CN107292051A - A kind of carbide chip chemically-mechanicapolish polishes the Forecasting Methodology of surface roughness - Google Patents
A kind of carbide chip chemically-mechanicapolish polishes the Forecasting Methodology of surface roughness Download PDFInfo
- Publication number
- CN107292051A CN107292051A CN201710552078.8A CN201710552078A CN107292051A CN 107292051 A CN107292051 A CN 107292051A CN 201710552078 A CN201710552078 A CN 201710552078A CN 107292051 A CN107292051 A CN 107292051A
- Authority
- CN
- China
- Prior art keywords
- data
- surface roughness
- formula
- individual
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003746 surface roughness Effects 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000005498 polishing Methods 0.000 claims abstract description 46
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 38
- 238000013528 artificial neural network Methods 0.000 claims abstract description 25
- 230000002068 genetic effect Effects 0.000 claims abstract description 22
- 230000002159 abnormal effect Effects 0.000 claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims description 24
- 238000012549 training Methods 0.000 claims description 23
- 108090000623 proteins and genes Proteins 0.000 claims description 17
- 238000012360 testing method Methods 0.000 claims description 17
- 238000002474 experimental method Methods 0.000 claims description 15
- 238000005457 optimization Methods 0.000 claims description 11
- 238000010606 normalization Methods 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 7
- 230000035772 mutation Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 4
- 238000011478 gradient descent method Methods 0.000 claims description 4
- 210000000349 chromosome Anatomy 0.000 claims description 3
- 238000002790 cross-validation Methods 0.000 claims description 3
- 238000013461 design Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 claims 19
- 230000006870 function Effects 0.000 claims 5
- 239000011229 interlayer Substances 0.000 claims 4
- 238000013450 outlier detection Methods 0.000 claims 2
- 238000013480 data collection Methods 0.000 claims 1
- 230000005284 excitation Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 23
- 238000001514 detection method Methods 0.000 abstract description 13
- 230000005856 abnormality Effects 0.000 abstract description 5
- 238000010276 construction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/086—Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Biophysics (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Physiology (AREA)
- Computational Mathematics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
本发明公开了一种硬质合金刀片化学机械抛光表面粗糙度的预测方法,包括以下步骤:步骤一、设计化学机械抛光硬质合金刀片实验参数与实验方案,以及实验数据的采集;步骤二、采用基于高斯函数的异常检测算法进行实验样本数据的预处理;步骤三、建立遗传算法优化BP神经网络的预测模型,利用预处理后的实验样本数据对预测模型进行学习训练,从而获得不同条件下硬质合金刀片的表面粗糙度预测模型。本发明采用基于高斯函数的异常检测算法进行实验样本数据的预处理,淘汰异常数据组,再通过遗传算法优化BP神经网络的阈值和权值,建立高精度的表面粗糙度预测模型,提高了化学机械抛光效率。
The invention discloses a method for predicting the surface roughness of chemical mechanical polishing of a cemented carbide blade, comprising the following steps: step 1, designing experimental parameters and experimental schemes of chemical mechanical polishing of a cemented carbide blade, and collecting experimental data; step 2, The Gaussian function-based anomaly detection algorithm is used to preprocess the experimental sample data; step 3, establish a genetic algorithm to optimize the prediction model of the BP neural network, and use the preprocessed experimental sample data to learn and train the prediction model, so as to obtain Surface roughness prediction model for cemented carbide inserts. The present invention uses Gaussian function-based abnormality detection algorithm to preprocess the experimental sample data, eliminates abnormal data groups, optimizes the threshold and weight of BP neural network through genetic algorithm, establishes a high-precision surface roughness prediction model, and improves the chemical Mechanical polishing efficiency.
Description
技术领域technical field
本发明涉及一种硬质合金刀片化学机械抛光表面粗糙度的预测方法,属于机械加工工艺技术领域。The invention relates to a method for predicting the surface roughness of chemical mechanical polishing of a cemented carbide blade, belonging to the technical field of mechanical processing technology.
背景技术Background technique
化学机械抛光因其能避免机械表面损伤、提高刀片平整度和减少热影响等优点,成为硬质合金刀片重要的精密加工方法之一。但目前化学机械抛光硬质合金刀片实际加工中多通过反复实验确定抛光工艺参数,依靠经验、半经验手段控制抛光质量,以上问题造成了加工过程不稳定,生产效率低。而在机械加工中,刀片表面粗糙度是衡量刀片产品质量的重要指标,因此,建立精确的表面粗糙度预测模型对提高化学机械抛光效率、提高化学机械抛光精度与降低生产成本具有重大的现实意义。Chemical mechanical polishing has become one of the important precision machining methods for cemented carbide inserts because of its advantages of avoiding mechanical surface damage, improving the flatness of the insert and reducing thermal influence. However, in the actual processing of chemical mechanical polishing carbide inserts, the polishing process parameters are often determined through repeated experiments, and the polishing quality is controlled by experience and semi-empirical means. The above problems cause unstable processing and low production efficiency. In mechanical processing, the surface roughness of the blade is an important index to measure the quality of the blade product. Therefore, the establishment of an accurate surface roughness prediction model has great practical significance for improving the efficiency of chemical mechanical polishing, improving the precision of chemical mechanical polishing and reducing production costs. .
化学机械抛光硬质合金刀片过程中,影响表面粗糙度的因素很多,且这些因素彼此又相互耦合,因此在各化学机械抛光工艺参数和表面粗糙度之间存在着复杂的非线性关系,神经网络的智能化特征与能力使其能有效的处理复杂非线性系统控制、特征提取及识别等信息处理问题。In the process of chemical mechanical polishing of cemented carbide inserts, there are many factors affecting the surface roughness, and these factors are coupled with each other. Therefore, there is a complex nonlinear relationship between each chemical mechanical polishing process parameter and surface roughness. The neural network The intelligent features and capabilities enable it to effectively deal with information processing problems such as complex nonlinear system control, feature extraction and recognition.
发明内容Contents of the invention
针对上述问题,本发明提出一种硬质合金刀片化学机械抛光表面粗糙度的预测方法,该方法采用基于高斯函数的异常检测算法进行实验样本数据的预处理,淘汰掉异常数据组,利用遗传算法优化BP人工神经网络模型的非线性函数逼近特性,可快速高精确地预测硬质合金刀片表面粗糙度。In view of the above problems, the present invention proposes a method for predicting the surface roughness of chemical mechanical polishing of cemented carbide inserts. The method uses an abnormality detection algorithm based on a Gaussian function to preprocess the experimental sample data, eliminates abnormal data groups, and utilizes a genetic algorithm to Optimizing the nonlinear function approximation characteristics of the BP artificial neural network model can quickly and accurately predict the surface roughness of the cemented carbide insert.
本发明采用的技术方案如下:一种硬质合金刀片化学机械抛光表面粗糙度的预测方法,包括以下步骤:The technical scheme adopted in the present invention is as follows: a method for predicting surface roughness of chemical mechanical polishing of cemented carbide inserts, comprising the following steps:
步骤一、设计化学机械抛光硬质合金刀片实验参数与实验方案,以及实验数据的采集;Step 1. Designing experimental parameters and experimental schemes for chemical mechanical polishing of cemented carbide inserts, and collecting experimental data;
步骤二、采用基于高斯函数的异常检测算法进行实验样本数据的预处理;Step 2. Using an abnormality detection algorithm based on a Gaussian function to preprocess the experimental sample data;
步骤三、建立遗传算法优化BP神经网络的预测模型,利用预处理后的实验样本数据对预测模型进行学习训练,从而获得不同条件下硬质合金刀片的表面粗糙度预测模型。Step 3: Establish a genetic algorithm to optimize the prediction model of the BP neural network, and use the preprocessed experimental sample data to learn and train the prediction model, so as to obtain the surface roughness prediction model of the cemented carbide insert under different conditions.
在步骤一中,所述的化学机械抛光硬质合金刀片实验为抛光前表面粗糙度、抛光时间、抛光速度、抛光压力、磨粒大小和抛光液浓度六个因素间的对表面粗糙度的影响实验。In step one, the experiment of chemical mechanical polishing of cemented carbide blades is the influence on the surface roughness among the six factors of surface roughness before polishing, polishing time, polishing speed, polishing pressure, abrasive particle size and polishing liquid concentration experiment.
在步骤二中,所述的基于高斯函数的异常检测算法具体为:In step 2, the Gaussian function-based anomaly detection algorithm is specifically:
1)构建仿真数据1) Construct simulation data
确定训练样本数据其中xij表示第i组第j个因素的实验数据;Determine the training sample data Where x ij represents the experimental data of the jth factor in the i-th group;
2)确定高斯分布参数2) Determine the Gaussian distribution parameters
高斯分布的概率密度函数:式中,p(xij;μi,σi 2)表示正常数据的概率;μi表示第i组实验数据的均值,由公式确定;σi表示第i组实验数据的方差,由公式确定,式中n表示数据所包含的因素数量;Probability density function for a Gaussian distribution: In the formula, p(x ij ; μ i ,σ i 2 ) represents the probability of normal data; μ i represents the mean value of the experimental data of the i-th group, which is given by the formula Determined; σ i represents the variance of the i-th group of experimental data, which is determined by the formula Determined, where n represents the number of factors contained in the data;
3)确定阈值3) Determine the threshold
高斯参数确立后可得到高斯分布轮廓,而确立训练样本点是否异常的方法之一就是以交叉验证集为基础设立一个阈值ε,概率低于阈值的点可以被认为是异常点;After the Gaussian parameters are established, the Gaussian distribution profile can be obtained, and one of the methods to determine whether the training sample points are abnormal is to set a threshold ε based on the cross-validation set, and points with a probability lower than the threshold can be considered as abnormal points;
4)得出结果4) get the result
将检测出的异常点数据组淘汰掉,得到可进行预测的实验样本数据。Eliminate the detected outlier data sets to obtain predictable experimental sample data.
在步骤三中,所述的遗传算法优化BP神经网络的预测模型是利用遗传算法替代BP神经网络的梯度下降法来优化预测误差,具体步骤如下:In step 3, the prediction model of the genetic algorithm optimization BP neural network is to use the genetic algorithm to replace the gradient descent method of the BP neural network to optimize the prediction error, and the specific steps are as follows:
1)数据归一化1) Data normalization
将预处理后的实验样本数据中的随机70%的数据作为训练数据组,另30%的数据作为测试数据组;为消除各维数据间数量级差别,将训练数据组和测试数据组归一处理化得到训练集和测试集,其中数据归一化处理采用最大最小法,即xmin为数据序列中的最小值,xmax为数据序列中的最大值;Random 70% of the preprocessed experimental sample data is used as the training data set, and the other 30% of the data is used as the test data set; in order to eliminate the order of magnitude difference between the data of each dimension, the training data set and the test data set are normalized The training set and test set are obtained by normalization, and the data normalization process adopts the maximum and minimum method, that is, x min is the minimum value in the data sequence, and x max is the maximum value in the data sequence;
2)BP人工神经网络的构建2) Construction of BP artificial neural network
a)输入层节点数n:根据预测模型,输入层节点数为影响硬质合金刀片表面粗糙度的因素的个数;a) Input layer node number n: According to the prediction model, the input layer node number is the number of factors affecting the surface roughness of the cemented carbide insert;
b)输出层节点数m:根据预测模型,输出层节点数为化学机械抛光实验的因变量的个数;b) Number of nodes in the output layer m: according to the prediction model, the number of nodes in the output layer is the number of dependent variables of the chemical mechanical polishing experiment;
c)隐含层节点数l:根据公式式中n为输入层节点数,m为输出层节点数,a为0~10间的常数;c) The number of hidden layer nodes l: according to the formula In the formula, n is the number of nodes in the input layer, m is the number of nodes in the output layer, and a is a constant between 0 and 10;
d)输入层和隐含层间连接权值矩阵wij[n×l],隐含层和输入层间连接权值矩阵wjk[l×m];d) The connection weight matrix w ij [n×l] between the input layer and the hidden layer, and the connection weight matrix w jk [l×m] between the hidden layer and the input layer;
e)隐含层阈值矩阵aj[l×1],输出层阈值矩阵bk[m×1];e) Hidden layer threshold matrix a j [l×1], output layer threshold matrix b k [m×1];
f)隐含层激励函数f(x): f) Hidden layer activation function f(x):
g)隐含层输出Hj: g) Hidden layer output H j :
h)隐含层输出Ok: h) Hidden layer output O k :
i)误差ek:根据网络预测输出Ok和实际期望输出yk差值计算得出ek=Ok-yk;i) Error e k : e k =O k -y k is calculated according to the difference between the network prediction output Ok and the actual expected output y k ;
3)遗传算法的构建3) Construction of genetic algorithm
a)种群初始化:随机生成规模为N的初始种群,N一般设置为20-50,种群的每个个体由输入层和隐含层间连接权值矩阵wij[n×l]、隐含层和输入层间连接权值矩阵wjk[l×m]、隐含层阈值矩阵aj[l×1]和输出层阈值矩阵bk[m×1]组成,其基因序列的长度L根据公式计算如下:L=long wij+long aj+long wjk+long bk;a) Population initialization: Randomly generate an initial population of size N, N is generally set to 20-50, and each individual of the population consists of the connection weight matrix w ij [n×l] between the input layer and the hidden layer, the hidden layer and input layer connection weight matrix w jk [l×m], hidden layer threshold matrix a j [l×1] and output layer threshold matrix b k [m×1], the length of the gene sequence L according to the formula The calculation is as follows: L=long w ij +long a j +long w jk +long b k ;
b)适应度函数F:将BP网络预测误差ek的平方和作为遗传算法的个体适应值,式中n表示输入层节点数;b) Fitness function F: the sum of the squares of the BP network prediction error e k is used as the individual fitness value of the genetic algorithm, where n represents the number of input layer nodes;
c)选择操作:即基于适应度比例的选择策略,每个个体的选择概率式中pi表示第i个个体的选择概率,Fi表示第i个个体的适应度,N表示种群个体数目;c) Selection operation: the selection strategy based on the fitness ratio, the selection probability of each individual In the formula, p i represents the selection probability of the i-th individual, F i represents the fitness of the i-th individual, and N represents the number of individuals in the population;
d)交叉操作:即染色体个体交叉,式中art表示第r个个体在t位上的基因,ast表示第s个个体在t位上的基因,b表示交叉算子,b一般取0.4-0.9;d) Crossover operation: that is, chromosome individual crossover, In the formula, a rt represents the gene of the r-th individual at position t, a st represents the gene of the s-th individual at position t, b represents the crossover operator, and b generally takes 0.4-0.9;
e)变异操作:选取第i个个体的第j个基因aij进行变异,式中amax表示基因aij的上界,amin表示基因aij的下界,f(g)=1-g/G,g表示当前进化代数,G表示终止进化代数,r表示变异算子,r一般取0.001-0.1;e) Mutation operation: select the j-th gene a ij of the i-th individual to mutate, In the formula, a max represents the upper bound of gene a ij , a min represents the lower bound of gene a ij , f(g)=1-g/G, g represents the current evolutionary generation, G represents the termination evolutionary generation, r represents the mutation operator, r generally takes 0.001-0.1;
f)终止进化代数G:G一般设置为100-500;f) Termination evolution algebra G: G is generally set to 100-500;
4)表面粗糙度预测4) Surface roughness prediction
将训练集对模型进行学习训练,从而即可获得不同条件下刀片的表面粗糙度预测模型;利用测试集对训练后的网络模型进行测试,得出预测模型的精度,进而利用精度满足要求的模型对化学机械抛光硬质合金刀片的表面粗糙度进行预测。The training set is used to learn and train the model, so that the surface roughness prediction model of the blade under different conditions can be obtained; the test set is used to test the trained network model to obtain the accuracy of the prediction model, and then use the model whose accuracy meets the requirements Prediction of surface roughness of chemically mechanically polished carbide inserts.
本发明的有益效果是:The beneficial effects of the present invention are:
一、本发明采用基于高斯函数的异常检测算法进行实验样本数据的预处理,高斯过程方法对于高维非线性的小样本数据具有非常强的适用性和泛化能力,基于高斯函数的异常检测算法可检测数据中的异常数据,预测模型对数据的依赖性很大,当遇到异常数据时,预测模型的预测精度会极大降低,采用基于高斯函数的异常检测算法进行实验样本数据的预处理可提高预测模型的精度;1. The present invention uses the Gaussian function-based anomaly detection algorithm to preprocess the experimental sample data. The Gaussian process method has very strong applicability and generalization ability for high-dimensional nonlinear small sample data, and the Gaussian function-based anomaly detection algorithm can detect For abnormal data in the data, the prediction model is very dependent on the data. When encountering abnormal data, the prediction accuracy of the prediction model will be greatly reduced. Using the Gaussian function-based abnormal detection algorithm to preprocess the experimental sample data can improve the accuracy of the predictive model;
二、本发明采用遗传算法寻优BP神经网络的权值和阈值,相对BP神经网络的梯度下降法寻优,遗传算法具有内在的隐并行性和更好的全局寻优能力,可在全局范围内寻得一个近优解,避免了陷于局部最优解,从而使硬质合金刀片化学机械抛光表面粗糙度预测精度提高,收敛速度快,稳定性增强;Two, the present invention adopts genetic algorithm to optimize the weight and threshold of BP neural network, compared to the gradient descent method of BP neural network to optimize, genetic algorithm has inherent implicit parallelism and better global optimization ability, can be in the global range A near-optimal solution is found within, which avoids being trapped in a local optimal solution, so that the prediction accuracy of the surface roughness of the chemical-mechanical polishing of the cemented carbide insert is improved, the convergence speed is fast, and the stability is enhanced;
三、本发明建立精确的表面粗糙度预测模型,对提高化学机械抛光效率、提高化学机械抛光精度与降低生产成本具有重大的现实意义。3. The present invention establishes an accurate surface roughness prediction model, which has great practical significance for improving the efficiency of chemical mechanical polishing, improving the precision of chemical mechanical polishing and reducing production costs.
附图说明Description of drawings
图1是化学机械抛光硬质合金刀片表面粗糙度预测模型的流程图。Fig. 1 is a flow chart of the surface roughness prediction model for chemical mechanical polishing of cemented carbide inserts.
图2是基于高斯函数的异常检测算法检测的流程图。Fig. 2 is a flow chart of abnormality detection algorithm detection based on Gaussian function.
图3是实施例中遗传算法优化BP神经网络的流程图。Fig. 3 is a flow chart of genetic algorithm optimization of BP neural network in the embodiment.
图4是实施例中预测模型对训练数据集的表面粗糙度拟合结果图。Fig. 4 is a graph of the surface roughness fitting results of the prediction model to the training data set in the embodiment.
图5是实施例中预测模型对测试数据集的表面粗糙度预测结果图。Fig. 5 is a diagram of the surface roughness prediction results of the prediction model for the test data set in the embodiment.
图6是BP神经网络与本专利优化算法的预测误差对比图。Fig. 6 is a comparison chart of the prediction error between the BP neural network and the optimization algorithm of this patent.
具体实施方式detailed description
下面结合附图和实施例对本发明做进一步详细说明,但本发明的保护范围不限于下述的实施例。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments, but the protection scope of the present invention is not limited to the following embodiments.
图1是本发明的化学机械抛光硬质合金刀片表面粗糙度预测模型的流程图,具体包括以下步骤:Fig. 1 is the flow chart of the surface roughness prediction model of chemical mechanical polishing cemented carbide blade of the present invention, specifically comprises the following steps:
步骤一、设计化学机械抛光硬质合金刀片实验参数与实验方案,以及实验数据的采集;Step 1. Design the experimental parameters and experimental schemes of chemical mechanical polishing carbide inserts, and the collection of experimental data;
步骤二、采用基于高斯函数的异常检测算法进行实验样本数据的预处理;Step 2. Using an abnormality detection algorithm based on a Gaussian function to preprocess the experimental sample data;
步骤三、建立遗传算法优化BP神经网络的预测模型,利用预处理后的实验样本数据对预测模型进行学习训练,从而获得不同条件下硬质合金刀片的表面粗糙度预测模型。Step 3: Establish a genetic algorithm to optimize the prediction model of the BP neural network, and use the preprocessed experimental sample data to learn and train the prediction model, so as to obtain the surface roughness prediction model of the cemented carbide insert under different conditions.
在步骤一中,所述的化学机械抛光硬质合金刀片实验为抛光前表面粗糙度、抛光时间、抛光速度、抛光压力、磨粒大小和抛光浓度六个因素间对表面粗糙度的影响实验,采集72个原始实验样本数据如下表1所示:In step one, the experiment of chemical mechanical polishing of cemented carbide blades is an experiment on the influence of six factors on surface roughness before polishing, polishing time, polishing speed, polishing pressure, abrasive grain size and polishing concentration, The data collected from 72 original experimental samples are shown in Table 1 below:
表1原始实验样本数据表Table 1 Original experimental sample data table
图2是基于高斯函数的异常检测算法检测的流程图,具体包括以下步骤:Figure 2 is a flow chart of Gaussian function-based anomaly detection algorithm detection, which specifically includes the following steps:
1)构建仿真数据1) Construct simulation data
确定训练样本数据其中xij表示第i组第j个因素的实验数据;Determine the training sample data Where x ij represents the experimental data of the jth factor in the i-th group;
2)确定高斯分布参数2) Determine the Gaussian distribution parameters
高斯分布的概率密度函数:式中,p(xij;μi,σi 2)表示正常数据的概率;μi表示第i组实验数据的均值,由公式确定;σi表示第i组实验数据的方差,由公式确定,式中n表示数据所包含的因素数量;Probability density function for a Gaussian distribution: In the formula, p(x ij ; μ i ,σ i 2 ) represents the probability of normal data; μ i represents the mean value of the experimental data of the i-th group, which is given by the formula Determined; σ i represents the variance of the i-th group of experimental data, which is determined by the formula Determined, where n represents the number of factors contained in the data;
3)确定阈值3) Determine the threshold
高斯参数确立后可得到高斯分布轮廓,而确立训练样本点是否异常的方法之一就是以交叉验证集为基础设立一个阈值ε为5.8×10-17,概率低于阈值的点可以被认为是异常点;After the Gaussian parameters are established, the Gaussian distribution profile can be obtained, and one of the methods to determine whether the training sample points are abnormal is to set a threshold ε of 5.8×10 -17 based on the cross-validation set, and points with a probability lower than the threshold can be considered as abnormal point;
4)得出结果4) get the result
将检测出实验样本编号为33和69的异常点数据组淘汰掉,得到可进行预测的实验样本数据。Eliminate the outlier data groups with the detected experimental sample numbers 33 and 69 to obtain predictable experimental sample data.
图3是遗传算法优化BP神经网络的流程图,所述的遗传算法优化BP神经网络的预测模型是利用遗传算法替代BP神经网络的梯度下降法来优化预测误差,具体步骤如下:Fig. 3 is the flow chart of genetic algorithm optimization BP neural network, and the prediction model of described genetic algorithm optimization BP neural network is to utilize genetic algorithm to replace the gradient descent method of BP neural network to optimize prediction error, concrete steps are as follows:
1)数据归一化1) Data normalization
将预处理后的实验样本数据中的随机70%的数据作为训练数据组,另30%的数据作为测试数据组;为消除各维数据间数量级差别,将训练数据组和测试数据组归一处理化得到训练集和测试集,其中数据归一化处理采用最大最小法,即xmin为数据序列中的最小值,xmax为数据序列中的最大值;Random 70% of the preprocessed experimental sample data is used as the training data set, and the other 30% of the data is used as the test data set; in order to eliminate the order of magnitude difference between the data of each dimension, the training data set and the test data set are normalized The training set and test set are obtained by normalization, and the data normalization process adopts the maximum and minimum method, that is, x min is the minimum value in the data sequence, and x max is the maximum value in the data sequence;
2)BP人工神经网络的构建2) Construction of BP artificial neural network
a)输入层节点数n:根据预测模型,输入层节点数为影响硬质合金刀片表面粗糙度的因素的个数,即为抛光前表面粗糙度、抛光时间、抛光速度、抛光压力、磨粒大小、磨粒液浓度等6个;a) The number of nodes in the input layer n: According to the prediction model, the number of nodes in the input layer is the number of factors that affect the surface roughness of the cemented carbide insert, that is, the surface roughness before polishing, polishing time, polishing speed, polishing pressure, abrasive grains Size, concentration of abrasive fluid, etc. 6;
b)输出层节点数m:根据预测模型,输出层节点数为输出层节点数为化学机械抛光实验的因变量的个数,即硬质合金刀片表面粗糙度1个;b) Number of nodes in the output layer m: According to the prediction model, the number of nodes in the output layer is the number of dependent variables of the chemical mechanical polishing experiment, that is, the surface roughness of the cemented carbide blade is 1;
c)隐含层节点数l:根据公式式中n为输入层节点数,m为输出层节点数,a为0~10间的常数,本发明中a取5,故隐含层节点数为7;c) The number of hidden layer nodes l: according to the formula In the formula, n is the number of input layer nodes, m is the number of output layer nodes, and a is a constant between 0 and 10. In the present invention, a gets 5, so the number of hidden layer nodes is 7;
d)输入层和隐含层间连接权值矩阵wij[6×7],隐含层和输入层间连接权值矩阵wjk[7×1];d) The connection weight matrix w ij [6×7] between the input layer and the hidden layer, and the connection weight matrix w jk [7×1] between the hidden layer and the input layer;
e)隐含层阈值矩阵aj[7×1],输出层阈值矩阵bk[1×1];e) Hidden layer threshold matrix a j [7×1], output layer threshold matrix b k [1×1];
f)隐含层激励函数f(x): f) Hidden layer activation function f(x):
g)隐含层输出Hj: g) Hidden layer output H j :
h)隐含层输出Ok: h) Hidden layer output O k :
i)误差ek:根据网络预测输出Ok和实际期望输出yk差值计算得出ek=Ok-yk;i) Error e k : e k =O k -y k is calculated according to the difference between the network prediction output Ok and the actual expected output y k ;
3)遗传算法的构建3) Construction of genetic algorithm
a)种群初始化:随机生成规模为50的初始种群,该种群的每个个体由输入层和隐含层间连接权值矩阵wij[6×7]、隐含层和输入层间连接权值矩阵wjk[7×1]、隐含层阈值矩阵aj[7×1]和输出层阈值矩阵bk[1×1]组成,其基因序列的长度L根据公式计算如下:a) Population initialization: Randomly generate an initial population with a size of 50, and each individual in this population consists of the connection weight matrix w ij [6×7] between the input layer and the hidden layer, the connection weight between the hidden layer and the input layer Matrix w jk [7×1], hidden layer threshold matrix a j [7×1] and output layer threshold matrix b k [1×1], the length L of its gene sequence is calculated according to the formula as follows:
L=long wij+long aj+long wjk+long bk;L=long w ij +long a j +long w jk +long b k ;
b)适应度函数F:将BP网络预测误差ek的平方和作为遗传算法的个体适应值,式中n表示输入层节点数;b) Fitness function F: the sum of the squares of the BP network prediction error e k is used as the individual fitness value of the genetic algorithm, where n represents the number of input layer nodes;
c)选择操作:即基于适应度比例的选择策略,每个个体的选择概率式中pi表示第i个个体的选择概率,Fi表示第i个个体的适应度,N表示种群个体数目;c) Selection operation: the selection strategy based on the fitness ratio, the selection probability of each individual In the formula, pi represents the selection probability of the i-th individual, F i represents the fitness of the i-th individual, and N represents the number of individuals in the population;
d)交叉操作:即染色体个体交叉,式中art表示第r个个体在t位上的基因,ast表示第s个个体在t位上的基因,b表示交叉算子,本发明b取0.4;d) Crossover operation: that is, chromosome individual crossover, In the formula, a rt represents the gene of the rth individual at the t position, a st represents the gene of the s individual at the t position, and b represents the crossover operator, and b is 0.4 in the present invention;
e)变异操作:选取第i个个体的第j个基因aij进行变异,式中amax表示基因aij的上界,amin表示基因aij的下界,f(g)=1-g/G,g表示当前进化代数,G表示终止进化代数,r表示变异算子,本发明r取0.1;e) Mutation operation: select the j-th gene a ij of the i-th individual to mutate, In the formula, a max represents the upper bound of gene a ij , a min represents the lower bound of gene a ij , f(g)=1-g/G, g represents the current evolutionary generation, G represents the termination evolutionary generation, r represents the mutation operator, The present invention r takes 0.1;
f)终止进化代数G:本发明G取100;f) Termination evolution algebra G: G in the present invention is taken as 100;
4)表面粗糙度预测4) Surface roughness prediction
将训练集对模型进行学习训练,从而即可获得不同条件下刀片的表面粗糙度预测模型,预测模型对训练数据集的表面粗糙度拟合结果如图4所示;利用测试集对训练后的网络模型进行测试,预测模型对测试数据集的表面粗糙度预测结果如图5所示,利用测试集对训练后的网络模型测试可得出预测模型的精度为0.968。The training set is used to learn and train the model, so that the surface roughness prediction model of the blade under different conditions can be obtained. The surface roughness fitting results of the prediction model to the training data set are shown in Figure 4; The network model is tested, and the surface roughness prediction results of the prediction model on the test data set are shown in Figure 5. Using the test set to test the trained network model, the accuracy of the prediction model is 0.968.
5)预测模型对比5) Comparison of prediction models
相对于预测精度为0.913的传统BP神经网络预测模型,本专利优化算法能够有效地预测硬质合金刀片化学机械抛光表面粗糙度,BP神经网络与本专利优化算法的预测误差对比如图6所示。Compared with the traditional BP neural network prediction model with a prediction accuracy of 0.913, the optimization algorithm of this patent can effectively predict the surface roughness of chemical mechanical polishing of cemented carbide inserts. The comparison of the prediction error between the BP neural network and the optimization algorithm of this patent is shown in Figure 6 .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710552078.8A CN107292051A (en) | 2017-07-07 | 2017-07-07 | A kind of carbide chip chemically-mechanicapolish polishes the Forecasting Methodology of surface roughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710552078.8A CN107292051A (en) | 2017-07-07 | 2017-07-07 | A kind of carbide chip chemically-mechanicapolish polishes the Forecasting Methodology of surface roughness |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107292051A true CN107292051A (en) | 2017-10-24 |
Family
ID=60100051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710552078.8A Pending CN107292051A (en) | 2017-07-07 | 2017-07-07 | A kind of carbide chip chemically-mechanicapolish polishes the Forecasting Methodology of surface roughness |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107292051A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108920812A (en) * | 2018-06-28 | 2018-11-30 | 江苏大学 | A kind of machining surface roughness prediction technique |
CN109102109A (en) * | 2018-07-16 | 2018-12-28 | 四川大学 | A kind of piece of exploitation of stone explosion gradation prediction technique |
CN109855592A (en) * | 2019-01-08 | 2019-06-07 | 湘潭大学 | Matrix combination surface roughness determines method and device, composite material machining machine |
CN109885918A (en) * | 2019-01-18 | 2019-06-14 | 广东镭奔激光科技有限公司 | The prediction technique of laser-impact surface roughness |
CN110009112A (en) * | 2019-04-01 | 2019-07-12 | 大连海事大学 | A method for measuring the surface roughness of three-dimensional joints of rock joints |
CN110322050A (en) * | 2019-06-04 | 2019-10-11 | 西安邮电大学 | A kind of wind energy resources compensation data method |
CN111027706A (en) * | 2019-11-19 | 2020-04-17 | 广州博依特智能信息科技有限公司 | Method and device for measuring surface roughness of household paper |
CN111780350A (en) * | 2020-05-29 | 2020-10-16 | 浙江工业大学 | An energy-saving method for air-conditioning based on fusion genetic algorithm |
CN115017977A (en) * | 2022-05-16 | 2022-09-06 | 上海大学 | A Gaussian Process Regression Tree Classifier for Multivariate Alloy Abnormal Data Recognition Method |
CN115821092A (en) * | 2022-11-22 | 2023-03-21 | 华中科技大学 | Preparation method of hard alloy composite material with gradient structure and performance |
CN116954155A (en) * | 2023-08-25 | 2023-10-27 | 清华大学 | Method, device, equipment and medium for regulating and controlling surface quality of numerical control machining part |
CN117079737A (en) * | 2023-10-17 | 2023-11-17 | 深圳市永霖科技有限公司 | Polishing solution prediction method and device based on component analysis |
US12026625B2 (en) | 2019-12-24 | 2024-07-02 | Dalian University Of Technology | On-line prediction method of surface roughness of parts based on SDAE-DBN algorithm |
CN118332913A (en) * | 2024-04-24 | 2024-07-12 | 中国科学院西北生态环境资源研究院 | A method for predicting roughness coefficient (JRC) based on neural network on Internet platform |
CN118690177A (en) * | 2024-08-22 | 2024-09-24 | 华星钢构股份有限公司 | A method, medium and system for predicting edge roughness of steel structure laser cutting |
CN118874619A (en) * | 2024-09-19 | 2024-11-01 | 广东省珠峰电气股份有限公司 | Continuous ball mill power saving monitoring system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104155914A (en) * | 2014-09-01 | 2014-11-19 | 湘潭大学 | CMP process intelligent decision making system for polishing carbide blade |
US20150056891A1 (en) * | 2013-08-22 | 2015-02-26 | Ebara Corporation | Measuring method of surface roughness of polishing pad |
-
2017
- 2017-07-07 CN CN201710552078.8A patent/CN107292051A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150056891A1 (en) * | 2013-08-22 | 2015-02-26 | Ebara Corporation | Measuring method of surface roughness of polishing pad |
CN104422408A (en) * | 2013-08-22 | 2015-03-18 | 株式会社荏原制作所 | Measuring method of surface roughness of polishing pad |
CN104155914A (en) * | 2014-09-01 | 2014-11-19 | 湘潭大学 | CMP process intelligent decision making system for polishing carbide blade |
Non-Patent Citations (3)
Title |
---|
于冰洁,夏战国,王久龙: "基于高斯过程模型的异常检测算法", 《计算机工程与设计》 * |
彭姣: "硬质合金刀片CMP抛光机理及工艺参数决策研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
黄智仟: "基于神经网络的船舶交通流量预测研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108920812A (en) * | 2018-06-28 | 2018-11-30 | 江苏大学 | A kind of machining surface roughness prediction technique |
CN109102109A (en) * | 2018-07-16 | 2018-12-28 | 四川大学 | A kind of piece of exploitation of stone explosion gradation prediction technique |
CN109855592A (en) * | 2019-01-08 | 2019-06-07 | 湘潭大学 | Matrix combination surface roughness determines method and device, composite material machining machine |
CN109885918A (en) * | 2019-01-18 | 2019-06-14 | 广东镭奔激光科技有限公司 | The prediction technique of laser-impact surface roughness |
CN110009112B (en) * | 2019-04-01 | 2022-09-20 | 大连海事大学 | Rock joint three-dimensional joint surface roughness measuring method |
CN110009112A (en) * | 2019-04-01 | 2019-07-12 | 大连海事大学 | A method for measuring the surface roughness of three-dimensional joints of rock joints |
CN110322050A (en) * | 2019-06-04 | 2019-10-11 | 西安邮电大学 | A kind of wind energy resources compensation data method |
CN110322050B (en) * | 2019-06-04 | 2023-04-07 | 西安邮电大学 | Wind energy resource data compensation method |
CN111027706A (en) * | 2019-11-19 | 2020-04-17 | 广州博依特智能信息科技有限公司 | Method and device for measuring surface roughness of household paper |
CN111027706B (en) * | 2019-11-19 | 2023-03-10 | 广州博依特智能信息科技有限公司 | Method and device for measuring surface roughness of household paper |
US12026625B2 (en) | 2019-12-24 | 2024-07-02 | Dalian University Of Technology | On-line prediction method of surface roughness of parts based on SDAE-DBN algorithm |
CN111780350A (en) * | 2020-05-29 | 2020-10-16 | 浙江工业大学 | An energy-saving method for air-conditioning based on fusion genetic algorithm |
CN115017977A (en) * | 2022-05-16 | 2022-09-06 | 上海大学 | A Gaussian Process Regression Tree Classifier for Multivariate Alloy Abnormal Data Recognition Method |
CN115017977B (en) * | 2022-05-16 | 2024-09-20 | 上海大学 | Method for identifying multi-element alloy abnormal data of Gaussian process regression tree classifier |
CN115821092A (en) * | 2022-11-22 | 2023-03-21 | 华中科技大学 | Preparation method of hard alloy composite material with gradient structure and performance |
CN115821092B (en) * | 2022-11-22 | 2023-12-26 | 华中科技大学 | Preparation method of hard alloy composite material with gradient structure and performance |
CN116954155A (en) * | 2023-08-25 | 2023-10-27 | 清华大学 | Method, device, equipment and medium for regulating and controlling surface quality of numerical control machining part |
CN116954155B (en) * | 2023-08-25 | 2024-01-26 | 清华大学 | Surface quality control methods, devices, equipment and media for CNC machining parts |
CN117079737B (en) * | 2023-10-17 | 2024-08-02 | 深圳市永霖科技有限公司 | Polishing solution prediction method and device based on component analysis |
CN117079737A (en) * | 2023-10-17 | 2023-11-17 | 深圳市永霖科技有限公司 | Polishing solution prediction method and device based on component analysis |
CN118332913A (en) * | 2024-04-24 | 2024-07-12 | 中国科学院西北生态环境资源研究院 | A method for predicting roughness coefficient (JRC) based on neural network on Internet platform |
CN118332913B (en) * | 2024-04-24 | 2025-02-18 | 中国科学院西北生态环境资源研究院 | Rock mass roughness coefficient JRC prediction method based on internet platform neural network model |
CN118690177A (en) * | 2024-08-22 | 2024-09-24 | 华星钢构股份有限公司 | A method, medium and system for predicting edge roughness of steel structure laser cutting |
CN118874619A (en) * | 2024-09-19 | 2024-11-01 | 广东省珠峰电气股份有限公司 | Continuous ball mill power saving monitoring system |
CN118874619B (en) * | 2024-09-19 | 2025-02-07 | 广东省珠峰电气股份有限公司 | Continuous electricity-saving monitoring system for ball mill |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107292051A (en) | A kind of carbide chip chemically-mechanicapolish polishes the Forecasting Methodology of surface roughness | |
CN102831269A (en) | Method for determining technological parameters in flow industrial process | |
CN113094980A (en) | Solder paste printing quality prediction method and system based on IGA-DNN | |
CN112766548A (en) | Order completion time prediction method based on GASA-BP neural network | |
CN105868164B (en) | A kind of soft-measuring modeling method based on the linear dynamic system model for having supervision | |
CN104537033A (en) | Interval type index forecasting method based on Bayesian network and extreme learning machine | |
CN114692507B (en) | Soft-sensing modeling method for count data based on stacked Poisson autoencoder network | |
CN115081592B (en) | Highway low-visibility prediction method based on genetic algorithm and feedforward neural network | |
CN109409425B (en) | A Fault Type Recognition Method Based on Neighbor Component Analysis | |
CN111914492A (en) | A Soft Sensing Modeling Method for Industrial Processes in Semi-Supervised Learning Based on Evolutionary Optimization | |
CN114662406A (en) | Method for establishing rock joint peak shear strength prediction model with assistance of machine learning | |
CN114239400A (en) | Multi-condition process adaptive soft-sensor modeling method based on local double-weighted probabilistic latent variable regression model | |
CN108520111A (en) | A Soft Sensor Method Based on Optimal Selection and Optimal Regression of Orthogonal Components | |
CN116451556A (en) | Construction method of concrete dam deformation observed quantity statistical model | |
CN113130014A (en) | Rare earth extraction simulation method and system based on multi-branch neural network | |
CN116757057A (en) | Air quality prediction method based on PSO-GA-LSTM model | |
CN110046377B (en) | Selective integration instant learning soft measurement modeling method based on heterogeneous similarity | |
CN116842439A (en) | A model-based semiconductor quality prediction method | |
CN102621953A (en) | Automatic online quality monitoring and prediction model updating method for rubber hardness | |
CN108492026A (en) | A kind of flexible measurement method optimizing regression analysis based on integrated orthogonal component | |
CN109164794B (en) | Multivariable industrial process Fault Classification based on inclined F value SELM | |
CN115618725A (en) | A Machine Learning-Based Multivariate Load Forecasting Method for Integrated Energy Systems | |
CN107578130A (en) | A Copper Futures Price Prediction Method for TSK Type Fuzzy System Based on Joint Learning of Structure and Parameters | |
CN117862247A (en) | A method for predicting strip shape during rolling process based on machine learning | |
CN118194718A (en) | Method and device for optimizing layout of source facilities in sponge cities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20171024 |