125181A (en) * | 2018-02-09 | 2019-08-16 | 常州第六元素材料科技股份有限公司 | Roll-bonding prepares the method and its alkene alloy of alkene alloy |
CN110125180A (en) * | 2018-02-09 | 2019-08-16 | 常州第六元素材料科技股份有限公司 | Enhance non-ferrous metal board and preparation method thereof |
CN110322987A (en) * | 2019-07-09 | 2019-10-11 | 山东大学 | A kind of carbon nanotube enhancing Multi-layer Al-based composite material and preparation method and application |
CN110788144A (en) * | 2019-10-23 | 2020-02-14 | 中车工业研究院有限公司 | Metallic copper-graphene laminated composite material and preparation method and device thereof |
CN111203442A (en) * | 2018-11-22 | 2020-05-29 | 清华大学 | Aluminum matrix composite material and preparation method thereof |
WO2021078225A1 (en) * | 2019-10-23 | 2021-04-29 | 太原理工大学 | Pulse current-assisted uncanned rolling method for titanium-tial composite plate |
CN113427852A (en) * | 2021-06-23 | 2021-09-24 | 哈尔滨理工大学 | Carbon and light alloy based layered composite material and preparation method thereof |
CN113752666A (en) * | 2021-09-09 | 2021-12-07 | 昆明理工大学 | Preparation method of high-strength high-conductivity copper/graphene composite material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103935103A (en) * | 2014-04-04 | 2014-07-23 | 中国航空工业集团公司北京航空材料研究院 | Preparation method of graphene/metal composite panel |
RU2016105833A (en) * | 2016-02-19 | 2016-07-10 | Дмитрий Дмитриевич Кожевников | FIRE-RESISTANT HIGH-STRENGTH COMPOSITE (HVAC) AND METHOD FOR ITS MANUFACTURE |
CN106079693A (en) * | 2016-06-21 | 2016-11-09 | 上海多希石墨烯材料科技有限公司 | A kind of Graphene metal composite sheet material and preparation method thereof |
CN106136857A (en) * | 2016-09-23 | 2016-11-23 | 覃元子 | A kind of frying pan with grapheme material and manufacture method thereof |
CN106521210A (en) * | 2016-11-16 | 2017-03-22 | 银邦金属复合材料股份有限公司 | Graphene aluminum-based composite material and preparation method therefor |
-
2017
- 2017-06-19 CN CN201710462903.5A patent/CN107323030A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103935103A (en) * | 2014-04-04 | 2014-07-23 | 中国航空工业集团公司北京航空材料研究院 | Preparation method of graphene/metal composite panel |
RU2016105833A (en) * | 2016-02-19 | 2016-07-10 | Дмитрий Дмитриевич Кожевников | FIRE-RESISTANT HIGH-STRENGTH COMPOSITE (HVAC) AND METHOD FOR ITS MANUFACTURE |
CN106079693A (en) * | 2016-06-21 | 2016-11-09 | 上海多希石墨烯材料科技有限公司 | A kind of Graphene metal composite sheet material and preparation method thereof |
CN106136857A (en) * | 2016-09-23 | 2016-11-23 | 覃元子 | A kind of frying pan with grapheme material and manufacture method thereof |
CN106521210A (en) * | 2016-11-16 | 2017-03-22 | 银邦金属复合材料股份有限公司 | Graphene aluminum-based composite material and preparation method therefor |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108126991B (en) * | 2017-12-01 | 2019-09-27 | 中南大学 | A Pulse Current Asynchronous Rolling Process for Bimetal Composite Varying Thickness Strip |
CN108126991A (en) * | 2017-12-01 | 2018-06-08 | 中南大学 | A kind of compound variable-thickness strip pulse current asynchronous rolling process of bimetallic |
CN108296288A (en) * | 2018-01-12 | 2018-07-20 | 中南大学 | A kind of rolling preparation method improving aluminum laminate titanium composite material interface bond strength using nano metal powder |
CN108296288B (en) * | 2018-01-12 | 2019-10-11 | 中南大学 | A rolling preparation method for improving interfacial bonding strength of layered aluminum-titanium composite materials by using nanometer metal powder |
CN108273847A (en) * | 2018-01-17 | 2018-07-13 | 云南民族大学 | A kind of method that the vacuum rolling of electric current auxiliary prepares composite metal plate |
CN110125181A (en) * | 2018-02-09 | 2019-08-16 | 常州第六元素材料科技股份有限公司 | Roll-bonding prepares the method and its alkene alloy of alkene alloy |
CN110125180A (en) * | 2018-02-09 | 2019-08-16 | 常州第六元素材料科技股份有限公司 | Enhance non-ferrous metal board and preparation method thereof |
CN110125181B (en) * | 2018-02-09 | 2021-04-02 | 常州第六元素材料科技股份有限公司 | Method for preparing alkene alloy by accumulative pack rolling process and alkene alloy thereof |
CN108717887B (en) * | 2018-04-04 | 2023-06-30 | 中国航发北京航空材料研究院 | A kind of anisotropic graphene metal composite wire and its preparation method |
CN108717887A (en) * | 2018-04-04 | 2018-10-30 | 北京石墨烯技术研究院有限公司 | A kind of anisotropic graphite alkene metal composite conducting wire and preparation method thereof |
CN108723087A (en) * | 2018-05-07 | 2018-11-02 | 哈尔滨工业大学 | A kind of multi-layer metal composite plate pulse current auxiliary milling method and device |
CN108823626B (en) * | 2018-05-27 | 2020-11-03 | 中南大学 | A kind of Al2O3/Al/Mg layered density gradient material and its preparation method and application |
CN108823626A (en) * | 2018-05-27 | 2018-11-16 | 中南大学 | A kind of Al2O3/ Al/Mg stratiform density gradient material and its preparation method and application |
CN109078983A (en) * | 2018-06-27 | 2018-12-25 | 河南科技大学 | A kind of preparation method of ultra-thin Copper-Aluminum compound foil |
CN109078983B (en) * | 2018-06-27 | 2020-06-30 | 河南科技大学 | Preparation method of ultrathin copper-aluminum composite foil |
CN109177426A (en) * | 2018-10-26 | 2019-01-11 | 同济大学 | A kind of hot pressing complex method of magnalium clad plate |
CN109177426B (en) * | 2018-10-26 | 2020-06-05 | 同济大学 | A kind of hot pressing composite method of aluminum-magnesium sandwich composite board |
CN111203442A (en) * | 2018-11-22 | 2020-05-29 | 清华大学 | Aluminum matrix composite material and preparation method thereof |
TWI754783B (en) * | 2018-11-22 | 2022-02-11 | 鴻海精密工業股份有限公司 | Aluminum matrix composite and mehtod thereof |
US11312105B2 (en) * | 2018-11-22 | 2022-04-26 | Tsinghua University | Aluminum matrix composites and method thereof |
CN110322987B (en) * | 2019-07-09 | 2020-08-18 | 山东大学 | Carbon nanotube reinforced multilayer aluminum matrix composite material and preparation method and application thereof |
CN110322987A (en) * | 2019-07-09 | 2019-10-11 | 山东大学 | A kind of carbon nanotube enhancing Multi-layer Al-based composite material and preparation method and application |
CN110788144A (en) * | 2019-10-23 | 2020-02-14 | 中车工业研究院有限公司 | Metallic copper-graphene laminated composite material and preparation method and device thereof |
WO2021078225A1 (en) * | 2019-10-23 | 2021-04-29 | 太原理工大学 | Pulse current-assisted uncanned rolling method for titanium-tial composite plate |
GB2600889A (en) * | 2019-10-23 | 2022-05-11 | Univ Taiyuan Technology | Pulse current-assisted uncanned rolling method for titanium-tial composite plate |
GB2600889B (en) * | 2019-10-23 | 2023-08-23 | Univ Taiyuan Technology | Pulse current assisted uncanned rolling method for titanium-tial composite plates |
US11975370B2 (en) | 2019-10-23 | 2024-05-07 | Taiyuan University Of Technology | Pulse current assisted uncanned rolling method for titanium-TiAl composite plates |
CN113427852A (en) * | 2021-06-23 | 2021-09-24 | 哈尔滨理工大学 | Carbon and light alloy based layered composite material and preparation method thereof |
CN113752666A (en) * | 2021-09-09 | 2021-12-07 | 昆明理工大学 | Preparation method of high-strength high-conductivity copper/graphene composite material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107323030A (en) | A kind of light metal-based laminar composite and preparation method thereof | |
Alizadeh et al. | Fabrication of Al/Cup composite by accumulative roll bonding process and investigation of mechanical properties | |
CN105478475B (en) | A kind of method of rolling high-strength degree composite metal plate | |
CN103586304B (en) | A kind of preparation method of magnesium aluminum composite board | |
CN105648249B (en) | A kind of preparation method of carbon nano tube enhanced aluminium base multilayer materials | |
CN110014045A (en) | A kind of method to improve the interface bonding strength of aluminum-magnesium composite plate | |
CN101391500B (en) | Magnesium based composite material and preparation method thereof | |
CN110918647B (en) | Rolling compounding method of magnesium/aluminum composite board | |
CN104907334A (en) | Machining method for preparing Al/Mg/Al alloy composite board by rolling | |
CN103551383B (en) | Magnesium-steel composite board and preparation method thereof | |
Liu et al. | Effect of heat treatment on the mechanical properties of copper clad steel plates | |
CN112517637B (en) | Reinforced and toughened metal-based layered composite material and preparation method thereof | |
CN103394537A (en) | Preparation method of fine-grain/ultra-fine-grain metal stratified material | |
CN100395058C (en) | A kind of preparation technology of metal matrix composite material | |
TW201041670A (en) | Manufacturing method of alloy plate member having metal clad | |
KR20080006724U (en) | Stainless steel / copper clad plate | |
Shajari et al. | Formation of intermetallic compounds in Al–Cu Interface via cold roll bonding | |
CN105458263A (en) | Manufacturing method for aluminum matrix composite-aluminum alloy sandwich panel | |
CN103586282B (en) | Production method of aluminum matrix composite | |
CN112746256B (en) | High strength and high plasticity layered heterogeneous aluminum matrix composite material and preparation method thereof | |
CN110465670B (en) | A method for preparing layered composite materials by spark plasma sintering | |
CN100415504C (en) | Corrosion-resistant magnesium-aluminum composite material and preparation method thereof | |
CN111375773B (en) | Preparation method of aluminum-magnesium-aluminum layered heterogeneous alloy plate | |
CN101804710A (en) | Al/AZ31/Al aluminum-clad magnesium plate and strip | |
KR100892523B1 (en) | Magnesium-polypropylene sandwich board and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20171107 |