CN107275551A - Lithium-sulfur cell and its component, and application of the functional material layer in lithium-sulfur cell - Google Patents
Lithium-sulfur cell and its component, and application of the functional material layer in lithium-sulfur cell Download PDFInfo
- Publication number
- CN107275551A CN107275551A CN201710342173.5A CN201710342173A CN107275551A CN 107275551 A CN107275551 A CN 107275551A CN 201710342173 A CN201710342173 A CN 201710342173A CN 107275551 A CN107275551 A CN 107275551A
- Authority
- CN
- China
- Prior art keywords
- lithium
- material layer
- sulfur
- functional material
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 140
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 title claims abstract description 81
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 78
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 77
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 68
- 229910001868 water Inorganic materials 0.000 claims abstract description 67
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 66
- 239000011593 sulfur Substances 0.000 claims abstract description 66
- 229910000314 transition metal oxide Inorganic materials 0.000 claims abstract description 61
- 239000013078 crystal Substances 0.000 claims abstract description 51
- 239000002131 composite material Substances 0.000 claims abstract description 31
- 238000000576 coating method Methods 0.000 claims description 23
- 239000007774 positive electrode material Substances 0.000 claims description 23
- 239000011248 coating agent Substances 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 239000002904 solvent Substances 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 10
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 9
- 238000002425 crystallisation Methods 0.000 claims description 9
- 230000008025 crystallization Effects 0.000 claims description 9
- 239000004020 conductor Substances 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 239000011164 primary particle Substances 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims 2
- 239000010410 layer Substances 0.000 description 115
- 239000004743 Polypropylene Substances 0.000 description 58
- 229920001021 polysulfide Polymers 0.000 description 24
- 239000005077 polysulfide Substances 0.000 description 24
- 150000008117 polysulfides Polymers 0.000 description 24
- 239000002002 slurry Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 18
- 239000012528 membrane Substances 0.000 description 15
- -1 Super P Chemical compound 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000002033 PVDF binder Substances 0.000 description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000004745 nonwoven fabric Substances 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 7
- 229920001155 polypropylene Polymers 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910001416 lithium ion Inorganic materials 0.000 description 6
- 239000002121 nanofiber Substances 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 4
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 4
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000007606 doctor blade method Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GJEAMHAFPYZYDE-UHFFFAOYSA-N [C].[S] Chemical compound [C].[S] GJEAMHAFPYZYDE-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- RDHSUTIDSFVNJL-UHFFFAOYSA-N OC(=O)C=C.CCCCCCCCCCCC(O)=O Chemical compound OC(=O)C=C.CCCCCCCCCCCC(O)=O RDHSUTIDSFVNJL-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003837 high-temperature calcination Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- UIDWHMKSOZZDAV-UHFFFAOYSA-N lithium tin Chemical compound [Li].[Sn] UIDWHMKSOZZDAV-UHFFFAOYSA-N 0.000 description 1
- OWNSEPXOQWKTKG-UHFFFAOYSA-M lithium;methanesulfonate Chemical compound [Li+].CS([O-])(=O)=O OWNSEPXOQWKTKG-UHFFFAOYSA-M 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明提供一种锂硫电池,包括硫基正极;锂基负极;设置在所述硫基正极与所述锂基负极之间的隔膜;以及设置在所述硫基正极与所述锂基负极之间的功能性材料层,所述功能性材料层的材料包括具有结晶水的过渡金属氧化物。本发明还提供一种复合隔膜、锂硫电池电极组件、复合硫基正极、复合锂基负极及功能性材料层在锂硫电池中的应用。
The invention provides a lithium-sulfur battery, comprising a sulfur-based positive electrode; a lithium-based negative electrode; a diaphragm arranged between the sulfur-based positive electrode and the lithium-based negative electrode; and a diaphragm arranged between the sulfur-based positive electrode and the lithium-based negative electrode Between the functional material layer, the material of the functional material layer includes transition metal oxide with crystal water. The invention also provides the application of a composite diaphragm, an electrode assembly of a lithium-sulfur battery, a composite sulfur-based positive electrode, a composite lithium-based negative electrode and a functional material layer in a lithium-sulfur battery.
Description
技术领域technical field
本发明涉及锂电池领域,特别涉及锂硫电池、复合隔膜、锂硫电池电极组件、复合硫基正极、复合锂基负极及功能性材料层在锂硫电池中的应用。The invention relates to the field of lithium batteries, in particular to the application of lithium-sulfur batteries, composite separators, lithium-sulfur battery electrode assemblies, composite sulfur-based positive electrodes, composite lithium-based negative electrodes and functional material layers in lithium-sulfur batteries.
背景技术Background technique
随着新能源汽车行业的飞速发展,开发高能量密度的储能器件成为了目前研究和发展的重要方向。锂硫电池以其1675mAh/g的理论比容量和~2500Wh/kg的理论能量密度,成为替代传统锂离子电池,实现远程续航目标(>500Wh/kg)的最具发展前景的动力电池体系之一。但是,由于锂硫电池目前存在循环寿命低和安全稳定性差的问题,使其在实用化道路上仍面临阻碍。如何高效抑制多硫化锂的穿梭效应是提升锂硫电池电化学性能和安全性能的关键因素,也是近年来国际研究的热点。With the rapid development of the new energy automobile industry, the development of energy storage devices with high energy density has become an important direction of current research and development. With its theoretical specific capacity of 1675mAh/g and theoretical energy density of ~2500Wh/kg, lithium-sulfur batteries have become one of the most promising power battery systems to replace traditional lithium-ion batteries and achieve long-range battery life (>500Wh/kg). . However, due to the current problems of low cycle life and poor safety and stability of lithium-sulfur batteries, it still faces obstacles on the road to practical use. How to efficiently suppress the shuttle effect of lithium polysulfide is a key factor to improve the electrochemical performance and safety performance of lithium-sulfur batteries, and it is also a hot spot of international research in recent years.
多硫化锂的穿梭效应主要是由两方面所导致,一是热力学上不可避免的扩散,二是较慢的反应动力学导致多硫化锂在电解液中的积累。目前,抑制多硫化锂的穿梭的主要方法是物理阻隔、极性吸附和存储、促进多硫化锂转化,通过包覆硫正极或将硫束缚于纳米孔道中来抑制多硫化锂的穿梭。在硫表面形成保护层或保护网络虽然可一定程度上阻隔多硫化锂,但仍很难实现电池的长寿命循环。The shuttle effect of lithium polysulfide is mainly caused by two aspects, one is the inevitable diffusion in thermodynamics, and the other is the accumulation of lithium polysulfide in the electrolyte due to the slower reaction kinetics. At present, the main methods to inhibit the shuttling of lithium polysulfides are physical barriers, polar adsorption and storage, and the promotion of lithium polysulfide conversion, and inhibit the shuttling of lithium polysulfides by coating sulfur cathodes or trapping sulfur in nanopores. Although the formation of a protective layer or protective network on the surface of sulfur can block lithium polysulfides to a certain extent, it is still difficult to achieve a long life cycle of the battery.
已有大量研究将一些过渡金属氧化物或硫化物涂覆在隔膜上作为功能性材料层来提高锂硫电池的容量及循环性能。其中一些极性的过渡金属氧化物或硫化物氧化物,如Fe2O3、Co3O4、Ti4O7、NiO、ZnO、V2O3、Cu2O等可以通过表面极性或者酸性位点来吸附存储多硫化锂;另外一些过渡金属氧化物,如TiO2、MnO2、CuO、VO2还同时具有催化多硫化锂的作用。此外,由于纳米材料可以填充于隔膜的孔隙中,在保证锂离子的正常通过前提下,也可以从一定程度上起到物理阻隔多硫化锂的作用。然而,实际应用中经常发现,即使采用上述过渡金属氧化物,在防止多硫化锂穿梭方面所达到效果仍然不理想。There have been a lot of researches on coating some transition metal oxides or sulfides on the separator as a functional material layer to improve the capacity and cycle performance of lithium-sulfur batteries. Some polar transition metal oxides or sulfide oxides, such as Fe 2 O 3 , Co 3 O 4 , Ti 4 O 7 , NiO, ZnO, V 2 O 3 , Cu 2 O, etc. acidic sites to adsorb and store lithium polysulfide; other transition metal oxides, such as TiO 2 , MnO 2 , CuO, and VO 2 , can also catalyze lithium polysulfide. In addition, since nanomaterials can be filled in the pores of the separator, it can also physically block lithium polysulfide to a certain extent under the premise of ensuring the normal passage of lithium ions. However, it is often found in practical applications that even if the above-mentioned transition metal oxides are used, the effect achieved in preventing lithium polysulfide shuttle is still unsatisfactory.
发明内容Contents of the invention
基于此,为更有效的防止多硫化锂的穿梭,有必要提供一种锂硫电池、复合隔膜、锂硫电池电极组件、复合硫基正极、复合锂基负极及功能性材料层在锂硫电池中的应用。Based on this, in order to prevent the shuttle of lithium polysulfide more effectively, it is necessary to provide a lithium-sulfur battery, a composite separator, a lithium-sulfur battery electrode assembly, a composite sulfur-based positive electrode, a composite lithium-based negative electrode, and a functional material layer in a lithium-sulfur battery. in the application.
一种锂硫电池,包括硫基正极;锂基负极;设置在所述硫基正极与所述锂基负极之间的隔膜;以及设置在所述硫基正极与所述锂基负极之间的功能性材料层,所述功能性材料层的材料包括具有结晶水的过渡金属氧化物。A lithium-sulfur battery, comprising a sulfur-based positive electrode; a lithium-based negative electrode; a separator arranged between the sulfur-based positive electrode and the lithium-based negative electrode; and a diaphragm arranged between the sulfur-based positive electrode and the lithium-based negative electrode The functional material layer, the material of the functional material layer includes transition metal oxide with crystal water.
一种复合隔膜,所述复合隔膜用于锂硫电池,其特征在于,所述复合隔膜包括隔膜及设置在所述隔膜至少一个表面的功能性材料层,所述功能性材料层的材料包括具有结晶水的过渡金属氧化物。A composite diaphragm, which is used in lithium-sulfur batteries, characterized in that the composite diaphragm includes a diaphragm and a functional material layer arranged on at least one surface of the diaphragm, and the material of the functional material layer includes Transition metal oxides in water of crystallization.
一种锂硫电池电极组件,包括相互层叠设置的硫基正极、隔膜及功能性材料层,所述功能性材料层设置在所述硫基正极与所述隔膜之间,所述功能性材料层的材料包括具有结晶水的过渡金属氧化物。A lithium-sulfur battery electrode assembly, comprising a sulfur-based positive electrode, a separator, and a functional material layer stacked on each other, the functional material layer is arranged between the sulfur-based positive electrode and the separator, and the functional material layer materials include transition metal oxides with water of crystallization.
一种锂硫电池电极组件,其特征在于,包括相互层叠设置的锂基负极、隔膜及功能性材料层,所述功能性材料层设置在所述锂基负极与所述隔膜之间,所述功能性材料层的材料包括具有结晶水的过渡金属氧化物。A lithium-sulfur battery electrode assembly, characterized in that it includes a lithium-based negative electrode, a separator, and a functional material layer stacked on each other, the functional material layer is arranged between the lithium-based negative electrode and the separator, the The material of the functional material layer includes a transition metal oxide with crystal water.
一种复合硫基正极,包括相互层叠设置的正极材料层、正极集流体及功能性材料层,所述正极材料层设置在所述功能性材料层与所述正极集流体之间,所述功能性材料层的材料包括具有结晶水的过渡金属氧化物。A composite sulfur-based positive electrode, comprising a positive electrode material layer, a positive electrode current collector, and a functional material layer stacked on each other, the positive electrode material layer is arranged between the functional material layer and the positive electrode current collector, the functional The material of the permanent material layer includes a transition metal oxide with crystal water.
一种复合锂基负极,包括相互层叠设置的金属锂及功能性材料层,所述功能性材料层的材料包括具有结晶水的过渡金属氧化物。A composite lithium-based negative electrode includes metal lithium and functional material layers stacked on each other, and the material of the functional material layer includes transition metal oxides with crystal water.
一种功能性材料层在锂硫电池中的应用,包括将含有所述具有结晶水的过渡金属氧化物的固液混合物涂覆于所述硫基正极、锂基负极和隔膜中至少一者的表面,从而在所述硫基正极与所述锂基负极之间形成所述功能性材料层。An application of a functional material layer in a lithium-sulfur battery, comprising coating the solid-liquid mixture containing the transition metal oxide with crystal water on at least one of the sulfur-based positive electrode, lithium-based negative electrode and separator surface, thereby forming the functional material layer between the sulfur-based positive electrode and the lithium-based negative electrode.
本发明将具有结晶水的过渡金属氧化物引入锂硫电池中,相比于去除结晶水的过渡金属氧化物,具有结晶水的过渡金属氧化物可以有的更大的比表面积,从而提供更多的活性位点,更好的起到吸附存储和/或催化多硫化锂的作用,从而高效发挥抑制多硫化锂穿梭的作用,提升锂硫电池的电化学性能。The present invention introduces the transition metal oxide with crystal water into the lithium-sulfur battery. Compared with the transition metal oxide with crystal water removed, the transition metal oxide with crystal water can have a larger specific surface area, thereby providing more The active sites can better play the role of adsorbing and storing lithium polysulfides and/or catalyzing lithium polysulfides, so as to effectively inhibit the shuttle of lithium polysulfides and improve the electrochemical performance of lithium-sulfur batteries.
附图说明Description of drawings
图1为本发明实施例锂硫电池的结构示意图;Fig. 1 is the structural representation of the lithium-sulfur battery of the embodiment of the present invention;
图2为本发明实施例锂硫电池电极组件的结构示意图;2 is a schematic structural view of an electrode assembly of a lithium-sulfur battery according to an embodiment of the present invention;
图3为实施例1中PP@C&HTO-1中功能性材料层的SEM图;Fig. 3 is the SEM picture of functional material layer in PP@C&HTO-1 in embodiment 1;
图4为实施例1中使用PP@C&HTO-1的锂硫电池及对比例中使用PP的锂硫电池在0.2C下的循环性能对比图;Figure 4 is a comparison chart of the cycle performance of the lithium-sulfur battery using PP@C&HTO-1 in Example 1 and the lithium-sulfur battery using PP in the comparative example at 0.2C;
图5为实施例1中的为使用PP@C&HTO-1的锂硫电池在1C下的循环性能与库伦效率图;Figure 5 is a diagram of cycle performance and Coulombic efficiency at 1C for a lithium-sulfur battery using PP@C&HTO-1 in Example 1;
图6为实施例1中对比例使用PP@C&TO-1的锂硫电池在1C下的循环性能与库伦效率图;Figure 6 is a graph of the cycle performance and Coulombic efficiency of the lithium-sulfur battery using PP@C&TO-1 in the comparative example at 1C in Example 1;
图7为实施例2中PP@C&HTO-2功能性材料层的SEM图;Fig. 7 is the SEM figure of PP@C&HTO-2 functional material layer in embodiment 2;
图8为实施例2中使用PP@C&HTO-2及PP的锂硫电池在0.2C下的循环性能对比图;Figure 8 is a comparison chart of the cycle performance of lithium-sulfur batteries using PP@C&HTO-2 and PP at 0.2C in Example 2;
图9为实施例2中的为使用PP@C&HTO-2涂层制备成的锂硫电池在0.5C下的循环性能与库伦效率图。Fig. 9 is a diagram of cycle performance and coulombic efficiency at 0.5C for the lithium-sulfur battery prepared by using PP@C&HTO-2 coating in Example 2.
具体实施方式detailed description
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
请参阅图1及图2,本发明实施例提供锂硫电池,包括硫基正极10、锂基负极20及设置在硫基正极10与锂基负极20之间的隔膜30,所述锂硫电池进一步包括设置在硫基正极10与锂基负极20之间的功能性材料层32。所述功能性材料层32的材料包括具有结晶水的过渡金属氧化物。所述过渡金属氧化物可以吸附存储和/或催化多硫化锂,抑制多硫化锂穿梭。另外,由于材料中具有结晶水,与锂离子可能存在一定程度的反应或通过表面极性调节锂离子均匀分布,从而起到抑制锂枝晶生长的作用。Please refer to FIG. 1 and FIG. 2 , an embodiment of the present invention provides a lithium-sulfur battery, including a sulfur-based positive electrode 10, a lithium-based negative electrode 20, and a separator 30 disposed between the sulfur-based positive electrode 10 and the lithium-based negative electrode 20. The lithium-sulfur battery It further includes a functional material layer 32 disposed between the sulfur-based positive electrode 10 and the lithium-based negative electrode 20 . The material of the functional material layer 32 includes transition metal oxide with crystal water. The transition metal oxide can absorb and store and/or catalyze lithium polysulfide, and inhibit lithium polysulfide shuttling. In addition, due to the crystal water in the material, there may be a certain degree of reaction with lithium ions or the uniform distribution of lithium ions can be adjusted through the surface polarity, thereby inhibiting the growth of lithium dendrites.
所述过渡金属氧化物的金属元素可以选自钛(Ti)、钌(Ru)、钼(Mo)、钒(V)、钨(W)、铁(Fe)及钴(Co)中的至少一种。The metal element of the transition metal oxide can be selected from at least one of titanium (Ti), ruthenium (Ru), molybdenum (Mo), vanadium (V), tungsten (W), iron (Fe) and cobalt (Co). kind.
所述具有结晶水的过渡金属氧化物包括但不限于TiO2·xH2O、H2TinO2n+1·H2O、RuO2·xH2O、MoO3·xH2O、(H3O)xMoO3·xH2O、HyV4O10·xH2O、HzV2O5·xH2O、V2O5·xH2O、V2O4·xH2O、WO3·xH2O、Fe2O3·xH2O及Co2O3·xH2O中的至少一种,2≤n≤9,0.5≤x≤10,0<y≤1,0<z≤1。The transition metal oxides with water of crystallization include but are not limited to TiO 2 xH 2 O, H 2 Ti n O 2n+1 H 2 O, RuO 2 xH 2 O, MoO 3 xH 2 O, (H 3 O) x MoO 3 xH 2 O, Hy V 4 O 10 xH 2 O, Hz V 2 O 5 xH 2 O, V 2 O 5 xH 2 O, V 2 O 4 xH 2 O , WO 3 xH 2 O, Fe 2 O 3 xH 2 O and Co 2 O 3 xH 2 O, at least one of 2≤n≤9, 0.5≤x≤10, 0<y≤1,0 <z≤1.
所述具有结晶水的过渡金属氧化物优选为纳米级材料,具有结晶水的过渡金属氧化物的一次粒径优选为1纳米至100纳米,更有选为1纳米至10纳米。当材料的颗粒尺寸为纳米级时,可以有效填充于隔膜的孔隙中,在一定程度上还可以起到物理阻隔多硫化锂穿梭的作用。The transition metal oxide with crystal water is preferably a nanoscale material, and the primary particle size of the transition metal oxide with crystal water is preferably 1 nm to 100 nm, more preferably 1 nm to 10 nm. When the particle size of the material is nanoscale, it can be effectively filled in the pores of the separator, and to a certain extent, it can also physically block lithium polysulfide shuttle.
所述具有结晶水的过渡金属氧化物和去除结晶水后得到的过渡金属氧化物相比具有更大的比表面积,具有结晶水的过渡金属氧化物的比表面积值优选为100m2/g至600m2/g。The transition metal oxide with crystal water has a larger specific surface area than the transition metal oxide obtained after removing the crystal water, and the specific surface area of the transition metal oxide with crystal water is preferably 100m 2 /g to 600m 2 /g.
所述功能性材料层32的厚度优选为10nm~200μm,面密度优选为0.1~10mg/cm。The thickness of the functional material layer 32 is preferably 10 nm to 200 μm, and the surface density is preferably 0.1 to 10 mg/cm.
优选的,所述功能性材料层32的材料进一步包括电子导电材料和粘结剂,所述电子导电材料和粘结剂与所述具有结晶水的过渡金属氧化物均匀混合。所述具有结晶水的过渡金属氧化物在所述功能性材料层32中的质量百分含量优选为5%~99%。所述电子导电材料与粘结剂的质量比优选为1:9~9:1。Preferably, the material of the functional material layer 32 further includes an electronically conductive material and a binder, and the electronically conductive material and binder are uniformly mixed with the transition metal oxide having crystal water. The mass percent content of the transition metal oxide with crystal water in the functional material layer 32 is preferably 5%-99%. The mass ratio of the electronically conductive material to the binder is preferably 1:9˜9:1.
优选的,所述电子导电材料选自活性炭、石墨烯、碳纳米管、科琴黑、Super P、乙炔黑及石墨中的至少一种。Preferably, the electronically conductive material is at least one selected from activated carbon, graphene, carbon nanotubes, Ketjen black, Super P, acetylene black and graphite.
优选的,所述粘结剂选自聚偏二氟乙烯(PVDF)、聚氧化乙烯(PEO)、偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)、月桂酸丙烯酸酯(LA)、聚四氟乙烯(PTFE)、聚乙烯醇(PVA)、环氧树脂、聚丙烯酸(PAA)及羧甲基纤维素钠(CMC)中的至少一种。Preferably, the binder is selected from polyvinylidene fluoride (PVDF), polyethylene oxide (PEO), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), lauric acid acrylate (LA), poly At least one of tetrafluoroethylene (PTFE), polyvinyl alcohol (PVA), epoxy resin, polyacrylic acid (PAA) and sodium carboxymethylcellulose (CMC).
所述功能性材料层32可以设置在所述硫基正极10面向锂基负极20(也就是面向隔膜30)的表面,所述隔膜30的至少一个表面,或者所述锂基负极20面向所述硫基正极10(也就是面向隔膜30)的表面。在优选的实施例中,所述功能性材料层32至少设置在所述隔膜30面向所述硫基正极10的表面。在一实施例中,所述功能性材料层32设置在所述隔膜30的两个表面。The functional material layer 32 can be arranged on the surface of the sulfur-based positive electrode 10 facing the lithium-based negative electrode 20 (that is, facing the separator 30), at least one surface of the separator 30, or the lithium-based negative electrode 20 faces the The surface of the sulfur-based positive electrode 10 (that is, facing the separator 30). In a preferred embodiment, the functional material layer 32 is at least disposed on the surface of the separator 30 facing the sulfur-based positive electrode 10 . In one embodiment, the functional material layer 32 is disposed on both surfaces of the membrane 30 .
所述硫基正极10包括正极材料层12及正极集流体14,所述正极集流体14用于担载所述正极材料层12并传导电流,形状可以为箔片或网状。所述正极集流体14的材料可以选自铝、钛或不锈钢。所述正极材料层12设置在所述正极集流体14至少一表面。所述正极材料层12的材料包括含硫正极活性材料,进一步可选择的包括导电剂以及粘结剂。所述导电剂以及粘结剂可以与所述含硫正极活性材料均匀混合。所述含硫正极活性材料为具有电化学储锂能力的硫基材料,例如硫单质、硫基复合材料及硫化导电聚合物中的至少一种。所述硫基复合材料例如可以是将硫单质颗粒表面包覆导电碳层而得到的核壳结构复合材料,或者将硫单质颗粒设置在多孔碳材料中而得到的多孔复合材料。所述硫基导电聚合物例如可以选自硫化聚并吡啶、硫化聚苯乙烯、硫化聚氧化乙烯、硫化聚乙烯醇、硫化聚偏二氯乙烯、硫化聚偏二氟乙烯、硫化聚氯乙烯、硫化聚氟乙烯、硫化聚1,2-二氯乙烯、硫化聚1,2-二氟乙烯、硫化聚甲基丙烯酸甲酯及硫化酚醛树脂中的一种或多种。The sulfur-based positive electrode 10 includes a positive electrode material layer 12 and a positive electrode current collector 14, the positive electrode current collector 14 is used to support the positive electrode material layer 12 and conduct current, and the shape can be foil or mesh. The material of the positive current collector 14 can be selected from aluminum, titanium or stainless steel. The positive electrode material layer 12 is disposed on at least one surface of the positive electrode current collector 14 . The material of the positive electrode material layer 12 includes a sulfur-containing positive electrode active material, and further optionally includes a conductive agent and a binder. The conductive agent and the binder may be uniformly mixed with the sulfur-containing positive electrode active material. The sulfur-containing positive electrode active material is a sulfur-based material with electrochemical lithium storage capacity, such as at least one of sulfur element, sulfur-based composite material, and sulfurized conductive polymer. The sulfur-based composite material may be, for example, a core-shell composite material obtained by coating the surface of sulfur element particles with a conductive carbon layer, or a porous composite material obtained by disposing sulfur element particles in a porous carbon material. The sulfur-based conductive polymer, for example, can be selected from sulfurized polypyridine, sulfurized polystyrene, sulfurized polyethylene oxide, sulfurized polyvinyl alcohol, sulfurized polyvinylidene chloride, sulfurized polyvinylidene fluoride, sulfurized polyvinyl chloride, One or more of vulcanized polyvinyl fluoride, vulcanized polyvinyl dichloride, vulcanized polyvinylidene fluoride, vulcanized polymethyl methacrylate and vulcanized phenolic resin.
所述功能性材料层32可以设置在所述正极材料层12面向所述锂基负极20(也就是面向所述隔膜30)的表面。所述正极材料层12设置在所述功能性材料层32与所述正极集流体14之间。The functional material layer 32 may be disposed on the surface of the positive electrode material layer 12 facing the lithium-based negative electrode 20 (that is, facing the separator 30 ). The positive electrode material layer 12 is disposed between the functional material layer 32 and the positive electrode current collector 14 .
所述功能性材料层32优选是直接与所述正极材料层12接触,或者直接与所述隔膜30接触。更优选为所述功能性材料层32的两个表面分别与所述正极材料层12和所述隔膜30直接接触设置。但在一些实施例中,所述功能性材料层32与所述正极材料层12之间,或者所述功能性材料层32与所述隔膜30之间可以插入其它材料层,例如粘结层、导电层或导离子层,只要不影响功能性材料层32实现上述功能(1)至(3)中至少一种即可。The functional material layer 32 is preferably in direct contact with the positive electrode material layer 12 , or directly in contact with the separator 30 . More preferably, the two surfaces of the functional material layer 32 are arranged in direct contact with the positive electrode material layer 12 and the separator 30 respectively. However, in some embodiments, other material layers, such as adhesive layers, The conductive layer or the ion-conducting layer can be used as long as it does not affect the functional material layer 32 to realize at least one of the above-mentioned functions (1) to (3).
所述锂基负极20可包括负极活性层22,如金属锂层或锂合金层,例如锂锡合金层或锂铝合金层,并可进一步包括负极集流体24。所述负极集流体24用于担载所述负极活性层22并传导电流,形状可以为箔片或网状。该负极集流体24的材料可以选自铜、镍或不锈钢。The lithium-based negative electrode 20 may include a negative electrode active layer 22 , such as a lithium metal layer or a lithium alloy layer, such as a lithium tin alloy layer or a lithium aluminum alloy layer, and may further include a negative electrode current collector 24 . The negative electrode current collector 24 is used to support the negative electrode active layer 22 and conduct current, and the shape may be foil or mesh. The material of the negative electrode current collector 24 can be selected from copper, nickel or stainless steel.
所述隔膜30可以是传统的锂电池隔膜,能够在所述硫基正极10与所述锂基负极20之间隔绝电子并使锂离子通过,可以为有机聚合物隔膜或者无机隔膜中的任意一种,例如可以选自但不限于聚乙烯多孔膜、聚丙烯多孔膜、聚乙烯-聚丙烯双层多孔膜、聚丙烯-聚乙烯-聚丙烯三层多孔膜、玻璃纤维多孔膜、无纺布多孔膜、电纺丝多孔膜、PVDF-HFP多孔膜及聚丙烯腈多孔膜中的任意一种。所述无纺布隔膜可以列举如聚酰亚胺纳米纤维无纺布、聚对苯二甲酸乙二酯(PET)纳米纤维无纺布、纤维素纳米纤维无纺布、芳纶纳米纤维无纺布、尼龙纳米纤维无纺布及聚偏氟乙烯(PVDF)纳米纤维无纺布。所述电纺丝多孔膜可以列举如聚酰亚胺电纺丝膜、聚对苯二甲酸乙二酯电纺丝膜及聚偏氟乙烯电纺丝膜。The separator 30 can be a traditional lithium battery separator, capable of isolating electrons and allowing lithium ions to pass between the sulfur-based positive electrode 10 and the lithium-based negative electrode 20, and can be any one of an organic polymer separator or an inorganic separator. For example, it can be selected from but not limited to polyethylene porous membrane, polypropylene porous membrane, polyethylene-polypropylene double-layer porous membrane, polypropylene-polyethylene-polypropylene three-layer porous membrane, glass fiber porous membrane, non-woven fabric Any one of porous membrane, electrospun porous membrane, PVDF-HFP porous membrane and polyacrylonitrile porous membrane. The non-woven fabric separator can include polyimide nanofiber nonwoven fabric, polyethylene terephthalate (PET) nanofiber nonwoven fabric, cellulose nanofiber nonwoven fabric, aramid nanofiber nonwoven fabric, etc. Cloth, nylon nanofiber non-woven fabric and polyvinylidene fluoride (PVDF) nanofiber non-woven fabric. The electrospun porous membrane includes, for example, a polyimide electrospun membrane, a polyethylene terephthalate electrospun membrane, and a polyvinylidene fluoride electrospun membrane.
所述锂硫电池还包括非水电解液40,所述非水电解液40设置在所述硫基正极10与所述锂基负极20之间,例如可以渗透于所述隔膜30中。该非水电解液40包括溶剂及溶于所述溶剂的锂盐溶质,该溶剂可选自但不限于环状碳酸酯、链状碳酸酯、环状醚类、链状醚类、腈类及酰胺类中的一种或多种,如碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、丙酸甲酯、丙酸乙酯、二乙醚、乙腈、丙腈、苯甲醚、丁酸酯、戊二腈、已二腈、γ-丁内酯、γ-戊内酯、四氢呋喃、1,2-二甲氧基乙烷及乙腈及二甲基甲酰胺中的一种或多种。该锂盐溶质可选自但不限于氯化锂(LiCl)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、甲磺酸锂(LiCH3SO3)、三氟甲磺酸锂(LiCF3SO3)、六氟砷酸锂(LiAsF6)、高氯酸锂(LiClO4)及双草酸硼酸锂(LiBOB)中的一种或多种。The lithium-sulfur battery further includes a non-aqueous electrolyte 40 disposed between the sulfur-based positive electrode 10 and the lithium-based negative electrode 20 , for example, may permeate the separator 30 . The non-aqueous electrolytic solution 40 includes a solvent and a lithium salt solute dissolved in the solvent, the solvent may be selected from but not limited to cyclic carbonates, chain carbonates, cyclic ethers, chain ethers, nitriles and One or more of amides, such as ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate , ethyl propionate, diethyl ether, acetonitrile, propionitrile, anisole, butyrate, glutaronitrile, adiponitrile, γ-butyrolactone, γ-valerolactone, tetrahydrofuran, 1,2-dimethyl One or more of oxyethane, acetonitrile and dimethylformamide. The lithium salt solute can be selected from but not limited to lithium chloride (LiCl), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate ( One or more of LiCF 3 SO 3 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium perchlorate (LiClO 4 ) and lithium bisoxalate borate (LiBOB).
所述锂硫电池还包括密封壳体50,所述硫基正极10、锂基负极20、隔膜30、功能性材料层32及非水电解液40设置在所述密封壳体50中。The lithium-sulfur battery also includes a sealed case 50 , and the sulfur-based positive electrode 10 , lithium-based negative electrode 20 , separator 30 , functional material layer 32 and non-aqueous electrolyte 40 are arranged in the sealed case 50 .
本发明实施例还提供一复合隔膜,所述复合隔膜用于所述锂硫电池,所述复合隔膜包括所述隔膜30及设置在所述隔膜30至少一个表面的功能性材料层32。在优选的实施例中,功能性材料层32设置在隔膜30面向锂硫电池中的硫基正极10的表面。The embodiment of the present invention also provides a composite diaphragm, which is used in the lithium-sulfur battery, and the composite diaphragm includes the diaphragm 30 and a functional material layer 32 disposed on at least one surface of the diaphragm 30 . In a preferred embodiment, the functional material layer 32 is disposed on the surface of the separator 30 facing the sulfur-based positive electrode 10 in the lithium-sulfur battery.
本发明实施例还提供一锂硫电池电极组件,包括相互层叠设置的所述硫基正极10、隔膜30及所述功能性材料层32,功能性材料层32设置在所述硫基正极10与所述隔膜30之间。The embodiment of the present invention also provides a lithium-sulfur battery electrode assembly, including the sulfur-based positive electrode 10, the separator 30 and the functional material layer 32 stacked on each other, and the functional material layer 32 is arranged on the sulfur-based positive electrode 10 and the between the diaphragms 30 .
本发明实施例还提供一锂硫电池电极组件,包括相互层叠设置的锂基负极20、隔膜30及功能性材料层32,功能性材料层32设置在锂基负极20与隔膜30之间。The embodiment of the present invention also provides a lithium-sulfur battery electrode assembly, including a lithium-based negative electrode 20 , a separator 30 , and a functional material layer 32 stacked on top of each other. The functional material layer 32 is arranged between the lithium-based negative electrode 20 and the separator 30 .
本发明实施例还提供一种复合硫基正极,包括相互层叠设置的正极材料层12、正极集流体14及功能性材料层32,所述正极材料层12设置在所述功能性材料层32与所述正极集流体14之间。An embodiment of the present invention also provides a composite sulfur-based positive electrode, including a positive electrode material layer 12, a positive electrode current collector 14, and a functional material layer 32 stacked on each other, and the positive electrode material layer 12 is arranged between the functional material layer 32 and the functional material layer 32. Between the positive electrode collectors 14 .
本发明实施例还提供一种复合锂基负极,包括相互层叠设置的金属锂22及功能性材料层32。The embodiment of the present invention also provides a composite lithium-based negative electrode, including metallic lithium 22 and functional material layers 32 stacked on each other.
本发明实施例提供所述功能性材料层32在所述锂硫电池中的应用,包括将含有所述具有结晶水的过渡金属氧化物的固液混合物涂覆于所述硫基正极10和隔膜30中至少一者的表面,从而在所述硫基正极10与所述锂基负极20之间形成所述功能性材料层32。The embodiment of the present invention provides the application of the functional material layer 32 in the lithium-sulfur battery, including coating the solid-liquid mixture containing the transition metal oxide with crystal water on the sulfur-based positive electrode 10 and the separator 30, so that the functional material layer 32 is formed between the sulfur-based positive electrode 10 and the lithium-based negative electrode 20.
在所述固液混合物中固相包括所述具有结晶水的过渡金属氧化物,并可进一步包括所述电子导电材料和所述粘结剂;所述液相优选为溶剂。在所述固液混合物中所述具有结晶水的过渡金属氧化物、电子导电材料、粘结剂和溶剂均匀混合。所述溶剂的作用是作为所述具有结晶水的过渡金属氧化物的载体,因此需要选择不能溶解所述具有结晶水的过渡金属氧化物,不与所述具有结晶水的过渡金属氧化物发生化学反应,且能够在较低温度(如30~120℃)下完全去除的溶剂,例如低分子量易挥发有机溶剂,可以选自N-甲基毗咯烷酮、水、甲醇、乙醇、丙醇、异丙醇、乙睛、丙酮及乙醚中的一种或一种以上。The solid phase in the solid-liquid mixture includes the transition metal oxide with crystal water, and may further include the electronically conductive material and the binder; the liquid phase is preferably a solvent. In the solid-liquid mixture, the transition metal oxide with crystal water, electronically conductive material, binder and solvent are uniformly mixed. The function of the solvent is as the carrier of the transition metal oxide with water of crystallization, so it is necessary to select the transition metal oxide that cannot dissolve the water of crystallization, and do not chemically react with the transition metal oxide with water of crystallization. Reaction, and the solvent that can be removed completely under lower temperature (such as 30~120 ℃), for example low molecular weight volatile organic solvent, can be selected from N-methylpyrrolidone, water, methanol, ethanol, propanol, One or more of isopropanol, acetonitrile, acetone and ether.
所述固液混合物可以为混合液或浆料,混合液与浆料的区别仅在固液两相的比例,当固相较多时为浆料,当液相较多时为混合液。选用浆料与混合液,以及固液两项的比例的选取可根据实际需要进行,例如依据涂覆的方式决定。当然,为使涂覆容易进行,浆料优选具有合适的流动性;而为使涂覆更有效率,混合液中固相优选具有合适的比例。所述涂覆的方式例如可以为浸渍法、旋转涂覆法、刮刀涂覆法、流延涂覆法、抽滤(过滤)涂覆法、单向拉伸法和双向拉伸法中的任意一种。将所述固液混合物通过所述涂覆的步骤形成涂层后,仅需将涂层中的溶剂去除,即可得到所述功能性材料层32。因此,可以将所述固液混合物涂覆在需要的元件表面。当将所述固液混合物涂覆于所述硫基正极10时,可以涂覆于所述正极材料层12面向所述隔膜30的表面。当将所述固液混合物涂覆于所述隔膜30时,可以涂覆于所述隔膜30的单面或双面。The solid-liquid mixture can be a mixed liquid or a slurry. The difference between the mixed liquid and the slurry is only in the ratio of the solid and liquid phases. When the solid phase is more, it is a slurry, and when the liquid phase is more, it is a mixed liquid. The selection of slurry and mixed liquid, and the ratio of solid to liquid can be selected according to actual needs, for example, according to the method of coating. Of course, in order to facilitate the coating, the slurry preferably has proper fluidity; and in order to make the coating more efficient, the solid phase in the mixed solution preferably has a proper ratio. The coating method can be, for example, any one of the dipping method, spin coating method, doctor blade coating method, casting coating method, suction filtration (filtering) coating method, uniaxial stretching method and biaxial stretching method. A sort of. After the solid-liquid mixture is formed into a coating through the step of coating, the functional material layer 32 can be obtained only by removing the solvent in the coating. Therefore, the solid-liquid mixture can be coated on the desired component surface. When the solid-liquid mixture is applied to the sulfur-based positive electrode 10 , it may be applied to the surface of the positive electrode material layer 12 facing the separator 30 . When the solid-liquid mixture is applied to the separator 30 , it may be applied to one or both surfaces of the separator 30 .
在将所述固液混合物涂覆于所述硫基正极10和隔膜30中至少一者的表面之后,可进一步包括干燥去除所述涂层中的溶剂。所述干燥方法例如是在温度为30~120℃环境中真空干燥4~24小时。可以理解,所述干燥的步骤只是为了去除所述涂层中的液相溶剂和吸附水,干燥步骤的温度较低,从而保持干燥后所述功能性材料层32中过渡金属氧化物仍具有结晶水,水分子仍以结晶水的形式存在于所述功能性材料层32中。After coating the solid-liquid mixture on the surface of at least one of the sulfur-based positive electrode 10 and the separator 30 , drying may be further included to remove the solvent in the coating. The drying method is, for example, vacuum drying in an environment with a temperature of 30-120° C. for 4-24 hours. It can be understood that the drying step is only to remove the liquid phase solvent and adsorbed water in the coating, and the temperature of the drying step is relatively low, so that the transition metal oxide in the functional material layer 32 still has crystallization after drying. Water, water molecules still exist in the functional material layer 32 in the form of crystal water.
在需要的表面,例如硫基正极10的正极材料层12表面和/或隔膜30的至少一表面形成所述功能性材料层32后,进一步包括将所述硫基正极10与所述隔膜30层叠设置的步骤。After forming the functional material layer 32 on the required surface, such as the surface of the positive electrode material layer 12 of the sulfur-based positive electrode 10 and/or at least one surface of the separator 30, it further includes laminating the sulfur-based positive electrode 10 and the separator 30 Steps to set up.
在一实施例中,所述层叠设置的步骤使所述功能性材料层32层叠在所述硫基正极10与所述隔膜30之间。例如,在所述硫基正极10的正极材料层12表面形成所述功能性材料层32后,可将所述隔膜30铺设在所述功能性材料层32表面。或者在所述隔膜30的至少一表面形成所述功能性材料层32后,可将所述隔膜30具有所述功能性材料层32一面面向所述正极材料层12,并铺设在所述正极材料层12表面。In one embodiment, the step of stacking is to stack the functional material layer 32 between the sulfur-based positive electrode 10 and the separator 30 . For example, after the functional material layer 32 is formed on the surface of the positive electrode material layer 12 of the sulfur-based positive electrode 10 , the separator 30 may be paved on the surface of the functional material layer 32 . Or after the functional material layer 32 is formed on at least one surface of the separator 30, the separator 30 with the functional material layer 32 can face the positive electrode material layer 12 and be laid on the positive electrode material layer. Layer 12 surface.
在另一实施例中,所述层叠设置的步骤使所述功能性材料层32层叠在所述隔膜30远离所述硫基正极10的表面。在该实施例中,通过进一步在具有所述功能性材料层32的隔膜30表面层叠锂基负极20,同样可以将所述功能性材料层32设置在所述硫基正极10与所述锂基负极20之间。In another embodiment, in the step of stacking, the functional material layer 32 is stacked on the surface of the separator 30 away from the sulfur-based positive electrode 10 . In this embodiment, by further laminating the lithium-based negative electrode 20 on the surface of the separator 30 having the functional material layer 32, the functional material layer 32 can also be arranged between the sulfur-based positive electrode 10 and the lithium-based Between negative poles 20.
将所述硫基正极10、功能性材料层32、隔膜30及锂基负极20相互层叠后,可按照传统的锂硫电池制备工艺将所述层叠结构封装在所述密封壳体50中;以及在所述密封壳体50中注入所述电解液40。After stacking the sulfur-based positive electrode 10, the functional material layer 32, the separator 30 and the lithium-based negative electrode 20, the stacked structure can be packaged in the sealed case 50 according to the traditional lithium-sulfur battery manufacturing process; and The electrolyte solution 40 is injected into the sealed case 50 .
所述以具有结晶水的过渡金属氧化物为基础的功能性材料层32在锂硫电池中具有吸附存储和/或催化多硫化锂的作用,并且通过结晶水H2O的引入,提高功能性材料层32中过渡金属氧化物的晶体结构和纳米维度的多样性,提高了功能性材料层32的离子电导率。通过结晶水H2O的引入可以提高材料的比表面积,更大的比表面积可以提供更多的活性位点,进而高效发挥抑制多硫化锂穿梭的作用,提升锂硫电池的电化学性能和安全性能。The functional material layer 32 based on the transition metal oxide with crystal water has the function of absorbing and storing and/or catalyzing lithium polysulfide in the lithium-sulfur battery, and through the introduction of crystal water H2O , the functional The diversity of crystal structures and nanometer dimensions of transition metal oxides in the material layer 32 improves the ion conductivity of the functional material layer 32 . The introduction of crystalline water H 2 O can increase the specific surface area of the material, and a larger specific surface area can provide more active sites, thereby effectively inhibiting lithium polysulfide shuttle, and improving the electrochemical performance and safety of lithium-sulfur batteries. performance.
本申请的技术方案打破了传统中认为水会对锂硫电池的电化学性能和安全性产生危害的观念,发现并通过实验证明了在功能性材料层32中引入结晶水不但不会影响锂硫电池的性能,同时还可以使锂硫电池具有优异的倍率容量及循环稳定性能。应用所述功能性材料层32的锂硫电池在电动汽车、储能电站及大容量电子产品中的锂离子电池等储能领域具有广阔的应用前景。The technical solution of the present application breaks the traditional notion that water will cause harm to the electrochemical performance and safety of lithium-sulfur batteries, and it is found and proved through experiments that the introduction of crystal water into the functional material layer 32 will not only not affect lithium-sulfur batteries. The performance of the battery can also make the lithium-sulfur battery have excellent rate capacity and cycle stability. The lithium-sulfur battery using the functional material layer 32 has broad application prospects in energy storage fields such as electric vehicles, energy storage power stations, and lithium ion batteries in large-capacity electronic products.
另外,制备过渡金属氧化物的大多数方法是湿法化学法(如水热合成法或者溶胶凝胶法),这些方法得到的产物往往是水合物,传统中都要经过的中高温热处理除去产物中的结晶水。而直接将具有结晶水的过渡金属氧化物用于功能性材料层32省去了所述热处理除水的步骤,有效减少传统方法中的能耗与污染,材料制备过程温和可控,在新能源、新材料以及节能环保产业领域均具有重要的影响和意义。In addition, most of the methods for preparing transition metal oxides are wet chemical methods (such as hydrothermal synthesis or sol-gel method). The products obtained by these methods are often hydrates. of crystal water. The direct use of transition metal oxides with crystal water in the functional material layer 32 omits the step of heat treatment to remove water, effectively reducing energy consumption and pollution in traditional methods, and the material preparation process is mild and controllable. , new materials and energy-saving and environmental protection industries have important influence and significance.
实施例1Example 1
1)具有结晶水的过渡金属氧化物基功能性材料层的制备:将TiO2·xH2O、Super P以及PVDF按照8:1:1的质量比加入到N-甲基毗咯烷酮中混合成浆料,随后使用流延法在聚丙烯隔膜上单面涂覆上述浆料,再将浆料在60℃下真空干燥10小时,即得到具有结晶水的过渡金属氧化物基功能性材料层的复合隔膜(以下简称PP@C&HTO-1)。PP@C&HTO-1中功能性材料层的扫描电子显微镜(SEM)图如图3所示。1) Preparation of transition metal oxide-based functional material layer with crystal water: TiO 2 xH 2 O, Super P and PVDF were added to N-methylpyrrolidone at a mass ratio of 8:1:1 Mix to form a slurry, and then use the casting method to coat the above slurry on one side of the polypropylene separator, and then dry the slurry at 60°C for 10 hours in vacuum to obtain a transition metal oxide-based functional material with crystal water layer composite separator (hereinafter referred to as PP@C&HTO-1). The scanning electron microscope (SEM) image of the functional material layer in PP@C&HTO-1 is shown in Fig. 3.
2)锂硫电池的组装:以升华硫制备硫正极,金属锂片为负极,PP@C&HTO-1为隔膜,电解液为LiTFSI和LiNO3在DME与DOL的混合溶剂中形成的混合溶液(DME与DOL体积比为1:1,LiTFSI的浓度为1mol/L,LiNO3的浓度为0.2mol/L)。在水和氧含量均低于1ppm的高纯氩气气氛的手套箱中组装2032型扣式电池。2) Assembly of lithium-sulfur battery: Sublimed sulfur is used to prepare sulfur positive electrode, metal lithium sheet is used as negative electrode, PP@C&HTO-1 is used as separator, and electrolyte is a mixed solution of LiTFSI and LiNO 3 in a mixed solvent of DME and DOL (DME The volume ratio to DOL is 1:1, the concentration of LiTFSI is 1mol/L, and the concentration of LiNO3 is 0.2mol/L). A 2032-type coin cell was assembled in a glove box with a high-purity argon atmosphere with both water and oxygen content below 1 ppm.
对比例1Comparative example 1
与实施例1相同,区别仅在将实施例1中的PP@C&HTO-1替换为商品化锂电池用聚丙烯隔膜(以下简称PP),组装与实施例1相同的2032型扣式电池,区别仅在将PP@C&HTO-1替换为PP。Same as Example 1, the only difference is that the PP@C&HTO-1 in Example 1 is replaced by a commercialized lithium battery polypropylene separator (hereinafter referred to as PP), and the same 2032-type button battery as in Example 1 is assembled, the difference Just replace PP@C&HTO-1 with PP.
对比例2Comparative example 2
与实施例1相同,区别仅在将实施例1中的TiO2·xH2O经过350℃加热脱水后得到TiO2(以下简称TO-1)材料,并将实施例1中功能性材料层制备步骤中的TiO2·xH2O替换成TO-1,得到具有过渡金属氧化物涂层的复合隔膜(以下简称PP@C&TO-1),组装与实施例1相同的2032型扣式电池,区别仅在将PP@C&HTO-1替换为PP@C&TO-1。Same as Example 1, the only difference is that the TiO 2 xH 2 O in Example 1 is heated and dehydrated at 350°C to obtain TiO 2 (hereinafter referred to as TO-1) material, and the functional material layer in Example 1 is prepared The TiO 2 ·xH 2 O in the step was replaced with TO-1 to obtain a composite separator with a transition metal oxide coating (hereinafter referred to as PP@C&TO-1), and the same 2032-type button battery as in Example 1 was assembled, with the difference Just replace PP@C&HTO-1 with PP@C&TO-1.
实施例2Example 2
与实施例1相同,区别仅在将实施例1中的TiO2·xH2O替换为H2Ti3O7,以及将流延法替换为刮刀涂覆法,得到具有过渡金属氧化物涂层的复合隔膜(以下简称PP@C&HTO-2),组装与实施例1相同的2032型扣式电池,区别仅在将PP@C&HTO-1替换为PP@C&HTO-2。Same as Example 1, the only difference is that TiO 2 xH 2 O in Example 1 is replaced by H 2 Ti 3 O 7 , and the tape casting method is replaced by a doctor blade coating method to obtain a transition metal oxide coating The composite separator (hereinafter referred to as PP@C&HTO-2) was assembled with the same 2032-type button battery as in Example 1, the only difference being that PP@C&HTO-1 was replaced by PP@C&HTO-2.
PP@C&HTO-2中功能性材料层的扫描电子显微镜(SEM)图如图7所示。The scanning electron microscope (SEM) image of the functional material layer in PP@C&HTO-2 is shown in Fig. 7.
电池电化学性能的测试Testing of battery electrochemical performance
采用LAND电池测试系统在充放电截止电压分别为2.7V和1.8V的电压范围内进行恒流充放电循环,测试实施例1-2和对比例1-2的扣式电池的电化学循环特性,电池的测试数据如表1所示。图4为分别使用PP@C&HTO-1及PP的锂硫电池在0.2C下的循环性能对比图。图5为使用PP@C&HTO-1的锂硫电池在1C下的循环性能与库伦效率图。图6为对比例2使用PP@C&TO-1的锂硫电池在1C下的循环性能与库伦效率图。图8为分别使用PP@C&HTO-2及PP的锂硫电池在0.2C下的循环性能对比图。图9为使用PP@C&HTO-2的锂硫电池在0.5C下的循环性能与库伦效率图。Adopt LAND battery test system to carry out constant current charge and discharge cycle in the voltage range of 2.7V and 1.8V respectively in charge and discharge cut-off voltage, test the electrochemical cycle characteristics of the button cell of embodiment 1-2 and comparative example 1-2, The test data of the battery is shown in Table 1. Figure 4 is a comparison chart of the cycle performance of lithium-sulfur batteries using PP@C&HTO-1 and PP at 0.2C. Figure 5 is a diagram of the cycle performance and Coulombic efficiency of a lithium-sulfur battery using PP@C&HTO-1 at 1C. Figure 6 is a diagram of the cycle performance and coulombic efficiency of the lithium-sulfur battery using PP@C&TO-1 in Comparative Example 2 at 1C. Figure 8 is a comparison chart of the cycle performance of lithium-sulfur batteries using PP@C&HTO-2 and PP at 0.2C. Figure 9 is a diagram of the cycle performance and Coulombic efficiency of a lithium-sulfur battery using PP@C&HTO-2 at 0.5C.
通过图4的循环性能对比可以看出,使用PP@C&HTO-1的锂硫电池首次放电容量高达1735mAh/g,而使用PP的对照组电池首次放电容量仅为979mAh/g。在400次循环之后,使用PP@C&HTO-1的锂硫电池仍能保持671mAh/g的稳定比容量,是使用PP的对照组电池比容量的2.5倍。通过图5可以看出,在1C的大倍率下,使用PP@C&HTO-1的锂硫电池在长达1400次的循环后仍有420mAh/g的可逆比容量,库伦效率接近100%,多硫化锂的“穿梭效应”明显减弱,电池展现出非常优异的大倍率容量和循环稳定性。From the cycle performance comparison in Figure 4, it can be seen that the initial discharge capacity of the lithium-sulfur battery using PP@C&HTO-1 is as high as 1735mAh/g, while the initial discharge capacity of the control battery using PP is only 979mAh/g. After 400 cycles, the lithium-sulfur battery using PP@C&HTO-1 can still maintain a stable specific capacity of 671mAh/g, which is 2.5 times the specific capacity of the control battery using PP. It can be seen from Figure 5 that at a large rate of 1C, the lithium-sulfur battery using PP@C&HTO-1 still has a reversible specific capacity of 420mAh/g after up to 1400 cycles, and the Coulombic efficiency is close to 100%. The "shuttle effect" of lithium is significantly weakened, and the battery exhibits excellent high-rate capacity and cycle stability.
用PP@C&TO-1和PP@C&HTO-1对比考察含结晶水材料在锂硫电池中的优势。通过图6可以看出,使用PP@C&TO-1的锂硫电池首次放电容量仅为650mAh/g。在之后的1400次循环中,电池的比容量不断降低,到250次循环时比容量已经降低到420mAh/g。而图5中,在同样的条件下,PP@C&HTO-1的锂硫电池1400次循环后仍然高于420mAh/g。在1400次循环之后,PP@C&TO-1的锂硫电池的比容量仅剩余130mAh/g。这是由于纳米TiO2·xH2O晶体结构在高温脱水的过程往往要发生粗化和团聚,材料颗粒的尺寸变大,比表面积大幅降低,进而降低了材料中活性位点对多硫化锂的吸附存储和催化作用,导致电化学性能不尽人意。Using PP@C&TO-1 and PP@C&HTO-1 to compare the advantages of crystal water-containing materials in lithium-sulfur batteries. It can be seen from Figure 6 that the first discharge capacity of the lithium-sulfur battery using PP@C&TO-1 is only 650mAh/g. In the next 1400 cycles, the specific capacity of the battery continued to decrease, and the specific capacity had dropped to 420mAh/g at 250 cycles. In Figure 5, under the same conditions, the lithium-sulfur battery of PP@C&HTO-1 is still higher than 420mAh/g after 1400 cycles. After 1400 cycles, the specific capacity of the lithium-sulfur battery of PP@C&TO-1 is only 130mAh/g. This is because the nano-TiO 2 ·xH 2 O crystal structure tends to coarsen and agglomerate during the high-temperature dehydration process, the particle size of the material becomes larger, and the specific surface area is greatly reduced, which in turn reduces the resistance of the active sites in the material to lithium polysulfide. Adsorption storage and catalysis lead to unsatisfactory electrochemical performance.
通过上述实验可以得知,在纳米氧化物的制备方法中,湿法化学法(如水热反应或者溶胶凝胶反应)制备得到的氧化物的水合物,其具有结晶水。而传统认为带有结晶水的水合物需要通过高温煅烧除水得到最终产物。但本申请发明人发现,高温除水之后的材料对于用于锂硫电池的功能性材料层来说是并非理想的状态。在本申请中,本申请发明人通过避免高温煅烧,保留材料中的结晶水,避免了纳米晶体结构在高温脱水的过程中的粗化和团聚,使过渡金属氧化物具有大量的活性位点,通过大量活性位点来吸附存储和(或)催化多硫化锂。并且,当氧化物具有较小的晶粒尺寸时,可以更容易的填充于有机隔膜孔隙来物理阻隔多硫化锂,达到更好的抑制锂硫电池多硫化锂穿梭的效果。It can be known from the above experiments that in the preparation method of nano-oxides, the hydrates of oxides prepared by wet chemical methods (such as hydrothermal reaction or sol-gel reaction) have crystal water. Traditionally, it is believed that hydrates with crystal water need to be calcined at high temperature to remove water to obtain the final product. However, the inventors of the present application found that the material after high-temperature water removal is not ideal for the functional material layer used in lithium-sulfur batteries. In this application, the inventors of the present application avoided the high-temperature calcination, retained the crystal water in the material, and avoided the coarsening and agglomeration of the nanocrystalline structure in the process of high-temperature dehydration, so that the transition metal oxide has a large number of active sites, Adsorption storage and (or) catalysis of lithium polysulfide through a large number of active sites. Moreover, when the oxide has a smaller grain size, it can be more easily filled in the pores of the organic separator to physically block lithium polysulfide, and achieve a better effect of inhibiting lithium polysulfide shuttling in lithium-sulfur batteries.
通过图8的循环性能对比可以看出,使用PP@C&HTO-2的锂硫电池首次放电容量高达1536mAh/g,而使用PP的对照组电池首次放电容量仅为979mAh/g。在400次循环之后,使用PP@C&HTO-2的锂硫电池仍能保持639mAh/g的稳定比容量,是使用PP的对照组电池比容量的2.5倍。在0.5C的倍率下(图9),使用PP@C&HTO-2的锂硫电池在长达1200圈的循环后仍有442mAh/g的可逆比容量,库伦效率接近100%,多硫化锂的“穿梭效应”明显减弱,电池展现出非常优异的大倍率容量和循环稳定性。From the cycle performance comparison in Figure 8, it can be seen that the initial discharge capacity of the lithium-sulfur battery using PP@C&HTO-2 is as high as 1536mAh/g, while the initial discharge capacity of the control battery using PP is only 979mAh/g. After 400 cycles, the lithium-sulfur battery using PP@C&HTO-2 can still maintain a stable specific capacity of 639mAh/g, which is 2.5 times the specific capacity of the control battery using PP. At a rate of 0.5C (Figure 9), the lithium-sulfur battery using PP@C&HTO-2 still has a reversible specific capacity of 442mAh/g after up to 1200 cycles, and the Coulombic efficiency is close to 100%. The "shuttle effect" is significantly weakened, and the battery exhibits excellent high-rate capacity and cycle stability.
表1Table 1
实施例3Example 3
1)具有结晶水的过渡金属氧化物基功能性材料层的制备:将MoO3·xH2O、科琴黑以及PVDF按照7:2:1的质量比加入到乙醇溶剂中混合成浆料,随后使用旋转涂覆在聚乙烯隔膜上双面涂覆上述浆料,再将浆料在80℃下真空干燥10小时,即得到具有具有结晶水的过渡金属氧化物基功能性材料层的复合隔膜(以下简称PE@C&HMO-3)。1) Preparation of a transition metal oxide-based functional material layer with crystal water: MoO 3 ·xH 2 O, Ketjen Black and PVDF were added to an ethanol solvent at a mass ratio of 7:2:1 and mixed to form a slurry, Then use spin coating to coat the above slurry on both sides of the polyethylene separator, and then dry the slurry at 80°C for 10 hours in vacuum to obtain a composite separator with a transition metal oxide-based functional material layer with crystal water (hereinafter referred to as PE@C&HMO-3).
2)锂硫电池的组装:与实施例1相同,区别仅在将PP@C&HTO-1替换为PE@C&HMO-3。2) Assembly of lithium-sulfur battery: the same as in Example 1, the only difference is that PP@C&HTO-1 is replaced by PE@C&HMO-3.
实施例4Example 4
1)具有结晶水的过渡金属氧化物基功能性材料层的制备:将V2O5·xH2O、乙炔黑以及LA按照85:15:5的质量比加入到去离子水中混合成浆料,随后使用抽滤(过滤)涂覆法在聚乙烯-聚丙烯双层隔膜上单面涂覆上述浆料,再将浆料在80℃下真空干燥10小时,即得到具有具有结晶水的过渡金属氧化物基功能性材料层的复合隔膜(以下简称PE/PP@C&HVO-4)。1) Preparation of a transition metal oxide-based functional material layer with crystal water: V 2 O 5 xH 2 O, acetylene black, and LA were added to deionized water at a mass ratio of 85:15:5 and mixed to form a slurry , and then use the suction filtration (filtration) coating method to coat the above slurry on one side of the polyethylene-polypropylene double-layer separator, and then dry the slurry at 80°C for 10 hours in a vacuum to obtain a transition layer with crystal water. A composite separator with a metal oxide-based functional material layer (hereinafter referred to as PE/PP@C&HVO-4).
2)锂硫电池的组装:与实施例1相同,区别仅在将升华硫替换为硫碳复合材料,将PP@C&HTO-1替换为PE/PP@C&HVO-4。2) Assembly of lithium-sulfur battery: the same as in Example 1, the only difference is that sublimated sulfur is replaced by sulfur-carbon composite material, and PP@C&HTO-1 is replaced by PE/PP@C&HVO-4.
实施例5Example 5
1)具有结晶水的过渡金属氧化物基功能性材料层的制备:将WO3·xH2O、碳纳米管以及PTFE按照6:3:1的质量比加入到甲醇中混合成浆料,随后使用流延法在升华硫制成的正极材料层表面涂覆上述浆料,再将浆料在80℃下真空干燥10小时,即得到具有具有结晶水的过渡金属氧化物基功能性材料层的硫基正极(以下简称S@C&HWO-5)。1) Preparation of a transition metal oxide-based functional material layer with crystal water: WO 3 ·xH 2 O, carbon nanotubes, and PTFE were added to methanol at a mass ratio of 6:3:1 to form a slurry, and then Apply the above slurry on the surface of the positive electrode material layer made of sublimed sulfur by casting method, and then vacuum dry the slurry at 80°C for 10 hours to obtain a transition metal oxide-based functional material layer with crystal water Sulfur-based cathode (hereinafter referred to as S@C&HWO-5).
2)锂硫电池的组装:以S@C&HWO-5作为正极,金属锂片为负极,隔膜为商品化的锂电池用聚丙烯-聚乙烯-聚丙烯隔膜,电解液为LiTFSI在DME与DOL的混合溶剂中形成的溶液(DME与DOL体积比为1:1,LiTFSI的浓度为1mol/L)。在水和氧含量均低于1ppm的高纯氩气气氛的手套箱中组装2032型扣式电池。2) Lithium-sulfur battery assembly: S@C&HWO-5 is used as the positive electrode, metal lithium sheet is used as the negative electrode, the separator is a commercial lithium battery polypropylene-polyethylene-polypropylene separator, and the electrolyte is LiTFSI in DME and DOL A solution formed in a mixed solvent (the volume ratio of DME to DOL is 1:1, and the concentration of LiTFSI is 1mol/L). A 2032-type coin cell was assembled in a glove box with a high-purity argon atmosphere with both water and oxygen content below 1 ppm.
实施例6Example 6
1)具有结晶水的过渡金属氧化物基功能性材料层的制备:将Fe2O3·xH2O、石墨烯以及聚偏氟乙烯按照70:15:15的质量比加入到乙醇中混合成浆料,随后使用刮刀法在PAN多孔膜单面涂覆上述浆料,再将浆料在60℃下真空干燥10小时,即得到具有具有结晶水的过渡金属氧化物基功能性材料层的复合隔膜(以下简称PAN@C&HFO-6)。1) Preparation of transition metal oxide-based functional material layer with crystal water: Fe 2 O 3 xH 2 O, graphene and polyvinylidene fluoride were added to ethanol at a mass ratio of 70:15:15 and mixed to form Slurry, then use the doctor blade method to coat the above slurry on one side of the PAN porous membrane, and then dry the slurry at 60°C for 10 hours in vacuum to obtain a composite layer with a transition metal oxide-based functional material layer with crystal water Diaphragm (hereinafter referred to as PAN@C&HFO-6).
2)锂硫电池的组装:与实施例1相同,区别仅在将升华硫替换为硫碳复合材料,将PP@C&HTO-1替换为PE/PP@C&HVO-6。2) Assembly of lithium-sulfur battery: the same as in Example 1, the only difference is that the sublimated sulfur is replaced by a sulfur-carbon composite material, and PP@C&HTO-1 is replaced by PE/PP@C&HVO-6.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the descriptions thereof are relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710342173.5A CN107275551B (en) | 2017-05-16 | 2017-05-16 | Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710342173.5A CN107275551B (en) | 2017-05-16 | 2017-05-16 | Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107275551A true CN107275551A (en) | 2017-10-20 |
CN107275551B CN107275551B (en) | 2020-04-24 |
Family
ID=60065408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710342173.5A Expired - Fee Related CN107275551B (en) | 2017-05-16 | 2017-05-16 | Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107275551B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108461694A (en) * | 2018-04-24 | 2018-08-28 | 清华大学 | A kind of economic benefits and social benefits composite diaphragm of lithium-sulfur cell and preparation method thereof |
CN109360926A (en) * | 2018-11-06 | 2019-02-19 | 长沙矿冶研究院有限责任公司 | A kind of lithium-sulfur cell functionalization diaphragm and preparation method thereof, lithium-sulfur cell |
CN110098367A (en) * | 2019-05-31 | 2019-08-06 | 长春理工大学 | A kind of carbon nano-tube/titanic oxide nano lamella compound modified diaphragm and preparation method thereof |
CN110165124A (en) * | 2019-05-16 | 2019-08-23 | 华南师范大学 | It is a kind of applied to double coated separators of lithium-selenium disulfide battery and its preparation method and application |
CN110233225A (en) * | 2019-06-28 | 2019-09-13 | 电子科技大学 | A kind of lithium-sulfur cell modified diaphragm and preparation method thereof |
TWI681587B (en) * | 2018-01-16 | 2020-01-01 | 中央研究院 | Method for manufacturing fast charging and long life li-s batteries |
CN110676442A (en) * | 2019-08-23 | 2020-01-10 | 浙江理工大学 | Method for preparing sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing atomic layer deposition technology |
CN111056149A (en) * | 2019-12-30 | 2020-04-24 | 武汉理工氢电科技有限公司 | Membrane electrode packaging assembly and membrane electrode packaging method |
CN111213255A (en) * | 2017-10-26 | 2020-05-29 | 株式会社Lg化学 | Separator and lithium secondary battery comprising same |
CN111403662A (en) * | 2020-03-27 | 2020-07-10 | 清华大学深圳国际研究生院 | Composite diaphragm, preparation method thereof and lithium battery |
CN111416089A (en) * | 2020-04-10 | 2020-07-14 | 吉林师范大学 | A composite separator for inducing and inhibiting growth of lithium dendrites, preparation method and lithium ion battery using the same |
CN112272894A (en) * | 2018-10-26 | 2021-01-26 | 株式会社Lg化学 | Functional separator, preparation method thereof, and lithium secondary battery comprising the functional separator |
CN115104220A (en) * | 2019-09-12 | 2022-09-23 | 新泰克电池股份有限公司 | Hybrid electrode for battery cells and method for the production thereof |
CN115275525A (en) * | 2022-08-23 | 2022-11-01 | 吉林师范大学 | Diaphragm for inhibiting polysulfide shuttling effect, preparation process thereof and lithium-sulfur battery using diaphragm |
CN117548105A (en) * | 2024-01-09 | 2024-02-13 | 西南石油大学 | An α-MnO2 nanorod-loaded RuO2 lithium-sulfur battery cathode catalyst and its preparation method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1292579A (en) * | 1999-09-09 | 2001-04-25 | 佳能株式会社 | Alkaline charging battery and method for making said charging battery |
CN103633288A (en) * | 2012-08-28 | 2014-03-12 | 华为技术有限公司 | Lithium ion battery composite negative electrode material and preparation method thereof, lithium ion battery negative electrode sheet and lithium ion battery |
US20150024248A1 (en) * | 2013-07-22 | 2015-01-22 | Hui He | Non-flammable quasi-solid electrolyte-separator layer product for lithium battery applications |
US20150024121A1 (en) * | 2013-07-22 | 2015-01-22 | Hui He | Process for producing non-flammable quasi-solid electrolyte and electrolyte-separator for lithium battery applications |
CN104733775A (en) * | 2013-12-19 | 2015-06-24 | 索尼公司 | Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus |
CN104900861A (en) * | 2015-04-02 | 2015-09-09 | 清华大学 | Hydrogen lithium titanate Li-H-Ti-O material and preparation method thereof |
CN105140447A (en) * | 2015-07-23 | 2015-12-09 | 中国科学院上海硅酸盐研究所 | Functional composite membrane for lithium-sulfur battery and preparation method of functional composite membrane |
CN106099102A (en) * | 2016-07-04 | 2016-11-09 | 大连博融新材料有限公司 | A kind of production method of lithium ion battery electrode active material |
-
2017
- 2017-05-16 CN CN201710342173.5A patent/CN107275551B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1292579A (en) * | 1999-09-09 | 2001-04-25 | 佳能株式会社 | Alkaline charging battery and method for making said charging battery |
CN103633288A (en) * | 2012-08-28 | 2014-03-12 | 华为技术有限公司 | Lithium ion battery composite negative electrode material and preparation method thereof, lithium ion battery negative electrode sheet and lithium ion battery |
US20150024248A1 (en) * | 2013-07-22 | 2015-01-22 | Hui He | Non-flammable quasi-solid electrolyte-separator layer product for lithium battery applications |
US20150024121A1 (en) * | 2013-07-22 | 2015-01-22 | Hui He | Process for producing non-flammable quasi-solid electrolyte and electrolyte-separator for lithium battery applications |
CN104733775A (en) * | 2013-12-19 | 2015-06-24 | 索尼公司 | Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus |
CN104900861A (en) * | 2015-04-02 | 2015-09-09 | 清华大学 | Hydrogen lithium titanate Li-H-Ti-O material and preparation method thereof |
CN105140447A (en) * | 2015-07-23 | 2015-12-09 | 中国科学院上海硅酸盐研究所 | Functional composite membrane for lithium-sulfur battery and preparation method of functional composite membrane |
CN106099102A (en) * | 2016-07-04 | 2016-11-09 | 大连博融新材料有限公司 | A kind of production method of lithium ion battery electrode active material |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111213255A (en) * | 2017-10-26 | 2020-05-29 | 株式会社Lg化学 | Separator and lithium secondary battery comprising same |
US11411283B2 (en) | 2017-10-26 | 2022-08-09 | Lg Energy Solution, Ltd. | Separator having coating layer including partially reduced graphene oxide and lithium ion conductive polymer and lithium secondary battery comprising the same |
TWI681587B (en) * | 2018-01-16 | 2020-01-01 | 中央研究院 | Method for manufacturing fast charging and long life li-s batteries |
CN108461694A (en) * | 2018-04-24 | 2018-08-28 | 清华大学 | A kind of economic benefits and social benefits composite diaphragm of lithium-sulfur cell and preparation method thereof |
CN112272894A (en) * | 2018-10-26 | 2021-01-26 | 株式会社Lg化学 | Functional separator, preparation method thereof, and lithium secondary battery comprising the functional separator |
CN112272894B (en) * | 2018-10-26 | 2022-12-20 | 株式会社Lg新能源 | Functional diaphragm, preparation method thereof and lithium secondary battery comprising said functional diaphragm |
US12087967B2 (en) | 2018-10-26 | 2024-09-10 | Lg Energy Solution, Ltd. | Functional separator, manufacturing method therefor, and lithium secondary battery comprising same |
CN109360926A (en) * | 2018-11-06 | 2019-02-19 | 长沙矿冶研究院有限责任公司 | A kind of lithium-sulfur cell functionalization diaphragm and preparation method thereof, lithium-sulfur cell |
CN109360926B (en) * | 2018-11-06 | 2020-03-24 | 长沙矿冶研究院有限责任公司 | Functionalized diaphragm for lithium-sulfur battery, preparation method of functionalized diaphragm and lithium-sulfur battery |
CN110165124A (en) * | 2019-05-16 | 2019-08-23 | 华南师范大学 | It is a kind of applied to double coated separators of lithium-selenium disulfide battery and its preparation method and application |
CN110165124B (en) * | 2019-05-16 | 2022-02-22 | 华南师范大学 | Double-coating diaphragm applied to lithium-selenium disulfide battery and preparation method and application thereof |
CN110098367A (en) * | 2019-05-31 | 2019-08-06 | 长春理工大学 | A kind of carbon nano-tube/titanic oxide nano lamella compound modified diaphragm and preparation method thereof |
CN110233225A (en) * | 2019-06-28 | 2019-09-13 | 电子科技大学 | A kind of lithium-sulfur cell modified diaphragm and preparation method thereof |
CN110676442A (en) * | 2019-08-23 | 2020-01-10 | 浙江理工大学 | Method for preparing sulfur/carbon @ metal oxide nanotube lithium-sulfur battery positive electrode material by utilizing atomic layer deposition technology |
CN115104220A (en) * | 2019-09-12 | 2022-09-23 | 新泰克电池股份有限公司 | Hybrid electrode for battery cells and method for the production thereof |
CN111056149A (en) * | 2019-12-30 | 2020-04-24 | 武汉理工氢电科技有限公司 | Membrane electrode packaging assembly and membrane electrode packaging method |
CN111403662A (en) * | 2020-03-27 | 2020-07-10 | 清华大学深圳国际研究生院 | Composite diaphragm, preparation method thereof and lithium battery |
CN111416089A (en) * | 2020-04-10 | 2020-07-14 | 吉林师范大学 | A composite separator for inducing and inhibiting growth of lithium dendrites, preparation method and lithium ion battery using the same |
CN115275525A (en) * | 2022-08-23 | 2022-11-01 | 吉林师范大学 | Diaphragm for inhibiting polysulfide shuttling effect, preparation process thereof and lithium-sulfur battery using diaphragm |
CN115275525B (en) * | 2022-08-23 | 2023-08-22 | 吉林师范大学 | A separator that inhibits the shuttle effect of polysulfides, its preparation process and a lithium-sulfur battery using the separator |
CN117548105A (en) * | 2024-01-09 | 2024-02-13 | 西南石油大学 | An α-MnO2 nanorod-loaded RuO2 lithium-sulfur battery cathode catalyst and its preparation method |
CN117548105B (en) * | 2024-01-09 | 2024-03-19 | 西南石油大学 | An α-MnO2 nanorod-loaded RuO2 lithium-sulfur battery cathode catalyst and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN107275551B (en) | 2020-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107275551B (en) | Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery | |
CN107623103B (en) | Lithium-sulfur battery cell electrode | |
CN107546357B (en) | Lithium-sulfur battery, assembly thereof and application of functional material layer in lithium-sulfur battery | |
Liao et al. | Novel flower-like hierarchical carbon sphere with multi-scale pores coated on PP separator for high-performance lithium-sulfur batteries | |
CN104733677A (en) | Lithium-selenium battery and preparation technology thereof | |
CN104103791A (en) | Composite diaphragm for battery and preparation method thereof | |
CN105914369B (en) | A nanoscale carbon-coated lithium sulfide composite material and its preparation method and application | |
KR20160149862A (en) | Silicon oxide-carbon-polymer composite, and negative electrode active material comprising the same | |
CN104916802A (en) | Composite membrane and application thereof | |
CN104600233A (en) | Thermal shutdown composite diaphragm and application thereof | |
KR101645075B1 (en) | Lithium Sulfate Cell with Intergraphic Intermediate Electrode Layer in Grafted Finite Layer and Aluminum Coated Fiber Structure | |
JP7592148B2 (en) | Lithium-sulfur batteries with high energy density. | |
CN111969164A (en) | Composite modified diaphragm for lithium-sulfur battery and preparation method thereof | |
JP7511747B2 (en) | Electrolyte for lithium-sulfur battery and lithium-sulfur battery containing the same | |
Yang et al. | Efficient polysulfides trapping and redox enabled by Co/N-carbon implanted Li+-montmorillonite for advanced lithium-sulfur batteries | |
CN106784538A (en) | The spraying preparation method of poly-dopamine ceramic diaphragm and its application in lithium ion battery | |
JP2022553728A (en) | Electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
CN108011126A (en) | Battery module for starting electric power equipment | |
CN114556664B (en) | Electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
JP6622819B2 (en) | Lithium secondary battery with improved output characteristics | |
CN113793980A (en) | Rechargeable organic calcium ion battery and preparation method thereof | |
JP2022550941A (en) | Electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
CN105609687B (en) | By C/Ti4O7Lithium-sulfur battery with composite fiber non-woven fabric as intercalation | |
KR102785982B1 (en) | Current collector including a coating layer coated with a carbon-based material, manufacturing method thereof, and a lithium secondary battery comprising the same | |
CN109961967A (en) | Lithium ion capacitor and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200424 Termination date: 20210516 |
|
CF01 | Termination of patent right due to non-payment of annual fee |