CN107253703B - 不含稀土的能够转变的氮化物磁体及其制造方法 - Google Patents
不含稀土的能够转变的氮化物磁体及其制造方法 Download PDFInfo
- Publication number
- CN107253703B CN107253703B CN201710302326.3A CN201710302326A CN107253703B CN 107253703 B CN107253703 B CN 107253703B CN 201710302326 A CN201710302326 A CN 201710302326A CN 107253703 B CN107253703 B CN 107253703B
- Authority
- CN
- China
- Prior art keywords
- iron
- based alloy
- phase
- martensitic
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/0615—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
- C01B21/0622—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with iron, cobalt or nickel
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58042—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on iron group metals nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/62615—High energy or reactive ball milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6265—Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6268—Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/60—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
- C23C8/62—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/065—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/083—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/11—Powder tap density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/42—Magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/405—Iron group metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/46—Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/46—Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
- C04B2235/465—Ammonia
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0264—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及一种不含稀土的能够转变的氮化物磁体及其制造方法。具体提供了一种用于生产适合用作永磁材料的有序马氏体铁氮化物粉末的方法。该方法包括:制备具有所期望的组合物和均匀度的铁合金粉末;通过在流化床反应器中使铁合金粉末与氮源接触来对该铁合金粉末进行氮化以产生铁氮化物粉末;将铁氮化物粉末转变成无序马氏体相;将无序马氏体相退火成有序马氏体相;以及从铁氮化物粉末中分离出有序马氏体相以产生有序马氏体铁氮化物粉末。
Description
本申请是申请日为2012年12月17日,申请号为201280069689.2,发明名称为“不含稀土的能够转变的氮化物磁体及其制造方法”的发明专利申请的分案申请。
本申请要求于2011年12月15日递交的美国临时申请61/570955的权益,为了所有目的,通过引用将其全部并入在此,如同在本文中完全阐述一样。
技术领域
本发明总体上涉及一种适用于永磁体应用诸如风力涡轮发电机、电动汽车马达等的铁氮化物磁粉末的组合物以及生产该粉末的方法。
背景技术
稀土磁体是由稀土元素的合金制成的强永磁体。稀土磁体具有优于铁氧体磁体或铝镍钴磁体的显著性能。有两种类型的稀土磁体:钕磁体和钐钴磁体。到2020年,稀土永磁体的世界市场总量预计为$172亿,中国有望控制这个市场的74%(以吨计)。这个市场的稀土磁体份额有望继续增长并且预计将约占这一总量的30%。因此,强永磁体的市场和需求是巨大的,而其供应是有限的。
Fe16N2已被认为是稀土金属磁体的潜在替代品。图1a示出α”-Fe16N2及其它类永磁体材料的性能(由剩磁表示,Br)随密度的变化。具有高性能和低密度的材料是所期望的,因为这些是实现可扩展性(scalability)和成本的系统级目标的关键因素。α”-Fe16N2优于其它永磁体材料的所预计的成本优势示于图1b中。
本领域当前状态的限制是,仅通过在氮过饱和的环境中溅射或蒸发来实现100%转变成表现出突出的磁特性的单相α”-Fe16N2。然而,当使用传统扩散技术来处理大量粉末或薄膜时,平衡热力学将可利用的氮限制为<10.3at%N。因而,在已报道的文献中,即使使用纳米尺度的起始粉末,也从未实现这些粉末的完全转变。
发明内容
根据本发明的一些方面,提供一种用于生产适合用作永磁材料的有序马氏体铁氮化物粉末的方法。该方法包括:制造具有所期望的组合物和均匀度的铁合金粉末,通过在流化床反应器中使所述铁合金粉末与氮源接触来对所述铁合金粉末进行氮化处理以生产铁氮化物粉末,将所述铁氮化物粉末转变成无序马氏体相,将所述无序马氏体相退火成有序马氏体相,以及从所述铁氮化物粉末中分离出所述有序马氏体相以产生有序马氏体铁氮化物粉末。
在本发明的另一个方面中,提供一种含有由奥氏体相转变而成有序马氏体铁氮化物的永磁体组合物,其中,所述永磁体组合物不包括任何显著量的稀土元素。
在本发明的又一个方面中,提供一种含有有序马氏体铁氮化物粉末的磁体。
附图说明
图1a是挑选的硬永磁材料的剩磁感应对密度的图,所述挑选的硬永磁材料包括根据本发明各方面的α”Fe16N2。
图1b是根据本发明各方面的硬永磁材料的剩磁感应对估计的材料成本的图。
因而,为了可以更好地理解本文中本发明的详细描述,并且为了可以更好地理解本发明对现有技术的贡献,已经相当广泛地概述了本发明的某些实施方式。当然,还有将在下面进行描述的本发明另外的实施方式,并且这些将形成所附权利要求书的主题。
在这方面,在详细解释本发明的至少一个实施方式之前,应当理解,本发明没有将其应用限制于在下面描述中阐述的或在附图中示出的构造的细节和组件的设置。除了所描述的那些方面,本发明能够以多种方式实践和实施。另外,将理解的是,本文中采用的措辞和术语以及摘要是用于描述的目的而不应视为限制。
同样地,本领域技术人员将理解,本发明所基于的概念可以容易地被用作设计用于实施本发明若干目的的其它结构、方法和系统的基础。因此,重要的是,权利要求书应视为包括这些等同构造,只要它们不背离本发明的精神和范围。
具体实施方式
本发明涉及一种取消了永磁体材料中稀土元素的方法和组合物。具体地,大量粉末被转变成α”-Fe16N2,一种有序马氏体。这通过一种新颖的方法而实现,该方法使能够:与在元素Fe中可能溶解的氮相比,在奥氏体铁基合金中溶解更多的氮,通过高能球磨机将富氮的奥氏体转变成马氏体(α’),以及最终通过回火将马氏体转变成有序α”-Fe16N2。在奥氏体铁基合金中,溶解可以具有16:2的金属:氮的比例。
微合金化被用来扩大Fe-N相图中的单相奥氏体(γ-Fe)区域。这使得氮浓度必然能够产生具有最佳化学计量组合物的中间体马氏体。随后的低温老化热处理将完成向α”-Fe16N2的转变。
制造适合作为永磁材料的有序马氏体铁氮化物粉末的方法具有至少五(5)个步骤。这些步骤是:制造具有所期望的组合物和均匀度的铁合金粉末;通过在流化床反应器中使所述铁合金粉末与氮源接触来对所述铁合金粉末进行氮化处理以生产铁氮化物粉末;将所述铁氮化物粉末转变成无序马氏体相;将所述无序马氏体相退火成有序马氏体相,以及从所述铁氮化物粉末中分离出所述有序马氏体相以产生有序马氏体铁氮化物粉末。这些处理步骤中每一个将在下面进行详细解释。
初始步骤是计算并然后制备起始铁合金粉末的正确组合物。使用CALPHAD方法(相图计算,CALculation of Phase Diagrams)来计算组合物。这种方法用于基于碳和氮的合金含量来预测碳和氮在奥氏体钢中的溶解度。该方法的关键顿悟(key insight)是,认识到增加碳和氮的溶解度并且总是与这两种元素形成相对稳定的化合物的合金化元素。因此,目的是添加足以增加溶解度但不足以形成将大大降低溶解度的析出相的合金化元素。
添加合金化金属以使进入γ-Fe相(奥氏体)的填隙氮的浓度从零合金化浓度时的平衡浓度10.3at%增加至所期望的11.1at%的氮。所需要的合金化金属的量取决于合金化材料,例如对于铬为1at%而对于锰为6at%。一旦计算出所期望的组合物,就可以开始四个加工步骤。
现将解释铁合金粉末的制备。可以使用两种明显不同的方法来完成铁合金粉末的制备。第一种方法使用熔体雾化法(melt atomization)。在熔体雾化期间,在电弧熔化器中制造具有20at%的Cr的Fe的母合金。在凝固之后,向母合金中添加额外的纯铁粉末以得到所期望的99at%Fe-1at%Cr合金。使用熔体雾化器工艺熔融并喷雾额外的纯铁粉末。然而,熔体雾化法是一种昂贵的方法。
可以使用一种更具成本效益的方法,其中,最初在混磨机(mixer mill)中对Fe-Cr粉末混合物进行机械合金化一段时间。在根据本发明的一些方面中,Fe-Cr粉末混合物在混磨机中机械合金化48小时。合适的混磨机的例子是SPEX 8000磨机,它是一种高能球磨机。然后,在850℃下,使用高温扩散方法使混合物均质化,其中,850℃低于α-Fe相转变成γ-Fe相的温度。而且,在根据本发明的另一个实施方式中,使用碾磨机(attritor mill)来实现机械合金化,随后进行高温扩散方法。这两种方法都能实现在Fe粉末中1.0±0.1at%Cr的组合物均匀度。
其它制备铁合金粉末的合适的方法包括采用基于羰基的生产方法的粉末合成技术。得到铁合金粉末的另一种合适的方法是:浇铸所需要的组合物,随后将大块锭机械地减小成粉末。
将限定若干候选合金化元素在铁中的浓度,所述合金化元素使得在奥氏体相中能够溶解11.1at.%氮。使用基于CALPHAD的溶液热力学模型来确定在奥氏体中氮溶解度和合金化元素浓度之间的关系。使用两者均可用的ThermoCalc软件和独立数据库(independentdatabase)来进行计算。ThermoCalc软件可购自宾夕法尼亚州麦克默里(McMurray)的Thermo-Calc软件公司。
因为软件或者数据库中含有的参数可能有错误,所以该评定存在风险。使用商用ThermoCalc软件所进行的计算和使用独立数据库所进行的计算相互检查以校验结果的准确性。
用该方法来确定在含有宽范围的合金化元素的铁基奥氏体中碳和氮两者的溶解度。对于高于600℃的温度,预测通常是一致的且相当准确,高于600℃的温度范围预期会发生使铁合金粉末氮化的过程。一旦确立若干候选元素例如Cr、Mn、Ni、Co、Al的最低必需的合金含量,那么若干这些组合物可被用于制备粉末。
生产具有由热力学模型所规定(prescribe)的组合物的铁合金粉末。根据具有最小合金含量,即最大铁含量的属性来选择初始粉末组合物。制备铁合金粉末涉及,用所期望的合金化元素对基本纯的铁粉末颗粒进行涂覆或机械合金化,随后退火以产生均质的组合物。
一旦制备了铁合金粉末,就使用与扫描电子显微镜(SEM)连接的能量色散X-射线谱(EDS)来评估颗粒的代表性样品的适当化学性和均匀性。
在成功制备了具有所期望的组合物和均匀度的铁合金粉末之后,对Fe合金粉末进行氮化。将铁合金粉末置于流化床反应器中。流化流速取决于合金粉末的粒度。
例如,从室温和空气大气压力开始,在直径为1英寸(2.54厘米)的反应器中,使用10~20μm的Fe合金粉末可以进行下面的步骤:
1.)流入氮气并加热30分钟至580℃(1076华氏度)用于递增至温度(ramp-to-temperature);
2.)在580℃(1076华氏度)下,流入还原气体混合物(氢/氮混合物)4小时;
3.)在580℃(1076华氏度)下,将气体混合物切换成20%氨/80%氮,并退火18小时;
4.)在10%氨/90%氮中,缓慢冷却约20小时至~50℃(122华氏度);
5.)用氮放空(vent)足够长的时间以允许安全打开系统。
在根据本发明的一个实施方式中,在高于650℃(1202华氏度)的温度下,将铁合金粉末暴露于氢-氨(H2:NH3)环境中,这将使粉末的氮含量增加11.1at%,即α”相的化学计量组合物。起始粉末是α-相,氮化处理使该粉末转变成γ-相。使用受控气氛炉。
使用分析仪器来测量经处理的铁氮化物粉末的氮含量。使用波长色散X-射线谱(WDS)、俄歇电子能谱(AES)和X-射线光电子能谱(XPS,也被称为ESCA)进行分析。然后,在高能球磨机中,使完全γ相的铁氮化物粉末经历剧烈的塑性变形以驱动其转变成α’马氏体。
第三步骤是将氮化的铁合金粉末转变成无序马氏体相,α’-Fe16N2。在使铁合金粉末氮化之后,α-Fe:1at%Cr的粉末具有填隙式溶解于合金中的所期望的11.1%的氮。通过结合机械变形和低温(例如77K的液氮温度)的作用,可以将该相转变成无序α’-Fe16N2相。这通过将氮化的粉末放置到被液氮冷却的高能球磨机中而实现。必须适度放空磨机混合罐(mill mixing vial)以使得不会发生过度加压(over pressurization)。
第四步骤是将无序马氏体相α’-Fe16N2退火成有序马氏体相α”-Fe16N2。需要低温退火以获得有序马氏体相,α”-Fe16N2。低温退火的合适温度为100℃(212华氏度)至300℃(572华氏度)。
含有11.1at.%氮的γ-相氮化的铁粉末将被转变成保持相同氮含量的α’马氏体。氮含量为11.1at.%的粉末相当难以转变成α’。为了使转变能够进行,使γ-相粉末在高能球磨机中经历显著量的塑性变形。打算在室温下进行球磨。或者,球磨可能需要如上所述的液氮温度。如果由于吸收在反复撞击期间的能量,粉末的温度显著上升,或者需要增加驱动力以确保γ完全转变为α’,那么在球磨期间还将采用主动冷却。相对大尺寸的粉末颗粒促进γ到α’的转变。一旦完成α’马氏体的转变,可使用另外的球磨来降低最终平均粉末粒度。使用标准X-射线衍射技术来分析经球磨的粉末以确定是否有任何残留的γ-相。
接着,已被转换成α’的奥氏体粉末将被转变成通过所公开的方法来生产的最终材料α”。为了这个目的,对α’粉末进行回火。该处理步骤的理想温度大约是420K(147℃)。基于该理想温度,所使用的温度范围介于370K(97℃)和470K(197℃)之间,退火时间的范围为1000s至86000s(24h),如果需要。
如果粉末的表面氧化以扰人的快速进行发展,那么将粉末封装在抽真空且Ar-回填的熔凝石英安瓿中。通过XRD(X-射线衍射)和TEM(透射电子显微镜)来验证结果。XRD也通过使用X-射线衍射系统来进行。使用Tecnai F30(FEI)或Libra 200EF(Zeiss)的透射电子显微镜来进行TEM。通过对因为使α”偏离(offset)α’的有序化而造成的衍射图案中出现的超晶格反射进行评估,这两种技术都可以区别α’和α”。
最后的步骤涉及从混合的氮化物粉末中分离出有序马氏体相α”-Fe16N2。可能的是,在完成所有处理步骤之后,混合的粉末存在所期望的有序马氏体相α”-Fe16N2和其它不期望的铁相和铁氮化物相。使用流化床和外部磁场的分离处理以筛选所期望的相。
新的粉末组合物可被用于可形成永磁体,该永磁体可被用于电动机、发电机产品等。新的组合物可被用于制造磁体以取代现有的Nd-Fe-B-永磁体和其它稀土永磁体。
考虑到下面的详细描述、附图和权利要求书,本发明另外的特征、优点和方面可以得以阐明或变得显而易见。而且,将理解的是,本发明的上述概述和下面的详细描述都是示例性的,用于提供进一步的解释而不限制本发明所要求保护的范围。
Claims (18)
1.一种用于形成用作永磁体材料的马氏体铁基合金氮化物的材料,所述材料包括单相奥氏体γ相铁基合金氮化物,其中,所述铁基合金氮化物具有合金组合物,所述合金组合物能够使与氮在元素铁中的溶解度相比氮在奥氏体γ相中的溶解度更大,且其中,所述合金组合物能够使所述单相奥氏体γ相铁基合金氮化物转变为所述马氏体铁基合金氮化物,以及通过使用相图计算CALPHAD法以使能溶解于所述奥氏体γ相中的氮含量在大于10.3at.%至小于等于11.1at.%范围内来确定所述合金组合物的组分含量。
2.根据权利要求1所述的材料,其中,能溶解于所述奥氏体γ相中的氮含量为11.1at.%。
3.根据权利要求1所述的材料,其中,所述材料由所述奥氏体γ相铁基合金作为单相固溶体组成,所述单相固溶体具有填隙式扩散到所述铁基合金晶格结构中的氮。
4.根据权利要求1所述的材料,其中,所述氮以金属:氮为16:2的比例填隙式扩散到所述铁基合金晶格结构中。
5.根据权利要求1所述的材料,其中,所述铁基合金氮化物包括能够使氮在所述奥氏体γ相中的溶解度更大的铬作为合金化元素,且其中所述铬的含量能够使所述单相奥氏体γ相铁基合金氮化物转变为所述马氏体铁基合金氮化物。
6.根据权利要求1所述的材料,其中,所述铁基合金氮化物包括能够使氮在所述奥氏体γ相中的溶解度更大的锰作为合金化元素,且其中所述锰的含量能够使所述单相奥氏体γ相铁基合金氮化物转变为所述马氏体铁基合金氮化物。
7.根据权利要求1所述的材料,其中,所述铁基合金氮化物包括能够使氮在所述奥氏体γ相中的溶解度更大的铝作为合金化元素,且其中所述铝的含量能够使所述单相奥氏体γ相铁基合金氮化物转变为所述马氏体铁基合金氮化物。
8.根据权利要求1所述的材料,其中,所述奥氏体γ相铁基合金氮化物为粉末形式。
9.根据权利要求1所述的材料,其中,通过在流化床反应器中暴露于氮源中使所述氮填隙式扩散到所述铁基合金晶格结构中。
10.根据权利要求1所述的材料,所述材料通过在流化床反应器中使铁基合金粉末暴露于氮源中得到,其中,所述铁基合金粉末包括铬作为合金化元素。
11.根据权利要求10所述的材料,其中,所述铁基合金粉末的组成通常为99at.%的Fe和1at.%的Cr。
12.一种由权利要求1所述的材料得到的无序α’-马氏体相铁基合金氮化物。
13.根据权利要求12所述的无序α’-马氏体相铁基合金氮化物,其中,所述无序α’-马氏体相铁基合金氮化物是通过高能球磨得到的。
14.一种由权利要求12所述的无序α’-马氏体相铁基合金氮化物得到的有序α”-马氏体相铁基合金氮化物。
15.根据权利要求14所述的有序α”-马氏体相铁基合金氮化物,其中,通过对所述无序α’-马氏体相铁基合金氮化物进行退火得到所述有序α”-马氏体相铁基合金氮化物。
16.根据权利要求14所述的有序α”-马氏体相铁基合金氮化物,组成为(Fe,M)16N2,其中,M是所述铁基合金氮化物的合金化元素。
17.一种粘结磁体,含有根据权利要求16所述的有序α”-马氏体相铁基合金氮化物。
18.根据权利要求1所述的材料,其中所述合金组合物包括能够使氮含量的溶解度在从大于10.3at.%到小于等于11.1at.%的范围内增加而不形成将降低溶解度的析出相的与所述铁合金化的元素。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161570955P | 2011-12-15 | 2011-12-15 | |
US61/570,955 | 2011-12-15 | ||
CN201280069689.2A CN104271496A (zh) | 2011-12-15 | 2012-12-17 | 不含稀土的能够转变的氮化物磁体及其制造方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280069689.2A Division CN104271496A (zh) | 2011-12-15 | 2012-12-17 | 不含稀土的能够转变的氮化物磁体及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107253703A CN107253703A (zh) | 2017-10-17 |
CN107253703B true CN107253703B (zh) | 2021-08-10 |
Family
ID=48613268
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710302326.3A Active CN107253703B (zh) | 2011-12-15 | 2012-12-17 | 不含稀土的能够转变的氮化物磁体及其制造方法 |
CN201280069689.2A Pending CN104271496A (zh) | 2011-12-15 | 2012-12-17 | 不含稀土的能够转变的氮化物磁体及其制造方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280069689.2A Pending CN104271496A (zh) | 2011-12-15 | 2012-12-17 | 不含稀土的能够转变的氮化物磁体及其制造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9997285B2 (zh) |
EP (1) | EP2791055A4 (zh) |
JP (1) | JP6051456B2 (zh) |
KR (1) | KR20140113684A (zh) |
CN (2) | CN107253703B (zh) |
IN (1) | IN2014MN01415A (zh) |
WO (1) | WO2013090895A1 (zh) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10068689B2 (en) | 2011-08-17 | 2018-09-04 | Regents Of The University Of Minnesota | Iron nitride permanent magnet and technique for forming iron nitride permanent magnet |
US10867730B2 (en) * | 2011-12-15 | 2020-12-15 | Case Western Reserve University | Transformation enabled nitride magnets absent rare earths and a process of making the same |
AU2014214932B2 (en) | 2013-02-07 | 2015-09-03 | Regents Of The University Of Minnesota | Iron nitride permanent magnet and technique for forming iron nitride permanent magnet |
EP3014637A4 (en) * | 2013-06-27 | 2017-05-03 | Regents of the University of Minnesota | Iron nitride materials and magnets including iron nitride materials |
BR112016022561A2 (pt) | 2014-03-28 | 2017-08-15 | Univ Minnesota | Material magnético de nitreto de ferro incluindo nanopartículas revestidas |
WO2015193295A1 (en) * | 2014-06-16 | 2015-12-23 | Danmarks Tekniske Universitet | Process for the preparation of porous nitrided iron material |
US9994949B2 (en) | 2014-06-30 | 2018-06-12 | Regents Of The University Of Minnesota | Applied magnetic field synthesis and processing of iron nitride magnetic materials |
US10002694B2 (en) | 2014-08-08 | 2018-06-19 | Regents Of The University Of Minnesota | Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O |
BR112017002464A2 (pt) | 2014-08-08 | 2017-12-05 | Univ Minnesota | formação de materiais magnéticos rígidos de nitreto de ferro utilizando deposição química de vapor ou epitaxia em fase líquida |
US10072356B2 (en) | 2014-08-08 | 2018-09-11 | Regents Of The University Of Minnesota | Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O |
CN106796834A (zh) | 2014-08-08 | 2017-05-31 | 明尼苏达大学董事会 | 多层铁氮化物硬磁性材料 |
WO2016122987A1 (en) * | 2015-01-26 | 2016-08-04 | Regents Of The University Of Minnesota | Iron nitride powder with anisotropic shape |
JP2016207710A (ja) * | 2015-04-16 | 2016-12-08 | 株式会社ジェイテクト | 磁石の製造方法及び磁石 |
CN106862574B (zh) * | 2017-01-05 | 2019-04-12 | 南昌大学 | 一种高温化学处理工艺制备片状FeSiN合金粉体的方法 |
US11859271B2 (en) | 2017-05-04 | 2024-01-02 | Regents Of The University Of Minnesota | Iron nitride compositions |
CN107557551B (zh) * | 2017-10-27 | 2019-08-23 | 华北理工大学 | 一种钐铁氮系永磁材料的制备方法 |
US20190160528A1 (en) * | 2017-11-27 | 2019-05-30 | Hamilton Sundstrand Corporation | Method and apparatus for improving powder flowability |
DE102018200373A1 (de) * | 2018-01-11 | 2019-07-11 | Robert Bosch Gmbh | Weichmagnetischer Verbundwerkstoff und Verfahren zu seiner Herstellung |
WO2020111386A1 (ko) * | 2018-11-30 | 2020-06-04 | 한양대학교 에리카산학협력단 | 질화철 자성 와이어 및 그 제조방법 |
CN109411177B (zh) * | 2018-12-11 | 2019-12-24 | 江南大学 | 一种利用液氮高速球磨制备γ’-Fe4N软磁材料的方法 |
JP7365773B2 (ja) | 2019-02-13 | 2023-10-20 | 株式会社日立製作所 | 軟磁性材料及びその製造方法並びに軟磁性材料を用いた電動機 |
CN110482502B (zh) * | 2019-10-05 | 2021-05-14 | 湘西自治州丰达合金科技有限公司 | 一种高效节能的氮化锰生产工艺 |
US12018386B2 (en) | 2019-10-11 | 2024-06-25 | Regents Of The University Of Minnesota | Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O |
JP7545281B2 (ja) | 2020-09-30 | 2024-09-04 | 株式会社日立製作所 | 軟磁性材料、軟磁性材料の製造方法および電動機 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5934126B2 (ja) * | 1980-01-14 | 1984-08-20 | 日本重化学工業株式会社 | 窒化鉄の製造方法 |
JPS60221325A (ja) * | 1984-04-13 | 1985-11-06 | Hitachi Maxell Ltd | 耐食性のすぐれた窒化鉄基強磁性粉末およびその製造方法 |
EP0417733B1 (en) * | 1989-09-13 | 1994-03-30 | Asahi Kasei Kogyo Kabushiki Kaisha | Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen |
JPH03244108A (ja) * | 1990-02-22 | 1991-10-30 | Nippon Steel Corp | 高飽和磁束密度を有するバルクα〃窒化鉄の製造方法 |
JPH04221427A (ja) * | 1990-12-21 | 1992-08-11 | Nkk Corp | 磁気記憶媒体の製造方法 |
EP0599647B1 (en) * | 1992-11-27 | 1997-02-05 | Sumitomo Special Metals Co., Ltd. | Production method of a rare earth-iron-nitrogen system permanent magnet |
JPH07118702A (ja) * | 1993-10-21 | 1995-05-09 | Mitsubishi Materials Corp | 高い飽和磁束密度を有するFe−N系軟磁性粉末の製造方法 |
US5647886A (en) * | 1993-11-11 | 1997-07-15 | Seiko Epson Corporation | Magnetic powder, permanent magnet produced therefrom and process for producing them |
JPH08165502A (ja) * | 1994-12-09 | 1996-06-25 | Matsushita Electric Ind Co Ltd | Fe−N系磁性粉末の製造方法 |
US7559494B1 (en) * | 1996-09-03 | 2009-07-14 | Ppg Industries Ohio, Inc. | Method of forming non-stoichiometric nanoscale powder comprising temperature-processing of a stoichiometric metal compound |
JP3932326B2 (ja) * | 1998-05-22 | 2007-06-20 | Dowaエレクトロニクス株式会社 | 窒化鉄磁性材料の製法 |
JP2000082610A (ja) * | 1998-09-03 | 2000-03-21 | Sumitomo Special Metals Co Ltd | 高電気抵抗率希土類永久磁石とその製造方法 |
EP1555332A4 (en) * | 2002-09-27 | 2007-07-11 | Nano Technology Inst Inc | ULTRADUR NANOCRYSTAL AUSTENIAC STEEL BULK MATERIAL HAVING TENACITY AND EXCELLENT CORROSION RESISTANCE, AND PROCESS FOR PRODUCING THE SAME |
US20070071630A1 (en) * | 2003-10-21 | 2007-03-29 | Hiroyuki Fukuhara | Wear-resistant elements and method of making same |
JP5669389B2 (ja) * | 2007-04-27 | 2015-02-12 | 旭化成株式会社 | 高周波用磁性材料とその製造方法 |
CN101669180A (zh) * | 2007-04-27 | 2010-03-10 | 旭化成株式会社 | 高频用磁性材料及其制造方法 |
US8535634B2 (en) * | 2007-05-04 | 2013-09-17 | Advanced Materials Corporation | Iron nitride powders for use in magnetic, electromagnetic, and microelectronic devices |
JP2011051814A (ja) * | 2009-08-31 | 2011-03-17 | Teijin Ltd | 窒化鉄微粒子及びそれを含有するコロイド溶液 |
JP5769223B2 (ja) | 2009-10-22 | 2015-08-26 | 戸田工業株式会社 | 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石 |
-
2012
- 2012-12-17 CN CN201710302326.3A patent/CN107253703B/zh active Active
- 2012-12-17 JP JP2014547547A patent/JP6051456B2/ja not_active Expired - Fee Related
- 2012-12-17 KR KR1020147019503A patent/KR20140113684A/ko not_active Ceased
- 2012-12-17 EP EP12857214.6A patent/EP2791055A4/en not_active Withdrawn
- 2012-12-17 CN CN201280069689.2A patent/CN104271496A/zh active Pending
- 2012-12-17 WO PCT/US2012/070086 patent/WO2013090895A1/en active Application Filing
-
2014
- 2014-06-13 US US14/304,102 patent/US9997285B2/en active Active
- 2014-07-14 IN IN1415MUN2014 patent/IN2014MN01415A/en unknown
Non-Patent Citations (2)
Title |
---|
Synthesis and characterization of Fe16N2 in bulk form;M.Q.Huang et al.;《Journal of Applied Physics》;19940515;第75卷(第10期);第II节第1段 * |
The synthesis, structure, and characterization of α’’- Fe16N2 (Invited);K.H.Jack;《Journal of Applied Physics》;19941115;第76卷(第10期);第6625页左栏第2-3段 * |
Also Published As
Publication number | Publication date |
---|---|
US20140290434A1 (en) | 2014-10-02 |
CN104271496A (zh) | 2015-01-07 |
US9997285B2 (en) | 2018-06-12 |
EP2791055A4 (en) | 2015-06-03 |
IN2014MN01415A (zh) | 2015-04-03 |
WO2013090895A1 (en) | 2013-06-20 |
JP2015507354A (ja) | 2015-03-05 |
JP6051456B2 (ja) | 2016-12-27 |
KR20140113684A (ko) | 2014-09-24 |
CN107253703A (zh) | 2017-10-17 |
EP2791055A1 (en) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107253703B (zh) | 不含稀土的能够转变的氮化物磁体及其制造方法 | |
Thangaraju et al. | Phase stability of a mechanically alloyed CoCrCuFeNi high entropy alloy | |
JP2010010673A (ja) | 圧粉磁性体用軟磁性粉末およびそれを用いた圧粉磁性体 | |
TW200936782A (en) | Fe-Si-La alloy having excellent magnetocaloric properties | |
JP2009194262A (ja) | 希土類磁石の製造方法 | |
Kim et al. | Effects of processing parameters and heat treatment on the microstructure and magnetic properties of the in-situ synthesized Fe-Ni permalloy produced using direct energy deposition | |
US20160307677A1 (en) | Nanostructured Mn-Al Permanent Magnets And Method of Producing Same | |
CN104823249A (zh) | 稀土永磁粉、包括其的粘结磁体及应用该粘结磁体的器件 | |
US20120003114A1 (en) | Nanostructured Mn-Al Permanent Magnets And Methods of Producing Same | |
Km et al. | Study on synthesis and magnetic properties of Nd–Fe–B alloy via reduction–diffusion process | |
KR101506103B1 (ko) | 플라즈마 질화에 의한 강화 합금 제조 방법 | |
Kim et al. | Iron nitride based magnetic powder synthesized by mechanical alloying of Fe-based glassy powders and solid nitrogen compounds | |
Luo et al. | Tailoring the microstructure and mechanical property of additively manufactured AlCrCuFeNi3. 0 high-entropy alloy through heat treatment | |
JP2009249682A (ja) | 硬磁性合金およびその製造方法 | |
JP7545281B2 (ja) | 軟磁性材料、軟磁性材料の製造方法および電動機 | |
US20240363269A1 (en) | Iron-nitride magnet by nitriding a porous structure | |
WO2020184724A1 (ja) | 準安定単結晶希土類磁石微粉及びその製造方法 | |
Wang et al. | Effects of B addition on the microstructure and magnetic properties of Fe-Co-Mo alloys | |
Dorofeev et al. | Mechanical alloying and severe plastic deformation of nanocrystalline high-nitrogen stainless steels | |
Dillon | Effects of heat treatment and processing modifications on microstructure in alnico 8H permanent magnet alloys for high temperature applications | |
US10867730B2 (en) | Transformation enabled nitride magnets absent rare earths and a process of making the same | |
Shabashov et al. | Deformation-induced cyclic phase transitions of dissolution-precipitation of nitrides in surface layers of Fe-Cr-(Ni)-N alloys | |
JPS61208806A (ja) | 表面処理方法および永久磁石 | |
Besmel et al. | Simultaneous variations of microstructure and magnetic properties of Ni58Fe12Zr20B10 nanostructure/amorphous alloy prepared by mechanical alloying | |
Zhang et al. | Sol–gel-based chemical synthesis of NdFeB hard magnetic nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |