CN107293792A - A kind of nonaqueous electrolytic solution and nickelic tertiary cathode material battery - Google Patents
A kind of nonaqueous electrolytic solution and nickelic tertiary cathode material battery Download PDFInfo
- Publication number
- CN107293792A CN107293792A CN201710718941.2A CN201710718941A CN107293792A CN 107293792 A CN107293792 A CN 107293792A CN 201710718941 A CN201710718941 A CN 201710718941A CN 107293792 A CN107293792 A CN 107293792A
- Authority
- CN
- China
- Prior art keywords
- lithium
- electrolyte
- additive
- fluorine
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008151 electrolyte solution Substances 0.000 title claims abstract description 31
- 239000010406 cathode material Substances 0.000 title abstract description 10
- -1 alkyl amine compound Chemical class 0.000 claims abstract description 80
- 239000003792 electrolyte Substances 0.000 claims abstract description 62
- 239000000654 additive Substances 0.000 claims abstract description 48
- 230000000996 additive effect Effects 0.000 claims abstract description 47
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 43
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 23
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 21
- UMVBXBACMIOFDO-UHFFFAOYSA-N [N].[Si] Chemical compound [N].[Si] UMVBXBACMIOFDO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- 239000003960 organic solvent Substances 0.000 claims abstract description 12
- 229910017464 nitrogen compound Inorganic materials 0.000 claims abstract description 9
- 239000006259 organic additive Substances 0.000 claims abstract 2
- 125000000217 alkyl group Chemical group 0.000 claims description 34
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 31
- 229910052759 nickel Inorganic materials 0.000 claims description 24
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 21
- 229910052744 lithium Inorganic materials 0.000 claims description 21
- 239000007774 positive electrode material Substances 0.000 claims description 21
- 229910052736 halogen Inorganic materials 0.000 claims description 20
- 150000002367 halogens Chemical class 0.000 claims description 20
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 16
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 16
- 239000002904 solvent Substances 0.000 claims description 16
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 15
- 125000006736 (C6-C20) aryl group Chemical group 0.000 claims description 13
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 9
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 claims description 8
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 7
- 150000001340 alkali metals Chemical group 0.000 claims description 7
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 claims description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 7
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 5
- 229910016569 AlF 3 Inorganic materials 0.000 claims description 5
- SYRDSFGUUQPYOB-UHFFFAOYSA-N [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-].FC(=O)C(F)=O SYRDSFGUUQPYOB-UHFFFAOYSA-N 0.000 claims description 5
- 229910000077 silane Inorganic materials 0.000 claims description 5
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 4
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 claims description 4
- OQXNUCOGMMHHNA-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2,2-dioxide Chemical compound CC1COS(=O)(=O)O1 OQXNUCOGMMHHNA-UHFFFAOYSA-N 0.000 claims description 4
- SJHAYVFVKRXMKG-UHFFFAOYSA-N 4-methyl-1,3,2-dioxathiolane 2-oxide Chemical compound CC1COS(=O)O1 SJHAYVFVKRXMKG-UHFFFAOYSA-N 0.000 claims description 4
- 229910017111 AlOF Inorganic materials 0.000 claims description 4
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 4
- 229910013188 LiBOB Inorganic materials 0.000 claims description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 4
- AUBNQVSSTJZVMY-UHFFFAOYSA-M P(=O)([O-])(O)O.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.[Li+] Chemical compound P(=O)([O-])(O)O.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.[Li+] AUBNQVSSTJZVMY-UHFFFAOYSA-M 0.000 claims description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 claims description 4
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 claims description 4
- RBBXSUBZFUWCAV-UHFFFAOYSA-N ethenyl hydrogen sulfite Chemical compound OS(=O)OC=C RBBXSUBZFUWCAV-UHFFFAOYSA-N 0.000 claims description 4
- 239000004210 ether based solvent Substances 0.000 claims description 4
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 claims description 4
- 229910001486 lithium perchlorate Inorganic materials 0.000 claims description 4
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 4
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 claims description 4
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 claims description 4
- QLCATRCPAOPBOP-UHFFFAOYSA-N tris(1,1,1,3,3,3-hexafluoropropan-2-yl) phosphate Chemical compound FC(F)(F)C(C(F)(F)F)OP(=O)(OC(C(F)(F)F)C(F)(F)F)OC(C(F)(F)F)C(F)(F)F QLCATRCPAOPBOP-UHFFFAOYSA-N 0.000 claims description 4
- QJMMCGKXBZVAEI-UHFFFAOYSA-N tris(trimethylsilyl) phosphate Chemical compound C[Si](C)(C)OP(=O)(O[Si](C)(C)C)O[Si](C)(C)C QJMMCGKXBZVAEI-UHFFFAOYSA-N 0.000 claims description 4
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 claims description 3
- 229930002839 ionone Natural products 0.000 claims description 3
- 150000002499 ionone derivatives Chemical class 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- KAEZJNCYNQVWRB-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Li+].C(C(=O)F)(=O)F.[Li+].[Li+] Chemical compound P(=O)([O-])([O-])[O-].[Li+].C(C(=O)F)(=O)F.[Li+].[Li+] KAEZJNCYNQVWRB-UHFFFAOYSA-K 0.000 claims description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 2
- AHKHZLVXUVZTGF-UHFFFAOYSA-M lithium dihydrogen phosphate oxalic acid Chemical compound P(=O)([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] AHKHZLVXUVZTGF-UHFFFAOYSA-M 0.000 claims 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 abstract description 12
- 230000006872 improvement Effects 0.000 abstract description 6
- 150000003973 alkyl amines Chemical class 0.000 abstract description 2
- 125000004122 cyclic group Chemical group 0.000 abstract 1
- 239000000463 material Substances 0.000 description 24
- 239000000047 product Substances 0.000 description 16
- 230000014759 maintenance of location Effects 0.000 description 13
- 125000003118 aryl group Chemical group 0.000 description 11
- 229940021013 electrolyte solution Drugs 0.000 description 11
- 125000003545 alkoxy group Chemical group 0.000 description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 8
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 239000011255 nonaqueous electrolyte Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- VNXYDFNVQBICRO-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoro-2-methoxypropane Chemical compound COC(C(F)(F)F)C(F)(F)F VNXYDFNVQBICRO-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 229910007991 Si-N Inorganic materials 0.000 description 3
- 229910006294 Si—N Inorganic materials 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000002608 ionic liquid Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 235000021317 phosphate Nutrition 0.000 description 3
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 2
- 125000006274 (C1-C3)alkoxy group Chemical group 0.000 description 2
- 239000002000 Electrolyte additive Substances 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 125000005587 carbonate group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 2
- PMGBATZKLCISOD-UHFFFAOYSA-N methyl 3,3,3-trifluoropropanoate Chemical compound COC(=O)CC(F)(F)F PMGBATZKLCISOD-UHFFFAOYSA-N 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- LTOCGMHUCZEAMG-UHFFFAOYSA-N 2-amino-1-(4-chlorophenyl)propan-1-ol Chemical compound CC(N)C(O)C1=CC=C(Cl)C=C1 LTOCGMHUCZEAMG-UHFFFAOYSA-N 0.000 description 1
- PFYQFCKUASLJLL-UHFFFAOYSA-N [Co].[Ni].[Li] Chemical compound [Co].[Ni].[Li] PFYQFCKUASLJLL-UHFFFAOYSA-N 0.000 description 1
- HFCVPDYCRZVZDF-UHFFFAOYSA-N [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O Chemical compound [Li+].[Co+2].[Ni+2].[O-][Mn]([O-])(=O)=O HFCVPDYCRZVZDF-UHFFFAOYSA-N 0.000 description 1
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000003527 tetrahydropyrans Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域technical field
本发明涉及锂离子电池技术领域,涉及一种电解液及锂离子电池,尤其涉及一种非水电解液及高镍三元正极材料电池。The invention relates to the technical field of lithium-ion batteries, in particular to an electrolyte and a lithium-ion battery, in particular to a non-aqueous electrolyte and a high-nickel ternary positive electrode material battery.
背景技术Background technique
作为电动汽车的“引擎”部件,锂离子动力电池的比能量大小是决定纯电驱动电动车的一次充电续航里程长短的关键因素,直接影响了电动汽车的技术发展和普及推广。当前锂离子动力电池的比能量很大程度上取决于正极材料的比能量。通过增加正极的放电比容量是提高电池比能量的有效途径之一。As the "engine" part of electric vehicles, the specific energy of lithium-ion power batteries is a key factor determining the mileage of a single charge of pure electric vehicles, which directly affects the technological development and popularization of electric vehicles. The specific energy of current lithium-ion power batteries largely depends on the specific energy of the cathode material. Increasing the discharge specific capacity of the positive electrode is one of the effective ways to increase the specific energy of the battery.
在诸多正极材料中,高镍三元锂离子电池正极材料主要包括镍钴锰酸锂LiNi1-x- yCoxMnyO2(NCM)(0<x<1,0<y<1)和镍钴铝酸锂LiNi1-x-yCoxAlyO2(NCA)(0<x<1,0<y<1),因具有比容量高、成本较低廉和安全性优良等优势而被认为是极具应用前景的锂离子动力电池正极材料,已成为众多动力电池企业的主要发展方向。但是随着Ni含量的增加高镍三元材料的放电比容量由160mAh g-1增加到220mAh g-1以上,但其容量保持率、热稳定性及高温存储性能都有所降低,极大地限制了其产业化开发应用。研究发现,造成高镍三元材料这些问题的原因复杂,主要分为材料本身和界面两大问题。材料本身的问题有:一是循环过程中的Ni/Li混排,产生相变反应,进而诱发应力应变效应,造成材料循环过程中容量衰减;二是高脱锂状态下Ni4+倾向于还原生成Ni3+,材料中会释放出氧气,而使材料的热稳定性变差。另一方面,界面问题是指电极/电解液界面在实际电化学环境中存在不稳定性,极易受电解液中游离酸腐蚀作用,从而导致电池容量保持率低、高温性能差等问题。对于高镍三元材料(Ni含量≥0.6),即使是在空气中,其材料表面很容易与空气中的CO2和H2O发生反应,在材料表面生成Li2CO3和LiOH,Li2CO3会导致高温存储时产生严重的气胀现象,LiOH与电解液中的LiPF6反应产生HF,进而直接影响到材料循环过程中的容量保持率。当然对于其他正极材料电池,也或多或少存在上述问题。Among many positive electrode materials, high nickel ternary lithium ion battery positive electrode materials mainly include nickel cobalt lithium manganate LiNi 1-x- y Co x Mn y O 2 (NCM) (0<x<1,0<y<1) and lithium nickel cobalt aluminate LiNi 1-xy Co x Al y O 2 (NCA) (0<x<1,0<y<1), because of its advantages of high specific capacity, low cost and excellent safety, etc. It is considered to be a positive electrode material for lithium-ion power batteries with great application prospects, and has become the main development direction of many power battery companies. However, with the increase of Ni content, the specific discharge capacity of high-nickel ternary materials increases from 160mAh g -1 to more than 220mAh g -1 , but its capacity retention, thermal stability and high-temperature storage performance all decrease, which greatly limits Its industrial development and application. The study found that the reasons for these problems of high-nickel ternary materials are complex, mainly divided into two major problems: the material itself and the interface. The problems of the material itself are: first, the Ni/Li mixing during the cycle produces a phase transition reaction, which in turn induces the stress-strain effect, resulting in capacity decay during the material cycle; the second is that Ni 4+ tends to reduce When Ni 3+ is generated, oxygen will be released from the material, which will deteriorate the thermal stability of the material. On the other hand, the interface problem refers to the instability of the electrode/electrolyte interface in the actual electrochemical environment, which is easily corroded by free acid in the electrolyte, resulting in low battery capacity retention and poor high temperature performance. For high-nickel ternary materials (Ni content ≥ 0.6), even in the air, the surface of the material easily reacts with CO 2 and H 2 O in the air, and Li 2 CO 3 and LiOH, Li 2 CO 3 will cause severe gas swelling during high-temperature storage, and LiOH reacts with LiPF 6 in the electrolyte to generate HF, which directly affects the capacity retention rate during the material cycle. Of course, for batteries with other positive electrode materials, the above-mentioned problems also exist more or less.
为了改善锂离子电池正极材料,特别是高镍三元正极材料的循环性能和热稳定性,现有研究通常从材料改性离子掺杂、材料表面包覆和开发电解液添加剂三个方面着手,开展了大量探索性的研究工作。通过在三元材料晶格中掺杂Mg和F等元素;通过在材料表面包覆一些厚度合适的金属氧化物(如Al2O3、ZnO等)、氟化物(如AlF3等)或者某些磷酸盐,物理隔离活性物质与电解液之间的直接接触,减少副反应的发生等等。但依然存在不完善的地方。In order to improve the cycle performance and thermal stability of lithium-ion battery cathode materials, especially high-nickel ternary cathode materials, existing research usually starts from three aspects: material modification, ion doping, material surface coating, and development of electrolyte additives. A lot of exploratory research work has been carried out. By doping elements such as Mg and F in the ternary material lattice; by coating the surface of the material with some metal oxides (such as Al 2 O 3 , ZnO, etc.), fluorides (such as AlF 3 , etc.) or some Some phosphates can physically isolate the direct contact between the active material and the electrolyte, reduce the occurrence of side reactions, and so on. But there are still imperfections.
近些年来,开发适用于高镍三元材料的电解液也成为一个重要的研究方向。但是到目前为止,关于该类材料电解液的研究方向主要是对常规的LiPF6基碳酸酯类电解液进行改进,但是,这些措施对高镍三元正极材料循环性能的改善作用非常有限,循环稳定性仍然不理想。In recent years, the development of electrolytes suitable for high-nickel ternary materials has also become an important research direction. But so far, the research direction of this type of material electrolyte is mainly to improve the conventional LiPF 6 -based carbonate electrolyte. However, these measures have a very limited effect on improving the cycle performance of high-nickel ternary cathode materials. Stability is still not ideal.
因此,如何提高锂离子电池的电化学性能,特别是高镍三元材料锂离子电池的电化学性能,已成为本领域前沿学科亟待解决的问题之一。Therefore, how to improve the electrochemical performance of lithium-ion batteries, especially the electrochemical performance of lithium-ion batteries with high-nickel ternary materials, has become one of the urgent problems to be solved in frontier disciplines in this field.
发明内容Contents of the invention
有鉴于此,本发明提供了一种电解液及锂离子电池,特别是一种非水电解液及高镍三元正极材料电池,采用本发明提供的电解液的锂离子电池,可以有效的提高循环性能、高温循环性能及高温存储性能等。In view of this, the present invention provides a kind of electrolytic solution and lithium ion battery, particularly a kind of non-aqueous electrolytic solution and high-nickel ternary positive electrode material battery, adopt the lithium ion battery of electrolytic solution provided by the present invention, can effectively improve Cycle performance, high temperature cycle performance and high temperature storage performance, etc.
本发明提供了一种电解液,包括锂盐、有机溶剂和添加剂A;The invention provides an electrolyte, including a lithium salt, an organic solvent and an additive A;
所述添加剂A包括烷基胺类化合物、硅氮类化合物和硅氧烷类化合物中的一种或多种。The additive A includes one or more of alkylamine compounds, silicon nitrogen compounds and siloxane compounds.
优选的,所述添加剂A在所述电解液中的体积百分比为0.05%~10%;Preferably, the volume percentage of the additive A in the electrolyte is 0.05% to 10%;
所述锂盐在所述电解液中的摩尔浓度为0.1~20mol/L。The molar concentration of the lithium salt in the electrolyte is 0.1-20 mol/L.
优选的,所述烷基胺类化合物选自具有式I结构所示的烷基胺类化合物中的一种或多种,Preferably, the alkylamine compound is selected from one or more of the alkylamine compounds having the structure of formula I,
其中,R1、R2和R3独立的选自C1~C6的直链烷基或支链烷基。Wherein, R 1 , R 2 and R 3 are independently selected from C1-C6 straight-chain or branched-chain alkyl groups.
优选的,所述硅氮类化合物选自具有式II结构所示的二硅胺类化合物中的一种或多种,和/或,具有式III结构所示的硅烷咪唑类化合物中的一种或多种,Preferably, the silicon-nitrogen compound is selected from one or more of the disilamine compounds with the structure of formula II, and/or one of the silane imidazole compounds with the structure of formula III or more,
其中,R4、R5、R6、R8、R9和R10独立的选自氢原子、卤素、C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基,R7独立的选自氢原子、卤素、C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基、碱金属原子;Wherein, R 4 , R 5 , R 6 , R 8 , R 9 and R 10 are independently selected from hydrogen atoms, halogens, C1-C6 alkyl groups, C1-C6 alkoxy groups, and C6-C20 aryl groups, R7 is independently selected from a hydrogen atom, a halogen, a C1-C6 alkyl group, a C1-C6 alkoxy group, a C6-C20 aromatic group, and an alkali metal atom;
其中,R11、R12和R13独立的选自氢原子、卤素、C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基。Wherein, R 11 , R 12 and R 13 are independently selected from hydrogen atoms, halogens, C1-C6 alkyl groups, C1-C6 alkoxy groups, and C6-C20 aryl groups.
优选的,所述硅氧烷类化合物选自具有式IV结构所示的线性硅氧烷类化合物中的一种或多种,和/或,具有式V结构所示的环状硅氧烷类化合物中的一种或多种,Preferably, the siloxane compound is selected from one or more of the linear siloxane compounds represented by the structure of formula IV, and/or, the cyclic siloxane compounds represented by the structure of formula V one or more of the compounds,
其中,R14、R15、R16和R17独立的选自C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基;Wherein, R 14 , R 15 , R 16 and R 17 are independently selected from C1-C6 alkyl groups, C1-C6 alkoxy groups, and C6-C20 aryl groups;
其中,R18、R19、R20、R21、R22和R23独立的选自C1~C6的直链烷基或支链烷基;Wherein, R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently selected from C1-C6 straight-chain or branched-chain alkyl groups;
n为1~6的整数。n is an integer of 1-6.
优选的,所述锂盐包括六氟磷酸锂、四氟硼酸锂、高氯酸锂、双草酸硼酸锂、二氟草酸硼酸锂、三草酸磷酸锂、二氟二草酸磷酸锂、四氟草酸磷酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂中的一种或多种;Preferably, the lithium salts include lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium difluorooxalate borate, lithium difluorooxalate borate, lithium trifluorooxalate phosphate, lithium difluorodioxalate phosphate, lithium tetrafluorooxalate phosphate, di One or more of lithium (trifluoromethylsulfonyl)imide and lithium bisfluorosulfonylimide;
所述有机溶剂包括无氟或氟取代的碳酸酯类溶剂、无氟或氟取代的醚类溶剂、无氟或氟取代的羧酸酯类溶剂、无氟或氟取代的磷酸酯类溶剂和离子液体类溶剂中的一种或多种中的一种或多种。The organic solvents include fluorine-free or fluorine-substituted carbonate solvents, fluorine-free or fluorine-substituted ether solvents, fluorine-free or fluorine-substituted carboxylate solvents, fluorine-free or fluorine-substituted phosphate solvents and ion One or more of one or more of liquid-based solvents.
优选的,所述电解液还包括添加剂B;Preferably, the electrolyte also includes additive B;
所述添加剂B包括Li2CO3、CaCO3、Al2O3、ZnO、MgO、BaO、AlF3、MgF2、AlOF、LiPF6、LiBF4和LiBOB中一种或多种;The additive B includes one or more of Li 2 CO 3 , CaCO 3 , Al 2 O 3 , ZnO, MgO, BaO, AlF 3 , MgF 2 , AlOF, LiPF 6 , LiBF 4 and LiBOB;
所述添加剂B占所述电解液的质量百分数为0.005%~10%。The mass percentage of the additive B in the electrolyte solution is 0.005%-10%.
优选的,所述电解液还包括添加剂C;Preferably, the electrolyte also includes additive C;
所述添加剂C包括硫酸亚丙酯、亚硫酸乙烯酯、亚硫酸丙烯酯、1-丙基磷酸环酐、三(三甲基硅)磷酸酯、三甲基磷酸酯、三(1,1,1,3,3,3-六氟异丙基)磷酸酯、氟代碳酸乙烯酯、苯甲醚、碳酸亚乙烯酯、抑酸乙烯酯、丙烯氰、碳酸乙烯亚乙酯、1,3-丙烷磺酸内酯、丁二腈、1,3-丙烯基-磺酸内酯、二乙烯基砜、二草酸硼酸锂和二氟(草酸)硼酸锂中的一种或多种;The additive C includes propylene sulfate, vinyl sulfite, propylene sulfite, 1-propyl phosphoric acid cyclic anhydride, tris(trimethylsilyl) phosphate, trimethyl phosphate, tris(1,1, 1,3,3,3-Hexafluoroisopropyl) phosphate, fluoroethylene carbonate, anisole, vinylene carbonate, vinylphenatate, acrylocyanide, vinylethylene carbonate, 1,3- One or more of propane sultone, succinonitrile, 1,3-propenyl-sultone, divinyl sulfone, lithium dioxalate borate and lithium difluoro(oxalate) borate;
所述添加剂C占所述电解液的质量百分数为0.005%~10%。The mass percentage of the additive C in the electrolyte solution is 0.005%-10%.
本发明提供了一种锂离子电池,包括正极和电解液;The invention provides a lithium ion battery, comprising a positive electrode and an electrolyte;
所述电解液为上述技术方案任意一项所述的电解液。The electrolyte is the electrolyte described in any one of the above technical solutions.
优选的,所述正极中包括高镍三元正极材料。Preferably, the positive electrode includes a high-nickel ternary positive electrode material.
本发明提供了一种电解液,包括锂盐、有机溶剂和添加剂A;所述添加剂A包括烷基胺类化合物、硅氮类化合物和硅氧烷类化合物中的一种或多种。与现有技术相比,本发明针对现有的锂离子电池正极材料存在的缺陷,特别是高镍三元正极材料的循环性能和热稳定性方面的问题,从电解液的改善方面入手,尤其是针对常规的LiPF6基碳酸酯类电解液中加入少量功能性添加剂,通过添加剂分子在电池的首周充电过程中发生氧化分解,在正极材料表面参与形成稳定的正极界面膜,降低活性材料与电解液的反应,来改善材料的电化学性能等方面,在改善循环稳定性方面的不足、改善效果有限的问题。本发明创造性的提出了含有烷基胺类、含Si-N键类化合物(硅氮类化合物)和硅氧烷类化合物中至少一种的非水电解液,本发明提供的非水电解液具有极低的游离酸含量,将其应用于以高镍三元正极材料的锂离子电池中,能够有效的提高锂离子电池的循环性能、高温循环性能及高温存储性能。The invention provides an electrolytic solution, which includes a lithium salt, an organic solvent and an additive A; the additive A includes one or more of alkylamine compounds, silicon nitrogen compounds and siloxane compounds. Compared with the prior art, the present invention aims at the defects of existing lithium-ion battery positive electrode materials, especially the cycle performance and thermal stability of high-nickel ternary positive electrode materials, and starts from the improvement of electrolyte, especially It is aimed at adding a small amount of functional additives to the conventional LiPF 6 -based carbonate electrolyte. Through the oxidative decomposition of the additive molecules during the first week of charging of the battery, it participates in the formation of a stable positive electrode interface film on the surface of the positive electrode material, reducing the interaction between the active material and the battery. The reaction of the electrolyte to improve the electrochemical performance of the material, etc., is insufficient in improving the cycle stability and the improvement effect is limited. The present invention creatively proposes a non-aqueous electrolytic solution containing at least one of alkylamines, Si-N bond-containing compounds (silicon-nitrogen compounds) and siloxane compounds. The non-aqueous electrolytic solution provided by the present invention has The extremely low content of free acid can effectively improve the cycle performance, high-temperature cycle performance and high-temperature storage performance of lithium-ion batteries when applied to lithium-ion batteries with high-nickel ternary cathode materials.
实验结果表明,采用本发明提供的电解液制备的锂离子电池具有较好的常温、高温循环稳定性和高温存储性能,室温下充放电200周,电池的容量保持率为65%~90%;高温充放电100周后,电池的容量保持率为51%~81%;高温下存储30天后,开路电压OCV下降率为1.7%~11%、电池的容量保持率为62%~89%。The experimental results show that the lithium-ion battery prepared by using the electrolyte provided by the invention has good cycle stability and high-temperature storage performance at room temperature and high temperature, and the capacity retention rate of the battery is 65% to 90% after charging and discharging at room temperature for 200 cycles; After 100 cycles of charging and discharging at high temperature, the capacity retention rate of the battery is 51% to 81%. After 30 days of storage at high temperature, the open circuit voltage OCV decline rate is 1.7% to 11%, and the capacity retention rate of the battery is 62% to 89%.
附图说明Description of drawings
图1为本发明实施例和对比例中用于测试的1000mAh软包叠片电池的外观图。FIG. 1 is an appearance view of a 1000mAh soft-pack laminated battery used for testing in an embodiment of the present invention and a comparative example.
具体实施方式detailed description
为了进一步了解本发明,下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to further understand the present invention, the technical solution of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Obviously, the described embodiments are only some embodiments of the present invention, not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
本发明所有原料,对其来源没有特别限制,在市场上购买的或按照本领域技术人员熟知的常规方法制备的即可。All raw materials in the present invention have no particular limitation on their sources, they can be purchased from the market or prepared according to conventional methods well known to those skilled in the art.
本发明所有原料,对其纯度没有特别限制,本发明优选采用分析纯或锂离子电池领域的常规纯度。All raw materials in the present invention have no special limitation on their purity, and the present invention preferably adopts analytical purity or conventional purity in the field of lithium-ion batteries.
本发明中,对所述R1~R23的具体基团的定义没有特别限制,以本领域技术人员熟知的取代基的常规定义即可,本发明所述的基团原则上可以包括取代的基团和/或未取代的基团。In the present invention, there is no particular limitation on the definition of the specific groups of R 1 to R 23 , and the conventional definitions of substituents well known to those skilled in the art can be used. In principle, the groups described in the present invention may include substituted group and/or unsubstituted group.
本发明提供了一种电解液,包括锂盐、有机溶剂和添加剂A;The invention provides an electrolyte, including a lithium salt, an organic solvent and an additive A;
所述添加剂A包括烷基胺类化合物、硅氮类化合物和硅氧烷类化合物中的一种或多种。The additive A includes one or more of alkylamine compounds, silicon nitrogen compounds and siloxane compounds.
本发明对所述电解液没有特别限制,以本领域技术人员熟知的锂电池电解液即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述电解液优选锂离子电池用非水电解液,更优选为三元正极材料锂离子电池用电解液,最优选为高镍三元正极材料锂离子电池用电解液。The present invention has no special limitation on the electrolyte, and the lithium battery electrolyte well known to those skilled in the art can be used. Those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The electrolyte of the present invention It is preferably a non-aqueous electrolyte solution for lithium-ion batteries, more preferably an electrolyte solution for lithium-ion batteries with ternary cathode materials, and most preferably an electrolyte solution for lithium-ion batteries with high-nickel ternary cathode materials.
本发明对所述烷基胺类化合物没有特别限制,以本领域技术人员熟知的烷基胺类化合物即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述烷基胺类化合物优选自具有式I结构所示的烷基胺类化合物中的一种或多种;In the present invention, the alkylamine compounds are not particularly limited, and the alkylamine compounds well-known to those skilled in the art can be used. Those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The present invention The alkylamine compound is preferably selected from one or more of the alkylamine compounds represented by the structure of formula I;
其中,R1、R2和R3独立的选自C1~C6的直链烷基或支链烷基。Wherein, R 1 , R 2 and R 3 are independently selected from C1-C6 straight-chain or branched-chain alkyl groups.
本发明所述R1、R2和R3独立的优选自C1~C6的直链烷基或支链烷基,更优选自C2~C5的直链烷基或支链烷基,更优选自C3~C4的直链烷基或支链烷基。In the present invention, R 1 , R 2 and R 3 are independently preferably selected from C1-C6 straight-chain alkyl or branched-chain alkyl, more preferably from C2-C5 straight-chain or branched-chain alkyl, more preferably from C3-C4 straight-chain or branched-chain alkyl.
本发明对所述硅氮类化合物没有特别限制,以本领域技术人员熟知的硅氮类化合物或含Si-N键的化合物即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述硅氮类化合物优选自具有式II结构所示的二硅胺类化合物中的一种或多种,和/或,具有式III结构所示的硅烷咪唑类化合物中的一种或多种,即所述硅氮类化合物可以选自具有式II结构所示的二硅胺类化合物中的一种或多种,也可以选自具有式III结构所示的硅烷咪唑类化合物中的一种或多种,也可以同时选自具有式II结构所示的二硅胺类化合物中的一种或多种和具有式III结构所示的硅烷咪唑类化合物中的一种或多种。The present invention has no special limitation on the silicon-nitrogen compound, and the silicon-nitrogen compound or the compound containing Si-N bond well known to those skilled in the art can be used according to the application situation, product performance and quality requirements. Selection and adjustment, the silicon-nitrogen compounds described in the present invention are preferably selected from one or more of the disilamine compounds represented by the structure of formula II, and/or, among the silane imidazole compounds represented by the structure of formula III One or more, that is, the silicon nitrogen compound can be selected from one or more of the disilamine compounds shown in the structure of formula II, and can also be selected from the silane imidazoles shown in the structure of formula III One or more of the compounds can also be selected from one or more of the disilamine compounds shown in the structure of formula II and one of the silane imidazole compounds shown in the structure of formula III or more.
其中,R4、R5、R6、R8、R9和R10独立的选自氢原子、卤素、C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基,R7独立的选自氢原子、卤素、C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基、碱金属原子。Wherein, R 4 , R 5 , R 6 , R 8 , R 9 and R 10 are independently selected from hydrogen atoms, halogens, C1-C6 alkyl groups, C1-C6 alkoxy groups, and C6-C20 aryl groups, R 7 is independently selected from a hydrogen atom, a halogen, a C1-C6 alkyl group, a C1-C6 alkoxy group, a C6-C20 aryl group, and an alkali metal atom.
本发明所述R4、R5、R6、R8、R9和R10独立的优选自氢原子、卤素、C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基,更优选自氢原子、卤素、C2~C5的烷基、C2~C5的烷氧基、C8~C16的芳香基,更优选自氢原子、卤素、C3~C4的烷基、C3~C4的烷氧基、C10~C14的芳香基,具体可以为氢原子、卤素、C1~C3的烷基、C1~C3的烷氧基、C6~C8的芳香基。In the present invention, R 4 , R 5 , R 6 , R 8 , R 9 and R 10 are independently preferably selected from hydrogen atom, halogen, C1-C6 alkyl, C1-C6 alkoxy, C6-C20 aromatic group, more preferably from hydrogen atom, halogen, C2-C5 alkyl group, C2-C5 alkoxy group, C8-C16 aryl group, more preferably from hydrogen atom, halogen, C3-C4 alkyl group, C3-C4 The alkoxyl group of C10-C14, the aryl group of C10-C14 can specifically be a hydrogen atom, halogen, alkyl group of C1-C3, alkoxyl group of C1-C3, aryl group of C6-C8.
本发明所述R7独立的优选自氢原子、卤素、C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基、碱金属原子,更优选自氢原子、卤素、C2~C5的烷基、C2~C5的烷氧基、C8~C16的芳香基、碱金属原子,更优选自氢原子、卤素、C3~C4的烷基、C3~C4的烷氧基、C10~C14的芳香基、碱金属原子,具体可以为氢原子、卤素、C1~C3的烷基、C1~C3的烷氧基、C6~C8的芳香基、碱金属原子。In the present invention, R7 is independently preferably selected from hydrogen atom, halogen, C1-C6 alkyl group, C1-C6 alkoxyl group, C6-C20 aryl group, alkali metal atom, more preferably from hydrogen atom, halogen, C2 ~C5 alkyl group, C2~C5 alkoxy group, C8~C16 aryl group, alkali metal atom, more preferably selected from hydrogen atom, halogen, C3~C4 alkyl group, C3~C4 alkoxy group, C10~ The C14 aryl group and alkali metal atom may specifically be hydrogen atom, halogen, C1-C3 alkyl group, C1-C3 alkoxy group, C6-C8 aryl group, and alkali metal atom.
其中,R11、R12和R13独立的选自氢原子、卤素、C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基。Wherein, R 11 , R 12 and R 13 are independently selected from hydrogen atoms, halogens, C1-C6 alkyl groups, C1-C6 alkoxy groups, and C6-C20 aryl groups.
本发明所述R11、R12和R13独立的优选自氢原子、卤素、C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基,更优选自氢原子、卤素、C2~C5的烷基、C2~C5的烷氧基、C8~C16的芳香基,更优选自氢原子、卤素、C3~C4的烷基、C3~C4的烷氧基、C10~C14的芳香基,具体可以为氢原子、卤素、C1~C3的烷基、C1~C3的烷氧基、C6~C8的芳香基。In the present invention, R 11 , R 12 and R 13 are preferably independently selected from hydrogen atoms, halogens, C1-C6 alkyl groups, C1-C6 alkoxy groups, and C6-C20 aryl groups, more preferably hydrogen atoms, halogen groups , C2-C5 alkyl group, C2-C5 alkoxy group, C8-C16 aryl group, more preferably selected from hydrogen atom, halogen, C3-C4 alkyl group, C3-C4 alkoxy group, C10-C14 The aryl group may specifically be a hydrogen atom, a halogen, a C1-C3 alkyl group, a C1-C3 alkoxy group, or a C6-C8 aryl group.
本发明对所述硅氧烷类化合物没有特别限制,以本领域技术人员熟知的硅氧烷类化合物即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述硅氧烷类化合物优选自具有式IV结构所示的线性硅氧烷类化合物中的一种或多种,和/或,具有式V结构所示的环状硅氧烷类化合物中的一种或多种,即所述硅氧烷类化合物可以选自具有式IV结构所示的线性硅氧烷类化合物中的一种或多种,也可以选自具有式V结构所示的环状硅氧烷类化合物中的一种或多种,也可以同时选自具有式IV结构所示的线性硅氧烷类化合物中的一种或多种和具有式V结构所示的环状硅氧烷类化合物中的一种或多种。The present invention has no special limitation on the siloxane compound, and the siloxane compound well-known to those skilled in the art can be used. Those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The present invention The siloxane compound is preferably selected from one or more of the linear siloxane compounds represented by the structure of formula IV, and/or, one or more of the cyclic siloxane compounds represented by the structure of formula V One or more, that is, the siloxane compound can be selected from one or more of the linear siloxane compounds shown in the structure of formula IV, and can also be selected from the rings shown in the structure of formula V One or more of the linear siloxane compounds can also be selected from one or more of the linear siloxane compounds shown in the structure of formula IV and the cyclic silicon compounds shown in the structure of formula V One or more of the oxane compounds.
其中,R14、R15、R16和R17独立的选自C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基。Wherein, R 14 , R 15 , R 16 and R 17 are independently selected from C1-C6 alkyl groups, C1-C6 alkoxy groups, and C6-C20 aryl groups.
本发明所述R14、R15、R16和R17独立的选自C1~C6的烷基、C1~C6的烷氧基、C6~C20的芳香基,更优选自C2~C5的烷基、C2~C5的烷氧基、C8~C16的芳香基,更优选自C3~C4的烷基、C3~C4的烷氧基、C10~C14的芳香基,具体可以为C1~C6的直链烷基或支链烷基,也可以为C1~C4的直链烷基或支链烷基,或者为C1~C2的直链烷基或支链烷基。In the present invention, R 14 , R 15 , R 16 and R 17 are independently selected from C1-C6 alkyl groups, C1-C6 alkoxy groups, and C6-C20 aryl groups, more preferably from C2-C5 alkyl groups , C2-C5 alkoxyl group, C8-C16 aryl group, more preferably selected from C3-C4 alkyl group, C3-C4 alkoxyl group, C10-C14 aryl group, specifically C1-C6 straight chain The alkyl group or branched chain alkyl group may also be a C1-C4 straight-chain alkyl group or branched-chain alkyl group, or a C1-C2 straight-chain alkyl group or branched chain alkyl group.
其中,R18、R19、R20、R21、R22和R23独立的选自C1~C6的直链烷基或支链烷基;Wherein, R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently selected from C1-C6 straight-chain or branched-chain alkyl groups;
n为1~6的整数。n is an integer of 1-6.
本发明所述R18、R19、R20、R21、R22和R23独立的优选自C1~C6的直链烷基或支链烷基,更优选自C2~C5的直链烷基或支链烷基,更优选自C3~C4的直链烷基或支链烷基,也可以为C1~C4的直链烷基或支链烷基,或者为C1~C2的直链烷基或支链烷基。本发明所述n优选为1~6的整数,更优选为2~5的整数,更优选为3~4的整数,具体可以为1~4的整数,或者为1~2的整数。In the present invention, R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are independently preferably selected from C1-C6 straight-chain or branched-chain alkyl groups, more preferably C2-C5 straight-chain alkyl groups Or branched chain alkyl, more preferably straight chain alkyl or branched chain alkyl from C3~C4, also can be C1~C4 straight chain alkyl or branched chain alkyl, or C1~C2 straight chain alkyl or branched chain alkyl. In the present invention, n is preferably an integer of 1-6, more preferably an integer of 2-5, more preferably an integer of 3-4, specifically an integer of 1-4, or an integer of 1-2.
本发明对所述添加剂A的具体结构没有特别限制,本领域技术人员可以根据应用情况、产品性能以及质量要求在上述范围内进行选择和调整,本发明为进一步优化技术方案,所述添加剂A的具体结构式,可以为如下式1~式9:The present invention has no particular limitation on the specific structure of the additive A, and those skilled in the art can select and adjust it within the above range according to the application situation, product performance and quality requirements. The present invention is a further optimized technical solution. The additive A The specific structural formula can be the following formula 1 to formula 9:
本发明对所述添加剂A的加入量没有特别限制,以本领域技术人员熟知的常规加入量即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述添加剂A在所述电解液中的体积百分比优选为0.05%~10%,更优选为0.1%~8%,更优选为0.5%~6%,更优选为1%~5%。The present invention has no special limitation on the addition amount of the additive A, just the conventional addition amount well known to those skilled in the art, and those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The volume percentage of additive A in the electrolyte solution is preferably 0.05%-10%, more preferably 0.1%-8%, more preferably 0.5%-6%, more preferably 1%-5%.
本发明对所述锂盐没有特别限制,以本领域技术人员熟知的锂电池电解液用锂盐即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述锂盐优选包括六氟磷酸锂、四氟硼酸锂、高氯酸锂、双草酸硼酸锂、二氟草酸硼酸锂、三草酸磷酸锂、二氟二草酸磷酸锂、四氟草酸磷酸锂、二(三氟甲基磺酰)亚胺锂和双氟磺酰亚胺锂中的一种或多种,更优选为六氟磷酸锂、四氟硼酸锂、高氯酸锂、双草酸硼酸锂、二氟草酸硼酸锂、三草酸磷酸锂、二氟二草酸磷酸锂、四氟草酸磷酸锂、二(三氟甲基磺酰)亚胺锂或双氟磺酰亚胺锂。The present invention has no special restrictions on the lithium salt, and the lithium salt for lithium battery electrolyte well known to those skilled in the art can be used. Those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The lithium salts preferably include lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium bisoxalate borate, lithium difluorooxalate borate, lithium trifluorooxalate phosphate, lithium difluorooxalate phosphate, lithium tetrafluorooxalate phosphate, bis(trifluorooxalate lithium One or more of lithium methylsulfonyl imide and lithium bisfluorosulfonimide, more preferably lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium bisoxalate borate, lithium difluorooxalate borate, Lithium trifluorooxalate phosphate, lithium difluorodioxalate phosphate, lithium tetrafluorooxalate phosphate, lithium bis(trifluoromethylsulfonyl)imide, or lithium bisfluorosulfonylimide.
本发明对所述锂盐的加入量没有特别限制,以本领域技术人员熟知的常规锂盐加入量即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述锂盐在所述电解液中的摩尔浓度优选为0.1~20mol/L,更优选为0.5~5mol/L,更优选为0.6~2.5mol/L,更优选为0.8~1.5mol/L。The present invention has no special limitation on the addition amount of the lithium salt, the conventional lithium salt addition amount well known to those skilled in the art can be used, and those skilled in the art can select and adjust according to the application situation, product performance and quality requirements, the present invention The molar concentration of the lithium salt in the electrolyte is preferably 0.1-20 mol/L, more preferably 0.5-5 mol/L, more preferably 0.6-2.5 mol/L, more preferably 0.8-1.5 mol/L.
本发明对所述有机溶剂没有特别限制,以本领域技术人员熟知的锂电池电解液用有机溶剂即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述有机溶剂优选包括无氟或氟取代的碳酸酯类溶剂、无氟或氟取代的醚类溶剂、无氟或氟取代的羧酸酯类溶剂、无氟或氟取代的磷酸酯类溶剂和离子液体类溶剂中的一种或多种中的一种或多种,更优选为无氟或氟取代的碳酸酯类溶剂、无氟或氟取代的醚类溶剂、无氟或氟取代的羧酸酯类溶剂、无氟或氟取代的磷酸酯类溶剂或离子液体类溶剂,可以为碳酸乙烯酯+碳酸二甲酯、氟代碳酸乙烯酯+碳酸二甲酯+碳酸甲乙酯+六氟异丙基甲基醚、氟代碳酸酯+三氟丙酸甲酯、三甲基磷酸酯+氟代碳酸乙烯酯或N-甲基-N-丁基-哌啶-双三氟甲基磺酰胺PP14TFSI离子液体+六氟异丙基甲基醚,具体配比可以为碳酸乙烯酯+碳酸二甲酯(3:7,v/v)、氟代碳酸乙烯酯+碳酸二甲酯+碳酸甲乙酯+六氟异丙基甲基醚(2:3:1:4,v/v/v/v)、氟代碳酸酯+三氟丙酸甲酯(3:7,v/v)、三甲基磷酸酯+氟代碳酸乙烯酯(9:1,v/v)或N-甲基-N-丁基-哌啶-双三氟甲基磺酰胺PP14TFSI离子液体+六氟异丙基甲基醚(9:1,v/v)。The present invention has no special restrictions on the organic solvent, and the organic solvent for lithium battery electrolyte well known to those skilled in the art can be used. Those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The organic solvents preferably include fluorine-free or fluorine-substituted carbonate solvents, fluorine-free or fluorine-substituted ether solvents, fluorine-free or fluorine-substituted carboxylate solvents, fluorine-free or fluorine-substituted phosphate solvents and ion One or more of one or more of liquid solvents, more preferably fluorine-free or fluorine-substituted carbonate solvents, fluorine-free or fluorine-substituted ether solvents, fluorine-free or fluorine-substituted carboxylic acids Ester solvents, fluorine-free or fluorine-substituted phosphate solvents or ionic liquid solvents, which can be ethylene carbonate + dimethyl carbonate, fluoroethylene carbonate + dimethyl carbonate + methyl ethyl carbonate + hexafluoroiso Propyl methyl ether, fluorocarbonate + methyl trifluoropropionate, trimethyl phosphate + fluoroethylene carbonate or N-methyl-N-butyl-piperidine-bistrifluoromethylsulfonamide PP 14 TFSI ionic liquid + hexafluoroisopropyl methyl ether, the specific ratio can be ethylene carbonate + dimethyl carbonate (3:7, v/v), fluoroethylene carbonate + dimethyl carbonate + carbonic acid Ethyl methyl ester + hexafluoroisopropyl methyl ether (2:3:1:4, v/v/v/v), fluorocarbonate + methyl trifluoropropionate (3:7, v/v) , trimethyl phosphate + fluoroethylene carbonate (9:1, v/v) or N-methyl-N-butyl-piperidine-bistrifluoromethylsulfonamide PP 14 TFSI ionic liquid + hexafluoro Isopropyl methyl ether (9:1, v/v).
本发明为进一步提高锂电池的性能,特别是当锂盐为以N原子为中心的锂盐时,为了防止Al集流体的腐蚀,所述电解液优选还包括添加剂B,更优选为能够使Al集流体表面钝化的添加剂B。In order to further improve the performance of the lithium battery, especially when the lithium salt is a lithium salt centered on the N atom, in order to prevent the corrosion of the Al current collector, the electrolyte preferably also includes additive B, more preferably capable of making Al Additive B for current collector surface passivation.
本发明对所述添加剂B的具体选择没有特别限制,以本领域技术人员熟知的锂电池电解液常用添加剂即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述添加剂B优选包括Li2CO3、CaCO3、Al2O3、ZnO、MgO、BaO、AlF3、MgF2、AlOF、LiPF6、LiBF4和LiBOB中一种或多种,更优选为Li2CO3、CaCO3、Al2O3、ZnO、MgO、BaO、AlF3、MgF2、AlOF、LiPF6、LiBF4或LiBOB。The present invention has no particular limitation on the specific selection of the additive B, and the commonly used additives for lithium battery electrolyte well known to those skilled in the art can be used. Those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The additive B in the invention preferably includes one or more of Li 2 CO 3 , CaCO 3 , Al 2 O 3 , ZnO, MgO, BaO, AlF 3 , MgF 2 , AlOF, LiPF 6 , LiBF 4 and LiBOB, more preferably Li 2 CO 3 , CaCO 3 , Al 2 O 3 , ZnO, MgO, BaO, AlF 3 , MgF 2 , AlOF, LiPF 6 , LiBF 4 or LiBOB.
本发明对所述添加剂B的加入量没有特别限制,以本领域技术人员熟知的常规加入量即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述添加剂B占所述电解液的质量百分数为优选为0.005%~10%,更优选为0.01%~8%,更优选为0.05%~6%,更优选为0.1%~4%,更优选为0.5%~2%。The present invention has no special limitation on the addition amount of the additive B, just the conventional addition amount well known to those skilled in the art, and those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The mass percentage of additive B in the electrolyte solution is preferably 0.005% to 10%, more preferably 0.01% to 8%, more preferably 0.05% to 6%, more preferably 0.1% to 4%, and more preferably 0.5% %~2%.
本发明为进一步提高锂电池的性能,稳定正极界面膜和负极SEI膜,所述电解液优选还包括添加剂C。In order to further improve the performance of the lithium battery and stabilize the positive electrode interface film and the negative electrode SEI film, the electrolyte solution preferably further includes additive C.
本发明对所述添加剂C的具体选择没有特别限制,以本领域技术人员熟知的锂电池电解液常用添加剂即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述添加剂C优选包括硫酸亚丙酯、亚硫酸乙烯酯、亚硫酸丙烯酯、1-丙基磷酸环酐、三(三甲基硅)磷酸酯、三甲基磷酸酯、三(1,1,1,3,3,3-六氟异丙基)磷酸酯、氟代碳酸乙烯酯、苯甲醚、碳酸亚乙烯酯、抑酸乙烯酯、丙烯氰、碳酸乙烯亚乙酯、1,3-丙烷磺酸内酯、丁二腈、1,3-丙烯基-磺酸内酯、二乙烯基砜、二草酸硼酸锂和二氟(草酸)硼酸锂中的一种或多种,更优选为硫酸亚丙酯、亚硫酸乙烯酯、亚硫酸丙烯酯、1-丙基磷酸环酐、三(三甲基硅)磷酸酯、三甲基磷酸酯、三(1,1,1,3,3,3-六氟异丙基)磷酸酯、氟代碳酸乙烯酯、苯甲醚、碳酸亚乙烯酯、抑酸乙烯酯、丙烯氰、碳酸乙烯亚乙酯、1,3-丙烷磺酸内酯、丁二腈、1,3-丙烯基-磺酸内酯、二乙烯基砜、二草酸硼酸锂或二氟(草酸)硼酸锂。The present invention has no particular limitation on the specific selection of the additive C, and the commonly used additives for lithium battery electrolytes well known to those skilled in the art can be used. Those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The additive C described in the invention preferably includes propylene sulfate, vinyl sulfite, propylene sulfite, 1-propyl phosphoric acid cyclic anhydride, tris(trimethylsilyl) phosphate, trimethyl phosphate, tris(1, 1,1,3,3,3-Hexafluoroisopropyl) phosphate, fluoroethylene carbonate, anisole, vinylene carbonate, vinylinhibinate, acrylocyanide, vinylethylene carbonate, 1, One or more of 3-propane sultone, succinonitrile, 1,3-propenyl-sultone, divinyl sulfone, lithium dioxalate borate and lithium difluoro(oxalate) borate, more Preferred are propylene sulfate, vinyl sulfite, propylene sulfite, 1-propyl phosphate cyclic anhydride, tris(trimethylsilyl) phosphate, trimethyl phosphate, tris(1,1,1,3 , 3,3-hexafluoroisopropyl) phosphate, fluoroethylene carbonate, anisole, vinylene carbonate, vinylphenatate, acrylocyanide, vinylethylene carbonate, 1,3-propanesulfonic acid Lactone, succinonitrile, 1,3-propenyl-sultone, divinylsulfone, lithium dioxalate borate or lithium difluoro(oxalate)borate.
本发明对所述添加剂C的加入量没有特别限制,以本领域技术人员熟知的常规加入量即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述添加剂C占所述电解液的质量百分数优选为0.005%~10%,更优选为0.01%~8%,更优选为0.05%~6%,更优选为0.1%~4%,更优选为0.5%~2%。The present invention has no special limitation on the addition amount of the additive C, and the conventional addition amount well known to those skilled in the art can be used. Those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The mass percentage of additive C in the electrolyte solution is preferably 0.005% to 10%, more preferably 0.01% to 8%, more preferably 0.05% to 6%, more preferably 0.1% to 4%, and more preferably 0.5% ~2%.
本发明对所述电解液的游离酸的含量没有特别限制,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明为提高锂电池的性能,进一步对正极材料进行优化,所述电解液的游离酸的含量优选为小于等于50ppm,更优选为小于等于40ppm,更优选为小于等于30ppm。The present invention has no special limitation on the free acid content of the electrolyte, and those skilled in the art can select and adjust according to the application situation, product performance and quality requirements. The present invention further optimizes the positive electrode material in order to improve the performance of the lithium battery , the free acid content of the electrolyte is preferably less than or equal to 50ppm, more preferably less than or equal to 40ppm, more preferably less than or equal to 30ppm.
本发明针对高镍三元材料的耐酸腐蚀性差,即使是在空气中,高镍材料表面非常容易与空气中的CO2和H2O发生反应生成Li2CO3和LiOH,这些副产物极易与LiPF6基碳酸酯电解液反应,Li2CO3会导致高温存储时产生严重的气胀现象,LiOH与电解液中的LiPF6反应产生HF,进而直接影响到材料循环过程中的容量保持率,而目前的LiPF6基碳酸酯电解液又容易产生HF等游离酸,尤其高温下更易产生HF,使电解液酸化,从而导致电极材料的酸化腐蚀以及电池性能的急剧恶化,而且不论是正极材料表面包覆还是电解液添加剂,其作用都是减少材料与电解液之间的直接接触,材料表面防止HF等游离酸的腐蚀,但是却不能完全阻止电解液中HF等的生成的固有缺陷。The present invention is aimed at the poor acid corrosion resistance of high-nickel ternary materials. Even in the air, the surface of high-nickel materials is very easy to react with CO 2 and H 2 O in the air to generate Li 2 CO 3 and LiOH. These by-products are very easy Reaction with LiPF 6 -based carbonate electrolyte, Li 2 CO 3 will cause severe gas swelling during high temperature storage, LiOH reacts with LiPF 6 in the electrolyte to produce HF, which directly affects the capacity retention rate during the material cycle , and the current LiPF 6 -based carbonate electrolyte is prone to produce free acids such as HF, especially at high temperatures, which will acidify the electrolyte, resulting in acidification corrosion of electrode materials and sharp deterioration of battery performance. The surface coating is also an electrolyte additive. Its function is to reduce the direct contact between the material and the electrolyte. The surface of the material prevents the corrosion of free acids such as HF, but it cannot completely prevent the inherent defects of the generation of HF in the electrolyte.
本发明从上述缺陷出发,特别提出来一种无水电解液,创造性的使用添加剂A,该类添加剂A与H2O(和/或HF等游离酸)反应,有效捕获电解液中少量的水和少量的HF等游离酸,大大降低电解液中游离酸的含量,从而防止了电极材料的酸化腐蚀,稳定电解液/电极界面,最终维持电极材料的循环稳定性。Starting from the above defects, the present invention proposes a non-aqueous electrolyte, creatively using additive A, which reacts with H 2 O (and/or free acids such as HF) to effectively capture a small amount of water in the electrolyte And a small amount of free acid such as HF, which greatly reduces the content of free acid in the electrolyte, thereby preventing the acidification corrosion of the electrode material, stabilizing the electrolyte/electrode interface, and finally maintaining the cycle stability of the electrode material.
本发明还提供了一种锂离子电池,包括正极和电解液;所述电解液为上述技术方案任意一项所述的电解液。The present invention also provides a lithium ion battery, including a positive electrode and an electrolyte; the electrolyte is the electrolyte described in any one of the above technical solutions.
本发明对所述正极材料或锂离子电池没有特别限制,以本领域技术人员熟知的锂电池正极材料和锂离子电池即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述正极材料优选为三元正极材料,即所述锂离子电池优选为三元正极材料锂离子电池,更优选为高镍三元正极材料,即所述锂离子电池更优选为高镍三元正极材料锂离子电池。The present invention has no special restrictions on the positive electrode material or lithium ion battery, and the lithium battery positive electrode material and lithium ion battery well known to those skilled in the art can be selected and selected according to the application situation, product performance and quality requirements. Adjustment, the positive electrode material of the present invention is preferably a ternary positive electrode material, that is, the lithium ion battery is preferably a ternary positive electrode material lithium ion battery, more preferably a high-nickel ternary positive electrode material, that is, the lithium ion battery is more preferably High nickel ternary cathode material lithium ion battery.
本发明对所述锂离子电池的其他组成或参数没有特别限制,以本领域技术人员熟知的锂离子电池的常规组成或参数即可,本领域技术人员可以根据应用情况、产品性能以及质量要求进行选择和调整,本发明所述锂离子电池优选还包括负极、隔膜、电池外壳等等。The present invention has no special restrictions on other compositions or parameters of the lithium-ion battery, and the conventional composition or parameters of the lithium-ion battery well-known to those skilled in the art can be used, and those skilled in the art can carry out according to the application situation, product performance and quality requirements. Optionally and adjusted, the lithium-ion battery of the present invention preferably further includes a negative electrode, a separator, a battery casing, and the like.
本发明提供了一种非水电解液及高镍三元正极材料电池,本发明从电解液的改善方面入手,创造性的在非水电解液中加入烷基胺类化合物、含Si-N键类化合物(硅氮类化合物)和硅氧烷类化合物中至少一种,本发明提供的非水电解液具有极低的游离酸含量,将其应用于以高镍三元正极材料的锂离子电池中,能够有效的提高锂离子电池的循环性能、高温循环性能及高温存储性能。The invention provides a non-aqueous electrolyte and a high-nickel ternary positive electrode material battery. The invention starts from the improvement of the electrolyte and creatively adds alkylamine compounds and Si-N bond-containing compounds into the non-aqueous electrolyte. At least one of compound (silicon-nitrogen compound) and siloxane compound, the non-aqueous electrolytic solution provided by the invention has extremely low free acid content, and it is applied in the lithium-ion battery with high-nickel ternary positive electrode material , can effectively improve the cycle performance, high-temperature cycle performance and high-temperature storage performance of lithium-ion batteries.
实验结果表明,采用本发明提供的电解液制备的锂离子电池具有较好的常温、高温循环稳定性和高温存储性能,室温25℃下充放电循环200周,电池的容量保持率为65%~90%;高温60℃下充放电循环100周后,电池的容量保持率为51%~81%;55℃下存储30天后,开路电压OCV下降率为1.7%~11%、电池的容量保持率为62%~89%。然而,装配现有常规碳酸酯电解液的锂离子电池,在室温25℃下充放电循环200周,电池的容量保持率仅为23%~54%;高温60℃下充放电循环100周后,电池的容量保持率仅为16%~32%;55℃下存储30天后,开路电压OCV下降率仅为18%~34%、电池的容量保持率为51%~60%。Experimental results show that the lithium-ion battery prepared by the electrolyte provided by the invention has better normal temperature, high-temperature cycle stability and high-temperature storage performance, and the charge-discharge cycle is 200 cycles at a room temperature of 25° C., and the capacity retention rate of the battery is 65%- 90%; after 100 cycles of charging and discharging at a high temperature of 60°C, the capacity retention rate of the battery is 51% to 81%; 62% to 89%. However, for a lithium-ion battery equipped with an existing conventional carbonate electrolyte, after 200 cycles of charging and discharging at room temperature at 25°C, the capacity retention rate of the battery is only 23% to 54%; after 100 cycles of charging and discharging at a high temperature of 60°C, The capacity retention rate of the battery is only 16% to 32%; after storage at 55°C for 30 days, the decrease rate of the open circuit voltage OCV is only 18% to 34%, and the capacity retention rate of the battery is 51% to 60%.
为了进一步说明本发明,以下结合实施例对本发明提供的一种电解液及锂离子电池进行详细描述,但是应当理解,这些实施例是在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制,本发明的保护范围也不限于下述的实施例。In order to further illustrate the present invention, an electrolyte solution and a lithium-ion battery provided by the present invention are described in detail below in conjunction with examples, but it should be understood that these examples are implemented on the premise of the technical solution of the present invention, and detailed descriptions are given. The embodiments and the specific operation process are only to further illustrate the features and advantages of the present invention, rather than to limit the claims of the present invention, and the scope of protection of the present invention is not limited to the following examples.
本发明以下实施例所用到的试剂均为市售商品。All reagents used in the following examples of the present invention are commercially available.
以下实施例中所用的添加剂A的种类有:The kind of additive A used in the following examples has:
实施例1~10Examples 1-10
有机溶剂选自碳酸酯类溶剂即碳酸乙烯酯EC和碳酸二甲酯DMC的混合液,其体积比为3:7。The organic solvent is selected from carbonate solvents, that is, a mixture of ethylene carbonate EC and dimethyl carbonate DMC, and its volume ratio is 3:7.
锂盐分别选自LiPF6和以N原子为中心的锂盐LiTFSI,使其摩尔浓度均为1mol L-1。The lithium salts are respectively selected from LiPF 6 and lithium salt LiTFSI centered on the N atom, so that the molar concentration is 1 mol L -1 .
添加剂A选自上述式1~9、添加剂B优选为LiPF6(质量百分比为2%)、添加剂C优选为1,3-丙烷磺酸内酯(PS,质量百分比为1%),最后得到锂离子电池电解液。Additive A is selected from the above formulas 1-9, additive B is preferably LiPF 6 (2% by mass), additive C is preferably 1,3-propane sultone (PS, 1% by mass), and finally lithium Ion battery electrolyte.
对比例1~2Comparative example 1~2
采用常规的锂离子电池用电解液,有机溶剂选自碳酸酯类溶剂即碳酸乙烯酯EC和碳酸二甲酯DMC的混合液,其体积比为3:7。The conventional lithium-ion battery electrolyte is used, and the organic solvent is selected from carbonate solvents, that is, a mixture of ethylene carbonate EC and dimethyl carbonate DMC, and the volume ratio is 3:7.
锂盐分别选自LiPF6和以N原子为中心的锂盐LiTFSI,使其摩尔浓度均为1mol L-1。The lithium salts are respectively selected from LiPF 6 and lithium salt LiTFSI centered on the N atom, so that the molar concentration is 1 mol L -1 .
实施例11Example 11
对本发明实施例1~10和对比例1~2中所示的电解液进行平行性能检测,Parallel performance detection is carried out to the electrolyte solutions shown in Examples 1-10 of the present invention and Comparative Examples 1-2,
参见图1,图1为本发明实施例和对比例中用于测试的1000mAh软包叠片电池的外观图。Referring to FIG. 1 , FIG. 1 is an appearance view of a 1000mAh pouch laminated battery used for testing in an embodiment of the present invention and a comparative example.
将上述制备的锂离子电池电解液分别注入到1000mAh软包叠片电池。进行测试。The lithium-ion battery electrolytes prepared above were respectively injected into 1000mAh soft-pack laminated batteries. carry out testing.
正极为高镍三元材料NCM镍钴锰酸锂(811),负极为人造石墨,隔膜为Celgard2075。The positive electrode is high-nickel ternary material NCM nickel cobalt lithium manganese oxide (811), the negative electrode is artificial graphite, and the diaphragm is Celgard2075.
测试条件:充放电电压区间为2.5~4.3V;Test conditions: charge and discharge voltage range is 2.5 ~ 4.3V;
常温循环性能:30℃常温1C倍率下充放电循环200次;Normal temperature cycle performance: 200 charge and discharge cycles at 30°C and 1C rate at room temperature;
高温性能测试:在60℃高温1C倍率下充放电循环100次;High temperature performance test: charge and discharge cycle 100 times at 60°C high temperature and 1C rate;
高温储存性能:满电荷状态下的待测电池置于55℃储存30天,测试电池储存后的开路电压OCV下降率及容量保持率。High-temperature storage performance: Store the battery under test at 55°C for 30 days in a fully charged state, and test the OCV drop rate and capacity retention rate of the battery after storage.
参见表1,表1为本发明实施例11制备的锂离子电池中电解液配方以及性能测试结果See Table 1, Table 1 is the electrolyte formula and performance test results in the lithium-ion battery prepared in Example 11 of the present invention
表1Table 1
从表1测试数据可知,采用添加剂A的电解液的高镍三元正极电池的室温、高温循环性能及高温存储性能均明显优于不含添加剂的对比例1的电池。当电解液中锂盐为以N原子为中心的锂盐时,与对比例2相比,添加剂A、B、C联用可以明显提高电池的各项性能。From the test data in Table 1, it can be seen that the room temperature, high temperature cycle performance and high temperature storage performance of the high-nickel ternary positive electrode battery using the electrolyte of additive A are significantly better than the battery of Comparative Example 1 without additive. When the lithium salt in the electrolyte is a lithium salt centered on N atoms, compared with Comparative Example 2, the combined use of additives A, B, and C can significantly improve the performance of the battery.
以上对本发明提供的一种非水电解液及高镍三元正极材料电池进行了详细的介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本发明,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。本发明专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有近似于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。A kind of non-aqueous electrolytic solution provided by the present invention and the high-nickel ternary positive electrode material battery have been introduced in detail above. In this paper, specific examples have been used to illustrate the principle and implementation of the present invention. The description of the above examples is only used It is used to help understand the method and its core idea of the present invention, including the best mode, and also enables anyone skilled in the art to practice the present invention, including making and using any device or system, and implementing any combined method. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, some improvements and modifications can be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements close to the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal expressions of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710718941.2A CN107293792A (en) | 2017-08-21 | 2017-08-21 | A kind of nonaqueous electrolytic solution and nickelic tertiary cathode material battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710718941.2A CN107293792A (en) | 2017-08-21 | 2017-08-21 | A kind of nonaqueous electrolytic solution and nickelic tertiary cathode material battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107293792A true CN107293792A (en) | 2017-10-24 |
Family
ID=60106685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710718941.2A Pending CN107293792A (en) | 2017-08-21 | 2017-08-21 | A kind of nonaqueous electrolytic solution and nickelic tertiary cathode material battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107293792A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109575067A (en) * | 2018-11-22 | 2019-04-05 | 杉杉新材料(衢州)有限公司 | A kind of silicon-containing organic compound and its application |
US20190140320A1 (en) * | 2017-11-03 | 2019-05-09 | Eternal Materials Co., Ltd. | Electrolyte composition and application thereof |
CN109818064A (en) * | 2019-03-19 | 2019-05-28 | 杉杉新材料(衢州)有限公司 | A kind of high temperature high voltage nonaqueous electrolytic solution and the lithium ion battery containing the nonaqueous electrolytic solution |
CN110364695A (en) * | 2018-04-11 | 2019-10-22 | 宁德新能源科技有限公司 | Lithium Ion Battery |
CN110391457A (en) * | 2018-04-23 | 2019-10-29 | 宁德时代新能源科技股份有限公司 | Electrolyte and Lithium Ion Batteries |
CN110400969A (en) * | 2018-04-25 | 2019-11-01 | 比亚迪股份有限公司 | A kind of non-aqueous electrolyte and battery containing this non-aqueous electrolyte |
CN110767939A (en) * | 2019-10-18 | 2020-02-07 | 宁德时代新能源科技股份有限公司 | Electrolytes for Li-ion Batteries, Li-ion Batteries, Battery Modules, Battery Packs and Devices |
CN111326799A (en) * | 2020-03-09 | 2020-06-23 | 天津中电新能源研究院有限公司 | Flame-retardant high-voltage electrolyte for lithium ion battery and preparation method thereof |
CN111900477A (en) * | 2020-08-04 | 2020-11-06 | 松山湖材料实验室 | High-voltage lithium ion battery electrolyte film-forming additive, electrolyte and battery thereof |
CN112290096A (en) * | 2020-11-23 | 2021-01-29 | 中国科学院上海硅酸盐研究所 | A metal air battery |
CN112768770A (en) * | 2021-01-19 | 2021-05-07 | 惠州锂威新能源科技有限公司 | Electrolyte and lithium ion battery containing same |
WO2021120434A1 (en) * | 2019-12-20 | 2021-06-24 | 宁德新能源科技有限公司 | Electrolyte solution and electrochemical device |
CN113072573A (en) * | 2021-03-29 | 2021-07-06 | 兰州理工大学 | Method for preparing chelated boron-based lithium salt by recycling electrolyte from waste lithium ion battery |
CN113130990A (en) * | 2019-12-30 | 2021-07-16 | 深圳市研一新材料有限责任公司 | Electrolyte and secondary battery using same |
CN113614941A (en) * | 2020-10-19 | 2021-11-05 | 宁德新能源科技有限公司 | Electrochemical device and electronic device comprising same |
CN113675472A (en) * | 2021-08-12 | 2021-11-19 | 湖州昆仑亿恩科电池材料有限公司 | Electrolyte and application thereof |
CN113964384A (en) * | 2021-10-18 | 2022-01-21 | 南京航空航天大学 | Multifunctional organic silicon electrolyte suitable for lithium ion battery based on silicon cathode and preparation and application thereof |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101997139A (en) * | 2009-08-21 | 2011-03-30 | 索尼公司 | Electrolyte and cell |
CN102306835A (en) * | 2011-09-02 | 2012-01-04 | 广州天赐高新材料股份有限公司 | High voltage resistant and high temperature resistant safety type electrolyte for lithium ion battery adopting manganese material as anode, and use thereof |
CN103825047A (en) * | 2014-02-19 | 2014-05-28 | 深圳新宙邦科技股份有限公司 | Electrolyte for lithium ion batteries |
CN104505534A (en) * | 2014-09-15 | 2015-04-08 | 宁波维科电池股份有限公司 | High voltage electrolyte solution and lithium ion battery containing the same |
CN105552438A (en) * | 2015-12-16 | 2016-05-04 | 东莞市杉杉电池材料有限公司 | Lithium ion battery electrolyte and preparation method |
CN105684205A (en) * | 2013-11-05 | 2016-06-15 | 索尼公司 | Battery, electrolyte, battery pack, electronic apparatus, electric vehicle, electricity storage device, and power system |
CN105745779A (en) * | 2013-12-25 | 2016-07-06 | 旭化成株式会社 | Composition for addition to electrolyte solutions containing silyl group-containing compound, electrolyte solution for nonaqueous electricity storage devices containing said composition, and lithium ion secondary battery containing said electrolyte solution |
CN106898819A (en) * | 2017-04-14 | 2017-06-27 | 陈旻彧 | A kind of novel electrolyte and preparation method thereof and lithium battery |
CN107011371A (en) * | 2017-04-25 | 2017-08-04 | 北京理工大学 | A kind of siliceous glyoxaline ion liquid and its preparation method and application |
CN107069088A (en) * | 2016-12-20 | 2017-08-18 | 中国科学院成都有机化学有限公司 | A kind of linear siloxane additive and its for high-temperature electrolyte of lithium ion battery |
-
2017
- 2017-08-21 CN CN201710718941.2A patent/CN107293792A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101997139A (en) * | 2009-08-21 | 2011-03-30 | 索尼公司 | Electrolyte and cell |
CN102306835A (en) * | 2011-09-02 | 2012-01-04 | 广州天赐高新材料股份有限公司 | High voltage resistant and high temperature resistant safety type electrolyte for lithium ion battery adopting manganese material as anode, and use thereof |
CN105684205A (en) * | 2013-11-05 | 2016-06-15 | 索尼公司 | Battery, electrolyte, battery pack, electronic apparatus, electric vehicle, electricity storage device, and power system |
CN105745779A (en) * | 2013-12-25 | 2016-07-06 | 旭化成株式会社 | Composition for addition to electrolyte solutions containing silyl group-containing compound, electrolyte solution for nonaqueous electricity storage devices containing said composition, and lithium ion secondary battery containing said electrolyte solution |
CN103825047A (en) * | 2014-02-19 | 2014-05-28 | 深圳新宙邦科技股份有限公司 | Electrolyte for lithium ion batteries |
CN104505534A (en) * | 2014-09-15 | 2015-04-08 | 宁波维科电池股份有限公司 | High voltage electrolyte solution and lithium ion battery containing the same |
CN105552438A (en) * | 2015-12-16 | 2016-05-04 | 东莞市杉杉电池材料有限公司 | Lithium ion battery electrolyte and preparation method |
CN107069088A (en) * | 2016-12-20 | 2017-08-18 | 中国科学院成都有机化学有限公司 | A kind of linear siloxane additive and its for high-temperature electrolyte of lithium ion battery |
CN106898819A (en) * | 2017-04-14 | 2017-06-27 | 陈旻彧 | A kind of novel electrolyte and preparation method thereof and lithium battery |
CN107011371A (en) * | 2017-04-25 | 2017-08-04 | 北京理工大学 | A kind of siliceous glyoxaline ion liquid and its preparation method and application |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190140320A1 (en) * | 2017-11-03 | 2019-05-09 | Eternal Materials Co., Ltd. | Electrolyte composition and application thereof |
US11011780B2 (en) * | 2017-11-03 | 2021-05-18 | Eternal Materials Co., Ltd. | Electrolyte composition and application thereof |
CN110364695A (en) * | 2018-04-11 | 2019-10-22 | 宁德新能源科技有限公司 | Lithium Ion Battery |
JP2019194980A (en) * | 2018-04-23 | 2019-11-07 | 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited | Electrolyte and lithium ion battery |
US11239498B2 (en) | 2018-04-23 | 2022-02-01 | Contemporary Amperex Technology Co., Limited | Electrolytic solution and lithium-ion battery |
CN110391457A (en) * | 2018-04-23 | 2019-10-29 | 宁德时代新能源科技股份有限公司 | Electrolyte and Lithium Ion Batteries |
CN114899488B (en) * | 2018-04-25 | 2024-12-10 | 比亚迪股份有限公司 | A non-aqueous electrolyte and a battery containing the same |
CN110400969B (en) * | 2018-04-25 | 2022-06-10 | 比亚迪股份有限公司 | Non-aqueous electrolyte and battery containing same |
CN114899488A (en) * | 2018-04-25 | 2022-08-12 | 比亚迪股份有限公司 | Non-aqueous electrolyte and battery containing same |
CN110400969A (en) * | 2018-04-25 | 2019-11-01 | 比亚迪股份有限公司 | A kind of non-aqueous electrolyte and battery containing this non-aqueous electrolyte |
CN109575067A (en) * | 2018-11-22 | 2019-04-05 | 杉杉新材料(衢州)有限公司 | A kind of silicon-containing organic compound and its application |
CN109818064A (en) * | 2019-03-19 | 2019-05-28 | 杉杉新材料(衢州)有限公司 | A kind of high temperature high voltage nonaqueous electrolytic solution and the lithium ion battery containing the nonaqueous electrolytic solution |
CN110767939A (en) * | 2019-10-18 | 2020-02-07 | 宁德时代新能源科技股份有限公司 | Electrolytes for Li-ion Batteries, Li-ion Batteries, Battery Modules, Battery Packs and Devices |
WO2021073464A1 (en) * | 2019-10-18 | 2021-04-22 | 宁德时代新能源科技股份有限公司 | Electrolyte for lithium-ion battery, lithium-ion battery, battery module, battery pack, and device |
WO2021120434A1 (en) * | 2019-12-20 | 2021-06-24 | 宁德新能源科技有限公司 | Electrolyte solution and electrochemical device |
CN113130990A (en) * | 2019-12-30 | 2021-07-16 | 深圳市研一新材料有限责任公司 | Electrolyte and secondary battery using same |
CN111326799A (en) * | 2020-03-09 | 2020-06-23 | 天津中电新能源研究院有限公司 | Flame-retardant high-voltage electrolyte for lithium ion battery and preparation method thereof |
CN111900477A (en) * | 2020-08-04 | 2020-11-06 | 松山湖材料实验室 | High-voltage lithium ion battery electrolyte film-forming additive, electrolyte and battery thereof |
CN113614941A (en) * | 2020-10-19 | 2021-11-05 | 宁德新能源科技有限公司 | Electrochemical device and electronic device comprising same |
CN113614941B (en) * | 2020-10-19 | 2024-02-20 | 宁德新能源科技有限公司 | Electrochemical device and electronic device containing the same |
WO2022082355A1 (en) * | 2020-10-19 | 2022-04-28 | 宁德新能源科技有限公司 | Electrochemical device and electronic device containing same |
CN112290096A (en) * | 2020-11-23 | 2021-01-29 | 中国科学院上海硅酸盐研究所 | A metal air battery |
CN112768770A (en) * | 2021-01-19 | 2021-05-07 | 惠州锂威新能源科技有限公司 | Electrolyte and lithium ion battery containing same |
CN113072573A (en) * | 2021-03-29 | 2021-07-06 | 兰州理工大学 | Method for preparing chelated boron-based lithium salt by recycling electrolyte from waste lithium ion battery |
CN113675472A (en) * | 2021-08-12 | 2021-11-19 | 湖州昆仑亿恩科电池材料有限公司 | Electrolyte and application thereof |
CN113964384A (en) * | 2021-10-18 | 2022-01-21 | 南京航空航天大学 | Multifunctional organic silicon electrolyte suitable for lithium ion battery based on silicon cathode and preparation and application thereof |
CN113964384B (en) * | 2021-10-18 | 2024-01-05 | 南京航空航天大学 | Multifunctional organic silicon electrolyte suitable for lithium ion battery based on silicon negative electrode and preparation and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107293792A (en) | A kind of nonaqueous electrolytic solution and nickelic tertiary cathode material battery | |
CN112670577B (en) | Electrolyte, preparation method thereof and lithium ion battery | |
WO2020052118A1 (en) | Lithium ion battery electrolyte, and lithium ion battery containing electrolyte | |
CN111682264B (en) | Electrolyte additive, electrolyte and lithium ion battery | |
EP3972029A1 (en) | Lithium secondary battery electrolyte, preparation method therefor and lithium secondary battery | |
WO2021047500A1 (en) | Electrolyte, and lithium ion battery, battery module, battery pack and device comprising same | |
CN105826599A (en) | Non-aqueous lithium ion battery electrolyte containing organic silicon additive | |
CN109449511B (en) | A kind of protection method of lithium ion battery electrode | |
US20240387870A1 (en) | Non-aqueous electrolyte solution and high-voltage lithium battery containing same | |
CN112271328B (en) | Lithium ion battery electrolyte and lithium ion battery | |
CN114566706A (en) | Lithium battery electrolyte and lithium battery | |
CN113394450A (en) | Lithium cobaltate high-voltage lithium ion battery non-aqueous electrolyte and lithium ion battery | |
CN112151861A (en) | Battery cathode surface protection composition, electrolyte and application thereof | |
CN112563572B (en) | High-nickel lithium ion battery electrolyte used under high voltage and lithium ion battery | |
CN111129584B (en) | Non-aqueous electrolyte and lithium ion battery thereof | |
US20240194871A1 (en) | Lithium iron phosphate battery | |
CN104409771B (en) | Nitrile ethyl hydrofluoroether-containing electrolyte and lithium secondary battery | |
CN114421015A (en) | A carbonate-based electrolyte with ether-oxygen bond functional group and its application | |
CN111883834B (en) | Non-aqueous lithium ion battery electrolyte additive, electrolyte containing non-aqueous lithium ion battery electrolyte additive and lithium ion battery | |
CN114142086A (en) | A low temperature resistant lithium ion battery electrolyte and lithium ion battery | |
CN110858665A (en) | Lithium ion battery electrolyte and application thereof | |
CN108539268B (en) | High specific energy non-aqueous electrolyte for lithium cell | |
CN115498265B (en) | Electrolyte, preparation method thereof and lithium ion battery containing electrolyte | |
CN114824469A (en) | Electrolyte containing high-voltage high-temperature additive composition and lithium ion battery | |
CN111293358B (en) | Lithium ion battery electrolyte and lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171024 |
|
RJ01 | Rejection of invention patent application after publication |