CN107286234B - Method for reducing and/or removing default peptide in polypeptide solid phase synthesis - Google Patents
Method for reducing and/or removing default peptide in polypeptide solid phase synthesis Download PDFInfo
- Publication number
- CN107286234B CN107286234B CN201610200628.5A CN201610200628A CN107286234B CN 107286234 B CN107286234 B CN 107286234B CN 201610200628 A CN201610200628 A CN 201610200628A CN 107286234 B CN107286234 B CN 107286234B
- Authority
- CN
- China
- Prior art keywords
- fmoc
- default
- peptide
- liraglutide
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 91
- 102000004196 processed proteins & peptides Human genes 0.000 title claims abstract description 33
- 229920001184 polypeptide Polymers 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000010532 solid phase synthesis reaction Methods 0.000 title claims abstract description 25
- 108010019598 Liraglutide Proteins 0.000 claims abstract description 46
- YSDQQAXHVYUZIW-QCIJIYAXSA-N Liraglutide Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCNC(=O)CC[C@H](NC(=O)CCCCCCCCCCCCCCC)C(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 YSDQQAXHVYUZIW-QCIJIYAXSA-N 0.000 claims abstract description 32
- 229960002701 liraglutide Drugs 0.000 claims abstract description 32
- NDKDFTQNXLHCGO-UHFFFAOYSA-N 2-(9h-fluoren-9-ylmethoxycarbonylamino)acetic acid Chemical compound C1=CC=C2C(COC(=O)NCC(=O)O)C3=CC=CC=C3C2=C1 NDKDFTQNXLHCGO-UHFFFAOYSA-N 0.000 claims description 32
- CBPJQFCAFFNICX-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-methylpentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(C)C)C(O)=O)C3=CC=CC=C3C2=C1 CBPJQFCAFFNICX-IBGZPJMESA-N 0.000 claims description 22
- HNICLNKVURBTKV-NDEPHWFRSA-N (2s)-5-[[amino-[(2,2,4,6,7-pentamethyl-3h-1-benzofuran-5-yl)sulfonylamino]methylidene]amino]-2-(9h-fluoren-9-ylmethoxycarbonylamino)pentanoic acid Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1COC(=O)N[C@H](C(O)=O)CCCN=C(N)NS(=O)(=O)C1=C(C)C(C)=C2OC(C)(C)CC2=C1C HNICLNKVURBTKV-NDEPHWFRSA-N 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 20
- 229920005989 resin Polymers 0.000 claims description 20
- REITVGIIZHFVGU-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-[(2-methylpropan-2-yl)oxy]propanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](COC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 REITVGIIZHFVGU-IBGZPJMESA-N 0.000 claims description 18
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 18
- UGNIYGNGCNXHTR-SFHVURJKSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-methylbutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](C(C)C)C(O)=O)C3=CC=CC=C3C2=C1 UGNIYGNGCNXHTR-SFHVURJKSA-N 0.000 claims description 16
- QWXZOFZKSQXPDC-NSHDSACASA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)propanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](C)C(O)=O)C3=CC=CC=C3C2=C1 QWXZOFZKSQXPDC-NSHDSACASA-N 0.000 claims description 13
- OTKXCALUHMPIGM-FQEVSTJZSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-5-[(2-methylpropan-2-yl)oxy]-5-oxopentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCC(=O)OC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 OTKXCALUHMPIGM-FQEVSTJZSA-N 0.000 claims description 11
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 10
- SJVFAHZPLIXNDH-QFIPXVFZSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-phenylpropanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)C1=CC=CC=C1 SJVFAHZPLIXNDH-QFIPXVFZSA-N 0.000 claims description 8
- WDGICUODAOGOMO-DHUJRADRSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-5-oxo-5-(tritylamino)pentanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)CC(=O)NC(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 WDGICUODAOGOMO-DHUJRADRSA-N 0.000 claims description 8
- QXVFEIPAZSXRGM-DJJJIMSYSA-N (2s,3s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-methylpentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H]([C@@H](C)CC)C(O)=O)C3=CC=CC=C3C2=C1 QXVFEIPAZSXRGM-DJJJIMSYSA-N 0.000 claims description 8
- DBTMQODRSDEGRZ-UHFFFAOYSA-N 9h-fluoren-9-ylmethyl n-(2-oxoethyl)carbamate Chemical compound C1=CC=C2C(COC(=O)NCC=O)C3=CC=CC=C3C2=C1 DBTMQODRSDEGRZ-UHFFFAOYSA-N 0.000 claims description 8
- ADOHASQZJSJZBT-SANMLTNESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-[1-[(2-methylpropan-2-yl)oxycarbonyl]indol-3-yl]propanoic acid Chemical compound C12=CC=CC=C2N(C(=O)OC(C)(C)C)C=C1C[C@@H](C(O)=O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 ADOHASQZJSJZBT-SANMLTNESA-N 0.000 claims description 5
- JAUKCFULLJFBFN-VWLOTQADSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-[4-[(2-methylpropan-2-yl)oxy]phenyl]propanoic acid Chemical compound C1=CC(OC(C)(C)C)=CC=C1C[C@@H](C(O)=O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 JAUKCFULLJFBFN-VWLOTQADSA-N 0.000 claims description 5
- OJBNDXHENJDCBA-QFIPXVFZSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-6-(prop-2-enoxycarbonylamino)hexanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCCCNC(=O)OCC=C)C(=O)O)C3=CC=CC=C3C2=C1 OJBNDXHENJDCBA-QFIPXVFZSA-N 0.000 claims description 5
- OYXZPXVCRAAKCM-SANMLTNESA-N (2s)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-(1-tritylimidazol-4-yl)propanoic acid Chemical compound C1=NC(C[C@H](NC(=O)OC(C)(C)C)C(O)=O)=CN1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 OYXZPXVCRAAKCM-SANMLTNESA-N 0.000 claims description 5
- GOPWHXPXSPIIQZ-FQEVSTJZSA-N (4s)-4-(9h-fluoren-9-ylmethoxycarbonylamino)-5-[(2-methylpropan-2-yl)oxy]-5-oxopentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCC(O)=O)C(=O)OC(C)(C)C)C3=CC=CC=C3C2=C1 GOPWHXPXSPIIQZ-FQEVSTJZSA-N 0.000 claims description 5
- 235000021314 Palmitic acid Nutrition 0.000 claims description 5
- 238000005336 cracking Methods 0.000 claims description 5
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 5
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 4
- VZXQYACYLGRQJU-IBGZPJMESA-N (3s)-3-(9h-fluoren-9-ylmethoxycarbonylamino)-4-[(2-methylpropan-2-yl)oxy]-4-oxobutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(O)=O)C(=O)OC(C)(C)C)C3=CC=CC=C3C2=C1 VZXQYACYLGRQJU-IBGZPJMESA-N 0.000 claims description 3
- 150000001413 amino acids Chemical class 0.000 abstract description 41
- 239000012535 impurity Substances 0.000 abstract description 28
- 101800000407 Brain natriuretic peptide 32 Proteins 0.000 abstract description 23
- HPNRHPKXQZSDFX-OAQDCNSJSA-N nesiritide Chemical compound C([C@H]1C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)CNC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CO)C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1N=CNC=1)C(O)=O)=O)[C@@H](C)CC)C1=CC=CC=C1 HPNRHPKXQZSDFX-OAQDCNSJSA-N 0.000 abstract description 17
- 229960001267 nesiritide Drugs 0.000 abstract description 17
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- 238000003786 synthesis reaction Methods 0.000 abstract description 12
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 abstract description 9
- 102000007079 Peptide Fragments Human genes 0.000 abstract description 8
- 108010033276 Peptide Fragments Proteins 0.000 abstract description 8
- 238000006482 condensation reaction Methods 0.000 abstract description 7
- 238000003908 quality control method Methods 0.000 abstract description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 79
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 45
- 238000005406 washing Methods 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 238000000746 purification Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000012071 phase Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 238000003756 stirring Methods 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- -1 GLP-1 compound Chemical class 0.000 description 11
- 238000003746 solid phase reaction Methods 0.000 description 11
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- UMRUUWFGLGNQLI-QFIPXVFZSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-6-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCCCNC(=O)OC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 UMRUUWFGLGNQLI-QFIPXVFZSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000012295 chemical reaction liquid Substances 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 8
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Substances OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 6
- BUBGAUHBELNDEW-SFHVURJKSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-methylsulfanylbutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCSC)C(O)=O)C3=CC=CC=C3C2=C1 BUBGAUHBELNDEW-SFHVURJKSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 230000005526 G1 to G0 transition Effects 0.000 description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- FEMOMIGRRWSMCU-UHFFFAOYSA-N ninhydrin Chemical compound C1=CC=C2C(=O)C(O)(O)C(=O)C2=C1 FEMOMIGRRWSMCU-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000005086 pumping Methods 0.000 description 6
- 238000002390 rotary evaporation Methods 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- FODJWPHPWBKDON-IBGZPJMESA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-4-[(2-methylpropan-2-yl)oxy]-4-oxobutanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CC(=O)OC(C)(C)C)C(O)=O)C3=CC=CC=C3C2=C1 FODJWPHPWBKDON-IBGZPJMESA-N 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- 238000005303 weighing Methods 0.000 description 5
- JFLSOKIMYBSASW-UHFFFAOYSA-N 1-chloro-2-[chloro(diphenyl)methyl]benzene Chemical compound ClC1=CC=CC=C1C(Cl)(C=1C=CC=CC=1)C1=CC=CC=C1 JFLSOKIMYBSASW-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- KLBPUVPNPAJWHZ-UMSFTDKQSA-N (2r)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-tritylsulfanylpropanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)SC(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 KLBPUVPNPAJWHZ-UMSFTDKQSA-N 0.000 description 3
- ZPGDWQNBZYOZTI-SFHVURJKSA-N (2s)-1-(9h-fluoren-9-ylmethoxycarbonyl)pyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCCN1C(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21 ZPGDWQNBZYOZTI-SFHVURJKSA-N 0.000 description 3
- XXMYDXUIZKNHDT-QNGWXLTQSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-3-(1-tritylimidazol-4-yl)propanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC1C2=CC=CC=C2C2=CC=CC=C21)C(N=C1)=CN1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 XXMYDXUIZKNHDT-QNGWXLTQSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 108700032487 GAP-43-3 Proteins 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- YTJSFYQNRXLOIC-UHFFFAOYSA-N octadecylsilane Chemical compound CCCCCCCCCCCCCCCCCC[SiH3] YTJSFYQNRXLOIC-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 101710198884 GATA-type zinc finger protein 1 Proteins 0.000 description 2
- 102400000322 Glucagon-like peptide 1 Human genes 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 238000011033 desalting Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- VYMPLPIFKRHAAC-UHFFFAOYSA-N 1,2-ethanedithiol Chemical compound SCCS VYMPLPIFKRHAAC-UHFFFAOYSA-N 0.000 description 1
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical class C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical class C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000008863 intramolecular interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- PEECTLLHENGOKU-UHFFFAOYSA-N n,n-dimethylpyridin-4-amine Chemical compound CN(C)C1=CC=NC=C1.CN(C)C1=CC=NC=C1 PEECTLLHENGOKU-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/605—Glucagons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/575—Hormones
- C07K14/58—Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Toxicology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Endocrinology (AREA)
- Cardiology (AREA)
- Peptides Or Proteins (AREA)
Abstract
The invention relates to the field of polypeptide synthesis, in particular to a method for reducing and/or removing a default peptide in polypeptide solid phase synthesis. The method adopts a fully protected peptide fragment containing default amino acids and amino acids (C-N) before the default amino acids to carry out solid phase synthesis of the polypeptide, simultaneously solves the problems of amino acid default caused by incomplete Fmoc removal and incomplete condensation reaction, and can reduce the default peptide impurities to be below the quality control limit in the synthesis stage. Specifically, the peptide can be Ala in liraglutide2Default impurities and Thr5The default impurities are respectively reduced from more than 1 percent to undetectable and less than 0.15 percent, and Ser in nesiritide can be reduced19The default peptide impurities were reduced to undetectable.
Description
Technical Field
The invention relates to the field of polypeptide synthesis, in particular to a method for reducing and/or removing a default peptide in polypeptide solid phase synthesis.
Background
In solid phase polypeptide synthesis, some polypeptides have incomplete reaction due to the existence of difficult sequences, and default peptide (non-target peptide) impurities are easily formed. There are some default peptide impurities that are very close in nature to the product itself, for which existing separation techniques have little separation effect.
In the Fmoc solid phase synthesis method, the default peptide is generated mainly due to aggregation of the peptide chain, incomplete Fmoc removal of the temporary protecting group or incomplete condensation reaction. For incomplete Fmoc removal, complete removal can be achieved with 2% DBU, but with side reactions. The condensation reaction is incomplete, the pseudoproline adopted has a good effect, but the pseudoproline is expensive, can be used only when serine and threonine are needed, and has no universality. In addition, the generation of default peptide impurities is generally a result of incomplete Fmoc removal and incomplete condensation reactions acting simultaneously, and a single method does not completely solve the problem of amino acid defaults.
Two secondary structure areas exist in the GLP-1 compound, intramolecular interaction causes peptide chains to aggregate, reaction is difficult to carry out in the two areas, and various default peptide impurities are easy to generate. Liraglutide as GLP-1 analogue, Ala produced when Fmoc solid phase method was used2Default impurities and Thr5Default impurities are very close to the main peak in the chromatogram and cannot be effectively removed by the existing HPLC purification methods.
Disclosure of Invention
In view of the above, the present invention provides a method for reducing and/or removing a default peptide in solid phase synthesis of a polypeptide. The method adopts a fully protected peptide fragment containing default amino acids and amino acids (C-N) before the default amino acids to carry out solid phase synthesis of the polypeptide, simultaneously solves the problems of amino acid default caused by incomplete Fmoc removal and incomplete condensation reaction, and can reduce the default peptide impurities to be below the quality control limit in the synthesis stage. Specifically, the peptide can be Ala in liraglutide2Default impurities and Thr5The default impurities are respectively reduced from more than 1 percent to undetectable and less than 0.15 percent, and Ser in nesiritide can be reduced19The default peptide impurities were reduced to undetectable.
In order to achieve the above object, the present invention provides the following technical solutions:
the invention provides the use of a peptide stretch consisting of a default amino acid and an amino acid immediately adjacent to the default amino acid and near the C-terminus for reducing and/or eliminating the default peptide in solid phase synthesis of a polypeptide.
In some embodiments of the invention, the number of amino acids immediately adjacent to the default amino acid and near the C-terminus is at least 1.
In some embodiments of the invention, the default peptide comprises no more than 0.15% by weight of the polypeptide.
In some embodiments of the invention, the polypeptide is liraglutide and the default amino acid is Ala2、Thr5。
In some embodiments of the invention, the peptide fragment is a fully protected peptide fragment.
The invention also provides a method for reducing and/or removing the default peptide in the solid-phase synthesis of the polypeptide, wherein the solid-phase synthesis is carried out by adopting the method which comprises the default amino acid and the amino acid which is adjacent to the default amino acid and close to the C end.
In some embodiments of the invention, the number of amino acids immediately adjacent to the default amino acid and near the C-terminus in the solid phase synthesis method is at least 1.
In some embodiments of the invention, the default peptide comprises no more than 0.15% by weight of the polypeptide in the solid phase synthesis method.
In some embodiments of the invention, the polypeptide is liraglutide and the default amino acid is Ala in a solid phase synthesis method2、Thr5;
Or the polypeptide is nesiritide, and the default amino acid is Ser19;
The peptide segment is a full-protection peptide segment.
The invention also provides a method for reducing and/or removing default peptides in solid phase synthesis of polypeptides,
the polypeptide is liraglutide, and comprises the following steps:
step 1: preparing Fmoc-Gly-Wang Resin by reacting Wang Resin with Fmoc-Gly-OH;
step 2: Fmoc-Arg (pbf) -OH, Fmoc-Gly-OH, Fmoc-Arg (pbf) -OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Trp (Boc) -OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Lys (alloc) -OH, Fmoc-Ala-OH, Fmoc-Gln (trt) -OH, Fmoc-Gly-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Leu-OH, Fmoc-Tyr (tBu) -OH, Fmoc-Ser (tBu) -OH, (Fmoc-Val-OH, Fmoc-Asp-OtBu) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Thr (tBu) -Phe-OH, Fmoc-Gly-OH, Fmoc-Ala-Glu (OtBu) -OH, Boc-His (trt) -OH, Fmoc-Glu-OtBu and palmitic acid to obtain a liraglutide peptide resin;
and step 3: cracking the liraglutide peptide resin to obtain a crude liraglutide product;
and 4, step 4: purifying the crude liraglutide by HPLC to obtain a pure liraglutide product;
the polypeptide is nesiritide, and comprises the following steps:
step 1: preparing Fmoc-His (trt) -2-CTC Resin by reacting 2-CTC Resin with Fmoc-His (trt) -OH;
step 2: Fmoc-Arg (pbf) -OH, Fmoc-Leu-OH, Fmoc-Val-OH, Fmoc-Lys (Boc) -OH, Fmoc-Cys (trt) -OH, Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Ser (tBu) -Gly-OH and Fmoc-Ile-OH, Fmoc-Arg (pbf) -OH, Fmoc-Asp (OtBu) -OH, Fmoc-Met-OH, Fmoc-Lys (Boc) -OH, Fmoc-Arg (pbf) -OH, Fmoc-Gly-OH, Fmoc-Phe-OH, Fmoc-Cys-trt-OH, Fmoc-Leu-OH, Fmoc-Leu-OH, Fmoc-Leu-, Fmoc-Gly-OH, Fmoc-Ser (tBu) -OH, Fmoc-Gly-OH, Fmoc-Gln (trt) -OH, Fmoc-Val-OH, Fmoc-Met-OH, Fmoc-Lys (Boc) -OH, Fmoc-Pro-OH and Fmoc-Ser (tBu) -OH to obtain nesiritide peptide resin;
and step 3: cracking the nesiritide peptide resin to obtain a crude nesiritide product;
and 4, step 4: and purifying the nesiritide crude product by HPLC to obtain a nesiritide pure product.
The invention provides the use of a peptide stretch consisting of a default amino acid and an amino acid immediately adjacent to the default amino acid and near the C-terminus for reducing and/or eliminating the default peptide in solid phase synthesis of a polypeptide. The invention adopts the full-protection peptide fragment containing the default amino acid and the previous amino acid (C-N) to carry out the solid phase synthesis of the polypeptide, simultaneously solves the problems of amino acid default caused by incomplete Fmoc removal and incomplete condensation reaction, and can reduce the default peptide impurities to be below the quality control limit in the synthesis stage. Specifically, the peptide can be Ala in liraglutide2Default impurities and Thr5The default impurities are respectively reduced from more than 1 percent to undetectable and less than 0.15 percent, and Ser in nesiritide can be reduced19The default peptide impurities were reduced to undetectable.
The invention adopts the relative full-protection peptide fragment of default amino acid to carry out solid phase synthesis, not only has cheap and easily obtained raw materials, but also can effectively reduce the impurities of the default peptide, can be applied to the synthesis of all polypeptides, and has wide industrial production value.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below.
FIG. 1 shows an HPLC chromatogram of crude liraglutide prepared in example 3;
FIG. 2 shows an HPLC chromatogram of a crude liraglutide prepared by a comparative example;
FIG. 3 shows the HPLC chromatogram of a pure liraglutide prepared in example 4;
FIG. 4 shows an HPLC chromatogram of a pure nesiritide product obtained in example 9;
fig. 5 shows the HPLC profile of a pure liraglutide prepared by the comparative example.
Detailed Description
The invention discloses a method for reducing and/or removing a default peptide in polypeptide solid phase synthesis, and a person skilled in the art can use the content for reference and appropriately modify the process parameters to realize the purpose. It is expressly intended that all such similar substitutes and modifications which would be obvious to one skilled in the art are deemed to be included in the invention. While the methods and applications of this invention have been described in terms of preferred embodiments, it will be apparent to those of ordinary skill in the art that variations and modifications in the methods and applications described herein, as well as other suitable variations and combinations, may be made to implement and use the techniques of this invention without departing from the spirit and scope of the invention.
The invention provides a solution for default of amino acid in polypeptide synthesis, in particular to a GLP-1 compound, in particular to liraglutide, which comprises the following detailed steps:
step 1: preparing Fmoc-Gly-Wang Resin by reacting Wang Resin with Fmoc-Gly-OH;
step 2: Fmoc-Arg (pbf) -OH, Fmoc-Gly-OH, Fmoc-Arg (pbf) -OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Trp (Boc) -OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Lys (alloc) -OH, Fmoc-Ala-OH, Fmoc-Gln (trt) -OH, Fmoc-Gly-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Leu-OH, Fmoc-Tyr (tBu) -OH, Fmoc-Ser (tBu) -OH, (Fmoc-Val-OH, Fmoc-Asp-OtBu) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Thr (tBu) -Phe-OH, Fmoc-Gly-OH, Fmoc-Ala-Glu (OtBu) -OH, Boc-His (trt) -OH, Fmoc-Glu-OtBu and palmitic acid to obtain a liraglutide peptide resin;
and step 3: cracking the liraglutide peptide resin to obtain a crude liraglutide product;
and 4, step 4: and purifying the crude liraglutide by HPLC to obtain a pure liraglutide product.
The specific steps of nesiritide are as follows:
step 1: preparing Fmoc-His (trt) -2-CTC Resin by reacting 2-CTC Resin with Fmoc-His (trt) -OH;
step 2: Fmoc-Arg (pbf) -OH, Fmoc-Leu-OH, Fmoc-Val-OH, Fmoc-Lys (Boc) -OH, Fmoc-Cys (trt) -OH, Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Ser (tBu) -Gly-OH and Fmoc-Ile-OH, Fmoc-Arg (pbf) -OH, Fmoc-Asp (OtBu) -OH, Fmoc-Met-OH, Fmoc-Lys (Boc) -OH, Fmoc-Arg (pbf) -OH, Fmoc-Gly-OH, Fmoc-Phe-OH, Fmoc-Cys-trt-OH, Fmoc-Leu-OH, Fmoc-Leu-OH, Fmoc-Leu-, Fmoc-Gly-OH, Fmoc-Ser (tBu) -OH, Fmoc-Gly-OH, Fmoc-Gln (trt) -OH, Fmoc-Val-OH, Fmoc-Met-OH, Fmoc-Lys (Boc) -OH, Fmoc-Pro-OH and Fmoc-Ser (tBu) -OH to obtain nesiritide peptide resin;
and step 3: cracking the nesiritide peptide resin to obtain a crude nesiritide product;
and 4, step 4: and purifying the nesiritide crude product by HPLC to obtain a nesiritide pure product.
The invention provides the use of a peptide stretch consisting of a default amino acid and an amino acid immediately adjacent to the default amino acid and near the C-terminus for reducing and/or eliminating the default peptide in solid phase synthesis of a polypeptide. The invention adopts the full-protection peptide fragment containing the default amino acid and the previous amino acid (C-N) to carry out the solid phase synthesis of the polypeptide, simultaneously solves the problems of amino acid default caused by incomplete Fmoc removal and incomplete condensation reaction, and can reduce the default peptide impurities to be below the quality control limit in the synthesis stage. Specifically, the peptide can be Ala in liraglutide2Default impurities and Thr5Default impurities are respectivelyThe content of Ser in nesiritide can be reduced from 1% to undetectable and below 0.15%19The default peptide impurities were reduced to undetectable.
1. The invention is intended to protect a solution to the amino acid default first, specifically described as using a solid phase synthesis of a fully protected peptide fragment containing the default amino acid and its preceding amino acid;
2. the method is mainly applied to Ala in liraglutide2And Thr5The removal of default impurities, the present invention intends to protect all preparation methods against these two impurities;
or Ser in nesiritide19Removal of default peptide impurities.
3. The method has universality, and particularly the application of the method in the liraglutide and nesiritide.
The invention provides a method for reducing and/or removing default peptides in polypeptide solid phase synthesis, wherein raw materials and reagents used in the method are all available on the market.
The abbreviations and English meanings referred to in the present invention are shown in Table 1:
TABLE 1 abbreviations and English meanings to which the invention relates
Abbreviations and English | Means of |
DIC | N, N' -diisopropylcarbodiimide |
DCM | Methylene dichloride |
Et2O | Anhydrous diethyl ether |
MeOH | Methanol |
DMAP | 4-dimethylaminopyridine |
HOBt | 1-hydroxybenzotriazoles |
TFA | |
EDT | |
1, 2-ethanedithiol | |
DMF | N, N-dimethylformamide |
Phenol | Phenol and its |
20%DBLK | 20% hexahydropyridine (v)/N, N-dimethylformamide (v) |
|
1, 8-diazabicyclo [5.4.0 ]]Undec-7-enes |
The invention is further illustrated by the following examples:
EXAMPLE 1 preparation of Fmoc-Gly-Wang Resin
Weighing 40g of Wang Resin with the substitution degree of 0.75mmol/g, adding the Wang Resin into a solid phase reaction column, washing with DMF for 2 times, swelling with DMF for 30min, washing with DMF for 2 times, dissolving Fmoc-Gly-OH (13.38g, 45mmol) and HOBt (6.38g, 47.3mmol) in DMF, adding DIC (5.95g, 47.3mmol) after activating for 3-5 min after ice bath for 10min, adding the reaction column, simultaneously adding DMAP (0.55g, 4.5mmol), stirring with nitrogen for 2h, draining the reaction liquid, washing with DMF for 4 times, washing with DCM for 3 times, adding acetic anhydride (61.2g, 600mmol) and pyridine (47.5g, 600mmol) solution, sealing for 8h, draining the sealing liquid, washing with DMF for 6 times, washing with DCM for 2 times, shrinking with MeOH, drying to obtain 43.6g of Fmoc-Gly-Wang Resin with the substitution degree of 0.32 mmol/g.
Example 2 Synthesis of liraglutide peptide resin
Weighing 31.3g of Fmoc-Gly-Wang Resin with the substitution degree of 0.32mmol/g, adding the Fmoc-Gly-Wang Resin into a solid phase reaction column, washing with DMF for 2 times, swelling with DMF for 30min, washing with DMF for 2 times, dissolving Fmoc-Arg (pbf) -OH (19.46g, 30mmol) and HOBt (4.26g, 31.5mmol) in DMF, carrying out ice bath for 10min, adding DIC (3.97g, 31.5mmol) for activation for 3-5 min, adding the mixture into the solid phase reaction column, stirring with nitrogen for reaction for 2h, completely detecting ninhydrin, pumping out reaction liquid, washing with DMF for 3 times, deprotecting 20% DBLK (5+7min), and washing with DMF for 6 times;
dissolving Fmoc-Gly-OH (8.92g, 30mmol) and HOBt (4.26g, 31.5mmol) in DMF, carrying out ice bath for 10min, adding DIC (3.97g, 31.5mmol) for activation for 3-5 min, adding into a solid phase reaction column, stirring with nitrogen for reaction for 2h, completely detecting ninhydrin, pumping out reaction liquid, washing with DMF for 3 times, deprotecting 20% DBLK (5+7min), and washing with DMF for 6 times;
Fmoc-Arg (pbf) -OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Trp (Boc) -OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Lys (alloc) -OH, Fmoc-Ala-OH, Fmoc-Gln (trt) -OH, Fmoc-Gly-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Leu-OH, Fmoc-Tyr (tBu) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Val-OH, Fmoc-Asp (OtBu) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Thr-ThrBu) -OH, Fmoc-Leu-OH, Fmoc-Gly-Ala-OH, Fmoc-Ala, Fmoc-Thr (tBu) -Phe-OH, Fmoc-Gly-OH, Fmoc-Ala-Glu (OtBu) -OH, Boc-His (trt) -OH, Fmoc-Glu-OtBu and palmitic acid, to give 86.2g of liraglutide peptide resin.
Example 3 cleavage of liraglutide peptide resin
86.2g of liraglutide peptide resin was transferred to a 1000ml single neck round bottom flask and 860m was addedl freezing the lysate for 2H (TFA: Phenol: H)2O: EDT 87.5: 5: 5: 2.5), stirring and reacting for 2h at room temperature, filtering, adding the filtrate into 8.6L of frozen anhydrous ether, centrifuging, washing and drying to obtain 37.3g of crude peptide, wherein the yield is as follows: 99.5%, purity: 53.79%, see FIG. 1.
Example 4 preparation of pure liraglutide
1. Sample treatment: the solid crude peptide is treated with 10% acetonitrile/90% water (V/V), the sample is completely dissolved by ultrasonic treatment, and then the solid crude peptide is filtered by a filter membrane, and the filtrate is collected for later use.
HPLC purification:
and (3) purification conditions: a chromatographic column: the chromatographic column using the octaalkylsilane bonded silica as a stationary phase has the following diameters and lengths: 50mm by 250 mm. Mobile phase: phase A: 0.1% trifluoroacetic acid 85% water/15% isopropanol solution in water; phase B: acetonitrile of 0.1% trifluoroacetic acid, flow rate: 50-80ml/min, gradient: 40% B-60% B, detection wavelength: 275 nm. The amount of the sample was 3 g.
And (3) purification process: washing the chromatographic column with acetonitrile over 50%, and balancing the sample loading amount of 1.5-3 g. Eluting with linear gradient for 40min, collecting target peak to obtain fraction with purity higher than 95%, concentrating the collected target peak fraction to about 10-30mg/ml under reduced pressure at water temperature not higher than 35 deg.C, and purifying with the second step.
3. Second step HPLC purification:
and (3) purification conditions: a chromatographic column: the chromatographic column using the octaalkylsilane bonded silica as a stationary phase has the following diameters and lengths: 50mm by 250 mm. Mobile phase: 0.15% perchloric acid in water as phase A, 0.15% perchloric acid in acetonitrile as phase B, gradient: 40% B-70% B, detection wavelength: 275 nm. The amount of sample was 1.8 g.
And (3) purification process: after the chromatographic column was washed clean and equilibrated with 50% or more acetonitrile, the first-step purified fraction was loaded in an amount of 1.9 g. Eluting with linear gradient for 40min, collecting target peak to obtain fraction with purity higher than 97%, concentrating the collected target peak fraction to about 15-25mg/ml under reduced pressure rotary evaporation at water temperature not higher than 35 deg.C, and desalting to purify sample.
4. Third step, HPLC desalination purification: a chromatographic column: the chromatographic column using the octaalkylsilane bonded silica as a stationary phase has the following diameters and lengths: 50mm by 250 mm. Taking 0.01% ammonia water solution as phase A, taking chromatographic pure acetonitrile as phase B, and gradient: 30% B-60% B, detection wavelength: 275 nm. The amount of sample was 1.2 g.
And (3) purification process: after the chromatographic column is washed clean and balanced by more than 50% acetonitrile, the second-step purified fraction is loaded, and the loading amount is 1.3 g. Eluting with linear gradient for 30min, collecting target peak to obtain fraction with purity higher than 98%, concentrating the collected target peak fraction to about 65mg/ml under reduced pressure and rotary evaporation at water temperature not higher than 35 deg.C, and freeze drying to obtain 0.76g of liraglutide with purity of 99.65%, with total yield of 25.3%, as shown in FIG. 3.
Example 5 preparation of Fmoc-His (trt) -2-CTC Resin
Weighing 60g of 2-CTC Resin with the substitution degree of 0.5mmol/g, adding the 2-CTC Resin into a solid phase reaction column, washing with DMF for 2 times, swelling with DMF for 30min, washing with DMF for 2 times, dissolving Fmoc-His (trt) -OH (74.4g, 120mmol) in DMF, adding DIPEA (30.96g, 240mmol) after ice bath for 5min, activating for 3-5 min, adding the mixture into the reaction column, stirring with nitrogen for reaction for 1h, adding MeOH (19.2g, 600mmol) into the reaction liquid, continuing stirring with nitrogen for reaction for 20min, draining the reaction liquid, washing with DMF for 4 times, washing with DCM for 3 times, shrinking the MeOH, and drying to obtain 66g of Fmoc-His (trt) -2-CTC Resin with the substitution degree of 0.28 mmol/g.
Example 6 Synthesis of nesiritide peptide resin
Weighing 34.7g of Fmoc-His (trt) -2-CTC Resin with the substitution degree of 0.28mmol/g, adding the Fmoc-His (trt) -2-CTC Resin into a solid-phase reaction column, washing with DMF for 2 times, swelling with DMF for 30min, washing with DMF for 2 times, dissolving Fmoc-Arg (pbf) -OH (19.46g, 30mmol), PyBOP (15.6g, 30mmol) and HOBt (4.26g, 31.5mmol) in DMF, carrying out ice bath for 10min, adding DIPEA (7.74g, 60mmol) for activation for 3-5 min, adding the mixture into the solid-phase reaction column, stirring with nitrogen for 2h to complete ninhydrin detection reaction, pumping out reaction liquid, washing with DMF for 3 times, deprotecting 20% DBLK (5+7min), and washing with DMF for 6 times;
dissolving Fmoc-Arg (pbf) -OH (19.46g, 30mmol), PyBOP (15.6g, 30mmol) and HOBt (4.26g, 31.5mmol) in DMF, carrying out ice bath for 10min, adding DIPEA (7.74g, 60mmol) for activation for 3-5 min, adding into a solid phase reaction column, stirring with nitrogen for reaction for 2h, completely detecting ninhydrin, pumping out reaction liquid, washing with DMF for 3 times, deprotecting 20% DBLK (5+7min), and washing with DMF for 6 times;
Fmoc-Leu-OH, Fmoc-Val-OH, Fmoc-Lys (Boc) -OH, Fmoc-Cys (trt) -OH, Fmoc-Gly-OH, Fmoc-Leu-OH, Fmoc-Ser (tBu) -Gly-OH and Fmoc-Ile-OH, Fmoc-Arg (pbf) -OH, Fmoc-Asp (OtBu) -OH, Fmoc-Met-OH, Fmoc-Lys (Boc) -OH, Fmoc-Arg (pbf) -OH, Fmoc-Gly-OH, Fmoc-Phe-OH, Fmoc-trt) -OH, Fmoc-Gly-OH, Fmoc-Ser tBu) -OH, (Fmoc-Gly-OH, Fmoc-Gly-OH, Fmoc-Leu-Lys (tBu) -OH, Fmoc-Gly-, Fmoc-Gln (trt) -OH, Fmoc-Val-OH, Fmoc-Met-OH, Fmoc-Lys (Boc) -OH, Fmoc-Pro-OH and Fmoc-Ser (tBu) -OH to obtain 61g of nesiritide peptide resin.
Example 7 Nexillin peptide resin cleavage
61g of liraglutide peptide resin was transferred to a 1000ml single-neck round-bottom flask, and 610ml of frozen lysate (TFA: Phenol: PhSMe: H) for 2H was added2O: EDT 82.5: 5: 5: 5: 2.5), stirring and reacting for 2h at room temperature, filtering, adding the filtrate into 6.1L of frozen anhydrous ether, centrifuging, washing and drying to obtain 25.3g of linear peptide, wherein the yield is as follows: 99.5%, purity: 73.1 percent.
Example 8 Nexilic peptide Linear peptide Oxidation
25.3g of a linear peptide was weighed and prepared at a ratio of 8 to 10mg/ml as a reaction solution [ a mixed solution of purified water and acetonitrile (1:1 ═ v: v) ]. And (3) after fully grinding the linear peptide, slowly adding the linear peptide into the reaction solution while stirring until the linear peptide is completely dissolved, adjusting the pH value of the reaction solution to 8.1-8.4 by using 25% ammonia water, introducing oxygen, stirring for reacting for 4 hours, stopping the reaction when the HPLC shows complete oxidation, and adjusting the pH value to 3.0-3.5 by using TFA.
EXAMPLE 9 preparation of pure Nexillin
1. Sample treatment: the oxidized crude peptide solution in example 8 is concentrated by rotary evaporation under reduced pressure to remove most of the acetonitrile in the solution, i.e. the volume after rotary evaporation is 50-60% of the volume before rotary evaporation. Filtering with 0.45 μm microporous membrane, and mixing filtrates.
HPLC purification:
and (3) purification conditions: a chromatographic column: the chromatographic column using octadecylsilane chemically bonded silica as a stationary phase has the following diameter and length: 50mm by 250 mm. Mobile phase: phase A: adjusting the pH value to 3.0 by 0.2 percent sulfuric acid solution and ammonia water; phase B: acetonitrile, flow rate: 50-80ml/min, gradient: 10% B-30% B, detection wavelength: 230 nm. The amount of the sample was 3 g.
And (3) purification process: washing the chromatographic column with acetonitrile over 50%, and balancing the sample loading amount of 1.5-3 g. Eluting with linear gradient for 60min, collecting target peak to obtain fraction with purity higher than 95%, concentrating the collected target peak fraction to about 10-30mg/ml under reduced pressure under water temperature not higher than 32 deg.C, and purifying with the second step.
3. Second step HPLC purification:
and (3) purification conditions: a chromatographic column: the chromatographic column using octadecylsilane chemically bonded silica as a stationary phase has the following diameter and length: 50mm by 250 mm. Mobile phase: 0.2% phosphoric acid solution (pH adjusted to 6.5 with ammonia) as phase a, acetonitrile solution as phase B, gradient: 10% B-30% B, detection wavelength: 230 nm. The amount of sample was 1.8 g.
And (3) purification process: after the chromatographic column was washed clean and equilibrated with 50% or more acetonitrile, the first-step purified fraction was loaded in an amount of 1.9 g. Eluting with linear gradient for 60min, collecting target peak to obtain fraction with purity higher than 97%, concentrating the collected target peak fraction to about 15-25mg/ml under reduced pressure under water temperature not higher than 32 deg.C, and desalting to purify sample.
4. Third step, HPLC desalination purification: a chromatographic column: the chromatographic column using octadecylsilane chemically bonded silica as a stationary phase has the following diameter and length: 50mm by 250 mm. Taking a 0.2% ammonium acetate solution as a phase A, taking chromatographic pure acetonitrile as a phase B, and performing gradient: 30% B-60% B, detection wavelength: 275 nm. The amount of sample was 1.2 g.
And (3) purification process: after the chromatographic column is washed clean and balanced by more than 50% acetonitrile, the second-step purified fraction is loaded, and the loading amount is 1.3 g. Eluting with linear gradient for 30min, collecting target peak to obtain fraction with purity higher than 98%, concentrating the collected target peak fraction to about 65mg/ml under reduced pressure and rotary evaporation at water temperature not higher than 35 deg.C, and freeze drying to obtain 0.76g active drug nesiritide with purity higher than 98.5%, with total yield of 25.3%, as shown in FIG. 4.
Comparative example liraglutide Synthesis
Weighing 6.25g of Fmoc-Gly-Wang Resin with the substitution degree of 0.32mmol/g, adding the Fmoc-Arg (pbf) -OH (3.89g, 6mmol) and HOBt (0.85g, 6.3mmol) into a solid phase reaction column, washing with DMF for 2 times, swelling with DMF for 30min, washing with DMF for 2 times, dissolving Fmoc-Arg (pbf) -OH (3.89g, 6.3mmol) in DMF, carrying out ice bath for 10min, adding DIC (0.79g, 6.3mmol) into the solid phase reaction column after activation for 3-5 min, stirring with nitrogen for reaction for 2h, completely detecting ninhydrin, pumping out reaction liquid, washing with DMF for 3 times, deprotecting 20% DBLK (5+7min), and washing with DMF for 6 times;
dissolving Fmoc-Gly-OH (1.78g, 6mmol) and HOBt (0.85g, 6.3mmol) in DMF, carrying out ice bath for 10min, adding DIC (0.79g, 6.3mmol) for activation for 3-5 min, adding into a solid phase reaction column, stirring with nitrogen for reaction for 2h, completely detecting ninhydrin, pumping out reaction liquid, washing with DMF for 3 times, deprotecting 20% DBLK (5+7min), and washing with DMF for 6 times;
Fmoc-Arg (pbf) -OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Trp (Boc) -OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Lys (alloc) -OH, Fmoc-Ala-OH, Fmoc-Gln (trt) -OH, Fmoc-Gly-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Leu-OH, Fmoc-Tyr (tBu) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Val-OH, Fmoc-Asp (OtBu) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Thr-ThrBu) -OH, Fmoc-Leu-OH, Fmoc-Gly-Ala-OH, Fmoc-Ala, Fmoc-Thr (tBu) -Phe-OH, Fmoc-Gly-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Ala-OH, Boc-His (Trt) OH, Fmoc-Glu-OtBu and palmitic acid, to give 16.9g of liraglutide peptide resin. The liraglutide peptide resin was cleaved as in example 3 to give 7.3g of crude liraglutide peptide, yield: 97.3%, purity: 50.08%, the spectrum is shown in FIG. 2.
The crude liraglutide was purified as in example 4 to give 0.70g of fine liraglutide with 97.74% purity in a total yield of 23.3%, as shown in fig. 5.
The results are shown in table 2, in comparison with the liraglutide prepared in example 3 and example 4:
TABLE 2 comparison of liraglutide prepared in comparative example with that prepared in example
Example 3 compared to the comparative example, the crude peptide obtained by the process of the present invention was significantly superior (P < 0.05) to the comparative example in both purity and default peptide impurities, and the purified peptide obtained by the same process was purified, and the purified peptide obtained by example 4 was significantly superior to the purified peptide obtained by the comparative example in both purity and default peptide impurities.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and decorations can be made without departing from the principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention.
Claims (1)
1. A method for reducing and/or removing a default peptide in solid phase synthesis of a polypeptide,
the polypeptide is liraglutide, and comprises the following steps:
step 1: preparing Fmoc-Gly-Wang Resin by reacting Wang Resin with Fmoc-Gly-OH;
step 2: Fmoc-Arg (pbf) -OH, Fmoc-Gly-OH, Fmoc-Arg (pbf) -OH, Fmoc-Val-OH, Fmoc-Leu-OH, Fmoc-Trp (Boc) -OH, Fmoc-Ala-OH, Fmoc-Ile-OH, Fmoc-Phe-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Lys (alloc) -OH, Fmoc-Ala-OH, Fmoc-Gln (trt) -OH, Fmoc-Gly-OH, Fmoc-Glu (OtBu) -OH, Fmoc-Leu-OH, Fmoc-Tyr (tBu) -OH, Fmoc-Ser (tBu) -OH, (Fmoc-Val-OH, Fmoc-Asp-OtBu) -OH, Fmoc-Ser (tBu) -OH, Fmoc-Thr (tBu) -Phe-OH, Fmoc-Gly-OH, Fmoc-Ala-Glu (OtBu) -OH, Boc-His (trt) -OH, Fmoc-Glu-OtBu and palmitic acid to obtain a liraglutide peptide resin;
and step 3: cracking the liraglutide peptide resin to obtain a crude liraglutide product;
and 4, step 4: and purifying the crude liraglutide by HPLC to obtain a pure liraglutide product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610200628.5A CN107286234B (en) | 2016-03-31 | 2016-03-31 | Method for reducing and/or removing default peptide in polypeptide solid phase synthesis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610200628.5A CN107286234B (en) | 2016-03-31 | 2016-03-31 | Method for reducing and/or removing default peptide in polypeptide solid phase synthesis |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107286234A CN107286234A (en) | 2017-10-24 |
CN107286234B true CN107286234B (en) | 2021-06-08 |
Family
ID=60087294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610200628.5A Active CN107286234B (en) | 2016-03-31 | 2016-03-31 | Method for reducing and/or removing default peptide in polypeptide solid phase synthesis |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107286234B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020127476A1 (en) | 2018-12-19 | 2020-06-25 | Krka, D.D., Novo Mesto | Pharmaceutical composition comprising glp-1 analogue |
CN111748019A (en) * | 2019-03-29 | 2020-10-09 | 深圳翰宇药业股份有限公司 | Synthetic method of polypeptide derivative compound |
WO2021123228A1 (en) | 2019-12-18 | 2021-06-24 | Krka, D.D., Novo Mesto | Pharmaceutical composition comprising glp-1 analogue |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008109079A2 (en) * | 2007-03-01 | 2008-09-12 | Novetide, Ltd. | High purity peptides |
CN102250235A (en) * | 2011-06-23 | 2011-11-23 | 成都圣诺科技发展有限公司 | Preparation method of nesiritide |
CN103275207A (en) * | 2013-03-22 | 2013-09-04 | 深圳翰宇药业股份有限公司 | Nesiritide preparation method |
CN104004083A (en) * | 2014-06-13 | 2014-08-27 | 成都圣诺生物科技股份有限公司 | Method for synthesizing liraglutide |
WO2014199397A3 (en) * | 2013-06-11 | 2015-01-29 | Mylan Laboratories Ltd | Process for the preparation of liraglutide |
WO2016005960A1 (en) * | 2014-07-11 | 2016-01-14 | Dr. Reddy's Laboratories Limited | Process for preparation of liraglutide |
-
2016
- 2016-03-31 CN CN201610200628.5A patent/CN107286234B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008109079A2 (en) * | 2007-03-01 | 2008-09-12 | Novetide, Ltd. | High purity peptides |
CN102250235A (en) * | 2011-06-23 | 2011-11-23 | 成都圣诺科技发展有限公司 | Preparation method of nesiritide |
CN103275207A (en) * | 2013-03-22 | 2013-09-04 | 深圳翰宇药业股份有限公司 | Nesiritide preparation method |
WO2014199397A3 (en) * | 2013-06-11 | 2015-01-29 | Mylan Laboratories Ltd | Process for the preparation of liraglutide |
CN104004083A (en) * | 2014-06-13 | 2014-08-27 | 成都圣诺生物科技股份有限公司 | Method for synthesizing liraglutide |
WO2016005960A1 (en) * | 2014-07-11 | 2016-01-14 | Dr. Reddy's Laboratories Limited | Process for preparation of liraglutide |
Also Published As
Publication number | Publication date |
---|---|
CN107286234A (en) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2757107B1 (en) | Method for solid phase synthesis of liraglutide | |
US11518794B2 (en) | Synthesis method for liraglutide with low racemate impurity | |
CN110294800B (en) | Preparation method of somaglutide | |
CN104650219B (en) | The method that fragment condensation prepares Liraglutide | |
CN103497245B (en) | Method for synthesizing thymalfasin | |
US20080287650A1 (en) | High purity peptides | |
CN103304660A (en) | Synthetic method of liraglutide | |
US20100292436A1 (en) | Method for producing bivalirudin | |
CN107286234B (en) | Method for reducing and/or removing default peptide in polypeptide solid phase synthesis | |
KR20190134657A (en) | Preparation of Peptides | |
CN113754753B (en) | Synthetic method of somalupeptide | |
Choi et al. | Comparison of methods for the Fmoc solid‐phase synthesis and cleavage of a peptide containing both tryptophan and arginine | |
CN102223890A (en) | Method for Synthesis of (Aib8,35)hGLP-1(7-36)-NH2 | |
CN112111002B (en) | Preparation method of semaglutide | |
CN104788546A (en) | Preparation method of linear peptides containing 24 amino acid residues | |
CN102229649B (en) | A kind of preparation method of body protection polypeptide (BPC 157 peptide) | |
CN106632655B (en) | Preparation method of exenatide and product thereof | |
CN113801197A (en) | Preparation method of procatide | |
CN109134615B (en) | Preparation method of bivalirudin | |
CN105111301B (en) | A kind of preparation method of salmon calcitonin | |
WO2021114788A1 (en) | Teriparatide impurity f | |
CN103951744A (en) | Solid-phase resin and its preparation method and use | |
WO2020000555A1 (en) | Method for preparing teriparatide | |
CN112521483A (en) | Preparation method of ularitide | |
CN105367627A (en) | Method for preparing terlipressin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |