[go: up one dir, main page]

CN107277506B - Motion vector accuracy selection method and device based on adaptive motion vector precision - Google Patents

Motion vector accuracy selection method and device based on adaptive motion vector precision Download PDF

Info

Publication number
CN107277506B
CN107277506B CN201710697972.4A CN201710697972A CN107277506B CN 107277506 B CN107277506 B CN 107277506B CN 201710697972 A CN201710697972 A CN 201710697972A CN 107277506 B CN107277506 B CN 107277506B
Authority
CN
China
Prior art keywords
value
block
prediction unit
pixel
satd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710697972.4A
Other languages
Chinese (zh)
Other versions
CN107277506A (en
Inventor
张昊
马学睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201710697972.4A priority Critical patent/CN107277506B/en
Publication of CN107277506A publication Critical patent/CN107277506A/en
Application granted granted Critical
Publication of CN107277506B publication Critical patent/CN107277506B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/567Motion estimation based on rate distortion criteria

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

The invention discloses a kind of motion vector accuracy fast selecting methods and device based on adaptive motion vector precision, by judging the sum of corresponding two-dimensional orthogonal transformation absolute value of all pixels point in current prediction unit PU block: SATDintAnd SATDqterBetween corresponding MV correlation properties size relation, a possibility that look-ahead IMV, to skip its unnecessary inter predication process, in the case where guaranteeing that Subjective video quality decline is negligible, to further reduced the computation complexity of Video coding of new generation, the time of inter-prediction is significantly shortened, to save the scramble time;This method is simple and easy, is conducive to the industrialization promotion of video encoding standard of new generation.

Description

基于自适应运动矢量精度的运动矢量精度选择方法及装置Motion vector precision selection method and device based on adaptive motion vector precision

技术领域technical field

本发明属于视频编码领域,特别涉及一种基于自适应运动矢量精度的运动矢量精度选择方法及装置。The invention belongs to the field of video coding, in particular to a motion vector precision selection method and device based on adaptive motion vector precision.

背景技术Background technique

自适应运动矢量精度(AMVR,Advanced Motion Vector Resolution)是在运动估计中,完成1/4像素精度运动估计之后,由于1/4像素精度运动估计会带来比特数的增加,虽然可能失真减小了,但总体的RDcost(率失真代价)并没有减小,因此需要重新执行一次整像素运动估计并与之前获得的最优MV(运动矢量)进行比较,取RDcost最小者作为最终的最优MV。重新执行的整像素运动估计,被称之为IMV(Integer Motion Vector,整数运动矢量)。最近,新一代视频编码标准的制定引入了大量的新型编码工具,IMV技术则是其中之一。Adaptive motion vector accuracy (AMVR, Advanced Motion Vector Resolution) is in motion estimation. After the 1/4 pixel precision motion estimation is completed, the 1/4 pixel precision motion estimation will increase the number of bits, although the distortion may be reduced. However, the overall RDcost (rate-distortion cost) has not decreased, so it is necessary to perform an integer pixel motion estimation again and compare it with the optimal MV (motion vector) obtained before, and take the one with the smallest RDcost as the final optimal MV . The re-performed integer pixel motion estimation is called IMV (Integer Motion Vector, integer motion vector). Recently, the establishment of a new generation of video coding standards has introduced a large number of new coding tools, and IMV technology is one of them.

近年来,视频技术的应用范围变得更广,如视频监控、网上可视会议、网上可视电子商务、网上政务、网上购物、网上学校、远程医疗、网上研讨会、网上展示厅、个人网上聊天、可视咨询等业务。但是要实现以上所有的功能都必须进行视频编解码,在编码传输过程中的数据量非常大,单纯扩大存储器容量、增加通信干线的是不现实的,此时需借助特殊技术对庞大的信息进行处理,数据压缩技术就是个行之有效的解决办法。通过高效的数据压缩技术,可以把信息数据量有效降低。以压缩形式进行存储、传输,既节约了存储空间和成本,也提高了通信干线的传输效率,可节省网络带宽。实时处理的音频、视频信息,通过解码技术可完成几乎无损的高质量视频、音频输出和呈现,由此可见多媒体数据压缩是非常必要的。但是,与此同时,这种视频应用扩大化的趋势对于比H.265/HEVC(高效率视频编码)编码效率更高的下一代视频编码标准提出了更强烈的要求。正是在这样的背景下,ITU-TVCEG的VCEG(视频编码专家组)和ISO/IEC的MPEG(动态图像专家组)于2016年成立了视频编码探究联合小组JVET(Joint Video Exploration Team),旨在探讨新一代视频编码标准的研发和制定。In recent years, the application range of video technology has become wider, such as video surveillance, online video conferencing, online video e-commerce, online government affairs, online shopping, online schools, telemedicine, online seminars, online showrooms, personal online Chat, visual consultation and other services. However, to realize all the above functions, video encoding and decoding must be carried out. The amount of data in the encoding and transmission process is very large. It is unrealistic to simply expand the memory capacity and increase the communication trunk line. At this time, special technology is needed to process the huge information Processing, data compression technology is an effective solution. Through efficient data compression technology, the amount of information data can be effectively reduced. Storage and transmission in a compressed form not only saves storage space and cost, but also improves the transmission efficiency of communication trunk lines and saves network bandwidth. Real-time processed audio and video information can be output and presented with almost lossless high-quality video and audio through decoding technology, so it can be seen that multimedia data compression is very necessary. However, at the same time, this trend of video application expansion puts forward stronger requirements for the next-generation video coding standard with higher coding efficiency than H.265/HEVC (High Efficiency Video Coding). It is against this background that the VCEG (Video Coding Experts Group) of ITU-TVCEG and the MPEG (Motion Picture Experts Group) of ISO/IEC established the JVET (Joint Video Exploration Team) in 2016. Discussing the development and formulation of a new generation of video coding standards.

新一代的视频编码标准依旧采用混合编码框架,包括变换、量化、熵编码、帧内预测、帧间预测以及环路滤波等模块,但是,为了提高视频压缩率,该标准采用QTBT(Quadtreeplus binary tree,四叉树加二叉树)的划分结构,取代了HEVC的四叉树划分。在QTBT结构下,去掉了多种划分类型如CU(编码单元)、PU(预测单元)和TU(变换单元)分离观念,支持更弹性的CU划分类型来更好的匹配视频数据的局部特征,同时在各个模块引入了一系列相当耗时的新型编码工具,例如基于Affine(仿射)的merge(合并)技术以及IMV(IntegerMotion Vector)技术等,这些技术在提高压缩率的同时却大幅度地提高了编码器的计算复杂度,这不利于新一代视频编码标准的产业化推广。因此,在保证视频主观质量下降可忽略不计的情况下,优化编码器并减少编码时间成为了视频编解码领域亟待研究和解决的新问题之一。The new generation of video coding standards still uses a hybrid coding framework, including modules such as transform, quantization, entropy coding, intra-frame prediction, inter-frame prediction, and loop filtering. However, in order to improve the video compression rate, the standard uses QTBT (Quadtreeplus binary tree , quadtree plus binary tree) division structure, replacing the quadtree division of HEVC. Under the QTBT structure, the concept of separation of multiple division types such as CU (coding unit), PU (prediction unit) and TU (transformation unit) is removed, and more flexible CU division types are supported to better match the local characteristics of video data. At the same time, a series of time-consuming new coding tools are introduced in each module, such as Affine (affine)-based merge (merge) technology and IMV (IntegerMotion Vector) technology. This increases the computational complexity of the encoder, which is not conducive to the industrialization of the new generation of video encoding standards. Therefore, in the case of ensuring that the subjective quality of the video is negligible, optimizing the encoder and reducing the encoding time has become one of the new problems that need to be studied and solved in the field of video encoding and decoding.

在新一代视频编码标准中引入的IMV属于运动估计(Motion Estimation,简称ME)的一部分。在新标准中,运动估计主要分为三个步骤,具体过程如下:The IMV introduced in the new-generation video coding standard belongs to a part of motion estimation (Motion Estimation, ME for short). In the new standard, motion estimation is mainly divided into three steps, and the specific process is as follows:

步骤一:执行整像素精度的运动估计,如果是B类型的slice,或者没有使用快速搜索模式,那么进行整像素精度的全搜索,如果是P类型的slice或者使用了快速搜索模式,那么进行整像素精度的快速搜索,通过比较各个MV的SAD选出最优的MV并保存相应的MV以及SAD信息;Step 1: Perform motion estimation with integer pixel precision. If it is a type B slice, or if the fast search mode is not used, then perform a full search with integer pixel precision. If it is a P type slice or use the fast search mode, then perform a full search. Fast search of pixel precision, select the optimal MV by comparing the SAD of each MV and save the corresponding MV and SAD information;

步骤二:执行分像素精度的运动估计,即1/2和1/4像素精度运动估计。先执行1/2像素精度运动估计,再执行1/4像素精度运动估计,通过比较各个MV的SATD选出最优MV并保存相应的MV以及SATD信息;Step 2: Perform motion estimation with sub-pixel precision, that is, motion estimation with 1/2 and 1/4 pixel precision. Perform 1/2 pixel precision motion estimation first, and then perform 1/4 pixel precision motion estimation, select the optimal MV by comparing the SATD of each MV and save the corresponding MV and SATD information;

步骤三:执行整像素精度运动估计,即IMV,若该整像素精度最优MV的率失真代价小于当前最佳MV的率失真代价,则将最优MV替换为整像素精度的MV,并保存其率失真代价以及相关信息。Step 3: Perform motion estimation with integer pixel precision, that is, IMV. If the rate-distortion cost of the optimal MV with integer pixel precision is less than the rate-distortion cost of the current best MV, replace the optimal MV with the MV with integer pixel precision, and save Its rate-distortion cost and related information.

通过对新一代视频编码标准的参考软件JEM的测试分析发现,在Lowdelay(低延迟)配置下,整个帧间预测的编码时间占总编码时间的40%~45%,因此,如果能通过相关信息提前预测出是否进行IMV,从而避免不必要的判断选择过程将大大提高新一代视频编码标准的编码效率。Through the test and analysis of the reference software JEM of the new generation of video coding standards, it is found that under the Lowdelay (low delay) configuration, the coding time of the entire inter-frame prediction accounts for 40% to 45% of the total coding time. Therefore, if relevant information can be passed Predicting whether to perform IMV in advance, so as to avoid unnecessary judgment and selection process will greatly improve the coding efficiency of the new generation video coding standard.

发明内容Contents of the invention

本发明针对新一代视频编码效率过低的缺陷,提出的一种基于自适应运动矢量精度的运动矢量精度选择方法及装置,通过提前预测IMV的可能性,以跳过其不必要的帧间预测过程,在保证视频主观质量下降可忽略不计的情况下,降低编码器的计算复杂度,减少编码时间,提高编码效率。Aiming at the defect of low coding efficiency of the new generation of video, the present invention proposes a motion vector precision selection method and device based on adaptive motion vector precision, which skips unnecessary inter-frame prediction by predicting the possibility of IMV in advance In the process of ensuring that the subjective quality of the video is negligible, it reduces the computational complexity of the encoder, reduces the encoding time, and improves the encoding efficiency.

一种基于自适应运动矢量精度的运动矢量精度选择方法,包括以下步骤:A motion vector precision selection method based on adaptive motion vector precision, comprising the following steps:

步骤1:在对视频帧图像的预测单元PU(PredictionUnit)块执行帧间2Nx2N预测的运动估计时,获取当前预测单元PU块分别经过整像素精度运动估计和分像素精度运动估计后,每个像素点的最优MV的值和对应的预测MV值之差的二维正交变换;Step 1: When performing inter-frame 2Nx2N prediction motion estimation on the prediction unit PU (PredictionUnit) block of the video frame image, obtain the current prediction unit PU block after the whole-pixel precision motion estimation and sub-pixel precision motion estimation, each pixel Two-dimensional orthogonal transformation of the difference between the optimal MV value of the point and the corresponding predicted MV value;

所述当前预测单元PU块中每个像素点对应的预测MV值在编码过程中利用高级运动向量预测技术AMVP(Advanced motion vector prediction)获得;The predicted MV value corresponding to each pixel in the current prediction unit PU block is obtained by using advanced motion vector prediction technology AMVP (Advanced motion vector prediction) during the encoding process;

步骤2:基于步骤1获得的当前预测单元PU块各像素点所述的二维正交变换,计算当前预测单元PU块中所有像素点对应的二维正交变换绝对值之和:SATDint和SATDqterStep 2: Based on the two-dimensional orthogonal transformation described in each pixel of the current prediction unit PU block obtained in step 1, calculate the sum of the absolute values of the two-dimensional orthogonal transformation corresponding to all pixels in the current prediction unit PU block: SATD int and SATD qter ;

SATDint表示整像素MV的SATD值,SATDqter表示分像素MV的SATD值;SATD int indicates the SATD value of the whole pixel MV, and SATD qter indicates the SATD value of the sub-pixel MV;

所述SATD表示经过哈达曼变换后的绝对误差和;The SATD represents the sum of absolute errors after the Hadaman transform;

步骤3:判断公式是否成立:SATDqter<=K*SATDint,若成立,则当前预测单元PU块跳过IMV_2N×2N模式,继续后续模式,否则,则进行IMV_2N×2N模式,并根据率失真代价决策出最优MV以及当前预测单元PU块后续执行的最佳模式;Step 3: Determine whether the formula is true: SATD qter <= K*SATD int , if true, the current prediction unit PU block skips the IMV_2N×2N mode and continues to the subsequent mode, otherwise, proceed to the IMV_2N×2N mode and perform the rate-distortion The cost determines the optimal MV and the best mode for subsequent execution of the current prediction unit PU block;

其中,Rquarter表示分像素精度运动估计的最优MV的比特数,Rinteger表示整像素精度运动估计的最优MV的比特数,λ为计算率失真优化的参数。in, R quarter indicates the number of bits of the optimal MV for sub-pixel precision motion estimation, R integer indicates the number of bits of the optimal MV for integer pixel precision motion estimation, and λ is the parameter for calculating rate-distortion optimization.

通过IMV之前的MV的相关特性判断是否需要执行IMV,从而跳过不必要且耗时的IMV,降低编码的计算复杂度,减少编码时间。Whether the IMV needs to be executed is judged by the correlation characteristics of the MV before the IMV, thereby skipping the unnecessary and time-consuming IMV, reducing the computational complexity of encoding, and reducing the encoding time.

进一步地,在所述步骤2后,判断当前预测单元PU块的最优MV是否为整像素MV,若是,则当前预测单元PU块跳过IMV_2N×2N模式,继续后续模式;否则,进入步骤3。Further, after the step 2, it is judged whether the optimal MV of the current prediction unit PU block is an integer pixel MV, if yes, the current prediction unit PU block skips the IMV_2N×2N mode and continues to the subsequent mode; otherwise, enter step 3 .

预测单元PU块里面的每个像素点的MV均相同;The MV of each pixel in the prediction unit PU block is the same;

IMV就是通过将原来的MV变为整像素MV来重新进行2NX2N预测,如果判断最终的MV是整像素MV的话,可以不用再做IMV,减少时间。IMV is to re-perform 2NX2N prediction by changing the original MV to full-pixel MV. If the final MV is judged to be full-pixel MV, it is unnecessary to do IMV and reduce time.

一种基于自适应运动矢量精度的运动矢量精度选择装置,包括:A motion vector precision selection device based on adaptive motion vector precision, comprising:

整像素精度运动估计模块,对视频帧图像的预测单元PU块执行帧间2Nx2N预测的运动估计时,在当前预测单元PU块经过整像素精度运动估计后,获得当前预测单元PU块的最优MV的值;Integer pixel precision motion estimation module, when performing inter-frame 2Nx2N prediction motion estimation on the prediction unit PU block of the video frame image, after the current prediction unit PU block undergoes integer pixel precision motion estimation, the optimal MV of the current prediction unit PU block is obtained value;

分像素精度运动估计模块,对视频帧图像的预测单元PU块执行帧间2Nx2N预测的运动估计时,在当前预测单元PU块经过分像素精度运动估计后,获得当前预测单元PU块的最优MV的值;Sub-pixel precision motion estimation module, when performing inter-frame 2Nx2N prediction motion estimation on the prediction unit PU block of the video frame image, after the current prediction unit PU block undergoes sub-pixel precision motion estimation, the optimal MV of the current prediction unit PU block is obtained value;

SATDint和SATDqter计算模块,首先利用当前预测单元PU块分别经过整像素精度运动估计和分像素精度运动估计后,获得每个像素点的最优MV的值和对应的预测MV值之差的二维正交变换,然后计算当前预测单元PU块中所有像素点对应的二维正交变换绝对值之和;The calculation module of SATD int and SATD qter first uses the current prediction unit PU block to go through the whole pixel precision motion estimation and sub-pixel precision motion estimation respectively, and obtain the optimal MV value of each pixel and the corresponding predicted MV value difference Two-dimensional orthogonal transformation, and then calculate the sum of the absolute values of the two-dimensional orthogonal transformation corresponding to all pixels in the current prediction unit PU block;

SATDint表示整像素MV的SATD值,SATDqter表示分像素MV的SATD值;SATD int indicates the SATD value of the whole pixel MV, and SATD qter indicates the SATD value of the sub-pixel MV;

所述SATD表示经过哈达曼变换后的绝对误差和;The SATD represents the sum of absolute errors after the Hadaman transform;

选择模块,依据判断条件,为当前预测单元PU块选择后续执行的模式:The selection module, according to the judgment conditions, selects the subsequent execution mode for the current prediction unit PU block:

若SATDqter<=K*SATDint成立,则当前预测单元PU块跳过IMV_2N×2N模式,继续后续模式,否则,则进行IMV_2N×2N模式,并根据率失真代价决策出最优MV以及当前预测单元PU块后续执行的最佳模式;If SATD qter <=K*SATD int holds true, the current prediction unit PU block skips the IMV_2N×2N mode and continues to the subsequent mode, otherwise, proceeds to the IMV_2N×2N mode, and determines the optimal MV and current prediction according to the rate-distortion cost The best mode for the subsequent execution of the unit PU block;

其中,Rquarter表示分像素精度运动估计的最优MV的比特数,Rinteger表示整像素精度运动估计的最优MV的比特数,λ为计算率失真优化的参数。in, R quarter indicates the number of bits of the optimal MV for sub-pixel precision motion estimation, R integer indicates the number of bits of the optimal MV for integer pixel precision motion estimation, and λ is the parameter for calculating rate-distortion optimization.

进一步地,所述选择模块,首先判断当前预测单元PU块的最优MV均值是否为整像素MV,若是,则当前预测单元PU块跳过IMV_2N×2N模式,继续后续模式;否则,按照权3中所述的选择模块为当前预测单元PU块选择后续执行的模式。Further, the selection module first judges whether the optimal MV mean value of the current prediction unit PU block is an integer pixel MV, and if so, the current prediction unit PU block skips the IMV_2N×2N mode and continues to the subsequent mode; otherwise, according to weight 3 The selection module described in selects a subsequent execution mode for the current prediction unit PU block.

有益效果Beneficial effect

本发明提供了一种基于自适应运动矢量精度的运动矢量精度选择方法及装置,通过判断当前预测单元PU块中所有像素点对应的二维正交变换绝对值之和:SATDint和SATDqter之间对应的MV相关特性的大小关系,提前预测IMV的可能性,以跳过其不必要的帧间预测过程,在保证视频主观质量下降可忽略不计的情况下,从而进一步降低了新一代视频编码的计算复杂度,大幅度地缩短了帧间预测的时间,从而节省了编码时间;本方法简单易行,有利于新一代视频编码标准的产业化推广。The present invention provides a motion vector precision selection method and device based on adaptive motion vector precision, by judging the sum of absolute values of two-dimensional orthogonal transformations corresponding to all pixels in the current prediction unit PU block: the sum of SATD int and SATD qter The magnitude relationship between the corresponding MV correlation characteristics, the possibility of predicting the IMV in advance, to skip the unnecessary inter-frame prediction process, while ensuring that the subjective quality of the video is negligible, thus further reducing the new generation of video coding. The calculation complexity greatly shortens the time of inter-frame prediction, thereby saving the coding time; this method is simple and easy to implement, and is conducive to the industrialization and promotion of the new generation of video coding standards.

附图说明Description of drawings

图1为本发明所述方法的流程图。Figure 1 is a flow chart of the method of the present invention.

具体实施方式Detailed ways

下面将结合附图和实施例对本发明做进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

为减少编码时间,提高工作效率,本发明具体采用的技术方案为:首先判断执行完1/4像素精度运动估计时的最优MV是否是整像素MV,若是,则跳过IMV过程,继续执行下面的编码进程。否则,则首先获得整像素MV的相关信息,并计算整像素MV的SATD。然后获得最优MV的相关信息并计算最优MV的SATD。最终,判断最优MV的SATD是否小于整像素MV的K倍,若是,则直接跳过IMV过程。否则,不跳过IMV过程,继续执行。In order to reduce encoding time and improve work efficiency, the technical solution specifically adopted in the present invention is: firstly, it is judged whether the optimal MV when the motion estimation with 1/4 pixel precision is performed is an integer pixel MV, and if so, skip the IMV process and continue to execute Encoding process below. Otherwise, first obtain the relevant information of the MV of the whole pixel, and calculate the SATD of the MV of the whole pixel. Then obtain the relevant information of the optimal MV and calculate the SATD of the optimal MV. Finally, it is judged whether the SATD of the optimal MV is smaller than K times of the whole pixel MV, and if so, the IMV process is directly skipped. Otherwise, continue to execute without skipping the IMV process.

如图1所示,一种基于自适应运动矢量精度的运动矢量精度选择方法,具体步骤如下:As shown in Figure 1, a motion vector precision selection method based on adaptive motion vector precision, the specific steps are as follows:

步骤1:整像素精度运动估计模块,在对视频帧图像的预测单元PU(PredictionUnit)块执行帧间2Nx2N预测的运动估计时,在当前预测单元PU块经过整像素精度运动估计后,获取整像素最优MV的相关信息,包括其相应的比特数Rinteger等,并计算其SATD值,公式如下:Step 1: Integer pixel precision motion estimation module, when performing inter-frame 2Nx2N prediction motion estimation on the prediction unit PU (PredictionUnit) block of the video frame image, after the current prediction unit PU block undergoes integer pixel precision motion estimation, obtain the integer pixel The relevant information of the optimal MV, including its corresponding bit number R integer , etc., and calculate its SATD value, the formula is as follows:

其中,i和j分别代表当前预测单元PU块的像素点的横坐标以及竖坐标;Nhor代表当前预测单元PU块在横向上的像素点总数,Nver代表当前预测单元PU块在竖向上的像素点总数;CurrMV[i][j]以及PredMV[i][j]分别代表在当前预测单元PU块的横坐标为i,纵坐标为j处的像素点的MV的值和其对应的预测MV值。Among them, i and j respectively represent the abscissa and vertical coordinates of the pixels of the current prediction unit PU block; N hor represents the total number of pixels of the current prediction unit PU block in the horizontal direction, and N ver represents the vertical direction of the current prediction unit PU block. The total number of pixels; CurrMV[i][j] and PredMV[i][j] respectively represent the MV value of the pixel at the abscissa of the current prediction unit PU block and the ordinate is j and its corresponding prediction MV value.

步骤2:分像素精度运动估计模块,对视频帧图像的预测单元PU块执行帧间2Nx2N预测的分像素精度运动估计后,获取最优MV的值。Step 2: The sub-pixel precision motion estimation module performs inter-frame 2Nx2N prediction sub-pixel precision motion estimation on the prediction unit PU block of the video frame image, and obtains the optimal MV value.

在新一代视频编码标准中,MV的值分为水平值和垂直值,分别为m_iHor和m_iVer。在存储MV的值时,是通过对整像素MV的值进行相应的移位,分别来存储1/2像素MV的值以及1/4像素MV的值。因此在获得分像素精度MV的值时,通过以下方法获得:In the new-generation video coding standard, the value of MV is divided into horizontal value and vertical value, which are respectively m_iHor and m_iVer. When storing the value of MV, the value of MV of 1/2 pixel and the value of MV of 1/4 pixel are respectively stored by correspondingly shifting the value of MV of whole pixel. Therefore, when obtaining the value of sub-pixel precision MV, it can be obtained by the following method:

m_iHor'=m_iHor&1111m_iHor'=m_iHor&1111

m_iVer'=m_iVer&1111m_iVer'=m_iVer&1111

其中m_iHor'和m_iVer'分别表示分像素精度MV的值分为水平值和垂直值。在获得分像素精度MV的值之后,对其进行判断,若其值为零,即:Among them, m_iHor' and m_iVer' indicate that the value of sub-pixel precision MV is divided into horizontal value and vertical value. After obtaining the value of sub-pixel precision MV, judge it, if its value is zero, that is:

m_iHor'==0&&m_iVer'==0m_iHor'==0&&m_iVer'==0

则跳过下一个判断,直接跳到步骤5,否则,执行下一步。Then skip the next judgment and go directly to step 5, otherwise, go to the next step.

步骤3:获取λ的值以及当前预测单元PU块的最优分像素MV的相关信息,并计算SATDqter,并判断是否满足如下条件:Step 3: Obtain the value of λ and the relevant information of the optimal sub-pixel MV of the current prediction unit PU block, calculate SATD qter , and judge whether the following conditions are met:

SATDqter<=K*SATDint SATD qter <= K*SATD int

阈值K的计算公式如下:The formula for calculating the threshold K is as follows:

其中,Rquarter表示分像素精度运动估计的最优MV的比特数,Rinteger表示整像素精度运动估计的最优MV的比特数。如果满足判断条件,则跳过IMV,跳到步骤5,否则,执行下一步。Wherein, R quarter represents the number of bits of the optimal MV for sub-pixel precision motion estimation, and R integer represents the number of bits of the optimal MV for integer pixel precision motion estimation. If the judgment condition is met, skip the IMV and go to step 5, otherwise, go to the next step.

步骤4:编码器进行IMV_2N×2N模式,并根据率失真代价决策出最优MV以及最佳模式。Step 4: The encoder performs the IMV_2N×2N mode, and determines the optimal MV and the best mode according to the rate-distortion cost.

步骤5:进行后续其他模式的判断。Step 5: Make subsequent judgments on other modes.

一种基于自适应运动矢量精度的运动矢量精度快速选择装置,包括:A device for quickly selecting motion vector precision based on adaptive motion vector precision, comprising:

整像素精度运动估计模块,对视频帧图像的预测单元PU块执行帧间2Nx2N预测的运动估计时,在当前预测单元PU块经过整像素精度运动估计后,获得当前预测单元PU块的最优MV的值;Integer pixel precision motion estimation module, when performing inter-frame 2Nx2N prediction motion estimation on the prediction unit PU block of the video frame image, after the current prediction unit PU block undergoes integer pixel precision motion estimation, the optimal MV of the current prediction unit PU block is obtained value;

分像素精度运动估计模块,对视频帧图像的预测单元PU块执行帧间2Nx2N预测的运动估计时,在当前预测单元PU块经过分像素精度运动估计后,获得当前预测单元PU块的最优MV的值;Sub-pixel precision motion estimation module, when performing inter-frame 2Nx2N prediction motion estimation on the prediction unit PU block of the video frame image, after the current prediction unit PU block undergoes sub-pixel precision motion estimation, the optimal MV of the current prediction unit PU block is obtained value;

SATDint和SATDqter计算模块,首先利用当前预测单元PU块分别经过整像素精度运动估计和分像素精度运动估计后,获得每个像素点的最优MV的值和对应的预测MV值之差的二维正交变换,然后计算当前预测单元PU块中所有像素点对应的二维正交变换绝对值之和;The calculation module of SATD int and SATD qter first uses the current prediction unit PU block to go through the whole pixel precision motion estimation and sub-pixel precision motion estimation respectively, and obtain the optimal MV value of each pixel and the corresponding predicted MV value difference Two-dimensional orthogonal transformation, and then calculate the sum of the absolute values of the two-dimensional orthogonal transformation corresponding to all pixels in the current prediction unit PU block;

SATDint表示整像素MV的SATD值,SATDqter表示分像素MV的SATD值;SATD int indicates the SATD value of the whole pixel MV, and SATD qter indicates the SATD value of the sub-pixel MV;

所述SATD表示经过哈达曼变换后的绝对误差和;The SATD represents the sum of absolute errors after the Hadaman transform;

选择模块,依据判断条件,为当前预测单元PU块选择后续执行的模式:The selection module, according to the judgment conditions, selects the subsequent execution mode for the current prediction unit PU block:

若SATDqter<=K*SATDint成立,则当前预测单元PU块跳过IMV_2N×2N模式,继续后续模式,否则,则进行IMV_2N×2N模式,并根据率失真代价决策出最优MV以及当前预测单元PU块后续执行的最佳模式;If SATD qter <=K*SATD int holds true, the current prediction unit PU block skips the IMV_2N×2N mode and continues to the subsequent mode, otherwise, proceeds to the IMV_2N×2N mode, and determines the optimal MV and current prediction according to the rate-distortion cost The best mode for the subsequent execution of the unit PU block;

其中,Rquarter表示分像素精度运动估计的最优MV的比特数,Rinteger表示整像素精度运动估计的最优MV的比特数,λ为计算率失真优化的参数。in, R quarter indicates the number of bits of the optimal MV for sub-pixel precision motion estimation, R integer indicates the number of bits of the optimal MV for integer pixel precision motion estimation, and λ is the parameter for calculating rate-distortion optimization.

所述选择模块,首先判断当前预测单元PU块的最优MV均值是否为整像素MV,若是,则当前预测单元PU块跳过IMV_2N×2N模式,继续后续模式;否则,按照权3中所述的选择模块为当前预测单元PU块选择后续执行的模式。The selection module first judges whether the optimal MV average value of the current prediction unit PU block is an integer pixel MV, if yes, the current prediction unit PU block skips the IMV_2N×2N mode and continues to the subsequent mode; otherwise, according to the method described in weight 3 The selection module selects a subsequent execution mode for the current prediction unit PU block.

为了验证上述方法的正确性以及有效性,本发明基于参考软件JEM4.0在VisualStudio 2013软件上实现该方法。在测试最终实验结果时,考虑到在自己电脑上实验结果(主要指时间)的不稳定性,因此为了保证实验结果的稳定性,本发明的所有实验均在学校的高性能计算平台上进行,该平台硬件为曙光5000,其体系结构为混合式的集群(Cluster)架构,计算节点和八路、四核SMP胖节点组成,计算网络采用Infinband高速交换机,双精度浮点运算次数理论峰值达到10TFlops(十万亿次)、存储能力为20TB。所有实验的具体编码参数的配置选用JEM标准配置文件:encoder_lowdelay_jvet10.cfg以及对应测试序列的标准配置文件。In order to verify the correctness and effectiveness of the above method, the present invention implements the method on the VisualStudio 2013 software based on the reference software JEM4.0. When testing the final experimental results, consider the instability of the experimental results (mainly referring to time) on one's own computer, so in order to ensure the stability of the experimental results, all experiments of the present invention are carried out on the high-performance computing platform of the school. The hardware of this platform is Dawning 5000, and its architecture is a hybrid cluster (Cluster) architecture. Computing nodes are composed of eight-way and four-core SMP fat nodes. The computing network uses Infinband high-speed switches, and the theoretical peak value of double-precision floating-point operations reaches 10TFlops ( Ten trillion times), the storage capacity is 20TB. The configuration of the specific encoding parameters of all experiments uses the JEM standard configuration file: encoder_lowdelay_jvet10.cfg and the standard configuration file corresponding to the test sequence.

实验结果Experimental results

为了验证方法性能的好坏,本文采用BDBR(Bjotegaard Delta Bit rate)以及ΔT两个指标来进行评估。其中,BDBR是用来评估方法对视频质量的影响,BDBR越大说明方法对视频质量的影响越大,即方法的性能越差,其主要是通过设置四组不同的量化参数QP以获取四组不同Bits以及PSNR来进行计算。ΔT则是反映当前方法对编码器效率的提升,其计算公式如下所示:In order to verify the performance of the method, this paper uses two indicators of BDBR (Bjotegaard Delta Bit rate) and ΔT to evaluate. Among them, BDBR is used to evaluate the impact of the method on the video quality. The larger the BDBR, the greater the impact of the method on the video quality, that is, the worse the performance of the method, which is mainly obtained by setting four sets of different quantization parameters QP. Different Bits and PSNR are used for calculation. ΔT reflects the improvement of the encoder efficiency by the current method, and its calculation formula is as follows:

其中,TJEM代表使用不加任何快速方法的原始编码器编码所使用的时间,Tprop代表加快速方法后编码所需时间,TR则代表加快速方法后编码器在效率上提升的百分比。Among them, T JEM represents the time used for encoding by the original encoder without any fast method, T prop represents the time required for encoding after the fast method is accelerated, and TR represents the percentage increase in the efficiency of the encoder after the fast method is accelerated.

通过在高性能平台上进行实验仿真,本发明的实验结果如表1所示,ΔBits%为与传统的编码器相比比特率变化百分比,ΔPSNR/dB为与传统的编码器相比峰值信噪比变化。By carrying out experimental simulation on a high-performance platform, the experimental results of the present invention are as shown in table 1, ΔBits% is compared with the traditional coder bit rate change percentage, ΔPSNR/dB is the peak signal to noise ratio compared with the traditional coder than change.

表1Table 1

由表1可知,加入快速方法的编码取得了良好的效果:在总体编码时间上降低了7.08%,而BDBR上升仅为0.57。由此实验结果可以看出,本发明在保证视频主观质量的前提下,提高了编码效率,达到了本发明的目的。It can be seen from Table 1 that the encoding with the fast method has achieved good results: the overall encoding time is reduced by 7.08%, while the increase of BDBR is only 0.57. From the experimental results, it can be seen that the present invention improves the coding efficiency under the premise of ensuring the subjective quality of the video, and achieves the purpose of the present invention.

本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, but they will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range.

Claims (4)

1.一种基于自适应运动矢量精度的运动矢量精度选择方法,其特征在于,包括以下步骤:1. a motion vector precision selection method based on adaptive motion vector precision, is characterized in that, comprises the following steps: 步骤1:在对视频帧图像的预测单元PU块执行帧间2Nx2N预测的运动估计时,获取当前预测单元PU块分别经过整像素精度运动估计和分像素精度运动估计后,每个像素点的最优MV的值和对应的预测MV值之差的二维正交变换;Step 1: When performing inter-frame 2Nx2N prediction motion estimation on the prediction unit PU block of the video frame image, obtain the current prediction unit PU block after the whole-pixel precision motion estimation and the sub-pixel precision motion estimation respectively, and obtain the maximum value of each pixel. Two-dimensional orthogonal transformation of the difference between the value of the optimal MV and the corresponding predicted MV value; 所述当前预测单元PU块中每个像素点对应的预测MV值在编码过程中利用高级运动向量预测技术AMVP获得;The predicted MV value corresponding to each pixel in the current prediction unit PU block is obtained by using the advanced motion vector prediction technology AMVP during the encoding process; 在存储MV的值时,通过对整像素MV的值进行相应的移位,分别来存储1/2像素MV的值以及1/4像素MV的值;When storing the value of MV, the value of 1/2 pixel MV and the value of 1/4 pixel MV are respectively stored by correspondingly shifting the value of the whole pixel MV; 分像素精度MV的值,通过以下方法获得:The value of sub-pixel precision MV is obtained by the following method: m_iHor'=m_iHor&1111m_iHor'=m_iHor&1111 m_iVer'=m_iVer&1111m_iVer'=m_iVer&1111 其中,m_iHor'和m_iVer'分别表示分像素精度MV的值分为水平值和垂直值;m_iHor和m_iVer分别为MV的水平值和垂直值;Among them, m_iHor' and m_iVer' indicate that the value of sub-pixel precision MV is divided into horizontal value and vertical value; m_iHor and m_iVer are the horizontal value and vertical value of MV respectively; 在获得分像素精度MV的值之后,对其进行判断,若其值为零,即After obtaining the value of sub-pixel precision MV, judge it, if its value is zero, that is m_iHor'==0&&m_iVer'==0m_iHor'==0&&m_iVer'==0 则跳过下一个判断,直接进行后续其他模式的判断,否则,执行下一步;Then skip the next judgment and directly proceed to the subsequent judgment of other modes, otherwise, go to the next step; 步骤2:基于步骤1获得的当前预测单元PU块各像素点所述的二维正交变换,计算当前预测单元PU块中所有像素点对应的二维正交变换绝对值之和:SATDint和SATDqterStep 2: Based on the two-dimensional orthogonal transformation described in each pixel of the current prediction unit PU block obtained in step 1, calculate the sum of the absolute values of the two-dimensional orthogonal transformation corresponding to all pixels in the current prediction unit PU block: SATD int and SATD qter ; SATDint表示整像素MV的SATD值,SATDqter表示分像素MV的SATD值;SATD int indicates the SATD value of the whole pixel MV, and SATD qter indicates the SATD value of the sub-pixel MV; 所述SATD表示经过哈达曼变换后的绝对误差和;The SATD represents the sum of absolute errors after the Hadaman transform; 步骤3:判断公式是否成立:SATDqter<=K*SATDint,若成立,则当前预测单元PU块跳过IMV_2N×2N模式,继续后续模式,否则,则进行IMV_2N×2N模式,并根据率失真代价决策出最优MV以及当前预测单元PU块后续执行的最佳模式;Step 3: Determine whether the formula is true: SATD qter <= K*SATD int , if true, the current prediction unit PU block skips the IMV_2N×2N mode and continues to the subsequent mode, otherwise, proceed to the IMV_2N×2N mode and perform the rate-distortion The cost determines the optimal MV and the best mode for subsequent execution of the current prediction unit PU block; 其中,Rquarter表示分像素精度运动估计的最优MV的比特数,Rinteger表示整像素精度运动估计的最优MV的比特数,λ为计算率失真优化的参数。in, R quarter indicates the number of bits of the optimal MV for sub-pixel precision motion estimation, R integer indicates the number of bits of the optimal MV for integer pixel precision motion estimation, and λ is the parameter for calculating rate-distortion optimization. 2.根据权利要求1所述的方法,其特征在于,在所述步骤1后,判断当前预测单元PU块的最优MV的值是否为整像素MV,若是,则当前预测单元PU块跳过IMV_2N×2N模式,继续后续模式;否则,进入步骤3。2. The method according to claim 1, wherein after said step 1, it is judged whether the optimal MV value of the current prediction unit PU block is an integer pixel MV, if so, the current prediction unit PU block is skipped IMV_2N×2N mode, continue to follow-up mode; otherwise, go to step 3. 3.一种基于自适应运动矢量精度的运动矢量精度选择装置,其特征在于,包括:3. A motion vector precision selection device based on adaptive motion vector precision, characterized in that, comprising: 整像素精度运动估计模块,对视频帧图像的预测单元PU块执行帧间2Nx2N预测的运动估计时,在当前预测单元PU块经过整像素精度运动估计后,获得当前预测单元PU块的最优MV的值;Integer pixel precision motion estimation module, when performing inter-frame 2Nx2N prediction motion estimation on the prediction unit PU block of the video frame image, after the current prediction unit PU block undergoes integer pixel precision motion estimation, the optimal MV of the current prediction unit PU block is obtained value; 分像素精度运动估计模块,对视频帧图像的预测单元PU块执行帧间2Nx2N预测的运动估计时,在当前预测单元PU块经过分像素精度运动估计后,获得当前预测单元PU块的最优MV的值;Sub-pixel precision motion estimation module, when performing inter-frame 2Nx2N prediction motion estimation on the prediction unit PU block of the video frame image, after the current prediction unit PU block undergoes sub-pixel precision motion estimation, the optimal MV of the current prediction unit PU block is obtained value; 在存储MV的值时,通过对整像素MV的值进行相应的移位,分别来存储1/2像素MV的值以及1/4像素MV的值;When storing the value of MV, the value of 1/2 pixel MV and the value of 1/4 pixel MV are respectively stored by correspondingly shifting the value of the whole pixel MV; 分像素精度MV的值,通过以下方法获得:The value of sub-pixel precision MV is obtained by the following method: m_iHor'=m_iHor&1111m_iHor'=m_iHor&1111 m_iVer'=m_iVer&1111m_iVer'=m_iVer&1111 其中,m_iHor'和m_iVer'分别表示分像素精度MV的值分为水平值和垂直值;m_iHor和m_iVer分别为MV的水平值和垂直值;Among them, m_iHor' and m_iVer' indicate that the value of sub-pixel precision MV is divided into horizontal value and vertical value; m_iHor and m_iVer are the horizontal value and vertical value of MV respectively; 在获得分像素精度MV的值之后,对其进行判断,若其值为零,即After obtaining the value of sub-pixel precision MV, judge it, if its value is zero, that is m_iHor'==0&&m_iVer'==0m_iHor'==0&&m_iVer'==0 则跳过选择模块,直接进行后续其他模式的判断,否则,利用选择模块进行选择;Then skip the selection module and directly proceed to the subsequent judgment of other modes, otherwise, use the selection module to select; SATDint和SATDqter计算模块,首先利用当前预测单元PU块分别经过整像素精度运动估计和分像素精度运动估计后,获得每个像素点的最优MV的值和对应的预测MV值之差的二维正交变换,然后计算当前预测单元PU块中所有像素点对应的二维正交变换绝对值之和;The calculation module of SATD int and SATD qter first uses the current prediction unit PU block to go through the whole pixel precision motion estimation and sub-pixel precision motion estimation respectively, and obtain the optimal MV value of each pixel and the corresponding predicted MV value difference Two-dimensional orthogonal transformation, and then calculate the sum of the absolute values of the two-dimensional orthogonal transformation corresponding to all pixels in the current prediction unit PU block; SATDint表示整像素MV的SATD值,SATDqter表示分像素MV的SATD值;SATD int indicates the SATD value of the whole pixel MV, and SATD qter indicates the SATD value of the sub-pixel MV; 所述SATD表示经过哈达曼变换后的绝对误差和;The SATD represents the sum of absolute errors after the Hadaman transform; 选择模块,依据判断条件,为当前预测单元PU块选择后续执行的模式:The selection module, according to the judgment conditions, selects the subsequent execution mode for the current prediction unit PU block: 若SATDqter<=K*SATDint成立,则当前预测单元PU块跳过IMV_2N×2N模式,继续后续模式,否则,进行IMV_2N×2N模式,并根据率失真代价决策出最优MV以及当前预测单元PU块后续执行的最佳模式;If SATD qter <=K*SATD int is established, the current prediction unit PU block skips the IMV_2N×2N mode and continues to the subsequent mode, otherwise, proceed to the IMV_2N×2N mode, and determine the optimal MV and the current prediction unit according to the rate-distortion cost The best mode for the subsequent execution of the PU block; 其中,Rquarter表示分像素精度运动估计的最优MV的比特数,Rinteger表示整像素精度运动估计的最优MV的比特数,λ为计算率失真优化的参数。in, R quarter indicates the number of bits of the optimal MV for sub-pixel precision motion estimation, R integer indicates the number of bits of the optimal MV for integer pixel precision motion estimation, and λ is the parameter for calculating rate-distortion optimization. 4.根据权利要求3所述的装置,其特征在于,所述选择模块,首先判断当前预测单元PU块的最优MV的值是否为整像素MV,若是,则当前预测单元PU块跳过IMV_2N×2N模式,继续后续模式;否则,按照权3中所述的选择模块为当前预测单元PU块选择后续执行的模式。4. The device according to claim 3, wherein the selection module first judges whether the optimal MV value of the current prediction unit PU block is an integer pixel MV, and if so, the current prediction unit PU block skips IMV_2N ×2N mode, continue to the subsequent mode; otherwise, select the subsequent execution mode for the current prediction unit PU block according to the selection module described in weight 3.
CN201710697972.4A 2017-08-15 2017-08-15 Motion vector accuracy selection method and device based on adaptive motion vector precision Active CN107277506B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710697972.4A CN107277506B (en) 2017-08-15 2017-08-15 Motion vector accuracy selection method and device based on adaptive motion vector precision

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710697972.4A CN107277506B (en) 2017-08-15 2017-08-15 Motion vector accuracy selection method and device based on adaptive motion vector precision

Publications (2)

Publication Number Publication Date
CN107277506A CN107277506A (en) 2017-10-20
CN107277506B true CN107277506B (en) 2019-12-03

Family

ID=60079856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710697972.4A Active CN107277506B (en) 2017-08-15 2017-08-15 Motion vector accuracy selection method and device based on adaptive motion vector precision

Country Status (1)

Country Link
CN (1) CN107277506B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109905714B (en) * 2017-12-08 2022-12-27 华为技术有限公司 Inter-frame prediction method and device and terminal equipment
CN108012151B (en) * 2017-12-26 2019-06-25 中南大学 A kind of adaptive motion vector precision fast selecting method and device based on Bayes's classification
WO2020140216A1 (en) * 2019-01-02 2020-07-09 北京大学 Video processing method and device
CN118540495A (en) 2019-01-04 2024-08-23 北京三星通信技术研究有限公司 Method and device for encoding/decoding motion vector information
CN111247804B (en) * 2019-03-12 2023-10-13 北京大学 Image processing methods and devices
WO2021030502A1 (en) * 2019-08-12 2021-02-18 Beijing Dajia Internet Information Technology Co., Ltd. Methods and apparatuses for adaptive motion vector resolution in video coding
CN112868234A (en) * 2019-09-24 2021-05-28 深圳市大疆创新科技有限公司 Motion estimation method, system and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631245A (en) * 2008-07-15 2010-01-20 索尼株式会社 Motion vector detecting device, motion vector detecting method, image encoding device, and program
WO2011131903A1 (en) * 2010-04-22 2011-10-27 France Telecom Method for processing a piece of movement information and encoding methods
CN102811346A (en) * 2011-05-31 2012-12-05 富士通株式会社 Encoding mode selection method and system
CN103475883A (en) * 2013-09-26 2013-12-25 北京航空航天大学 HEVC motion estimation early termination method based on division of motion zones
CN106028047A (en) * 2016-05-24 2016-10-12 西安电子科技大学 Hadamard transform-based fast intra-prediction mode selection and PU partition method
CN107040782A (en) * 2017-04-21 2017-08-11 上海电力学院 The global Rate-distortion optimization method of Video coding based on Lagrangian method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631245A (en) * 2008-07-15 2010-01-20 索尼株式会社 Motion vector detecting device, motion vector detecting method, image encoding device, and program
WO2011131903A1 (en) * 2010-04-22 2011-10-27 France Telecom Method for processing a piece of movement information and encoding methods
CN102811346A (en) * 2011-05-31 2012-12-05 富士通株式会社 Encoding mode selection method and system
CN103475883A (en) * 2013-09-26 2013-12-25 北京航空航天大学 HEVC motion estimation early termination method based on division of motion zones
CN106028047A (en) * 2016-05-24 2016-10-12 西安电子科技大学 Hadamard transform-based fast intra-prediction mode selection and PU partition method
CN107040782A (en) * 2017-04-21 2017-08-11 上海电力学院 The global Rate-distortion optimization method of Video coding based on Lagrangian method

Also Published As

Publication number Publication date
CN107277506A (en) 2017-10-20

Similar Documents

Publication Publication Date Title
CN107277506B (en) Motion vector accuracy selection method and device based on adaptive motion vector precision
US8705611B2 (en) Image prediction encoding device, image prediction encoding method, image prediction encoding program, image prediction decoding device, image prediction decoding method, and image prediction decoding program
CN110741640B (en) Optical flow estimation for motion compensated prediction in video coding
CN107147911A (en) Method and device for fast inter-frame coding mode selection based on local brightness compensation LIC
CN103475880B (en) A kind of based on statistical analysis by H.264 to HEVC low complex degree video transcoding method
CN102932642B (en) Interframe coding quick mode selection method
CN104702957B (en) Motion vector compression method and device
CN102291582A (en) Distributed video encoding method based on motion compensation refinement
CN111541896B (en) VVC-based intra-frame prediction mode optimization method and system
CN107135392A (en) HEVC Motion Search Parallel Method Based on Asynchronous Mode
CN107018412B (en) A kind of DVC-HEVC video transcoding method based on key frame coding unit partition mode
CN102196272A (en) A P-frame encoding method and device
CN105812818B (en) Based on the elastic movement method of estimation for improving the literary Burger wheat quart optimization of row
CN103581685B (en) Method and device for selecting H.264 reference frames
CN101141559A (en) Method and device for video image brightness interpolation with serial input and parallel output
US11910003B2 (en) Processing method for motion compensation, encoder and decoder
CN108012151B (en) A kind of adaptive motion vector precision fast selecting method and device based on Bayes&#39;s classification
CN113242427B (en) Rapid method and device based on adaptive motion vector precision in VVC
WO2018205781A1 (en) Method for use in achieving motion estimation and electronic device
CN104038768B (en) The many reference field rapid motion estimating methods and system of a kind of coding mode
CN105611299B (en) A kind of method for estimating based on HEVC
CN100362869C (en) Adaptive Reference Frame Selection Method Based on Mode Inheritance in Multi-frame Motion Estimation
CN102625109A (en) A transcoding method from MPEG-2 to H.264 based on multi-core processor
CN114422779A (en) Method, apparatus, electronic device and medium for predicting cell size decision
Hu et al. A hardware-friendly hierarchical HEVC motion estimation algorithm for UHD applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant