[go: up one dir, main page]

CN107301952B - Self-alignment method for grid field plate, source electrode and drain electrode in planar power device - Google Patents

Self-alignment method for grid field plate, source electrode and drain electrode in planar power device Download PDF

Info

Publication number
CN107301952B
CN107301952B CN201710406570.4A CN201710406570A CN107301952B CN 107301952 B CN107301952 B CN 107301952B CN 201710406570 A CN201710406570 A CN 201710406570A CN 107301952 B CN107301952 B CN 107301952B
Authority
CN
China
Prior art keywords
gate
source
drain
insulating layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710406570.4A
Other languages
Chinese (zh)
Other versions
CN107301952A (en
Inventor
李亦衡
朱廷刚
朱友华
张葶葶
王强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd
Original Assignee
JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd filed Critical JIANGSU NENGHUA MICROELECTRONIC TECHNOLOGY DEVELOPMENT Co Ltd
Priority to CN201710406570.4A priority Critical patent/CN107301952B/en
Publication of CN107301952A publication Critical patent/CN107301952A/en
Application granted granted Critical
Publication of CN107301952B publication Critical patent/CN107301952B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0215Manufacture or treatment of FETs having insulated gates [IGFET] using self-aligned selective metal deposition simultaneously on gate electrodes and the source regions or drain regions

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及一种平面功率器件中栅极场板与源极和漏极的自对准方法,包括在衬底上形成绝缘层,涂覆负性光刻胶进行光刻显影,形成第一栅/源/漏极区;对第一栅/源/漏极区底部绝缘层进行蚀刻形成栅极/源极/漏极沟槽;涂覆正性光刻胶进行光刻显影,在栅极沟槽、第一栅极区内形成正性光刻胶填充;在源极/漏极沟槽内形成源极/漏极金属层;去除负/正性光刻胶填充;在器件上表面形成栅极绝缘层;在栅极绝缘层上涂覆负性光刻胶进行光刻显影,在负性光刻胶上、栅极沟槽上方形成第二栅极区;在栅极沟槽、第二栅极区内形成栅极金属层;去除涂覆负性光刻胶。本发明消除栅极和源/漏极之间的不对准;改善了器件的加工余量;提高大直径晶圆器件的产量。

The invention relates to a method for self-alignment of grid field plates, source electrodes and drain electrodes in a planar power device, comprising forming an insulating layer on a substrate, coating a negative photoresist for photolithographic development, and forming a first grid /source/drain region; etch the insulating layer at the bottom of the first gate/source/drain region to form a gate/source/drain trench; apply positive photoresist for photolithographic development, and in the gate trench Positive photoresist filling is formed in the groove and the first gate area; source/drain metal layer is formed in the source/drain trench; negative/positive photoresist filling is removed; gate is formed on the upper surface of the device Electrode insulating layer; Coating negative photoresist on the gate insulating layer for photolithographic development, forming a second gate region on the negative photoresist and above the gate trench; Forming a gate metal layer in the gate area; removing and coating negative photoresist. The invention eliminates the misalignment between the gate and the source/drain; improves the processing margin of the device; and improves the output of the large-diameter wafer device.

Description

一种平面功率器件中栅极场板与源极和漏极的自对准方法Self-alignment method of gate field plate and source and drain in a planar power device

技术领域technical field

本发明涉及一种平面功率器件中栅极场板与源极和漏极的自对准方法。The invention relates to a self-alignment method of grid field plates, source electrodes and drain electrodes in planar power devices.

背景技术Background technique

在平面功率转换器件中,栅极用于肖特基接触或金属绝缘体半导体MIS接触,源极和漏极则用于欧姆接触,在器件中栅极、源极和漏极都形成在固定的位置,即栅极和源极、漏极之间需要形成对准,现有方法在形成栅极、源极和漏极时使用需要与源极/漏极掩模版进行对准单独的栅极掩模版,然而,根据照相工具的能力,这种常规方法将总是导致栅极和源极/漏极之间的不对准,或达不到对准的要求。In planar power conversion devices, the gate is used for Schottky contact or metal insulator semiconductor MIS contact, and the source and drain are used for ohmic contact. In the device, the gate, source and drain are all formed at fixed positions , that is, alignment needs to be formed between the gate, the source, and the drain. The existing method uses a separate gate mask that needs to be aligned with the source/drain mask when forming the gate, source, and drain. , however, this conventional approach will always result in misalignment between the gate and source/drain, or fail to achieve alignment, depending on the capabilities of the photographic tool.

发明内容Contents of the invention

本发明的目的是提供一种平面功率器件中栅极场板与源极和漏极的自对准方法。The purpose of the present invention is to provide a method for self-alignment of gate field plates, source electrodes and drain electrodes in planar power devices.

为达到上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:

一种平面功率器件中栅极场板与源极和漏极的自对准方法,包括步骤:A self-alignment method for gate field plate and source and drain in a planar power device, comprising steps:

(1)、在衬底上形成绝缘层,在所述绝缘层上涂覆负性光刻胶,通过栅极、源极以及漏极掩膜版对所述负性光刻胶进行光刻显影,在所述负性光刻胶上形成第一栅极区、源极区以及漏极区;(1) An insulating layer is formed on the substrate, a negative photoresist is coated on the insulating layer, and the negative photoresist is photolithographically developed through the gate, source and drain masks , forming a first gate region, a source region and a drain region on the negative photoresist;

(2)、对所述第一栅极区、源极区以及漏极区底部所述绝缘层进行蚀刻形成栅极沟槽、源极沟槽以及漏极沟槽;(2) Etching the insulating layer at the bottom of the first gate region, source region and drain region to form gate trenches, source trenches and drain trenches;

(3)、在器件上表面涂覆正性光刻胶,通过栅极场板掩膜版对所述正性光刻胶进行光刻显影,在所述栅极沟槽、第一栅极区内形成正性光刻胶填充;(3) Coating positive photoresist on the upper surface of the device, and photolithographically developing the positive photoresist through the gate field plate mask, in the gate trench and the first gate region Positive photoresist filling is formed inside;

(4)、在所述源极沟槽、漏极沟槽内形成源极金属层、漏极金属层;(4) Forming a source metal layer and a drain metal layer in the source trench and the drain trench;

(5)、去除步骤(1)、(3)中涂覆的所述负性光刻胶和正性光刻胶填充;(5), removing the negative photoresist and positive photoresist filled in steps (1) and (3);

(6)、在器件上表面形成栅极绝缘层;(6) Form a gate insulating layer on the upper surface of the device;

(7)、在所述栅极绝缘层上涂覆负性光刻胶,通过栅极场板掩膜板对所述负性光刻胶进行光刻显影,在所述负性光刻胶上、所述栅极沟槽上方形成第二栅极区,并且所述第二栅极区的宽度大于所述栅极沟槽的宽度;(7) Coating a negative photoresist on the gate insulating layer, and performing photolithography and development on the negative photoresist through a grid field plate mask, on the negative photoresist , forming a second gate region above the gate trench, and the width of the second gate region is greater than the width of the gate trench;

(8)、在所述栅极沟槽、第二栅极区内形成栅极金属层;(8), forming a gate metal layer in the gate trench and the second gate region;

(9)、去除步骤(6)中涂覆所述负性光刻胶。(9), removing the negative photoresist coated in step (6).

优选地,在(1)中,所述绝缘层包括形成在所述衬底上的第一绝缘层、形成在所述第一绝缘层上的第二绝缘层,在所述第二绝缘层上涂覆负性光刻胶。Preferably, in (1), the insulating layer includes a first insulating layer formed on the substrate, a second insulating layer formed on the first insulating layer, and on the second insulating layer Apply negative tone photoresist.

进一步优选地,所述第一绝缘层的厚度为0-25nm;所述第二绝缘层的厚度为25-200nm。Further preferably, the thickness of the first insulating layer is 0-25 nm; the thickness of the second insulating layer is 25-200 nm.

进一步优选地,所述第一绝缘层、第二绝缘层为氧化物绝缘层或氮化物绝缘层。Further preferably, the first insulating layer and the second insulating layer are oxide insulating layers or nitride insulating layers.

优选地,在(2)中,对所述第一栅极区、源极区、漏极区底部所述绝缘层蚀刻至所述衬底。Preferably, in (2), the insulating layer at the bottom of the first gate region, source region, and drain region is etched to the substrate.

优选地,在(2)中,所述蚀刻为湿法蚀刻或干法蚀刻。Preferably, in (2), the etching is wet etching or dry etching.

优选地,在(6)中,所述栅极绝缘层为氮化硅绝缘层或氧化物绝缘层。Preferably, in (6), the gate insulating layer is a silicon nitride insulating layer or an oxide insulating layer.

优选地,在(6)中,所述栅极绝缘层的厚度为0-20nm。Preferably, in (6), the thickness of the gate insulating layer is 0-20 nm.

优选地,在(7)中,所述第二栅极区形成栅极金属层的高度为50-250nm。Preferably, in (7), the height of the gate metal layer formed in the second gate region is 50-250 nm.

优选地,在(4)、(8)中通过liftoff工艺去除,并所述源极金属层、漏极金属层以及栅极金属层进行退火处理。Preferably, in (4) and (8), the liftoff process is used to remove, and the source metal layer, the drain metal layer and the gate metal layer are annealed.

由于上述技术方案运用,本发明与现有技术相比具有下列优点和效果:Due to the use of the above-mentioned technical solutions, the present invention has the following advantages and effects compared with the prior art:

1、有效消除栅极和源极/漏极之间的不对准;1. Effectively eliminate misalignment between gate and source/drain;

2、改善了小型几何器件的加工余量;2. Improved the machining allowance of small geometric devices;

3、有效提高大直径晶圆器件的产量。3. Effectively increase the output of large-diameter wafer devices.

附图说明Description of drawings

附图1-10为本实施例的步骤图。Accompanying drawing 1-10 is the step chart of this embodiment.

其中:1、衬底;20、第一绝缘层;21、第二绝缘层;2a、栅极沟槽;2b、源极沟槽;2c、漏极沟槽;30、负性光刻胶;30a、第一栅极区;30b、源极区;30c、漏极区;31、负性光刻胶;31a、第二栅极区;4、正性光刻胶填充;5、金属层;5b、源极金属层;5c、漏极金属层;6、栅极绝缘层;7、金属层;7a、栅极金属层。Wherein: 1. substrate; 20. first insulating layer; 21. second insulating layer; 2a. gate trench; 2b. source trench; 2c. drain trench; 30. negative photoresist; 30a, first gate region; 30b, source region; 30c, drain region; 31, negative photoresist; 31a, second gate region; 4, positive photoresist filling; 5, metal layer; 5b, source metal layer; 5c, drain metal layer; 6, gate insulating layer; 7, metal layer; 7a, gate metal layer.

具体实施方式Detailed ways

下面结合附图及实施案例对本发明作进一步描述:Below in conjunction with accompanying drawing and embodiment example, the present invention will be further described:

一种平面功率器件中栅极场板与源极和漏极的自对准方法,具体包括以下步骤:A self-alignment method for a gate field plate and a source and a drain in a planar power device, specifically comprising the following steps:

(1)、在衬底1上形成绝缘层,绝缘层具体为:形成在衬底1上的第一绝缘层20、形成在第一绝缘层20上的第二绝缘层21,第一绝缘层20的厚度为0-25nm,第二绝缘层21的厚度为25-200nm,第一绝缘层20、第二绝缘层21可以采用氧化物绝缘层或氮化物绝缘层,如图1所示;(1) An insulating layer is formed on the substrate 1, specifically, the insulating layer is: a first insulating layer 20 formed on the substrate 1, a second insulating layer 21 formed on the first insulating layer 20, the first insulating layer The thickness of 20 is 0-25nm, the thickness of the second insulating layer 21 is 25-200nm, the first insulating layer 20 and the second insulating layer 21 can be oxide insulating layer or nitride insulating layer, as shown in Figure 1;

(2)、在第二绝缘层21上涂覆负性光刻胶30,通过栅极、源极以及漏极掩膜版(Gate/Source/Drain mask)对负性光刻胶30进行光刻显影,在负性光刻胶30上形成第一栅极区30a、源极区30b以及漏极区30c,如图2所示;(2) Coat the negative photoresist 30 on the second insulating layer 21, and perform photolithography on the negative photoresist 30 through the gate, source and drain mask (Gate/Source/Drain mask) developing, forming a first gate region 30a, a source region 30b and a drain region 30c on the negative photoresist 30, as shown in FIG. 2;

(3)、对第一栅极区30a、源极区30b以及漏极区30c底部绝缘层进行蚀刻形成栅极沟槽2a、源极沟槽2b以及漏极沟槽2c,并且对氧化层蚀刻至衬底1,采用蚀刻方式可以通过湿法蚀刻(wet etch)、干法蚀刻(dry etch),如图3所示;(3) Etching the bottom insulating layer of the first gate region 30a, the source region 30b and the drain region 30c to form the gate trench 2a, the source trench 2b and the drain trench 2c, and etching the oxide layer To the substrate 1, the etching method can be through wet etching (wet etch), dry etching (dry etch), as shown in Figure 3;

(4)、在器件上涂覆正性光刻胶,通过栅极场板掩膜版(Gate field plate mask)对正性光刻胶进行光刻显影,在栅极沟槽2a、第一栅极区30a内形成正性光刻胶填充4,由于采用栅极场板掩膜版,正性光刻胶填充除了填充在栅极沟槽2a、第一栅极区30a内外,在第一栅极区30a两侧的负性光刻胶30上也有形成,如图4所示;(4) Coating positive photoresist on the device, and photolithographically developing the positive photoresist through a gate field plate mask, in the gate trench 2a, the first gate Positive photoresist filling 4 is formed in the electrode region 30a. Since the gate field plate mask is used, the positive photoresist filling is not only filled in the gate trench 2a and the first gate region 30a, but also in the first gate region 30a. The negative photoresist 30 on both sides of the pole region 30a is also formed, as shown in FIG. 4 ;

(5)、在源极沟槽2b、漏极沟槽2c内形成源极金属层5b、漏极金属层5c,除了在源极沟槽2b、漏极沟槽2c形成欧姆金属层外,在整个负性光刻胶30、正性光刻胶填充4上也同时形成金属层5,如图5所示;(5) Forming the source metal layer 5b and the drain metal layer 5c in the source trench 2b and the drain trench 2c, in addition to forming an ohmic metal layer in the source trench 2b and the drain trench 2c, The metal layer 5 is also formed on the entire negative photoresist 30 and the positive photoresist filling 4, as shown in FIG. 5 ;

(6)、去除负性光刻胶30、正性光刻胶填充4上的金属层5,去除的方式可以通过liftoff工艺,去除步骤(2)、(4)中涂覆的负性光刻胶30和正性光刻胶填充4,如图6所示,并对源极金属层5b、漏极金属层5c进行退火处理;(6), remove the negative photoresist 30 and the metal layer 5 on the positive photoresist filling 4, the removal method can be removed by the liftoff process to remove the negative photoresist coated in steps (2) and (4) Glue 30 and positive photoresist filling 4, as shown in Figure 6, and annealing treatment is carried out to source metal layer 5b, drain metal layer 5c;

(7)、在器件上表面形成栅极绝缘层6,栅极绝缘层6的厚度为0-20nm,栅极绝缘层6可以采用氮化硅绝缘层或氧化物绝缘层,如图7所示;(7) A gate insulating layer 6 is formed on the upper surface of the device. The thickness of the gate insulating layer 6 is 0-20nm. The gate insulating layer 6 can be a silicon nitride insulating layer or an oxide insulating layer, as shown in FIG. 7 ;

(8)、在栅极绝缘层6上涂覆负性光刻胶31,通过栅极场板掩膜板(Gate fieldplate mask)对负性光刻胶31进行光刻显影,在负性光刻胶31上、栅极沟槽上2a方形成第二栅极区31a,并且第二栅极区31a的宽度大于栅极沟槽2a的宽度,如图8所示;(8), apply negative photoresist 31 on the gate insulating layer 6, carry out photolithographic development on the negative photoresist 31 through the gate field plate mask, and then A second gate region 31a is formed on the glue 31 and above the gate trench 2a, and the width of the second gate region 31a is greater than the width of the gate trench 2a, as shown in FIG. 8 ;

(9)、在栅极沟槽2a、第二栅极区31a内形成栅极金属层7a,第二栅极区31a上形成栅极金属层7的高度为50-250nm,如图9所示;除了在栅极沟槽2a、第二栅极区31a内形成栅极金属层7a,在负性光刻胶31上也同时形成金属层7;(9) A gate metal layer 7a is formed in the gate trench 2a and the second gate region 31a, and the height of the gate metal layer 7 formed on the second gate region 31a is 50-250nm, as shown in FIG. 9 ; In addition to forming the gate metal layer 7a in the gate trench 2a and the second gate region 31a, the metal layer 7 is also formed on the negative photoresist 31 at the same time;

(10)、去除负性光刻胶31上的金属层7,去除的方式可以通过liftoff工艺,去除步骤(8)中涂覆负性光刻胶31,形成如图10所示的产品。(10) The metal layer 7 on the negative photoresist 31 is removed. The method of removal can be through the liftoff process, and the negative photoresist 31 coated in step (8) is removed to form a product as shown in FIG. 10 .

上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。The above-mentioned embodiments are only to illustrate the technical concept and characteristics of the present invention, and the purpose is to enable those skilled in the art to understand the content of the present invention and implement it accordingly, and not to limit the protection scope of the present invention. All equivalent changes or modifications made according to the spirit of the present invention shall fall within the protection scope of the present invention.

Claims (10)

1.一种平面功率器件中栅极场板与源极和漏极的自对准方法,其特征在于:包括步骤:1. A self-alignment method of gate field plate and source electrode and drain electrode in a planar power device, is characterized in that: comprise steps: (1)、在衬底上形成绝缘层,在所述绝缘层上涂覆负性光刻胶,通过栅极、源极以及漏极掩膜版对所述负性光刻胶进行光刻显影,在所述负性光刻胶上形成第一栅极区、源极区以及漏极区;(1) An insulating layer is formed on the substrate, a negative photoresist is coated on the insulating layer, and the negative photoresist is photolithographically developed through the gate, source and drain masks , forming a first gate region, a source region and a drain region on the negative photoresist; (2)、对所述第一栅极区、源极区以及漏极区底部所述绝缘层进行蚀刻形成栅极沟槽、源极沟槽以及漏极沟槽;(2) Etching the insulating layer at the bottom of the first gate region, source region and drain region to form gate trenches, source trenches and drain trenches; (3)、在器件上表面涂覆正性光刻胶,通过栅极场板掩膜版对所述正性光刻胶进行光刻显影,在所述栅极沟槽、第一栅极区内形成正性光刻胶填充;(3) Coating positive photoresist on the upper surface of the device, and photolithographically developing the positive photoresist through the gate field plate mask, in the gate trench and the first gate region Positive photoresist filling is formed inside; (4)、在所述源极沟槽、漏极沟槽内形成源极金属层、漏极金属层;(4) Forming a source metal layer and a drain metal layer in the source trench and the drain trench; (5)、去除步骤(1)、(3)中涂覆的所述负性光刻胶和正性光刻胶填充;(5), removing the negative photoresist and positive photoresist filled in steps (1) and (3); (6)、在器件上表面形成栅极绝缘层;(6) Form a gate insulating layer on the upper surface of the device; (7)、在所述栅极绝缘层上涂覆负性光刻胶,通过栅极场板掩膜板对所述负性光刻胶进行光刻显影,在所述负性光刻胶上、所述栅极沟槽上方形成第二栅极区,并且所述第二栅极区的宽度大于所述栅极沟槽的宽度;(7) Coating a negative photoresist on the gate insulating layer, and performing photolithography and development on the negative photoresist through a grid field plate mask, and on the negative photoresist , forming a second gate region above the gate trench, and the width of the second gate region is greater than the width of the gate trench; (8)、在所述栅极沟槽、第二栅极区内形成栅极金属层;(8), forming a gate metal layer in the gate trench and the second gate region; (9)、去除步骤(7)中涂覆形成的所述负性光刻胶。(9), removing the negative photoresist formed by coating in step (7). 2.根据权利要求1所述的一种平面功率器件中栅极场板与源极和漏极的自对准方法,其特征在于:在(1)中,所述绝缘层包括形成在所述衬底上的第一绝缘层、形成在所述第一绝缘层上的第二绝缘层,在所述第二绝缘层上涂覆负性光刻胶。2. The self-alignment method of gate field plate and source and drain in a planar power device according to claim 1, characterized in that: in (1), the insulating layer includes A first insulating layer on the substrate, a second insulating layer formed on the first insulating layer, and a negative photoresist is coated on the second insulating layer. 3.根据权利要求2所述的一种平面功率器件中栅极场板与源极和漏极的自对准方法,其特征在于:所述第一绝缘层的厚度为0-25nm;所述第二绝缘层的厚度为25-200nm。3. The self-alignment method of gate field plate and source and drain in a kind of planar power device according to claim 2, it is characterized in that: the thickness of the first insulating layer is 0-25nm; The thickness of the second insulating layer is 25-200nm. 4.根据权利要求2所述的一种平面功率器件中栅极场板与源极和漏极的自对准方法,其特征在于:所述第一绝缘层、第二绝缘层为氧化物绝缘层或氮化物绝缘层。4. The self-alignment method of gate field plate and source and drain in a kind of planar power device according to claim 2, it is characterized in that: described first insulation layer, second insulation layer are oxide insulation layer or nitride insulating layer. 5.根据权利要求1所述的一种平面功率器件中栅极场板与源极和漏极的自对准方法,其特征在于:在(2)中,对所述第一栅极区、源极区、漏极区底部所述绝缘层蚀刻至所述衬底。5. The self-alignment method of gate field plate and source and drain in a planar power device according to claim 1, characterized in that: in (2), for the first gate region, The insulating layer at the bottom of the source region and the drain region is etched to the substrate. 6.根据权利要求1所述的一种平面功率器件中栅极场板与源极和漏极的自对准方法,其特征在于:在(2)中,所述蚀刻为湿法蚀刻或干法蚀刻。6. The self-alignment method of gate field plate and source and drain in a planar power device according to claim 1, characterized in that: in (2), the etching is wet etching or dry etching etched. 7.根据权利要求1所述的一种平面功率器件中栅极场板与源极和漏极的自对准方法,其特征在于:在(6)中,所述栅极绝缘层为氮化硅绝缘层或氧化物绝缘层。7. The self-alignment method of gate field plate and source and drain in a planar power device according to claim 1, characterized in that: in (6), the gate insulating layer is nitrided Silicon insulating layer or oxide insulating layer. 8.根据权利要求1所述的一种平面功率器件中栅极场板与源极和漏极的自对准方法,其特征在于:在(6)中,所述栅极绝缘层的厚度为0-20nm。8. The self-alignment method of gate field plate and source and drain in a planar power device according to claim 1, characterized in that: in (6), the thickness of the gate insulating layer is 0-20nm. 9.根据权利要求1所述的一种平面功率器件中栅极场板与源极和漏极的自对准方法,其特征在于:在(8)中,在所述第二栅极区内形成的栅极金属层的高度为50-250nm。9. The self-alignment method of gate field plate and source and drain in a planar power device according to claim 1, characterized in that: in (8), in the second gate region The height of the formed gate metal layer is 50-250nm. 10.根据权利要求1所述的一种平面功率器件中栅极场板与源极和漏极的自对准方法,其特征在于:在(5)、(9)中通过liftoff工艺去除,并对所述源极金属层、漏极金属层以及栅极金属层进行退火处理。10. The self-alignment method of gate field plate and source and drain in a planar power device according to claim 1, characterized in that: in (5) and (9), the liftoff process is used to remove, and Annealing is performed on the source metal layer, the drain metal layer and the gate metal layer.
CN201710406570.4A 2017-06-02 2017-06-02 Self-alignment method for grid field plate, source electrode and drain electrode in planar power device Active CN107301952B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710406570.4A CN107301952B (en) 2017-06-02 2017-06-02 Self-alignment method for grid field plate, source electrode and drain electrode in planar power device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710406570.4A CN107301952B (en) 2017-06-02 2017-06-02 Self-alignment method for grid field plate, source electrode and drain electrode in planar power device

Publications (2)

Publication Number Publication Date
CN107301952A CN107301952A (en) 2017-10-27
CN107301952B true CN107301952B (en) 2019-12-27

Family

ID=60137557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710406570.4A Active CN107301952B (en) 2017-06-02 2017-06-02 Self-alignment method for grid field plate, source electrode and drain electrode in planar power device

Country Status (1)

Country Link
CN (1) CN107301952B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356824A (en) * 1992-02-26 1994-10-18 France Telecom Establissement Autonome De Droit Public Process for the production of a thin film transistor having a double gate and an optical mask
CN1189699A (en) * 1997-01-27 1998-08-05 三菱电机株式会社 Field-effect transistor and its mfg. method
TW508828B (en) * 1999-08-24 2002-11-01 Koninkl Philips Electronics Nv Thin-film transistors and method for producing the same
US9337105B1 (en) * 2014-12-03 2016-05-10 Samsung Electronics Co., Ltd. Methods for fabricating semiconductor devices with wet etching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356824A (en) * 1992-02-26 1994-10-18 France Telecom Establissement Autonome De Droit Public Process for the production of a thin film transistor having a double gate and an optical mask
CN1189699A (en) * 1997-01-27 1998-08-05 三菱电机株式会社 Field-effect transistor and its mfg. method
TW508828B (en) * 1999-08-24 2002-11-01 Koninkl Philips Electronics Nv Thin-film transistors and method for producing the same
US9337105B1 (en) * 2014-12-03 2016-05-10 Samsung Electronics Co., Ltd. Methods for fabricating semiconductor devices with wet etching

Also Published As

Publication number Publication date
CN107301952A (en) 2017-10-27

Similar Documents

Publication Publication Date Title
KR970023995A (en) Trench element isolation
US10818558B2 (en) Semiconductor structure having trench and manufacturing method thereof
CN104409518B (en) Thin film transistor (TFT) and preparation method thereof
CN104037116A (en) Isolation Region Gap Fill Method
CN110581101A (en) Semiconductor device and method of forming the same
CN108321090A (en) Semiconductor devices and forming method thereof
CN111200011B (en) Semiconductor device and method of forming the same
CN110880472A (en) Semiconductor device with shallow trench isolation structure and preparation method thereof
CN103839791B (en) The preparation method being applied to the trench gate of groove type MOS device
CN107731808B (en) Electrostatic discharge protection structure and forming method thereof
CN111384144A (en) Semiconductor device and method of forming the same
CN111403279B (en) Method for forming semiconductor device
CN107301952B (en) Self-alignment method for grid field plate, source electrode and drain electrode in planar power device
CN106971977B (en) Semiconductor device and method of manufacturing the same
CN101339902A (en) Method for manufacturing semiconductor high voltage device
CN107968053B (en) Semiconductor device and method of forming the same
CN102347349B (en) Semiconductor structure and manufacturing method thereof
CN104241129B (en) The forming method of metal gate transistor
CN106935504B (en) Semiconductor structure and forming method thereof
CN107301953B (en) Method for self-aligning grid electrode with source electrode and drain electrode in planar power conversion device
CN117153879A (en) Semiconductor structures and methods of forming them
CN108305830A (en) Semiconductor structure and forming method thereof
CN106449761B (en) The forming method of semiconductor devices
CN103545214B (en) The manufacture method of DMOS device
CN112117237B (en) Semiconductor structure and method for forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant