CN107316858A - High dielectric film layer structure and its application and preparation method - Google Patents
High dielectric film layer structure and its application and preparation method Download PDFInfo
- Publication number
- CN107316858A CN107316858A CN201710520577.9A CN201710520577A CN107316858A CN 107316858 A CN107316858 A CN 107316858A CN 201710520577 A CN201710520577 A CN 201710520577A CN 107316858 A CN107316858 A CN 107316858A
- Authority
- CN
- China
- Prior art keywords
- layer
- dielectric
- stacked
- film
- dielectric layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/682—Capacitors having no potential barriers having dielectrics comprising perovskite structures
- H10D1/684—Capacitors having no potential barriers having dielectrics comprising perovskite structures the dielectrics comprising multiple layers, e.g. comprising buffer layers, seed layers or gradient layers
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明提供一种高电介质膜层结构及应用与制备方法,结构包括:迭层式介电结构,包括至少一层第一介电层及至少一层第二介电层,第二介电层的禁带宽度大于第一介电层的禁带宽度,单层第二介电层的厚度小于等于单层第一介电层的厚度,以及量子遂穿抑制层,设置于迭层式介电结构的表面上,或位于迭层式介电结构的第一介电层与第二介电层之间,量子隧穿抑制层的介电常数大于第一介电层的介电常数且大于第二介电层的介电常数。通过本发明的方案,高电介质膜层结构可以在电容介电层厚度不变的情况下,缩小等效氧化层的厚度,还可以在保持或缩小等效氧化层厚度的同时,有足够的物理厚度来限制量子隧穿效应的影响,防止漏电流增大从而导致器件失效。
The invention provides a high dielectric film layer structure and its application and preparation method. The structure includes: a laminated dielectric structure, including at least one first dielectric layer and at least one second dielectric layer, and the second dielectric layer The forbidden band width is greater than the forbidden band width of the first dielectric layer, the thickness of the single-layer second dielectric layer is less than or equal to the thickness of the single-layer first dielectric layer, and the quantum tunneling suppression layer is arranged on the stacked dielectric layer On the surface of the structure, or between the first dielectric layer and the second dielectric layer of the stacked dielectric structure, the dielectric constant of the quantum tunneling suppression layer is greater than the dielectric constant of the first dielectric layer and greater than the dielectric constant of the second dielectric layer. The dielectric constant of the second dielectric layer. Through the scheme of the present invention, the high dielectric film layer structure can reduce the thickness of the equivalent oxide layer under the condition that the thickness of the capacitor dielectric layer remains unchanged, and can also maintain or reduce the thickness of the equivalent oxide layer while having sufficient physical The thickness is used to limit the influence of quantum tunneling effect and prevent the increase of leakage current which will lead to device failure.
Description
技术领域technical field
本发明属于半导体器件制造技术领域,特别是涉及一种高电介质膜层结构及其制备方法以及一种含有该高电介质膜层结构的电容器结构及其制备方法。The invention belongs to the technical field of semiconductor device manufacturing, and in particular relates to a high-dielectric film layer structure and a preparation method thereof, and a capacitor structure containing the high-dielectric film layer structure and a preparation method thereof.
背景技术Background technique
电容器是一种以静电场形式储存能量的无源电子元件。在最简单的形式,电容器包括两个导电极板,且两个导电板之间通过称之为电介质的绝缘材料隔离。电容器的电容与极板的表面面积成正比,与极板间的距离成反比。电容器的电容还取决于分离极板的物质的介电常数。电容的标准单位是法(farad,简称为F),这是一个大单位,更常见的单位是微法(microfarad,简称μF)和皮法(picofarac,简称PF),其中,1μF=10-6F,1pF=10-12F。A capacitor is a passive electronic component that stores energy in the form of an electrostatic field. In its simplest form, a capacitor consists of two conducting plates separated by an insulating material called a dielectric. The capacitance of a capacitor is proportional to the surface area of the plates and inversely proportional to the distance between the plates. The capacitance of a capacitor also depends on the dielectric constant of the substance separating the plates. The standard unit of capacitance is farad (abbreviated as F), which is a large unit, and the more common units are microfarad (abbreviated as μF) and picofarad (picofarac, abbreviated as PF), where 1μF=10 -6 F, 1pF= 10-12F .
电容器可以制造于集成电路(IC)芯片上。在动态随机存取存储器(dynamicrandom access memory,简称DRAM)中,电容通常用于与晶体管连接。电容器有助于保持存储器的内容。由于其微小的物理尺寸,这些组件具有低电容。他们必须以每秒数千次的频率再充电,否则, DRAM将丢失数据。电容器的基本结构是三明治结构,包含下极板、高K介质及上极板。对于DRAM电容器,高K介质为关键因素。Capacitors can be fabricated on integrated circuit (IC) chips. In dynamic random access memory (DRAM for short), capacitors are usually used to connect with transistors. Capacitors help maintain the contents of memory. Due to their tiny physical size, these components have low capacitance. They must be recharged thousands of times per second, otherwise, the DRAM will lose data. The basic structure of a capacitor is a sandwich structure, including a lower plate, a high-K dielectric, and an upper plate. For DRAM capacitors, the high-K dielectric is a key factor.
目前,随着动态随机存取存储器(DRAM)等半导体器件随着器件特征尺寸的不断缩小,氧化层厚度已接近量子隧穿效应(Quantum tunneling effect)的限制,造成漏电流随氧化物厚度减小呈指数增长。而高介电常数氧化物可以维持足够的驱动电流,且可以在保持相同等效氧化层厚度(equivalent oxide thickness,EOT)的情况下增加氧化层的实际物理厚度,有效抑制量子隧穿效应。现有技术中,有些材料具有较高的介电常数,但其禁带宽度较窄,具有高漏电的缺点,为了解决漏电问题,电容介电层的厚度就必须增加,如此一来,反而会牺牲部分的电容值;另一些材料介电常数较低,禁带宽度较宽,具有低漏电的优点,但过多材料层会导致有效的介电常数下降,因而限制其电荷储存量。At present, as the feature size of semiconductor devices such as dynamic random access memory (DRAM) shrinks continuously, the thickness of the oxide layer is close to the limit of the quantum tunneling effect (Quantum tunneling effect), causing the leakage current to decrease with the oxide thickness. Exponential growth. The high dielectric constant oxide can maintain sufficient driving current, and can increase the actual physical thickness of the oxide layer while maintaining the same equivalent oxide thickness (EOT), effectively suppressing the quantum tunneling effect. In the prior art, some materials have a higher dielectric constant, but their forbidden band width is narrow, which has the disadvantage of high leakage. In order to solve the problem of leakage, the thickness of the capacitor dielectric layer must be increased. In this way, it will Sacrifice the capacitance value of the part; other materials have a lower dielectric constant and a wider band gap, which has the advantage of low leakage, but too many material layers will lead to a decrease in the effective dielectric constant, thus limiting its charge storage capacity.
因此,如何设计高K介质的膜层结构及其电容器,使得器件特征尺寸在维持驱动电流的条件下能够继续得以缩小,并防止漏电流增大已成为本领域技术人员亟待解决的一个重要技术问题。Therefore, how to design the film structure of high-K dielectric and its capacitor so that the feature size of the device can continue to be reduced under the condition of maintaining the driving current and prevent the increase of leakage current has become an important technical problem to be solved urgently by those skilled in the art. .
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种高电介质膜层结构及其应用与制备方法,用于解决现有技术中的电荷存储量小、漏电流高的问题。In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a high dielectric film layer structure and its application and preparation method, which are used to solve the problems of small charge storage and high leakage current in the prior art.
为实现上述目的及其他相关目的,本发明提供一种高电介质膜层结构,包括:In order to achieve the above purpose and other related purposes, the present invention provides a high dielectric film structure, including:
迭层式介电结构,包括至少一层第一介电层及至少一层第二介电层,所述第二介电层的禁带宽度大于所述第一介电层的禁带宽度,且单层所述第二介电层的厚度小于等于单层所述第一介电层的厚度;及A laminated dielectric structure, comprising at least one first dielectric layer and at least one second dielectric layer, the forbidden band width of the second dielectric layer is greater than the forbidden band width of the first dielectric layer, And the thickness of the single layer of the second dielectric layer is less than or equal to the thickness of the single layer of the first dielectric layer; and
量子遂穿抑制层,设置于所述迭层式介电结构的表面上,或位于所述迭层式介电结构的所述第一介电层与所述第二介电层之间,所述量子隧穿抑制层的介电常数大于所述第一介电层的介电常数且大于所述第二介电层的介电常数。The quantum tunneling suppression layer is disposed on the surface of the stacked dielectric structure, or between the first dielectric layer and the second dielectric layer of the stacked dielectric structure, so The dielectric constant of the quantum tunneling suppression layer is greater than that of the first dielectric layer and greater than that of the second dielectric layer.
作为本发明的一种优选方案,所述量子遂穿抑制层为二氧化钛层。As a preferred solution of the present invention, the quantum tunneling suppression layer is a titanium dioxide layer.
作为本发明的一种优选方案,所述第一介电层为二氧化锆层,所述第二介电层为三氧化二铝层。As a preferred solution of the present invention, the first dielectric layer is a zirconium dioxide layer, and the second dielectric layer is an aluminum oxide layer.
作为本发明的一种优选方案,所述迭层式介电结构选自于二氧化锆和三氧化二铝依次叠置的迭层式结构、二氧化锆和三氧化二铝和二氧化锆依次叠置的迭层式结构以及三氧化二铝和二氧化锆和三氧化二铝依次叠置的迭层式结构所构成的群组中的其中之一。As a preferred solution of the present invention, the laminated dielectric structure is selected from the laminated structure in which zirconium dioxide and aluminum oxide are stacked in sequence, zirconium dioxide, aluminum oxide and zirconium dioxide in sequence One of the stacked laminated structures and the stacked laminated structures of aluminum oxide, zirconium dioxide, and aluminum oxide in sequence.
作为本发明的一种优选方案,所述第一介电层具有大于等于10的介电常数,所述第二介电层具有大于等于8的禁带宽度。As a preferred solution of the present invention, the first dielectric layer has a dielectric constant greater than or equal to 10, and the second dielectric layer has a forbidden band width greater than or equal to 8.
作为本发明的一种优选方案,所述迭层式介电结构中掺杂有氮化硅及氮氧化硅中的至少一种。As a preferred solution of the present invention, the stacked dielectric structure is doped with at least one of silicon nitride and silicon oxynitride.
作为本发明的一种优选方案,所述高电介质膜层结构的厚度为4~10nm。As a preferred solution of the present invention, the thickness of the high dielectric film layer structure is 4-10 nm.
作为本发明的一种优选方案,所述高电介质膜层结构还包括漏电阻挡层,且所述迭层式介电结构的数量为至少两个,其中,所述漏电阻挡层位于所述迭层式介电结构之间。As a preferred solution of the present invention, the high dielectric film layer structure further includes a leakage barrier layer, and the number of the stacked dielectric structures is at least two, wherein the leakage barrier layer is located in the laminated layer between dielectric structures.
作为本发明的一种优选方案,所述漏电阻挡层的材质包括二氧化硅,且所述漏电阻挡层的厚度小于所述迭层式介电结构中单层所述第二介电层的厚度。As a preferred solution of the present invention, the material of the leakage barrier layer includes silicon dioxide, and the thickness of the leakage barrier layer is smaller than the thickness of a single layer of the second dielectric layer in the stacked dielectric structure. .
本发明还提供一种电容器结构,包括:The present invention also provides a capacitor structure, comprising:
下极板,连接有下电极;The lower plate is connected with the lower electrode;
上极板,连接有上电极;以及an upper plate connected to an upper electrode; and
如上述任意一种方案所述的高电介质膜层结构,位于所述上极板与所述下极板之间。The high dielectric film layer structure according to any one of the solutions above is located between the upper plate and the lower plate.
作为本发明的一种优选方案,所述量子遂穿抑制层位于所述迭层式介电结构与所述下极板之间。As a preferred solution of the present invention, the quantum tunneling suppression layer is located between the stacked dielectric structure and the lower plate.
作为本发明的一种优选方案,所述迭层式介电结构的数量为4个,由二氧化锆和三氧化二铝依次叠置的迭层式介电结构构成,且4个所述迭层式介电结构自下而上依次叠置;所述量子遂穿抑制层的数量为2层,分别设置于所述下极板与底层的二氧化锆层之间,以及顶层的三氧化二铝层与所述上极板之间。As a preferred solution of the present invention, the number of the stacked dielectric structures is four, which are composed of stacked dielectric structures of zirconium dioxide and aluminum oxide in sequence, and the four stacked dielectric structures The layered dielectric structure is stacked sequentially from bottom to top; the quantity of the quantum tunneling suppression layer is 2 layers, which are respectively arranged between the lower electrode plate and the bottom layer of zirconium dioxide, and the top layer of zirconium dioxide between the aluminum layer and the upper plate.
作为本发明的一种优选方案,所述下极板至少有一个剖面为U型,所述高电介质膜层结构及所述上极板的相应剖面均为M型,构成双面电容器结构。As a preferred solution of the present invention, at least one section of the lower plate is U-shaped, and the corresponding sections of the high dielectric film structure and the upper plate are both M-shaped, forming a double-sided capacitor structure.
本发明还提供一种高电介质膜层结构的制备方法,所述高电介质膜层结构为由N层膜层构成的结构,其中,N为大于等于3的整数,所述制备方法包括:The present invention also provides a method for preparing a high dielectric film structure, the high dielectric film structure is a structure composed of N layers, wherein N is an integer greater than or equal to 3, and the preparation method includes:
形成至少一个迭层式介电结构,且所述迭层式介电结构包括至少一层第一介电层及至少一层第二介电层,所述第二介电层的禁带宽度大于所述第一介电层的禁带宽度,且所述第二介电层的单位厚度小于等于所述第一介电层的单位厚度;及forming at least one stacked dielectric structure, and the stacked dielectric structure includes at least one first dielectric layer and at least one second dielectric layer, and the forbidden band width of the second dielectric layer is greater than the forbidden band width of the first dielectric layer, and the unit thickness of the second dielectric layer is less than or equal to the unit thickness of the first dielectric layer; and
形成至少一层量子遂穿抑制层,并且其形成于所述迭层式介电结构的表面上,或形成于所述迭层式介电结构的所述第一介电层与所述第二介电层之间,且所述量子隧穿抑制层的介电常数大于所述第一介电层的介电常数且大于所述第二介电层的介电常数。forming at least one quantum tunneling suppression layer, and it is formed on the surface of the stacked dielectric structure, or formed on the first dielectric layer and the second dielectric layer of the stacked dielectric structure between dielectric layers, and the dielectric constant of the quantum tunneling suppression layer is greater than the dielectric constant of the first dielectric layer and greater than the dielectric constant of the second dielectric layer.
作为本发明的一种优选方案,所述量子遂穿抑制层为二氧化钛层,所述第一介电层为二氧化锆层,所述第二介电层为三氧化二铝层。As a preferred solution of the present invention, the quantum tunneling suppression layer is a titanium dioxide layer, the first dielectric layer is a zirconium dioxide layer, and the second dielectric layer is an aluminum oxide layer.
作为本发明的一种优选方案,形成由N层膜层构成的所述高电介质膜层结构的过程中包括形成第二层膜层至第N层膜层的步骤,具体步骤包括:As a preferred solution of the present invention, the process of forming the high dielectric film structure composed of N film layers includes the steps of forming the second film layer to the Nth film layer, and the specific steps include:
于所提供的第一层膜层的上表面形成一层氢氧根离子层,并使所述氢氧根离子层与所述第二层膜层所含的氧化物对应的单质进行反应,以形成所述第二层膜层;以及Forming a layer of hydroxide ion layer on the upper surface of the provided first film layer, and reacting the simple substance corresponding to the oxide contained in the hydroxide ion layer and the second layer film layer, to forming said second film layer; and
于所形成的第N-1层膜层的上表面形成一层氢氧根离子层,并使所述氢氧根离子层与第 N层膜层所含的氧化物对应的单质进行反应,以形成第N层膜层。Forming a layer of hydroxide ion layer on the upper surface of the formed N-1th film layer, and making the hydroxide ion layer react with the elemental substance corresponding to the oxide contained in the N-th film layer, so as to Form the Nth film layer.
作为本发明的一种优选方案,形成所述第二层膜层及第N层膜层的过程中,其制程气体选自于锆(Zr)、硅(Si)、铝(Al)、铌(Nb)、铪(Hf)和钛(Ti)所构成群组中的至少一种,制程压力为0.1~2托,制程温度为200~400℃。As a preferred version of the present invention, in the process of forming the second film layer and the Nth film layer, its process gas is selected from zirconium (Zr), silicon (Si), aluminum (Al), niobium ( At least one of the group consisting of Nb), hafnium (Hf) and titanium (Ti), the process pressure is 0.1-2 Torr, and the process temperature is 200-400°C.
作为本发明的一种优选方案,其特征在于,形成所述氢氧根离子层的方法包括:在反应炉中,以通入气体选自水蒸气和臭氧的其中之一,并进行加热的方式对待形成氢氧根离子层的结构进行处理,以在所述待形成氢氧根离子层的结构的上表面形成一层氢氧根离子层。As a preferred solution of the present invention, it is characterized in that the method for forming the hydroxide ion layer comprises: in the reaction furnace, the gas is fed into one of water vapor and ozone, and heated The structure to be formed with a hydroxide ion layer is processed to form a layer of hydroxide ions on the upper surface of the structure to be formed with a hydroxide ion layer.
本发明还提供一种电容器结构的制备方法,包括如下步骤:The present invention also provides a method for preparing a capacitor structure, comprising the steps of:
1)提供一下极板;1) Provide the following plates;
2)于所述下极板上表面形成一层氢氧根离子层,使所述氢氧根离子层与第一层膜层所含的氧化物对应的单质进行反应,以形成第一层膜层;2) forming a layer of hydroxide ion layer on the upper surface of the lower plate, allowing the hydroxide ion layer to react with the elemental substance corresponding to the oxide contained in the first layer of the film layer to form the first layer of film Floor;
3)于所述第一层膜层表面按照如上述任意一种方案所述的方法制备第二层至第N层膜层,以形成由N层膜层构成的高电介质膜层结构,其中,N为大于等于3的整数;以及3) Prepare the second layer to the Nth film layer on the surface of the first film layer according to the method described in any of the above-mentioned schemes, so as to form a high dielectric film layer structure composed of N film layers, wherein, N is an integer greater than or equal to 3; and
4)于步骤3)所得到的结构表面形成上极板。4) Forming an upper pole plate on the surface of the structure obtained in step 3).
如上所述,本发明的高电介质膜层结构及其应用与制备方法,具有以下有益效果:As mentioned above, the high dielectric film structure of the present invention and its application and preparation method have the following beneficial effects:
1)本发明的高电介质膜层结构可以在电容介电层厚度不变的情况下,缩小等效氧化层的厚度;1) The high dielectric film layer structure of the present invention can reduce the thickness of the equivalent oxide layer under the condition that the thickness of the capacitor dielectric layer is constant;
2)本发明的高电介质膜层结构能够在保持或缩小等效氧化层厚度的同时,有足够的物理厚度来限制量子隧穿效应的影响,防止漏电流增大从而导致器件失效。2) The high dielectric film structure of the present invention can maintain or reduce the equivalent oxide layer thickness while having sufficient physical thickness to limit the influence of quantum tunneling effect and prevent device failure from increasing leakage current.
附图说明Description of drawings
图1至图5显示为本发明实施例一提供的高电介质膜层结构的示意图。FIG. 1 to FIG. 5 show schematic diagrams of the structure of the high dielectric film layer provided for the first embodiment of the present invention.
图6至图8显示为本发明实施例一提供的迭层式介电结构的示意图。6 to 8 are schematic diagrams of a stacked dielectric structure provided in Embodiment 1 of the present invention.
图9至图11显示为本发明实施例一提供的具有漏电保护层的高电介质膜层结构示意图。FIG. 9 to FIG. 11 are schematic diagrams showing the structure of the high dielectric film layer provided with the leakage protection layer according to Embodiment 1 of the present invention.
图12至图16显示为本发明实施例二提供的电容器结构制备过程中各步骤的结构示意图。FIG. 12 to FIG. 16 show the structural schematic diagrams of each step in the process of preparing the capacitor structure provided by Embodiment 2 of the present invention.
图17至图18显示为本发明实施例二提供的另外两种电容器结构的示意图。FIG. 17 to FIG. 18 show schematic diagrams of other two capacitor structures provided for Embodiment 2 of the present invention.
图19显示为各材料介电常数的比较图。Figure 19 shows a comparative graph of the dielectric constant of each material.
图20显示为各材料介电常数与禁带宽度的关系示意图。FIG. 20 is a schematic diagram showing the relationship between the dielectric constant of each material and the forbidden band width.
元件标号说明Component designation description
1 高电介质膜层结构1 High dielectric film structure
11 迭层式介电结构11 Stacked Dielectric Structure
111 第一介电层111 first dielectric layer
112 第二介电层112 second dielectric layer
12 量子遂穿抑制层12 Quantum tunneling suppression layer
13 漏电阻挡层13 Leakage barrier layer
2 电容器结构2 capacitor structure
21 下极板21 lower plate
22 上极板22 upper plate
23 下电极23 Bottom electrode
24 上电极24 upper electrode
25 绝缘层25 insulation layer
具体实施方式detailed description
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1至图20。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。See Figures 1 through 20. It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic concept of the present invention, although only the components related to the present invention are shown in the diagrams rather than the number, shape and Dimensional drawing, the shape, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the layout of the components may also be more complicated.
实施例一Embodiment one
本发明提供一种高电介质膜层结构,如图1~5所示,所述高电介质膜层结构1包括:The present invention provides a high dielectric film structure, as shown in Figures 1 to 5, the high dielectric film structure 1 includes:
迭层式介电结构11,所述迭层式介电结构包括至少一层第一介电层111及至少一层第二介电层112,所述第二介电层112的禁带宽度大于所述第一介电层111的禁带宽度,且单层所述第二介电层112的厚度小于等于单层所述第一介电层111的厚度;及A stacked dielectric structure 11, the stacked dielectric structure includes at least one first dielectric layer 111 and at least one second dielectric layer 112, the forbidden band width of the second dielectric layer 112 is greater than The forbidden band width of the first dielectric layer 111, and the thickness of the single layer of the second dielectric layer 112 is less than or equal to the thickness of the single layer of the first dielectric layer 111; and
量子遂穿抑制层12,设置于所述迭层式介电结构11的表面上,或位于所述迭层式介电结构11的所述第一介电层111与所述第二介电层112之间,所述量子隧穿抑制层12的介电常数大于所述第一介电层111的介电常数且大于所述第二介电层112的介电常数。Quantum tunneling suppression layer 12, disposed on the surface of the stacked dielectric structure 11, or located on the first dielectric layer 111 and the second dielectric layer of the stacked dielectric structure 11 112 , the dielectric constant of the quantum tunneling suppression layer 12 is greater than the dielectric constant of the first dielectric layer 111 and greater than the dielectric constant of the second dielectric layer 112 .
具体的,在本发明中,K代表介电常数,高K代表介电常数大于3.9。另外,以所述迭层式介电结构11仅由一层第一介电层111以及一层第二介电层112构成为例,所述量子遂穿抑制层12可以位于所述迭层式介电结构11的下表面或上表面,此时,所述量子遂穿抑制层12只与所述迭层式介电结构11中的一层相接触,即所述量子遂穿抑制层与第一介电层111或第二介电层112相接触,如图1、图2所示,另外,所述量子遂穿抑制层12也可以位于所述迭层式介电结构11的各层之间,即所述量子遂穿抑制层12可以同时与第一介电层111及第二介电层112相接触,如图3所示,为与两类膜层均相接触的情况。Specifically, in the present invention, K represents a dielectric constant, and a high K represents a dielectric constant greater than 3.9. In addition, taking the stacked dielectric structure 11 consisting of only one layer of first dielectric layer 111 and one layer of second dielectric layer 112 as an example, the quantum tunneling suppression layer 12 may be located in the stacked The lower surface or the upper surface of the dielectric structure 11. At this time, the quantum tunneling suppression layer 12 is only in contact with one layer of the stacked dielectric structure 11, that is, the quantum tunneling suppression layer and the first A dielectric layer 111 or a second dielectric layer 112 are in contact, as shown in FIG. 1 and FIG. In other words, the quantum tunneling suppression layer 12 can be in contact with the first dielectric layer 111 and the second dielectric layer 112 at the same time, as shown in FIG. 3 , it is the case of being in contact with both types of film layers.
更进一步,当所述迭层式介电结构11的数量为两个或多个时,所述量子遂穿抑制层12 可以位于各所述迭层式介电结构11之间,当然,也可以位于两个或多个所述迭层式介电结构 11共同构成的叠层结构的上表面或下表面,如图4所示,显示为多个迭层式介电结构11依次叠置,所述量子遂穿抑制层12位于其下表面的结构示意图。Furthermore, when the number of the stacked dielectric structures 11 is two or more, the quantum tunneling suppression layer 12 may be located between each of the stacked dielectric structures 11, of course, it may also be Located on the upper surface or the lower surface of the stacked structure formed by two or more stacked dielectric structures 11, as shown in FIG. A schematic diagram of the structure of the quantum tunneling suppression layer 12 located on its lower surface.
同时,所述量子遂穿抑制层12的数量也可以为两层或多层,如图5所示,显示为多层量子遂穿抑制层12以及多个迭层式介电结构11构成的高电介质膜层结构,其由一个迭层式介电结构11以及位于所述迭层式介电结构11下表面的一层量子遂穿抑制层12构成一个循环结构,两个或多个所述循环结构依次叠置,构成所述高电介质膜层结构。At the same time, the quantity of the quantum tunneling suppression layer 12 can also be two or more layers, as shown in FIG. Dielectric film layer structure, which consists of a stacked dielectric structure 11 and a layer of quantum tunneling suppression layer 12 located on the lower surface of the stacked dielectric structure 11 to form a loop structure, two or more loops The structures are stacked in sequence to form the high dielectric film layer structure.
需要说明的是,在本发明的其他实施方式中,为了更有效的缩小等效氧化层的厚度,并在保持或缩小等效氧化层厚度的同时有足够的物理厚度来限制量子隧穿效应的影响,防止漏电流增大从而导致器件失效,所述迭层式介电结构11的数量可以依实际需求设置,如为3~100 个,在本实施例中,优选为4个,所述量子遂穿抑制层12的数量也可以为任意层,在本实施例中,优选为2层,当然,也可以为3~100层,在此不做具体限制。It should be noted that, in other embodiments of the present invention, in order to reduce the thickness of the equivalent oxide layer more effectively, and maintain or reduce the thickness of the equivalent oxide layer while having sufficient physical thickness to limit the quantum tunneling effect influence, to prevent the leakage current from increasing and causing device failure, the number of the stacked dielectric structures 11 can be set according to actual needs, such as 3 to 100, in this embodiment, preferably 4, the quantum The number of tunneling inhibiting layers 12 can also be any number of layers. In this embodiment, it is preferably 2 layers. Of course, it can also be 3-100 layers, which is not specifically limited here.
作为示例,所述量子遂穿抑制层12为二氧化钛层。As an example, the quantum tunneling suppression layer 12 is a titanium dioxide layer.
当然,在其他实施例中,所述量子遂穿抑制层12还可以为二氧化铪(HfO2)层及二氧化铌(NbO2)层中的至少一种,所述量子遂穿抑制层12因其具有高的介电常数,一方面可以为电容结构提供足够的电容能力,另一方面,还可以缩小等效氧化层的厚度,从而在适应器件特征尺寸缩小的情况下减少器件漏电情况。Of course, in other embodiments, the quantum tunneling suppression layer 12 can also be at least one of a hafnium dioxide (HfO 2 ) layer and a niobium dioxide (NbO 2 ) layer, and the quantum tunneling suppression layer 12 Because of its high dielectric constant, on the one hand, it can provide sufficient capacitance capacity for the capacitor structure, on the other hand, it can also reduce the thickness of the equivalent oxide layer, thereby reducing device leakage while adapting to the reduction of device feature size.
作为示例,所述第一介电层111为二氧化锆层(ZrO2),所述第二介电层112为三氧化二铝层(Al2O3)。As an example, the first dielectric layer 111 is a zirconium dioxide layer (ZrO 2 ), and the second dielectric layer 112 is an aluminum oxide layer (Al 2 O 3 ).
作为示例,所述迭层式介电结构11选自二氧化锆和三氧化二铝依次叠置的迭层式结构,如图6所示,为ZA型结构;二氧化锆和三氧化二铝和二氧化锆依次叠置的迭层式结构,如图7所示,为ZAZ型结构;三氧化二铝和二氧化锆和三氧化二铝依次叠置的迭层式结构,如图8所示,为AZA型结构,中的任意一种,当然,在其他实施例中,也可以选自上述结构中的任意两种及以上的组合,其中,“任意两种及以上”是指任意两种的组合或者任意两种以上的组合。As an example, the stacked dielectric structure 11 is selected from a stacked structure in which zirconium dioxide and aluminum oxide are stacked in sequence, as shown in FIG. 6, which is a ZA structure; zirconium dioxide and aluminum oxide The stacked structure stacked with zirconium dioxide in sequence, as shown in Figure 7, is a ZAZ structure; the stacked structure with aluminum oxide, zirconium dioxide, and aluminum oxide stacked in sequence, as shown in Figure 8 It is any one of the AZA structure, of course, in other embodiments, it can also be selected from the combination of any two or more of the above structures, wherein, "any two or more" refers to any two A combination of species or any combination of two or more.
作为示例,所述第一介电层具有大于等于10的介电常数,所述第二介电层具有大于等于 8的禁带宽度。As an example, the first dielectric layer has a dielectric constant greater than or equal to 10, and the second dielectric layer has a band gap greater than or equal to 8.
具体的,所述量子遂穿抑制层12包括但不限于二氧化钛(TiO2)层、二氧化铪(HfO2)层、二氧化铌(NbO2)层,可以为实现所述量子遂穿抑制层12在本发明中的功能的任意量子遂穿抑制层。其中,当所述迭层式介电结构11选自二氧化锆/三氧化二铝结构时,所述量子遂穿抑制层12可以位于仅二氧化锆层表面,或仅位于三氧化二铝层表面,或位于二氧化锆层和三氧化二铝层之间;当所述迭层式介电结构11选自二氧化锆/三氧化二铝/二氧化锆结构时,所述量子遂穿抑制层12可以位于仅二氧化锆层表面,即上表面或下表面;也可以位于二氧化锆层和三氧化二铝层之间,此时,可以位于任意一个的二氧化锆/三氧化二铝界面之间,也可以具有在所有二氧化锆/三氧化二铝界面之间均设置所述量子遂穿抑制层12,其他示例类似,在此不一一列举。Specifically, the quantum tunneling suppression layer 12 includes but is not limited to a titanium dioxide (TiO 2 ) layer, a hafnium dioxide (HfO 2 ) layer, and a niobium dioxide (NbO 2 ) layer, which can be used to realize the quantum tunneling suppression layer 12 Functional arbitrary quantum tunneling suppression layer in the present invention. Wherein, when the laminated dielectric structure 11 is selected from the zirconia/aluminum oxide structure, the quantum tunneling suppression layer 12 can be located only on the surface of the zirconia layer, or only on the aluminum oxide layer surface, or between the zirconium dioxide layer and the aluminum oxide layer; when the laminated dielectric structure 11 is selected from the zirconium dioxide/aluminum oxide/zirconium dioxide structure, the quantum tunneling suppression Layer 12 can be located only on the surface of the zirconium dioxide layer, that is, the upper surface or the lower surface; it can also be located between the zirconium dioxide layer and the aluminum oxide layer. Between the interfaces, the quantum tunneling suppression layer 12 may also be provided between all the zirconia/aluminum oxide interfaces. Other examples are similar, and will not be listed here.
另外,所述第一介电层具有大于等于10的介电常数,所述第二介电层具有大于等于8的禁带宽度,且单层所述第二介电层的厚度小于等于单层所述第一介电层的厚度,在本实施例中,Al2O3相较于ZrO2其介电常数较低,禁带宽度较宽,具有低漏电的优点,但过多的Al2O3会导致有效的介电常数下降,因而限制其电荷储存量,ZrO2具有较高的介电常数,但其禁带宽度较窄,具有高漏电的缺点,为了解决漏电问题,电容介电层的厚度就必须增加,如此一来,反而会牺牲部分的电容值,基于二者的上述特性,进行本实施例中的第一介电层111及第二介电层112的设置,在电容器的漏电流及稳定性方面具有明显优势。In addition, the first dielectric layer has a dielectric constant greater than or equal to 10, the second dielectric layer has a band gap greater than or equal to 8, and the thickness of a single layer of the second dielectric layer is less than or equal to a single layer The thickness of the first dielectric layer, in this embodiment, compared with ZrO2, Al 2 O 3 has a lower dielectric constant and a wider forbidden band, which has the advantage of low leakage, but too much Al 2 O 3 will lead to a decrease in the effective dielectric constant, thereby limiting its charge storage capacity. ZrO 2 has a high dielectric constant, but its forbidden band width is narrow, and it has the disadvantage of high leakage. In order to solve the leakage problem, the capacitor dielectric The thickness of the layer must be increased. In this way, part of the capacitance value will be sacrificed instead. Based on the above-mentioned characteristics of the two, the first dielectric layer 111 and the second dielectric layer 112 in this embodiment are set. It has obvious advantages in leakage current and stability.
作为示例,所述迭层式介电结构11中掺杂有氮化硅及氮氧化硅中的至少一种。As an example, the stacked dielectric structure 11 is doped with at least one of silicon nitride and silicon oxynitride.
具体的,所述迭层式介电结构11中还掺杂有氮化硅(SiN)及氮氧化硅(SiON)中的至少一种。其中,掺杂的氮化硅或氮氧化硅仅占据二氧化锆层或三氧化二铝层中的部分空位,并不构成完整的薄膜,本发明中,所述迭层式介电结构11中的氮化硅或氮氧化硅掺杂可以进一步减少所述高K介质循环单元中的漏电。Specifically, the stacked dielectric structure 11 is further doped with at least one of silicon nitride (SiN) and silicon oxynitride (SiON). Wherein, the doped silicon nitride or silicon oxynitride only occupies part of the vacancies in the zirconium dioxide layer or the aluminum oxide layer, and does not constitute a complete film. In the present invention, the laminated dielectric structure 11 The doping of silicon nitride or silicon oxynitride can further reduce leakage in the high-K dielectric circulation unit.
作为示例,所述高电介质膜层结构1的厚度为4~10nm。As an example, the thickness of the high dielectric film layer structure 1 is 4-10 nm.
具体的,所述高电介质膜层结构1的厚度优选为6~9nm,在本实施例中选择为8nm,另外,所述第一介电层111的厚度可以为1.5~10nm,本实施例中选择为4nm;所述第二介电层 112的厚度可以为0.1~5nm,本实施例中选择为2nm;所述量子遂穿抑制层12的厚度可以为 0.1~8nm,优选为0.2~5nm,本实施例中选择为2nm,依实际需求电容容量需求而定,在此不做具体限制,所述量子遂穿抑制层12旨在因其具有高的介电常数,一方面可以为电容结构提供足够的电容能力,另一方面,还可以缩小等效氧化层的厚度,从而在适应器件特征尺寸缩小的情况下减少器件漏电情况。Specifically, the thickness of the high dielectric film layer structure 1 is preferably 6-9 nm, and in this embodiment, it is selected as 8 nm. In addition, the thickness of the first dielectric layer 111 may be 1.5-10 nm. In this embodiment The choice is 4nm; the thickness of the second dielectric layer 112 can be 0.1-5nm, which is 2nm in this embodiment; the thickness of the quantum tunneling suppression layer 12 can be 0.1-8nm, preferably 0.2-5nm, In this embodiment, it is selected as 2nm, which depends on the actual demand for capacitance capacity, and no specific limitation is made here. The quantum tunneling suppression layer 12 is intended to provide a capacitor structure with a high dielectric constant because of its high dielectric constant. Sufficient capacitance capacity, on the other hand, can also reduce the thickness of the equivalent oxide layer, thereby reducing device leakage while adapting to the reduction of device feature size.
作为示例,所述高电介质膜层结构1还包括漏电阻挡层13,且所述迭层式介电结构11 的数量为至少两个,其中,所述漏电阻挡层13位于所述迭层式介电结构11之间。As an example, the high dielectric film structure 1 further includes a leakage barrier layer 13, and the number of the stacked dielectric structures 11 is at least two, wherein the leakage barrier layer 13 is located in the stacked dielectric structure Between electrical structures 11.
作为示例,所述漏电阻挡层13的材质包括二氧化硅,且所述漏电阻挡层13的厚度小于所述迭层式介电结构11中单层所述第二介电层112的厚度。As an example, the material of the leakage blocking layer 13 includes silicon dioxide, and the thickness of the leakage blocking layer 13 is smaller than the thickness of a single layer of the second dielectric layer 112 in the stacked dielectric structure 11 .
具体的,所述漏电流阻挡层13可为连续或非连续形态的原子层,优选采用热扩散的非连续原子层,所述漏电流阻挡层13的材质包括但不限于氧化硅,氧化硅具有较高的禁带宽度,可以有效地防止漏电,所述漏电流阻挡层的厚度范围是0.5~2.5nm。如图9~11所示,所述漏电阻挡层13位于所述迭层式介电结构11之间,包括所述迭层式介电结构11之间不存在量子遂穿抑制层12时的情况,如图9所示,还包括所述所述迭层式介电结构11之间形成有一层量子遂穿抑制层12的情况,此时,所述漏电阻挡层13位于所述迭层式介电结构11之间并且进一步位于所述量子遂穿抑制层12与位于其上层的迭层式介电结构11之间,或者位于所述量子遂穿抑制层12与位于其下层的迭层式介电结构11之间,当然,在其他实施例中,还存在多种可以实现该功能的方案,在此不做具体限制。Specifically, the leakage current blocking layer 13 can be a continuous or discontinuous atomic layer, preferably a thermally diffused discontinuous atomic layer. The material of the leakage current blocking layer 13 includes but is not limited to silicon oxide, which has The higher forbidden band width can effectively prevent leakage, and the thickness range of the leakage current blocking layer is 0.5-2.5nm. As shown in FIGS. 9-11, the leakage blocking layer 13 is located between the stacked dielectric structures 11, including the situation when there is no quantum tunneling suppression layer 12 between the stacked dielectric structures 11. , as shown in FIG. 9, also includes the case where a layer of quantum tunneling suppression layer 12 is formed between the stacked dielectric structures 11. At this time, the leakage blocking layer 13 is located between the stacked dielectric structures Between the electrical structures 11 and further between the quantum tunneling suppression layer 12 and the stacked dielectric structure 11 above it, or between the quantum tunneling suppression layer 12 and the stacked dielectric structure below it Between the electrical structures 11, of course, in other embodiments, there are many solutions that can realize this function, which are not specifically limited here.
本发明还提供一种高电介质膜层结构的制备方法,其中,所述制备方法为制备本发明所保护的高电介质膜层结构的方法,具体的,所述高电介质膜层结构为由N层膜层构成的结构,其中,N为大于等于3的整数,所述制备方法包括:The present invention also provides a method for preparing a high dielectric film structure, wherein the preparation method is a method for preparing the high dielectric film structure protected by the present invention, specifically, the high dielectric film structure is composed of N layers A structure composed of film layers, wherein N is an integer greater than or equal to 3, and the preparation method includes:
形成至少一个迭层式介电结构11,且所述迭层式介电结构11包括至少一层第一介电层 111及至少一层第二介电层112,所述第二介电层112的禁带宽度大于所述第一介电层111的禁带宽度,且所述第二介电层112的单位厚度小于等于所述第一介电层111的单位厚度;及At least one stacked dielectric structure 11 is formed, and the stacked dielectric structure 11 includes at least one first dielectric layer 111 and at least one second dielectric layer 112, the second dielectric layer 112 The forbidden band width is greater than the forbidden band width of the first dielectric layer 111, and the unit thickness of the second dielectric layer 112 is less than or equal to the unit thickness of the first dielectric layer 111; and
形成至少一层量子遂穿抑制层12,并且其形成于所述迭层式介电结构11的表面上,或形成于所述迭层式介电结构11的所述第一介电层111与所述第二介电层112之间,且所述量子隧穿抑制层12的介电常数大于所述第一介电层111的介电常数且大于所述第二介电层112 的介电常数。forming at least one quantum tunneling suppression layer 12, and it is formed on the surface of the stacked dielectric structure 11, or formed on the first dielectric layer 111 and the stacked dielectric structure 11 Between the second dielectric layer 112, and the dielectric constant of the quantum tunneling suppression layer 12 is greater than the dielectric constant of the first dielectric layer 111 and greater than the dielectric constant of the second dielectric layer 112 constant.
具体的,所述高电介质膜层结构1采用低压化学气相沉积(LPCVD)或者也可以是原子层沉积(ALD)(不限于单片式或批次式反应腔)方式形成。Specifically, the high dielectric film layer structure 1 is formed by low-pressure chemical vapor deposition (LPCVD) or atomic layer deposition (ALD) (not limited to single-chip or batch reaction chambers).
作为示例,所述量子遂穿抑制层12为二氧化钛层,所述第一介电层111为二氧化锆层,所述第二介电层112为三氧化二铝层。As an example, the quantum tunneling suppression layer 12 is a titanium dioxide layer, the first dielectric layer 111 is a zirconium dioxide layer, and the second dielectric layer 112 is an aluminum oxide layer.
作为示例,形成由N层膜层构成的所述高电介质膜层结构的过程中包括形成第二层膜层至第N层膜层的步骤,具体步骤包括:As an example, the process of forming the high dielectric film structure composed of N film layers includes the steps of forming the second film layer to the Nth film layer, and the specific steps include:
于所提供的第一层膜层的上表面形成一层氢氧根离子层,并使所述氢氧根离子层与第二层膜层所含的氧化物对应的单质进行反应,以形成第二层膜层;以及Form a layer of hydroxide ion layer on the upper surface of the provided first layer of film layer, and make the hydroxide ion layer react with the simple substance corresponding to the oxide contained in the second layer of film layer to form the first layer of film layer two layers of film; and
于所形成的第N-1层膜层的上表面形成一层氢氧根离子层,并使所述氢氧根离子层与第 N层膜层所含的氧化物对应的单质进行反应,以形成第N层膜层。Forming a layer of hydroxide ion layer on the upper surface of the formed N-1th film layer, and making the hydroxide ion layer react with the elemental substance corresponding to the oxide contained in the N-th film layer, so as to Form the Nth film layer.
具体的,在本实施例中,所述第一层膜层可以直接提供,可以为三氧化二铝层、二氧化锆层或量子遂穿抑制层,如TiO2层。Specifically, in this embodiment, the first film layer may be provided directly, and may be an aluminum oxide layer, a zirconium dioxide layer, or a quantum tunneling suppression layer, such as a TiO 2 layer.
作为示例,形成所述第二层膜层及第N层膜层的过程中,其制程气体为Zr、Si、Al、Nb、 Hf或Ti中的至少一种,制程压力为0.1~2托(torr),优选为0.1~1托,本实施例中选择为 0.5torr,制程温度为200~400℃,优选为250~350℃,本实施例中选择为300℃。As an example, in the process of forming the second film layer and the Nth film layer, the process gas is at least one of Zr, Si, Al, Nb, Hf or Ti, and the process pressure is 0.1-2 Torr ( torr), preferably 0.1 to 1 torr, 0.5 torr is selected in this embodiment, and the process temperature is 200 to 400° C., preferably 250 to 350° C., and 300° C. is selected in this embodiment.
作为示例,形成所述氢氧根离子层的方法包括:在反应炉中,以通入H2O或O3并进行加热的方式对待形成氢氧根离子层的结构进行处理,以在所述待形成氢氧根离子层的结构的上表面形成一层氢氧根离子层。As an example, the method for forming the hydroxide ion layer includes: in a reaction furnace, the structure to be formed with the hydroxide ion layer is treated by feeding H 2 O or O 3 and heating, so as to form the hydroxide ion layer in the reactor. A hydroxide ion layer is formed on the upper surface of the structure where the hydroxide ion layer is to be formed.
具体的,将待形成氢氧根离子层的结构置于反应炉(如炉管)中,并向反应炉中通入H2O 或O3,对反应炉进行加热,从而在待处理的结构表面形成一层氢氧根离子层,接着,再通入所要形成的膜层中所含的氧化物对应的单质,作为先驱体与所述氢氧根离子层反应,从而形成所需要的氧化物膜层。Specifically, the structure to be formed with a hydroxide ion layer is placed in a reaction furnace (such as a furnace tube), and H 2 O or O 3 is introduced into the reaction furnace to heat the reaction furnace, so that the structure to be treated A layer of hydroxide ion layer is formed on the surface, and then, the simple substance corresponding to the oxide contained in the film layer to be formed is passed through to react with the hydroxide ion layer as a precursor to form the required oxide film layer.
实施例二Embodiment two
本发明还提供一种电容器结构,所述电容器结构包括实施例一所述的高电介质膜层结构 1,如图16~18所示,包括:The present invention also provides a capacitor structure, which includes the high dielectric film layer structure 1 described in Embodiment 1, as shown in Figures 16-18, including:
下极板21,连接有下电极23;The lower plate 21 is connected with the lower electrode 23;
上极板22,连接有上电极24;The upper plate 22 is connected with the upper electrode 24;
高电介质膜层结构1,位于所述上极板22与所述下极板21之间,其中,所述高电介质膜层结构1为如上述任意一项方案所述的高电介质膜层结构。The high-dielectric film structure 1 is located between the upper plate 22 and the lower plate 21, wherein the high-dielectric film structure 1 is the high-dielectric film structure described in any one of the solutions above.
需要说明的是,电容器电容的计算公式为:C=KεoA/tox(其中,K:介电层的介电常数,εo:真空介电常数,A:介电层面积,tox:介电层厚度),在不造成量子隧穿效应的情况下,可藉由减少介电层厚度或提升介电层介电常数来提高电容。另外,等效氧化层厚度(equivalent oxide thickness,EOT)为:在高介电常数介电层保持电容不变情况下,换算具有相同单位面积电容的SiO2介电层厚度,具体换算公式为:It should be noted that the calculation formula of capacitor capacitance is: C=Kε o A/t ox (wherein, K: the dielectric constant of the dielectric layer, ε o : the vacuum dielectric constant, A: the area of the dielectric layer, t ox : thickness of the dielectric layer), without causing quantum tunneling effect, the capacitance can be increased by reducing the thickness of the dielectric layer or increasing the dielectric constant of the dielectric layer. In addition, the equivalent oxide thickness (EOT) is: when the high dielectric constant dielectric layer keeps the capacitance constant, the thickness of the SiO2 dielectric layer with the same capacitance per unit area is converted. The specific conversion formula is:
C=(Khigh kεoA)/(thigh k)=3.9εoA/teq;C=(K high k ε o A)/(t high k )=3.9ε o A/teq;
EOT=teq=(3.9thigh k)/(Khigh k);EOT=teq=(3.9t high k )/(K high k );
这里,在thigh k厚度不变的情况下,由于高介电常数介电层的介电常数比SiO2大,则其 EOT小,可以使得器件特征尺寸在维持驱动电流的条件下继续得以缩小,本申请中,进一步采用所述量子遂穿抑制层12,如TiO2层,具有非常高的介电常数,TiO2的介电常数为80,还可以在同时能够保持或缩小等效氧化层厚度的情况下,可以提供足够的物理厚度来限制量子隧穿效应的影响,防止漏电流增大,进而防止器件失效,具体的,各材料的介电常数值等参数的比较如图19及图20所示,其中,Band Gap(eV)是指材料的禁带宽度,△Ec(eV)toSi 是指该材料与硅之间的导带能量差。Here, under the condition that the thickness of t high k remains unchanged, since the dielectric constant of the high dielectric constant dielectric layer is larger than that of SiO 2 , its EOT is small, which can make the feature size of the device continue to shrink under the condition of maintaining the driving current , in the present application, the quantum tunneling suppression layer 12 is further adopted, such as the TiO 2 layer, which has a very high dielectric constant, and the dielectric constant of TiO 2 is 80, which can also maintain or reduce the equivalent oxide layer at the same time In the case of thickness, sufficient physical thickness can be provided to limit the influence of quantum tunneling effect, prevent leakage current from increasing, and prevent device failure. Specifically, the comparison of parameters such as the dielectric constant value of each material is shown in Figure 19 and Figure 19. 20, where Band Gap(eV) refers to the forbidden band width of the material, and △Ec(eV)toSi refers to the conduction band energy difference between the material and silicon.
作为示例,所述量子遂穿抑制层12位于所述迭层式介电结构11与所述下极板21之间。As an example, the quantum tunneling suppression layer 12 is located between the stacked dielectric structure 11 and the lower plate 21 .
当然,在其他实施例中,所述量子遂穿抑制层12可以位于所述迭层式介电结构11与所述上极板22之间,或者所述量子遂穿抑制层12也可以位于各所述迭层式介电结构11之间,也可以位于所述迭层式介电结构11的各第一介电层及第二介电层之间,当然,也可以同时位于上述位置中的两个或者多个位置,在此不做具体限制。Of course, in other embodiments, the quantum tunneling suppression layer 12 may be located between the stacked dielectric structure 11 and the upper plate 22, or the quantum tunneling suppression layer 12 may also be located in each Between the stacked dielectric structures 11, may also be located between the first dielectric layers and the second dielectric layers of the stacked dielectric structures 11, of course, may also be located in the above positions at the same time Two or more locations, not specifically limited here.
具体的,所述量子遂穿抑制层12位于所述迭层式介电结构11与上极板或者下极板之间,与上下极板相接触,从而进一步保证利用高电介质膜层结构获得更大的电荷存储容量,有利于降低漏电流,从而有利于动态随机存取存储器刷新频率的降低,并提高动态随机存取存储器的数据保存能力。Specifically, the quantum tunneling suppression layer 12 is located between the laminated dielectric structure 11 and the upper plate or the lower plate, and is in contact with the upper and lower plates, thereby further ensuring that the high dielectric film layer structure is used to obtain more The large charge storage capacity is beneficial to reduce the leakage current, thereby reducing the refresh frequency of the dynamic random access memory and improving the data storage capacity of the dynamic random access memory.
作为示例,所述迭层式介电结构11的数量为4个,由二氧化锆和三氧化二铝依次叠置的迭层式介电结构构成,且4个所述迭层式介电结构11自下而上依次叠置;所述量子遂穿抑制层12的数量为2层,其中,所述量子遂穿抑制层12分别设置于所述下极板21与底层的二氧化锆层之间,以及顶层的三氧化二铝层与所述上极板22之间,如图16所示。As an example, the number of the stacked dielectric structures 11 is four, which are composed of a stacked dielectric structure in which zirconium dioxide and aluminum oxide are stacked in sequence, and the four stacked dielectric structures 11 are stacked sequentially from bottom to top; the quantum tunneling suppression layer 12 has two layers, wherein the quantum tunneling suppression layer 12 is respectively arranged between the lower plate 21 and the bottom zirconium dioxide layer between, and between the top aluminum oxide layer and the upper plate 22, as shown in FIG. 16 .
作为示例,所述下极板21至少有一个剖面为U型,所述高电介质膜层结构及所述上极板22的相应剖面均为M型,构成双面电容器结构,如图18所示。As an example, at least one section of the lower plate 21 is U-shaped, and the corresponding sections of the high dielectric film structure and the upper plate 22 are both M-shaped, forming a double-sided capacitor structure, as shown in Figure 18 .
具体的,所述高电介质膜层结构1同时形成于U型下极板21的内表面及外表面,所述上极板22形成于所述高电介质膜层结构1的外表面,构成双面电容器结构,相对于单面电容器结构,双面电容器结构可以实现更高的电容值。当然,在其它实施例中,所述电容器的结构也可以根据实际需要进行设计,此处不应过分限制本发明的保护范围。Specifically, the high dielectric film structure 1 is formed on the inner surface and the outer surface of the U-shaped lower plate 21 at the same time, and the upper plate 22 is formed on the outer surface of the high dielectric film structure 1, forming a double-sided Capacitor structure, compared with single-sided capacitor structure, double-sided capacitor structure can achieve higher capacitance value. Of course, in other embodiments, the structure of the capacitor can also be designed according to actual needs, and the protection scope of the present invention should not be excessively limited here.
本发明还提供一种电容器结构的制备方法,如图12~17所示,其中,所述制备方法为制备本发明所保护的电容器结构的方法,包括如下步骤:The present invention also provides a method for preparing a capacitor structure, as shown in Figures 12-17, wherein the preparation method is a method for preparing the capacitor structure protected by the present invention, comprising the following steps:
1)提供一下极板21,如图12所示;1) Provide the polar plate 21, as shown in Figure 12;
2)于所述下极板上21表面形成一层氢氧根离子层,使所述氢氧根离子层与第一层膜层所含的氧化物对应的单质进行反应,以形成第一层膜层,如图13所示;2) Form a layer of hydroxide ion layer on the surface of 21 on the lower plate, and make the hydroxide ion layer react with the simple substance corresponding to the oxide contained in the first film layer to form the first layer film layer, as shown in Figure 13;
3)于所述第一层膜层表面按照如上述实施例一种任意一项方案所述的高电介质膜层结构的制备方法制备第二层至第N层膜层,以形成由N层膜层构成的高电介质膜层结构,其中, N为大于等于3的整数,如图14~17所示;3) Prepare the second layer to the Nth film layer on the surface of the first film layer according to the preparation method of the high dielectric film layer structure described in any one of the above-mentioned embodiments, so as to form an N-layer film A high dielectric film layer structure composed of layers, wherein N is an integer greater than or equal to 3, as shown in Figures 14-17;
4)于步骤3)所得到的结构表面形成上极板22,如图16及图17所示。4) Form an upper plate 22 on the surface of the structure obtained in step 3), as shown in FIG. 16 and FIG. 17 .
具体的,以所述迭层式介电结构11为二氧化锆/三氧化二铝叠层结构,所述量子遂穿抑制层12为TiO2层,且所述量子遂穿抑制层12位于所述下极板21与各所述迭层式介电结构之间和各所述迭层式介电结构与所述上极板22之间为例,详细叙述本实施例的电容器结构的制备方法,在电容器结构的制备中,先提供一下极板21,并于其表面形成一层氢氧根离子层,再使其与Ti发生化学吸附反应并生成TiO2层,作为上下极板之间的高电介质膜层结构的第一层,接着,按照实施例一中的制备方法,于所述TiO2层表面形成一层氢氧根离子层,并使其与Zr发生化学吸附反应并生成二氧化锆层,作为高电介质膜层结构的第二层,依次类推,继续生成三氧化二铝/二氧化锆/三氧化二铝膜层,直至完成第N层膜层的制备,最后,于所述高电介质膜层结构表面沉积上极板,完成电容器结构的制备。当然,在其他的实施例中,也可以形成不同的高电介质膜层结构,在此不做具体限制,其中,图17显示出了其中的一种示例。Specifically, the laminated dielectric structure 11 is a zirconium dioxide/alumina laminated structure, the quantum tunneling suppression layer 12 is a TiO2 layer, and the quantum tunneling suppression layer 12 is located at the Take between the lower plate 21 and each of the laminated dielectric structures and between each of the laminated dielectric structures and the upper plate 22 as examples, and describe in detail the preparation method of the capacitor structure of this embodiment , in the preparation of the capacitor structure, first provide the lower plate 21, and form a layer of hydroxide ion layer on its surface, and then make it react with Ti to generate a TiO 2 layer, as a layer between the upper and lower plates. The first layer of the high-dielectric film structure, then, according to the preparation method in Example 1, form a layer of hydroxide ion layer on the surface of the TiO2 layer, and make it react with Zr by chemical adsorption and generate dioxide Zirconium layer, as the second layer of the high dielectric film layer structure, and so on, continue to generate Al2O3/ZrO2/Al2O3 film layers until the preparation of the Nth film layer is completed, and finally, in the The upper plate is deposited on the surface of the high dielectric film structure to complete the preparation of the capacitor structure. Of course, in other embodiments, different high-dielectric film layer structures can also be formed, which is not specifically limited here, and FIG. 17 shows an example thereof.
综上所述,本发明提供一种高电介质膜层结构及其应用与制备方法,所述高电介质膜层结构包括:迭层式介电结构,包括至少一层第一介电层及至少一层第二介电层,所述第二介电层的禁带宽度大于所述第一介电层的禁带宽度,且单层所述第二介电层的厚度小于等于单层所述第一介电层的厚度;及量子遂穿抑制层,设置于所述迭层式介电结构的一表面上,或位于所述迭层式介电结构的所述第一介电层与所述第二介电层之间,所述量子隧穿抑制层的介电常数大于所述第一介电层的介电常数且大于所述第二介电层的介电常数。通过本发明的方案,本发明的高电介质膜层结构可以在电容介电层厚度不变的情况下,缩小等效氧化层的厚度,且在保持或缩小等效氧化层厚度的同时,有足够的物理厚度来限制量子隧穿效应的影响,防止漏电流增大从而导致器件失效。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the present invention provides a high dielectric film structure and its application and preparation method. The high dielectric film structure includes: a laminated dielectric structure, including at least one first dielectric layer and at least one A second dielectric layer, the forbidden band width of the second dielectric layer is greater than the forbidden band width of the first dielectric layer, and the thickness of the single layer of the second dielectric layer is less than or equal to the thickness of the single layer of the first dielectric layer the thickness of a dielectric layer; and a quantum tunneling suppression layer disposed on a surface of the stacked dielectric structure, or between the first dielectric layer and the stacked dielectric structure Between the second dielectric layers, the dielectric constant of the quantum tunneling suppression layer is larger than the dielectric constant of the first dielectric layer and larger than the dielectric constant of the second dielectric layer. Through the solution of the present invention, the high dielectric film structure of the present invention can reduce the thickness of the equivalent oxide layer under the condition that the thickness of the capacitor dielectric layer remains unchanged, and while maintaining or reducing the thickness of the equivalent oxide layer, sufficient The physical thickness is used to limit the influence of quantum tunneling effect and prevent the increase of leakage current which will lead to device failure. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710520577.9A CN107316858B (en) | 2017-06-30 | 2017-06-30 | High dielectric film layer structure and application and preparation method thereof |
CN201810415556.5A CN108538820B (en) | 2017-06-30 | 2017-06-30 | capacitor structure and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710520577.9A CN107316858B (en) | 2017-06-30 | 2017-06-30 | High dielectric film layer structure and application and preparation method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810415556.5A Division CN108538820B (en) | 2017-06-30 | 2017-06-30 | capacitor structure and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107316858A true CN107316858A (en) | 2017-11-03 |
CN107316858B CN107316858B (en) | 2018-12-14 |
Family
ID=60179820
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710520577.9A Active CN107316858B (en) | 2017-06-30 | 2017-06-30 | High dielectric film layer structure and application and preparation method thereof |
CN201810415556.5A Active CN108538820B (en) | 2017-06-30 | 2017-06-30 | capacitor structure and preparation method thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810415556.5A Active CN108538820B (en) | 2017-06-30 | 2017-06-30 | capacitor structure and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN107316858B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108511425A (en) * | 2018-06-06 | 2018-09-07 | 睿力集成电路有限公司 | Integrated-circuit capacitor and its manufacturing method, semiconductor devices |
CN111316420A (en) * | 2017-11-10 | 2020-06-19 | 应用材料公司 | Layer stacking for display applications |
WO2024255235A1 (en) * | 2023-06-14 | 2024-12-19 | 无锡华润上华科技有限公司 | Capacitor, isolation transformer, and semiconductor device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12082395B2 (en) | 2019-06-14 | 2024-09-03 | Samsung Electronics Co., Ltd. | Semiconductor memory devices and methods of fabricating the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1469439A (en) * | 2002-07-20 | 2004-01-21 | ���ǵ�����ʽ���� | Deposition method of dielectric layer |
CN1525562A (en) * | 2003-02-28 | 2004-09-01 | ��ʽ���綫֥ | Semiconductor device and manufacturing method thereof |
CN1828905A (en) * | 2005-01-07 | 2006-09-06 | 因芬尼昂技术股份公司 | DRAM with high-k dielectric storage capacitor and method of manufacturing the same |
CN103534807A (en) * | 2011-03-14 | 2014-01-22 | 英特尔公司 | Semiconductor structure having an integrated double-wall capacitor for embedded dynamic random access memory (EDRAM) and method to form the same |
CN106356370A (en) * | 2015-07-13 | 2017-01-25 | 爱思开海力士有限公司 | Switched-capacitor dc-to-dc converters and methods of fabricating the same |
CN106816434A (en) * | 2017-02-24 | 2017-06-09 | 合肥智聚集成电路有限公司 | High K dielectric film layer structure and its application and manufacture method |
-
2017
- 2017-06-30 CN CN201710520577.9A patent/CN107316858B/en active Active
- 2017-06-30 CN CN201810415556.5A patent/CN108538820B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1469439A (en) * | 2002-07-20 | 2004-01-21 | ���ǵ�����ʽ���� | Deposition method of dielectric layer |
CN1525562A (en) * | 2003-02-28 | 2004-09-01 | ��ʽ���綫֥ | Semiconductor device and manufacturing method thereof |
CN1828905A (en) * | 2005-01-07 | 2006-09-06 | 因芬尼昂技术股份公司 | DRAM with high-k dielectric storage capacitor and method of manufacturing the same |
CN103534807A (en) * | 2011-03-14 | 2014-01-22 | 英特尔公司 | Semiconductor structure having an integrated double-wall capacitor for embedded dynamic random access memory (EDRAM) and method to form the same |
CN106356370A (en) * | 2015-07-13 | 2017-01-25 | 爱思开海力士有限公司 | Switched-capacitor dc-to-dc converters and methods of fabricating the same |
CN106816434A (en) * | 2017-02-24 | 2017-06-09 | 合肥智聚集成电路有限公司 | High K dielectric film layer structure and its application and manufacture method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111316420A (en) * | 2017-11-10 | 2020-06-19 | 应用材料公司 | Layer stacking for display applications |
CN111316420B (en) * | 2017-11-10 | 2023-09-19 | 应用材料公司 | Layer stacking for display applications |
CN108511425A (en) * | 2018-06-06 | 2018-09-07 | 睿力集成电路有限公司 | Integrated-circuit capacitor and its manufacturing method, semiconductor devices |
CN108511425B (en) * | 2018-06-06 | 2023-07-04 | 长鑫存储技术有限公司 | Integrated circuit capacitor and its manufacturing method, semiconductor device |
WO2024255235A1 (en) * | 2023-06-14 | 2024-12-19 | 无锡华润上华科技有限公司 | Capacitor, isolation transformer, and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN108538820B (en) | 2019-05-10 |
CN108538820A (en) | 2018-09-14 |
CN107316858B (en) | 2018-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100356518C (en) | Deposition method for dielectric layer | |
US7297591B2 (en) | Method for manufacturing capacitor of semiconductor device | |
US7361548B2 (en) | Methods of forming a capacitor using an atomic layer deposition process | |
CN107316858B (en) | High dielectric film layer structure and application and preparation method thereof | |
CN100550317C (en) | Form the method for capacitor dielectric and use this capacitor dielectric to make the method for capacitor | |
US20120064690A1 (en) | Method for manufacturing semiconductor device | |
US8092862B2 (en) | Method for forming dielectric film and method for forming capacitor in semiconductor device using the same | |
KR101368147B1 (en) | Methods of forming capacitors | |
CN108511424A (en) | Integrated-circuit capacitor and its manufacturing method, semiconductor devices | |
JP2009059889A (en) | Capacitor and manufacturing method thereof | |
CN101183646A (en) | Semiconductor device and manufacturing method thereof | |
CN111261774A (en) | Capacitor, method of manufacturing the same, and semiconductor device | |
KR100532434B1 (en) | Methods for manufacturing capacitor of semiconductor memory device | |
TWI263345B (en) | Capacitor with oxidation barrier layer and method for manufacturing the same | |
JP2024161500A (en) | CAPACITOR, ELECTRONIC DEVICE INCLUDING SAME, AND METHOD FOR MANUFACTURING SAME | |
JP2007013086A (en) | Nano-mixed dielectric film, capacitor having the same, and manufacturing method thereof | |
JP2006310754A (en) | Nanocomposite dielectric film, capacitor having the dielectric film, and manufacturing method thereof | |
KR100968427B1 (en) | Capacitor including a dielectric film doped with an impurity and a method of manufacturing the same | |
US20220238634A1 (en) | Capacitor and semiconductor device including the same | |
US20100164064A1 (en) | Capacitor and Method for Manufacturing the Same | |
CN108231787A (en) | Dielectric structure, manufacturing method thereof and memory structure | |
KR100872876B1 (en) | Method of manufacturing semiconductor device and semiconductor device manufactured accordingly | |
WO2010082605A1 (en) | Capacitor and process for manufacturing capacitor | |
KR20060041355A (en) | Capacitor Formation Method of Semiconductor Device | |
CN111261775A (en) | Capacitor and method of making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20181008 Address after: 230601 room 630, Hai Heng mansion 6, Cui Wei Road, Hefei economic and Technological Development Zone, Anhui Applicant after: Changxin Storage Technology Co., Ltd. Address before: 230000 room 526, Hai Heng mansion 6, Cui Wei Road, Hefei economic and Technological Development Zone, Anhui Applicant before: Ever power integrated circuit Co Ltd |
|
GR01 | Patent grant | ||
GR01 | Patent grant |