CN107245673B - Iron-based amorphous nanometer crystalline thin strip magnet and its preparation method and application method - Google Patents
Iron-based amorphous nanometer crystalline thin strip magnet and its preparation method and application method Download PDFInfo
- Publication number
- CN107245673B CN107245673B CN201710450342.7A CN201710450342A CN107245673B CN 107245673 B CN107245673 B CN 107245673B CN 201710450342 A CN201710450342 A CN 201710450342A CN 107245673 B CN107245673 B CN 107245673B
- Authority
- CN
- China
- Prior art keywords
- iron
- based amorphous
- amorphous
- thin strip
- strip magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 553
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 172
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 94
- 229910001004 magnetic alloy Inorganic materials 0.000 claims abstract description 47
- 238000005275 alloying Methods 0.000 claims abstract 10
- 239000010949 copper Substances 0.000 claims description 162
- 239000010955 niobium Substances 0.000 claims description 84
- 239000002994 raw material Substances 0.000 claims description 43
- 239000002893 slag Substances 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 230000035699 permeability Effects 0.000 claims description 16
- 230000006698 induction Effects 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 11
- 238000007578 melt-quenching technique Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- 239000000155 melt Substances 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 9
- 238000003723 Smelting Methods 0.000 claims description 8
- 239000004615 ingredient Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 239000007921 spray Substances 0.000 claims description 7
- 229910000592 Ferroniobium Inorganic materials 0.000 claims description 6
- ZFGFKQDDQUAJQP-UHFFFAOYSA-N iron niobium Chemical compound [Fe].[Fe].[Nb] ZFGFKQDDQUAJQP-UHFFFAOYSA-N 0.000 claims description 6
- PNXOJQQRXBVKEX-UHFFFAOYSA-N iron vanadium Chemical compound [V].[Fe] PNXOJQQRXBVKEX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims 5
- 108010038629 Molybdoferredoxin Proteins 0.000 claims 1
- HBELESVMOSDEOV-UHFFFAOYSA-N [Fe].[Mo] Chemical compound [Fe].[Mo] HBELESVMOSDEOV-UHFFFAOYSA-N 0.000 claims 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 claims 1
- 239000000470 constituent Substances 0.000 claims 1
- 230000005389 magnetism Effects 0.000 claims 1
- 238000007670 refining Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 11
- 230000007547 defect Effects 0.000 abstract description 7
- 229910000859 α-Fe Inorganic materials 0.000 abstract description 3
- 229910000808 amorphous metal alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 description 76
- 229910045601 alloy Inorganic materials 0.000 description 75
- 239000002159 nanocrystal Substances 0.000 description 11
- 238000010791 quenching Methods 0.000 description 11
- 230000000171 quenching effect Effects 0.000 description 11
- 238000002425 crystallisation Methods 0.000 description 8
- 230000008025 crystallization Effects 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 238000004804 winding Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 229910000628 Ferrovanadium Inorganic materials 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910001309 Ferromolybdenum Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- -1 ferroboron Chemical compound 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000011112 process operation Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910008423 Si—B Inorganic materials 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000002707 nanocrystalline material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/02—Amorphous alloys with iron as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/003—Making ferrous alloys making amorphous alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/02—Cores, Yokes, or armatures made from sheets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Continuous Casting (AREA)
- Soft Magnetic Materials (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
技术领域technical field
本发明的技术方案涉及铁作主要成分的非晶态合金,具体地说是铁基非晶纳米晶薄带磁体及其制备方法和应用方法。The technical scheme of the invention relates to an amorphous alloy with iron as the main component, specifically an iron-based amorphous nanocrystalline thin-strip magnet and its preparation method and application method.
背景技术Background technique
1988年日立公司的Yoshizawa等人(Y.Yoshizawa,S.Oguma,K.Yamauchi.New Fe-based soft magnetic alloys composed of ultrafine grain structure[J].Journalof Applied Physics.1988,64:6044-6046.)发明了软磁性能优异的非晶纳米晶材料Finemet。Finemet型非晶纳米晶是指将Fe-M-Cu-Si-B非晶薄带进行等温热处理后,从非晶基体中析出纳米尺度软磁相,最终使材料获得非晶相和纳米晶相共存的一种状态。由于该类合金易于喷制,并且拥有良好的软磁性能,如1.2T的饱和磁感应强度,104~105的初始磁导率以及低的矫顽力和宽频率范围下小的铁损值,被广泛应用于软磁工业。Yoshizawa et al. (Y.Yoshizawa, S.Oguma, K.Yamauchi. New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Journal of Applied Physics.1988,64:6044-6046.) of Hitachi in 1988 Invented Finemet, an amorphous and nanocrystalline material with excellent soft magnetic properties. Finemet-type amorphous nanocrystal means that after the Fe-M-Cu-Si-B amorphous strip is subjected to isothermal heat treatment, the nanoscale soft magnetic phase is precipitated from the amorphous matrix, and finally the material obtains the amorphous phase and nanometer A state in which crystal phases coexist. Because this type of alloy is easy to spray and has good soft magnetic properties, such as the saturation magnetic induction of 1.2T, the initial magnetic permeability of 10 4 to 10 5 , low coercive force and small iron loss in a wide frequency range , are widely used in the soft magnetic industry.
目前,随着电器工业的发展,全球对Finemet型铁基非晶纳米晶合金的需求量逐年增加,对该类磁性材料的研发更是如火如荼。CN101787500B公开了一种FeaSibBcCdAle非晶薄带的制备方法,但该非晶薄带存在矫顽力较大,并且合金中具有高熔点元素C,很难在生产中进行批量生产的缺陷。CN102953020A公开了一种铁基非晶纳米晶软磁合金材料及其制备方法,但该系列薄带存在初始磁导率较低,含有价格昂贵的Co使得生产成本增大的缺陷。At present, with the development of the electrical appliance industry, the global demand for Finemet-type iron-based amorphous nanocrystalline alloys is increasing year by year, and the research and development of this type of magnetic materials is in full swing. CN101787500B discloses a preparation method of Fe a Si b B c C d Al e amorphous ribbon, but the amorphous ribbon has a relatively large coercive force, and has a high melting point element C in the alloy, so it is difficult to produce Defects for mass production. CN102953020A discloses an iron-based amorphous nanocrystalline soft magnetic alloy material and a preparation method thereof, but the series of thin strips have the defects of low initial magnetic permeability and expensive Co which increases production costs.
发明内容Contents of the invention
本发明所要解决的技术问题是:提供铁基非晶纳米晶薄带磁体及其制备方法和应用方法,该铁基非晶纳米晶薄带磁体是Finemet型非晶纳米晶薄带磁体,通过优化纳米晶α-Fe(Si)相和非晶相的比例,克服了现有类似产品存在的磁性能仍较低,生产成本高和很难在生产中进行批量生产的缺陷。The technical problem to be solved by the present invention is to provide an iron-based amorphous nanocrystalline thin strip magnet and its preparation method and application method. The iron-based amorphous nanocrystalline thin strip magnet is a Finemet type amorphous nanocrystalline thin strip magnet. The ratio of the nanocrystalline α-Fe(Si) phase to the amorphous phase overcomes the defects of low magnetic performance, high production cost and difficulty in mass production in existing similar products.
本发明解决该技术问题所采用的技术方案是:铁基非晶纳米晶薄带磁体,是Finemet型非晶纳米晶薄带磁体,其质量百分比组成表达式为AxFy,式中,A组分是原子百分比组成为FeaCubMcSidBe的主合金A,其中M为Nb、V和Mo元素中的至少一种元素,a、b、c、d和e表示元素组成的原子百分数,70.0≤a≤74.5,1.0≤b≤1.5,2.5≤c≤3.5,11.5≤d≤14.5,8.3≤e≤14.5,且满足a+b+c+d+e=100;F组分是与A组分主合金A的组成相对应的非晶薄带F,其中所含晶态相的质量百分数范围为2.0%~30.0%,A组分的组成质量百分比x的限定范围为70≤x≤90,F组分的组成质量百分比y的限定范围为10≤y≤30。The technical solution adopted by the present invention to solve the technical problem is: the iron-based amorphous nanocrystalline thin strip magnet is a Finemet type amorphous nanocrystalline thin strip magnet, and its mass percentage composition expression is AxFy, where the A component is The atomic percent composition is the main alloy A of Fe a Cu b M c Si d Be e , wherein M is at least one element among Nb, V and Mo elements, and a, b, c, d and e represent the atomic percent of the element composition , 70.0≤a≤74.5, 1.0≤b≤1.5, 2.5≤c≤3.5, 11.5≤d≤14.5, 8.3≤e≤14.5, and satisfy a+b+c+d+e=100; F component is with Amorphous ribbon F corresponding to the composition of main alloy A of component A, the mass percentage of crystalline phase contained therein ranges from 2.0% to 30.0%, and the limited range of composition mass percentage x of component A is 70≤x≤ 90. The limited range of composition mass percentage y of F component is 10≤y≤30.
上述铁基非晶纳米晶薄带磁体,其厚度为25~35μm,带宽为10~40mm。The iron-based amorphous nanocrystalline thin-strip magnet has a thickness of 25-35 μm and a bandwidth of 10-40 mm.
上述铁基非晶纳米晶薄带磁体的制备方法,具体步骤如下:The preparation method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet, the specific steps are as follows:
第一步,配制原料:The first step is to prepare raw materials:
按原子百分比计的组成式FeaCubMcSidBe计算各元素质量,其中M为Nb、V和Mo元素中的至少一种元素,a、b、c、d和e表示元素组成的原子百分数,70.0≤a≤74.5,1.0≤b≤1.5,2.5≤c≤3.5,11.5≤d≤14.5,8.3≤e≤14.5,且满足a+b+c+d+e=100,称取所需原料:铌铁、硼铁、钒铁、钼铁、纯硅、纯铜和纯铁,完成原料的配制;Calculate the mass of each element according to the composition formula Fe a Cu b M c Si d Be e in atomic percentage, where M is at least one element among Nb, V and Mo elements, and a, b, c, d and e represent the element composition Atomic percentage of 70.0≤a≤74.5, 1.0≤b≤1.5, 2.5≤c≤3.5, 11.5≤d≤14.5, 8.3≤e≤14.5, and satisfy a+b+c+d+e=100, weigh Required raw materials: ferro-niobium, ferro-boron, ferro-vanadium, ferro-molybdenum, pure silicon, pure copper and pure iron to complete the preparation of raw materials;
第二步,制备主合金A铸锭:The second step is to prepare the main alloy A ingot:
将上述第一步配制的原料加入熔炼炉中,对炉体抽真空至真空度<5×10-1Pa,加热熔炼,直到所加入的全部原料熔化,且使成分均匀分布为止,之后对熔融液进行打渣和除渣,最后倒入模具中冷却,制得原子百分比组成为FeaCubMcSidBe的主合金A铸锭;Add the raw materials prepared in the first step above into the smelting furnace, evacuate the furnace body to a vacuum degree of <5×10 -1 Pa, heat and melt until all the raw materials added are melted and the ingredients are evenly distributed, and then the melted Slag removal and slag removal, and finally poured into a mold for cooling to obtain a main alloy A ingot whose atomic percentage composition is Fe a Cu b M c Si d Be e ;
第三步,制备非晶薄带F:The third step is to prepare the amorphous ribbon F:
将上述第二步制得的主合金A铸锭装入熔体快淬炉中,重新熔融后以20~45m/s的线速度在铜辊轮上进行熔体快淬,由此制得非晶薄带F;Put the main alloy A ingot obtained in the second step above into a melt quenching furnace, and after re-melting, perform melt quenching on a copper roller at a line speed of 20-45m/s, thereby producing non-alloy Crystal ribbon F;
第四步,制备铁基非晶纳米晶薄带磁体:The fourth step is to prepare iron-based amorphous and nanocrystalline thin strip magnets:
将上述第二步制得的主合金A铸锭放入重熔炉中熔化,熔炼均匀待出炉前10~20min将上述第三步制备的非晶薄带F按质量百分比组成表达式为AxFy中的组成质量百分比加入重熔均匀的主合金A铸锭的熔液中,AxFy式中,主合金A的质量百分比组成x的限定范围为70≤x≤90,非晶薄带F的质量百分比组成y的限定范围为10≤y≤30,然后对混合的AxFy熔液进行打渣,在大气中以20~40m/s速度进行喷带,即制得铁基非晶纳米晶薄带磁体;Put the ingot of the main alloy A obtained in the second step above into a remelting furnace to melt, smelt evenly and wait 10 to 20 minutes before it is released from the furnace. The composition expression of the amorphous strip F prepared in the third step above is expressed as The mass percentage of the composition is added to the melt of the remelted uniform main alloy A ingot. In the AxFy formula, the mass percentage composition x of the main alloy A is limited to 70≤x≤90, and the mass percentage composition of the amorphous strip F is y The limited range is 10≤y≤30, then slag the mixed AxFy melt, and spray it in the atmosphere at a speed of 20-40m/s to obtain an iron-based amorphous nanocrystalline thin-strip magnet;
经游标卡尺及千分尺测定:所制得的铁基非晶纳米晶薄带磁体的厚度为25~35μm,带宽为10~40mm;根据Jade软件计算:非晶薄带F中晶态相的质量分数为2.0~30.0%。Measured by a vernier caliper and a micrometer: the thickness of the prepared iron-based amorphous nanocrystalline thin strip magnet is 25-35 μm, and the bandwidth is 10-40 mm; calculated according to Jade software: the mass fraction of the crystalline phase in the amorphous thin strip F is 2.0-30.0%.
上述铁基非晶纳米晶薄带磁体的制备方法,其中所用到的原料均由公知途径获得,设备均为公知的化工设备,所用到的工艺操作方法均为本技术领域的技术人员所熟知的。For the preparation method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet, the raw materials used are all obtained from known channels, the equipment is all known chemical equipment, and the process operation methods used are well known to those skilled in the art .
上述铁基非晶纳米晶薄带磁体的应用方法,用于制备铁基非晶纳米晶软磁合金铁芯产品,步骤如下:The application method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet is used to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products, and the steps are as follows:
第一步,制备铁基非晶铁芯:The first step is to prepare the iron-based amorphous iron core:
将上述铁基非晶纳米晶薄带磁体的制备方法制得的铁基非晶纳米晶薄带磁体通过卷带机卷制成所需的相应规格的铁基非晶铁芯;The iron-based amorphous nanocrystalline thin-ribbon magnet obtained by the above method for preparing the iron-based amorphous nanocrystalline thin-ribbon magnet is rolled into an iron-based amorphous iron core of corresponding specifications by a winding machine;
第二步,制备铁基非晶纳米晶软磁合金铁芯产品:The second step is to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products:
将上述第一步卷制得的铁基非晶铁芯放入退火炉中,在540~580℃进行退火,获得在非晶基体上均匀分布的纳米晶,即制得铁基非晶纳米晶软磁合金铁芯产品。Put the iron-based amorphous iron core rolled in the first step above into an annealing furnace, and anneal at 540-580°C to obtain nanocrystals evenly distributed on the amorphous matrix, that is, to obtain iron-based amorphous nanocrystals Soft magnetic alloy iron core products.
经游标卡尺测定:所制得的铁基非晶纳米晶软磁合金铁芯产品的尺寸为外径×内径×高=D×d×h=Φ30mm×Φ24.92mm×(10~40)mm;根据Jade软件计算:AxFy铁基非晶纳米晶软磁合金铁芯产品中晶态相的质量分数为78.4~86.2%;经MATS-2010SD型软磁直流测量装置测定该产品磁性能为:饱和磁感应强度为1.26~1.49T,初始磁导率为125k~148k。Measured by a vernier caliper: the size of the obtained iron-based amorphous nanocrystalline soft magnetic alloy iron core product is outer diameter × inner diameter × height = D × d × h = Φ30mm × Φ24.92mm × (10-40) mm; according to Calculation by Jade software: the mass fraction of crystalline phase in AxFy iron-based amorphous nanocrystalline soft magnetic alloy iron core product is 78.4~86.2%; the magnetic properties of this product are measured by MATS-2010SD soft magnetic DC measuring device: saturation magnetic induction intensity It is 1.26~1.49T, and the initial magnetic permeability is 125k~148k.
上述铁基非晶纳米晶薄带磁体的应用方法,其中所用到的设备均为公知的化工设备,所用到的工艺操作方法均为本技术领域的技术人员所熟知的。For the application method of the above-mentioned iron-based amorphous nanocrystalline thin-strip magnet, the equipment used is all well-known chemical equipment, and the process operation methods used are well known to those skilled in the art.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
与现有技术相比,本发明突出的实质性特点在于:Compared with the prior art, the outstanding substantive features of the present invention are:
(1)在非晶薄带F中存在着短程有序的非晶相,这种短程有序的非晶结构从质量百分比组成表达式为AxFy的熔融态合金中保留下来,均匀分布,借助熔体快淬技术,合金依据组织遗传效应,在短程有序结构的基础上更加易于形成分布均匀的非晶相结构,并为非晶薄带晶化形核提供形核点,即降低非晶晶化的激活能,从而优化纳米晶α-Fe(Si)相和非晶相的比例,克服了现有类似产品存在的磁性能较低,生产成本高和很难在生产中进行批量生产的缺陷。(1) There is a short-range ordered amorphous phase in the amorphous ribbon F, and this short-range ordered amorphous structure is retained from the molten alloy whose mass percentage composition expression is AxFy, and is uniformly distributed. Bulk rapid quenching technology, based on the genetic effect of the structure, the alloy is more likely to form a uniformly distributed amorphous phase structure on the basis of a short-range ordered structure, and provides nucleation points for the crystallization nucleation of amorphous thin strips, that is, to reduce the formation of amorphous crystals. Optimized activation energy, thereby optimizing the ratio of nanocrystalline α-Fe(Si) phase and amorphous phase, overcoming the defects of low magnetic properties, high production cost and difficulty in mass production in existing similar products .
(2)本发明制备方法中,其中得到的非晶薄带F整体上呈现非晶态的晶体结构,而实际上这种非晶结构是由许多短程有序的纳米团簇组成的,当非晶薄带F加入重熔炉中,在10~20min内在主合金A液中快速熔化,其各个结构未变的纳米团簇均匀地分散在主合金A液中,相当于在短时间内额外增加了AxFy合金中单位体积中的纳米团簇比例。在随后的快速冷却中,这些纳米团簇仍保留原有结构,随后的退火过程中,这些团簇就是晶化开始的形核点,使退火后的纳米晶相更多、细小、均匀,产生“组织遗传”的有益效果。(2) In the preparation method of the present invention, the obtained amorphous ribbon F presents an amorphous crystal structure as a whole, but in fact this amorphous structure is composed of many short-range ordered nanoclusters. The crystal thin ribbon F is added to the remelting furnace, and it is rapidly melted in the main alloy liquid A within 10-20 minutes, and its nano-clusters with unchanged structures are evenly dispersed in the main alloy liquid A, which is equivalent to an additional increase in a short time Proportion of nanoclusters per unit volume in AxFy alloys. In the subsequent rapid cooling, these nanoclusters still retain the original structure, and in the subsequent annealing process, these clusters are the nucleation points for the beginning of crystallization, so that the annealed nanocrystalline phases are more, finer, and uniform, resulting in Beneficial effects of "tissue inheritance".
(3)非晶态属于高能的亚稳态,非晶薄带F在加入主合金A液时实际要经历非晶态-结晶-熔化的过程,而非晶态结晶过程中要释放高能量,可以使主合金A液体的温度在喷制薄带前提高,可以使液体的成分更均匀,并提高了喷制时液体的流动性,减少了薄带上杂质缺陷的产生,从而提高了成材率,最终可以提高薄带的磁感应强度与磁导率。(3) The amorphous state is a high-energy metastable state. When the amorphous strip F is added to the main alloy A liquid, it will actually go through the process of amorphous state-crystallization-melting, and high energy will be released during the crystallization process of the amorphous state. It can increase the temperature of the main alloy A liquid before spraying thin strips, which can make the composition of the liquid more uniform, improve the fluidity of the liquid during spraying, reduce the generation of impurities and defects on the thin strips, and thus improve the yield , and ultimately the magnetic induction and permeability of the strip can be improved.
(4)本发明应用方法中,其中卷制得到的非晶铁芯经退火后,在非晶基体上形成了尺寸更加均匀细小的纳米晶软磁相,相邻纳米晶是通过非晶基体进行交换耦合作用,纳米晶尺寸的减小与纳米晶相数量的增多等于增大了相互作用的面积,从而提高了退火后制得的铁基非晶纳米晶软磁合金铁芯产品的磁性能。(4) In the application method of the present invention, after the amorphous iron core obtained by rolling is annealed, a nanocrystalline soft magnetic phase with a more uniform size and finer size is formed on the amorphous substrate, and the adjacent nanocrystals are formed through the amorphous substrate. Exchange coupling effect, the reduction of nanocrystalline size and the increase of the number of nanocrystalline phases equal to the increase of the interaction area, thereby improving the magnetic properties of the iron-based amorphous nanocrystalline soft magnetic alloy core products obtained after annealing.
(5)经检索,到目前为止,尚未发现有通过调整母合金重熔液提高Finemet型合金非晶纳米晶软磁性能的报道。(5) After searching, so far, no report has been found to improve the soft magnetic properties of Finemet-type alloy amorphous nanocrystals by adjusting the master alloy remelt.
与现有技术相比,本发明的显著进步是:Compared with prior art, remarkable progress of the present invention is:
(1)本发明的铁基非晶纳米晶薄带磁体,通过在重熔液中添加相同成分非晶薄带,与未添加非晶薄带退火后的产品相比,提高了材料的饱和磁感应强度,具有更高的初始磁导率和最大磁导率,该铁基非晶纳米晶软磁合金铁芯产品在室温下的静态饱和磁感应强度为1.26~1.49T,初始磁导率可达到125k~148k,高于现有类似产品的磁性能,在不改变材料成分的前提下提高了材料的综合软磁性能与力学性能。(1) The iron-based amorphous nanocrystalline thin strip magnet of the present invention, by adding the same composition amorphous thin strip in the remelting liquid, compared with the product after annealing without adding the amorphous thin strip, the saturation magnetic induction of the material is improved Strength, with higher initial permeability and maximum permeability, the static saturation magnetic induction of the iron-based amorphous nanocrystalline soft magnetic alloy core product at room temperature is 1.26-1.49T, and the initial permeability can reach 125k ~148k, which is higher than the magnetic properties of existing similar products, and improves the comprehensive soft magnetic properties and mechanical properties of the material without changing the material composition.
(2)本发明制备方法中,非晶薄带F可以用前期喷制时有非外来成分杂质缺陷的不合格非晶薄带代替,节省能源,提高原材料的利用率,克服了现有技术生产成本高和很难在生产中进行批量生产的缺陷。(2) In the preparation method of the present invention, the amorphous thin ribbon F can be replaced by an unqualified amorphous thin ribbon with non-foreign component impurity defects during spraying in the early stage, which saves energy, improves the utilization rate of raw materials, and overcomes the need for prior art production. The disadvantages of high cost and difficulty in mass production in production.
附图说明Description of drawings
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1本发明实施例1中Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F的X射线衍射图谱。Fig. 1 is the X-ray diffraction pattern of Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 amorphous ribbon F in Example 1 of the present invention.
图2本发明实施例1中Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F的DSC测试曲线。Fig. 2 is the DSC test curve of Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 amorphous ribbon F in Example 1 of the present invention.
图3本发明实施例1中(Fe74.5Cu1.5Nb2.7Si11.5B9.8)70(Fe74.5Cu1.5Nb2.7Si11.5B9.8)30铁基非晶纳米晶薄带磁体的DSC测试曲线。Fig. 3 is the DSC test curve of the (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )70 (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )30 iron-based amorphous nanocrystalline thin strip magnet in Example 1 of the present invention.
图4本发明实施例1中(Fe74.5Cu1.5Nb2.7Si11.5B9.8)70(Fe74.5Cu1.5Nb2.7Si11.5B9.8)30铁基非晶纳米晶薄带磁体的X射线衍射图谱。Fig. 4 is the X-ray diffraction pattern of (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )70 (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )30 iron-based amorphous nanocrystalline thin strip magnet in Example 1 of the present invention.
图5本发明实施例1中(Fe74.5Cu1.5Nb2.7Si11.5B9.8)70(Fe74.5Cu1.5Nb2.7Si11.5B9.8)30铁基非晶纳米晶软磁合金铁芯产品的磁滞回线。Hysteresis of (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )70 (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )30 iron-based amorphous nanocrystalline soft magnetic alloy core product in Fig. 5 of the present invention Wire.
具体实施方式Detailed ways
实施例1Example 1
本实施例的铁基非晶纳米晶薄带磁体,其质量百分比组成表达式为AxFy,式中,A组分是原子百分比组成为Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A,F组分是与A组分主合金A的组成相对应的非晶薄带F,其中所含晶态相的质量百分数为10.5%;A组分的组成质量百分比x为70,F组分的组成质量百分比y为30。The iron-based amorphous nanocrystalline thin strip magnet of this embodiment has a mass percentage composition expression of AxFy, where the A component is the main alloy A and F of which the atomic percentage composition is Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 The component is an amorphous thin strip F corresponding to the composition of the main alloy A of the A component, and the mass percentage of the crystalline phase contained in it is 10.5%; the composition mass percentage x of the A component is 70, and the composition of the F component The mass percentage y is 30.
上述铁基非晶纳米晶薄带磁体的制备方法,步骤如下:The preparation method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet, the steps are as follows:
第一步,配制原料:The first step is to prepare raw materials:
按原子百分比计的组成式Fe74.5Cu1.5Nb2.7Si11.5B9.8计算各元素质量,称取所需原料:铌铁、硼铁、纯硅、纯铜和纯铁,完成原料的配制;Calculate the mass of each element according to the composition formula Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 in atomic percentage, and weigh the required raw materials: ferroniobium, ferroboron, pure silicon, pure copper and pure iron to complete the preparation of raw materials;
第二步,制备Fe74.5Cu1.5Nb2.7Si11.5B9.8主合金A铸锭:The second step is to prepare Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 main alloy A ingot:
将上述第一步配制的原料加入熔炼炉中,对炉体抽真空至真空度<5×10-1Pa,加热熔炼,直到所加入的全部原料熔化,且使成分均匀分布为止,之后对熔融液进行打渣和除渣,最后倒入模具中冷却,制得原子百分比组成为Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A铸锭;Add the raw materials prepared in the first step above into the smelting furnace, evacuate the furnace body to a vacuum degree of <5×10 -1 Pa, heat and melt until all the raw materials added are melted and the ingredients are evenly distributed, and then the melted Slag removal and slag removal, and finally poured into a mold for cooling to obtain a main alloy A ingot with an atomic percentage composition of Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 ;
第三步,制备Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F:The third step is to prepare Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 amorphous ribbon F:
将上述第二步制得的Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A铸锭装入熔体快淬炉中,重新熔融后以40m/s的线速度在铜辊轮上进行熔体快淬,由此制得Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F;Put the main alloy A ingot of Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 obtained in the second step above into the melt rapid quenching furnace, and melt it on the copper roller at a line speed of 40m/s after remelting Bulk rapid quenching, thus obtaining Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 amorphous ribbon F;
第四步,制备铁基非晶纳米晶薄带磁体:The fourth step is to prepare iron-based amorphous and nanocrystalline thin strip magnets:
将上述第二步制得的Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A铸锭放入重熔炉中熔化,熔炼均匀待出炉前15min将上述第三步制备的Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F按质量百分比组成表达式为AxFy=(Fe74.5Cu1.5Nb2.7Si11.5B9.8)70(Fe74.5Cu1.5Nb2.7Si11.5B9.8)30中的组成质量百分比加入重熔均匀的Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A铸锭的熔液中,然后对混合的(Fe74.5Cu1.5Nb2.7Si11.5B9.8)70(Fe74.5Cu1.5Nb2.7Si11.5B9.8)30熔液进行打渣,在大气中以40m/s速度进行喷带,即制得铁基非晶纳米晶薄带磁体。Put the main alloy A ingot of Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 prepared in the second step above into the remelting furnace for melting, and melt evenly until 15 minutes before the furnace is released. Fe 74.5 Cu 1.5 Nb 2.7 prepared in the third step above The Si 11.5 B 9.8 amorphous ribbon F is expressed in terms of mass percentage as AxFy=(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )70(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )30 The mass percentage of the composition is added Remelt the homogeneous Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 master alloy A ingot melt, and then the mixed (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )70(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 ) 30 molten slag, in the atmosphere at a speed of 40m / s to spray tape, that is, the iron-based amorphous nanocrystalline thin strip magnets.
经游标卡尺及千分尺测定:所制得的铁基非晶纳米晶薄带磁体的厚度为25μm,带宽为10mm;根据Jade软件计算,非晶薄带F中晶态相的质量分数为10.5%。Measured by a vernier caliper and a micrometer: the thickness of the prepared iron-based amorphous nanocrystalline thin strip magnet is 25 μm, and the bandwidth is 10 mm; according to the calculation by Jade software, the mass fraction of the crystalline phase in the amorphous thin strip F is 10.5%.
上述铁基非晶纳米晶薄带磁体的应用方法,用于制备铁基非晶纳米晶软磁合金铁芯产品,步骤如下:The application method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet is used to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products, and the steps are as follows:
第一步,制备铁基非晶铁芯:The first step is to prepare the iron-based amorphous iron core:
将上述铁基非晶纳米晶薄带磁体的制备方法制得的铁基非晶纳米晶薄带磁体通过卷带机卷制成所需的相应规格的铁基非晶铁芯;The iron-based amorphous nanocrystalline thin-ribbon magnet obtained by the above method for preparing the iron-based amorphous nanocrystalline thin-ribbon magnet is rolled into an iron-based amorphous iron core of corresponding specifications by a winding machine;
第二步,制备铁基非晶纳米晶软磁合金铁芯产品:The second step is to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products:
将上述第一步卷制得的铁基非晶铁芯放入退火炉中,在540℃进行退火,获得在非晶基体上均匀分布的纳米晶,即制得铁基非晶纳米晶软磁合金铁芯产品。Put the iron-based amorphous iron core prepared in the first step above into an annealing furnace, and anneal at 540°C to obtain nanocrystals uniformly distributed on the amorphous matrix, that is, to obtain iron-based amorphous nanocrystalline soft magnetic Alloy core products.
经游标卡尺测定:本实施例所制得的铁基非晶纳米晶软磁合金铁芯产品的尺寸为外径×内径×高=D×d×h=Φ30mm×Φ24.92mm×10mm;根据Jade软件计算:(Fe74.5Cu1.5Nb2.7Si11.5B9.8)70(Fe74.5Cu1.5Nb2.7Si11.5B9.8)30铁基非晶纳米晶薄带磁体中晶态相的质量分数为85.5%;经MATS-2010SD型软磁直流测量装置测定该产品磁性能为:饱和磁感应强度为1.49T,初始磁导率为148k。Measured by a vernier caliper: the size of the iron-based amorphous nanocrystalline soft magnetic alloy iron core product obtained in this embodiment is outer diameter × inner diameter × height = D × d × h = Φ30mm × Φ24.92mm × 10mm; according to Jade software Calculation: The mass fraction of crystalline phase in (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )70(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )30 Fe-based amorphous nanocrystalline thin strip magnet is 85.5%; -2010SD type soft magnetic DC measuring device measures the magnetic properties of this product: the saturation magnetic induction is 1.49T, and the initial permeability is 148k.
图1为本实施例的Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F的X射线衍射图谱,样品在2θ=40°~50°以及2θ=75°~85°范围呈现出较宽的漫散射峰,且有晶态相的衍射峰,表明Fe74.5Cu1.5Nb2.7Si11.5B9.8薄带中存在部分晶态相。Figure 1 is the X-ray diffraction pattern of the Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 amorphous ribbon F of this example. Diffuse scattering peaks and diffraction peaks of crystalline phases, indicating that some crystalline phases exist in Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 thin ribbons.
图2为本实施例的Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F的差示扫描量热(DSC)曲线,由图可知该非晶薄带F的第一起始晶化温度为508℃,第二起始晶化温度为665℃。Fig. 2 is the differential scanning calorimetry (DSC) curve of the Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 amorphous ribbon F of this embodiment, as can be seen from the figure that the first initial crystallization temperature of the amorphous ribbon F is 508°C, and the second onset crystallization temperature is 665°C.
图3为本实施例的(Fe74.5Cu1.5Nb2.7Si11.5B9.8)70(Fe74.5Cu1.5Nb2.7Si11.5B9.8)30铁基非晶纳米晶薄带磁体的DSC测试曲线,由图可知薄带的第一起始晶化温度为498℃,第二起始晶化温度为670℃,与Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带相比,起始晶化温度、晶化激活能降低,两晶化温度的间隔增大,有益于增强薄带的软磁性能。Figure 3 is the DSC test curve of the (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )70 (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )30 iron-based amorphous nanocrystalline thin strip magnet of this example, as can be seen from the figure The first initial crystallization temperature of the ribbon is 498°C, and the second initial crystallization temperature is 670°C. Compared with Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 The activation energy decreases and the interval between the two crystallization temperatures increases, which is beneficial to enhance the soft magnetic properties of the thin strip.
图4为本实施例的(Fe74.5Cu1.5Nb2.7Si11.5B9.8)70(Fe74.5Cu1.5Nb2.7Si11.5B9.8)30铁基非晶纳米晶薄带磁体的X射线衍射图谱,图中有三个明显的衍射峰,根据谢乐公式计算可知平均晶粒尺寸为12nm,同时还存在一定的漫散射峰,说明薄带中还存在少量的非晶。Fig. 4 is the X-ray diffraction pattern of the (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )70(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )30 iron-based amorphous nanocrystalline thin ribbon magnet of this embodiment, in which There are three obvious diffraction peaks. According to Scherrer's formula, the average grain size is 12nm, and there are also some diffuse scattering peaks, indicating that there is still a small amount of amorphous in the thin ribbon.
图5为本实施例的(Fe74.5Cu1.5Nb2.7Si11.5B9.8)70(Fe74.5Cu1.5Nb2.7Si11.5B9.8)30铁基非晶纳米晶软磁合金铁芯产品的磁滞回线,磁滞回线呈现典型的软磁特征。Figure 5 is the hysteresis loop of the (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )70 (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )30 iron-based amorphous nanocrystalline soft magnetic alloy iron core product of this embodiment , the hysteresis loop presents typical soft magnetic characteristics.
实施例2Example 2
本实施例的铁基非晶纳米晶薄带磁体,其质量百分比组成表达式为AxFy,式中,A组分是原子百分比组成为Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A,F组分是与A组分主合金A的组成相对应的非晶薄带F,其中所含晶态相的质量百分数为15.6%;A组分的组成质量百分比x为80,F组分的组成质量百分比y为20。The iron-based amorphous nanocrystalline thin strip magnet of this embodiment has a mass percentage composition expression of AxFy, where the A component is the main alloy A and F of which the atomic percentage composition is Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 The component is an amorphous thin strip F corresponding to the composition of the main alloy A of the A component, and the mass percentage of the crystalline phase contained therein is 15.6%; the composition mass percentage x of the A component is 80, and the composition of the F component The mass percentage y is 20.
上述铁基非晶纳米晶薄带磁体的制备方法,步骤如下:The preparation method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet, the steps are as follows:
第一步,配制原料:The first step is to prepare raw materials:
同实施例1;With embodiment 1;
第二步,制备Fe74.5Cu1.5Nb2.7Si11.5B9.8主合金A铸锭:The second step is to prepare Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 main alloy A ingot:
同实施例1;With embodiment 1;
第三步,制备Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F:The third step is to prepare Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 amorphous ribbon F:
将上述第二步制得的Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A铸锭装入熔体快淬炉中,重新熔融后以35m/s的线速度在铜辊轮上进行熔体快淬,由此制得Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F;Put the main alloy A ingot of Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 obtained in the second step above into the melt quenching furnace, and melt it on the copper roller at a line speed of 35m/s after remelting Bulk rapid quenching, thus obtaining Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 amorphous ribbon F;
第四步,制备铁基非晶纳米晶薄带磁体:The fourth step is to prepare iron-based amorphous and nanocrystalline thin strip magnets:
将上述第二步制得的Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A铸锭放入重熔炉中熔化,熔炼均匀待出炉前15min将上述第三步制备的Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F按质量百分比组成表达式为AxFy=(Fe74.5Cu1.5Nb2.7Si11.5B9.8)80(Fe74.5Cu1.5Nb2.7Si11.5B9.8)20中的组成质量百分比加入重熔均匀的Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A铸锭的熔液中,然后对混合的(Fe74.5Cu1.5Nb2.7Si11.5B9.8)80(Fe74.5Cu1.5Nb2.7Si11.5B9.8)20熔液进行打渣,在大气中以40m/s速度进行喷带,即制得铁基非晶纳米晶薄带磁体。Put the main alloy A ingot of Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 prepared in the second step above into the remelting furnace for melting, and melt evenly until 15 minutes before the furnace is released. Fe 74.5 Cu 1.5 Nb 2.7 prepared in the third step above The Si 11.5 B 9.8 amorphous ribbon F is expressed in terms of mass percentage as AxFy=(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )80(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )20 The composition mass percentage is added Remelt the homogeneous Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 master alloy A ingot melt, and then mix (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 ) 80 (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 ) 20 molten slag, in the atmosphere at a speed of 40m / s to spray tape, that is, the iron-based amorphous nanocrystalline thin strip magnets.
经游标卡尺及千分尺测定:所制得的铁基非晶纳米晶薄带磁体的厚度为25μm,带宽为20mm;根据Jade软件计算,非晶薄带F中晶态相的质量分数为15.6%。Measured by a vernier caliper and a micrometer: the thickness of the prepared iron-based amorphous nanocrystalline thin strip magnet is 25 μm, and the bandwidth is 20 mm; according to the calculation by Jade software, the mass fraction of the crystalline phase in the amorphous thin strip F is 15.6%.
上述铁基非晶纳米晶薄带磁体的应用方法,用于制备铁基非晶纳米晶软磁合金铁芯产品,步骤如下:The application method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet is used to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products, and the steps are as follows:
第一步,制备铁基非晶铁芯:The first step is to prepare the iron-based amorphous iron core:
同实施例1;With embodiment 1;
第二步,制备铁基非晶纳米晶软磁合金铁芯产品:The second step is to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products:
同实施例1;With embodiment 1;
经游标卡尺测定:本实施例所制得的铁基非晶纳米晶软磁合金铁芯产品的尺寸为外径×内径×高=D×d×h=Φ30mm×Φ24.92mm×20mm;根据Jade软件计算:(Fe74.5Cu1.5Nb2.7Si11.5B9.8)80(Fe74.5Cu1.5Nb2.7Si11.5B9.8)20非晶纳米晶薄带磁体中晶态相的质量分数为83.6%;经MATS-2010SD型软磁直流测量装置测定该产品磁性能为:饱和磁感应强度为1.35T,初始磁导率为135k。Measured by a vernier caliper: the size of the iron-based amorphous nanocrystalline soft magnetic alloy iron core product obtained in this embodiment is outer diameter × inner diameter × height = D × d × h = Φ30mm × Φ24.92mm × 20mm; according to Jade software Calculation: The mass fraction of crystalline phase in (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )80(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )20 amorphous nanocrystalline thin strip magnet is 83.6%; by MATS-2010SD The magnetic properties of this product measured by the type soft magnetic DC measuring device are: the saturation magnetic induction is 1.35T, and the initial magnetic permeability is 135k.
实施例3Example 3
本实施例的铁基非晶纳米晶薄带磁体,其质量百分比组成表达式为AxFy,式中,A组分是原子百分比组成为Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A,F组分是与A组分主合金A的组成相对应的非晶薄带F,其中所含晶态相的质量百分数为18.4%;A组分的组成质量百分比x为90,F组分的组成质量百分比y为10。The iron-based amorphous nanocrystalline thin strip magnet of this embodiment has a mass percentage composition expression of AxFy, where the A component is the main alloy A and F of which the atomic percentage composition is Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 The component is an amorphous thin strip F corresponding to the composition of the main alloy A of the A component, and the mass percentage of the crystalline phase contained therein is 18.4%; the composition mass percentage x of the A component is 90, and the composition of the F component The mass percentage y is 10.
上述铁基非晶纳米晶薄带磁体的制备方法,步骤如下:The preparation method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet, the steps are as follows:
第一步,配制原料:The first step is to prepare raw materials:
同实施例1;With embodiment 1;
第二步,制备Fe74.5Cu1.5Nb2.7Si11.5B9.8主合金A铸锭:The second step is to prepare Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 main alloy A ingot:
同实施例1;With embodiment 1;
第三步,制备Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F:The third step is to prepare Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 amorphous ribbon F:
将上述第二步制得的Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A铸锭装入熔体快淬炉中,重新熔融后以30m/s的线速度在铜辊轮上进行熔体快淬,由此制得Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F;Put the main alloy A ingot of Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 obtained in the second step above into the melt quenching furnace, and melt it on the copper roller at a line speed of 30m/s after remelting Bulk rapid quenching, thus obtaining Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 amorphous ribbon F;
第四步,制备铁基非晶纳米晶薄带磁体:The fourth step is to prepare iron-based amorphous and nanocrystalline thin strip magnets:
将上述第二步制得的Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A铸锭放入重熔炉中熔化,熔炼均匀待出炉前15min将上述第三步制备的Fe74.5Cu1.5Nb2.7Si11.5B9.8非晶薄带F按质量百分比组成表达式为AxFy=(Fe74.5Cu1.5Nb2.7Si11.5B9.8)90(Fe74.5Cu1.5Nb2.7Si11.5B9.8)10中的组成质量百分比加入重熔均匀的Fe74.5Cu1.5Nb2.7Si11.5B9.8的主合金A铸锭的熔液中,然后对混合的(Fe74.5Cu1.5Nb2.7Si11.5B9.8)90(Fe74.5Cu1.5Nb2.7Si11.5B9.8)10熔液进行打渣,在大气中以40m/s速度进行喷带,即制得铁基非晶纳米晶薄带磁体。Put the main alloy A ingot of Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 prepared in the second step above into the remelting furnace for melting, and melt evenly until 15 minutes before the furnace is released. Fe 74.5 Cu 1.5 Nb 2.7 prepared in the third step above The Si 11.5 B 9.8 amorphous ribbon F is expressed in terms of mass percentage as AxFy=(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )90(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 ) The composition mass percentage in 10 is added Remelt the homogeneous Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 master alloy A ingot melt, and then mix (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )90(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 ) 10 The melt is slagged, and sprayed with a speed of 40m/s in the atmosphere to obtain an iron-based amorphous nanocrystalline thin-strip magnet.
经游标卡尺及千分尺测定:本实施例所制得的铁基非晶纳米晶薄带磁体的厚度为25μm,带宽为30mm;根据Jade软件计算,非晶薄带F中晶态相的质量分数为18.4%。Measured by a vernier caliper and a micrometer: the thickness of the iron-based amorphous nanocrystalline thin strip magnet prepared in this embodiment is 25 μm, and the bandwidth is 30 mm; calculated according to Jade software, the mass fraction of the crystalline phase in the amorphous thin strip F is 18.4 %.
上述铁基非晶纳米晶薄带磁体的应用方法,用于制备铁基非晶纳米晶软磁合金铁芯产品,步骤如下:The application method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet is used to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products, and the steps are as follows:
第一步,制备铁基非晶铁芯:The first step is to prepare the iron-based amorphous iron core:
同实施例1;With embodiment 1;
第二步,制备铁基非晶纳米晶软磁合金铁芯产品:The second step is to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products:
同实施例1;With embodiment 1;
经游标卡尺测定:本实施例所制得的铁基非晶纳米晶软磁合金铁芯产品的尺寸为外径×内径×高=D×d×h=Φ30mm×Φ24.92mm×30mm;根据Jade软件计算:(Fe74.5Cu1.5Nb2.7Si11.5B9.8)90(Fe74.5Cu1.5Nb2.7Si11.5B9.8)10非晶纳米晶薄带磁体中晶态相的质量分数为78.4%;经MATS-2010SD型软磁直流测量装置测定该产品磁性能为:饱和磁感应强度为1.32T,初始磁导率为127k。Measured by a vernier caliper: the size of the iron-based amorphous nanocrystalline soft magnetic alloy iron core product obtained in this embodiment is outer diameter × inner diameter × height = D × d × h = Φ30mm × Φ24.92mm × 30mm; according to Jade software Calculation: (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )90(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )10The mass fraction of crystalline phase in the amorphous and nanocrystalline thin strip magnet is 78.4%; by MATS-2010SD The magnetic properties of this product measured by the type soft magnetic DC measuring device are: the saturation magnetic induction is 1.32T, and the initial magnetic permeability is 127k.
实施例4Example 4
本实施例的铁基非晶纳米晶薄带磁体,其质量百分比组成表达式为AxFy,式中,A组分是原子百分比组成为Fe74.5Cu1.5V2.7Si11.5B9.8的主合金A,F组分是与A组分主合金A的组成相对应的非晶薄带F,其中所含晶态相的质量百分数为12.5%;A组分的组成质量百分比x为70,F组分的组成质量百分比y为30。The iron-based amorphous nanocrystalline thin strip magnet of this embodiment has a mass percentage composition expression of AxFy, where the A component is the main alloy A and F of which the atomic percentage composition is Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 The component is an amorphous thin strip F corresponding to the composition of the main alloy A of the A component, and the mass percentage of the crystalline phase contained therein is 12.5%; the composition mass percentage x of the A component is 70, and the composition of the F component The mass percentage y is 30.
上述铁基非晶纳米晶薄带磁体的制备方法,步骤如下:The preparation method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet, the steps are as follows:
第一步,配制原料:The first step is to prepare raw materials:
按原子百分比计的组成式Fe74.5Cu1.5V2.7Si11.5B9.8计算各元素质量,称取所需原料:钒铁、硼铁、纯硅、纯铜和纯铁,完成原料的配制;Calculate the mass of each element according to the composition formula Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 in atomic percentage, and weigh the required raw materials: ferrovanadium, ferroboron, pure silicon, pure copper and pure iron to complete the preparation of raw materials;
第二步,制备Fe74.5Cu1.5V2.7Si11.5B9.8主合金A铸锭:The second step is to prepare Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 main alloy A ingot:
将上述第一步配制的原料加入熔炼炉中,对炉体抽真空至真空度<5×10-1Pa,加热熔炼,直到所加入的全部原料熔化,且使成分均匀分布为止,之后对熔融液进行打渣和除渣,最后倒入模具中冷却,制得原子百分比组成为Fe74.5Cu1.5V2.7Si11.5B9.8的主合金A铸锭;Add the raw materials prepared in the first step above into the smelting furnace, evacuate the furnace body to a vacuum degree of <5×10 -1 Pa, heat and melt until all the raw materials added are melted and the ingredients are evenly distributed, and then the melted Slagging and slag removal, and finally poured into a mold for cooling to obtain a main alloy A ingot with an atomic percentage composition of Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 ;
第三步,制备Fe74.5Cu1.5V2.7Si11.5B9.8非晶薄带F:The third step is to prepare Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 amorphous ribbon F:
将上述第二步制得的Fe74.5Cu1.5V2.7Si11.5B9.8的主合金A铸锭装入熔体快淬炉中,重新熔融后以40m/s的线速度在铜辊轮上进行熔体快淬,由此制得Fe74.5Cu1.5V2.7Si11.5B9.8非晶薄带F;Put the main alloy A ingot of Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 obtained in the second step above into the melt quenching furnace, and melt it on the copper roller at a line speed of 40m/s after remelting Bulk rapid quenching, thus obtaining Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 amorphous ribbon F;
第四步,制备铁基非晶纳米晶薄带磁体:The fourth step is to prepare iron-based amorphous and nanocrystalline thin strip magnets:
将上述第二步制得的Fe74.5Cu1.5V2.7Si11.5B9.8的主合金A铸锭放入重熔炉中熔化,熔炼均匀待出炉前15min将上述第三步制备的Fe74.5Cu1.5V2.7Si11.5B9.8非晶薄带F按质量百分比组成表达式为AxFy=(Fe74.5Cu1.5V2.7Si11.5B9.8)70(Fe74.5Cu1.5V2.7Si11.5B9.8)30中的组成质量百分比加入重熔均匀的Fe74.5Cu1.5V2.7Si11.5B9.8的主合金A铸锭的熔液中,然后对混合的(Fe74.5Cu1.5Nb2.7Si11.5B9.8)70(Fe74.5Cu1.5Nb2.7Si11.5B9.8)30熔液进行打渣,在大气中以40m/s速度进行喷带,即制得铁基非晶纳米晶薄带磁体。Put the main alloy A ingot of Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 prepared in the second step above into the remelting furnace for melting, and melt evenly until 15 minutes before it is released from the furnace. Fe 74.5 Cu 1.5 V 2.7 prepared in the third step above The Si 11.5 B 9.8 amorphous ribbon F is expressed by mass percentage as AxFy=(Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 )70(Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 )30 The composition mass percentage is added Remelt the homogeneous Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 master alloy A ingot melt, and then mix (Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 )70(Fe 74.5 Cu 1.5 Nb 2.7 Si 11.5 B 9.8 ) 30 molten slag, in the atmosphere at a speed of 40m / s to spray tape, that is, the iron-based amorphous nanocrystalline thin strip magnets.
经游标卡尺及千分尺测定:本实施例所制得的铁基非晶纳米晶薄带磁体的厚度为25μm,带宽为10mm;根据Jade软件计算,非晶薄带F中晶态相的质量分数为12.5%。Measured by a vernier caliper and a micrometer: the thickness of the iron-based amorphous nanocrystalline thin strip magnet prepared in this embodiment is 25 μm, and the bandwidth is 10 mm; calculated according to Jade software, the mass fraction of the crystalline phase in the amorphous thin strip F is 12.5 %.
上述铁基非晶纳米晶薄带磁体的应用方法,用于制备铁基非晶纳米晶软磁合金铁芯产品,步骤如下:The application method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet is used to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products, and the steps are as follows:
第一步,制备铁基非晶铁芯:The first step is to prepare the iron-based amorphous iron core:
将上述铁基非晶纳米晶薄带磁体的制备方法制得的铁基非晶纳米晶薄带磁体通过卷带机卷制成所需的相应规格的铁基非晶铁芯;The iron-based amorphous nanocrystalline thin-ribbon magnet obtained by the above method for preparing the iron-based amorphous nanocrystalline thin-ribbon magnet is rolled into an iron-based amorphous iron core of corresponding specifications by a winding machine;
第二步,制备铁基非晶纳米晶软磁合金铁芯产品:The second step is to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products:
将上述第一步卷制得的铁基非晶铁芯放入退火炉中,在540℃进行退火,获得在非晶基体上均匀分布的纳米晶,即制得铁基非晶纳米晶软磁合金铁芯产品。Put the iron-based amorphous iron core prepared in the first step above into an annealing furnace, and anneal at 540°C to obtain nanocrystals uniformly distributed on the amorphous matrix, that is, to obtain iron-based amorphous nanocrystalline soft magnetic Alloy core products.
经游标卡尺测定:本实施例所制得的铁基非晶纳米晶软磁合金铁芯产品的尺寸为外径×内径×高=D×d×h=Φ30mm×Φ24.92mm×10mm;根据Jade软件计算:(Fe74.5Cu1.5V2.7Si11.5B9.8)70(Fe74.5Cu1.5V2.7Si11.5B9.8)30非晶纳米晶薄带磁体中晶态相的质量分数为84.5%;经MATS-2010SD型软磁直流测量装置测定该产品磁性能为:饱和磁感应强度为1.32T,初始磁导率为138k。Measured by a vernier caliper: the size of the iron-based amorphous nanocrystalline soft magnetic alloy iron core product obtained in this embodiment is outer diameter × inner diameter × height = D × d × h = Φ30mm × Φ24.92mm × 10mm; according to Jade software Calculation: The mass fraction of crystalline phase in (Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 )70(Fe 74.5 Cu 1.5 V 2.7 Si 11.5 B 9.8 )30 amorphous nanocrystalline thin strip magnet is 84.5%; by MATS-2010SD The magnetic properties of this product measured by the type soft magnetic DC measuring device are: the saturation magnetic induction is 1.32T, and the initial magnetic permeability is 138k.
实施例5Example 5
本实施例的铁基非晶纳米晶薄带磁体,其质量百分比组成表达式为AxFy,式中,A组分是原子百分比组成为Fe74.5Cu1.5Mo2.7Si11.5B9.8的主合金A,F组分是与A组分主合金A的组成相对应的非晶薄带F,其中所含晶态相的质量百分数为11.6%;A组分的组成质量百分比x为70,F组分的组成质量百分比y为30。The iron-based amorphous nanocrystalline thin strip magnet of this embodiment has a mass percentage composition expression of AxFy, where the A component is the main alloy A and F of which the atomic percentage composition is Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 The component is an amorphous thin strip F corresponding to the composition of the main alloy A of the A component, and the mass percentage of the crystalline phase contained therein is 11.6%; the composition mass percentage x of the A component is 70, and the composition of the F component The mass percentage y is 30.
上述铁基非晶纳米晶薄带磁体的制备方法,步骤如下:The preparation method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet, the steps are as follows:
第一步,配制原料:The first step is to prepare raw materials:
按原子百分比计的组成式Fe74.5Cu1.5Mo2.7Si11.5B9.8计算各元素质量,称取所需原料:钒铁、硼铁、纯硅、纯铜和纯铁,完成原料的配制;Calculate the mass of each element according to the composition formula Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 in atomic percentage, and weigh the required raw materials: ferrovanadium, ferroboron, pure silicon, pure copper and pure iron to complete the preparation of raw materials;
第二步,制备Fe74.5Cu1.5Mo2.7Si11.5B9.8主合金A铸锭:The second step is to prepare Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 main alloy A ingot:
将上述第一步配制的原料加入熔炼炉中,对炉体抽真空至真空度<5×10-1Pa,加热熔炼,直到所加入的全部原料熔化,且使成分均匀分布为止,之后对熔融液进行打渣和除渣,最后倒入模具中冷却,制得原子百分比组成为Fe74.5Cu1.5Mo2.7Si11.5B9.8的主合金A铸锭;Add the raw materials prepared in the first step above into the smelting furnace, evacuate the furnace body to a vacuum degree of <5×10 -1 Pa, heat and melt until all the raw materials added are melted and the ingredients are evenly distributed, and then the melted Slag removal and slag removal, and finally poured into a mold for cooling to obtain a main alloy A ingot with an atomic percentage composition of Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 ;
第三步,制备Fe74.5Cu1.5Mo2.7Si11.5B9.8非晶薄带F:The third step is to prepare Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 amorphous ribbon F:
将上述第二步制得的Fe74.5Cu1.5Mo2.7Si11.5B9.8的主合金A铸锭装入熔体快淬炉中,重新熔融后以40m/s的线速度在铜辊轮上进行熔体快淬,由此制得Fe74.5Cu1.5Mo2.7Si11.5B9.8非晶薄带F;Put the main alloy A ingot of Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 obtained in the second step above into the melt quenching furnace, and melt it on the copper roller at a line speed of 40m/s after remelting Bulk rapid quenching, thus producing Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 amorphous ribbon F;
第四步,制备铁基非晶纳米晶薄带磁体:The fourth step is to prepare iron-based amorphous and nanocrystalline thin strip magnets:
将上述第二步制得的Fe74.5Cu1.5Mo2.7Si11.5B9.8的主合金A铸锭放入重熔炉中熔化,熔炼均匀待出炉前15min将上述第三步制备的Fe74.5Cu1.5Mo2.7Si11.5B9.8非晶薄带F按质量百分比组成表达式为AxFy=(Fe74.5Cu1.5Mo2.7Si11.5B9.8)70(Fe74.5Cu1.5Mo2.7Si11.5B9.8)30中的组成质量百分比加入重熔均匀的Fe74.5Cu1.5Mo2.7Si11.5B9.8的主合金A铸锭的熔液中,然后对混合的(Fe74.5Cu1.5Mo2.7Si11.5B9.8)70(Fe74.5Cu1.5Mo2.7Si11.5B9.8)30熔液进行打渣,在大气中以40m/s速度进行喷带,即制得铁基非晶纳米晶薄带磁体。Put the main alloy A ingot of Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 prepared in the second step above into the remelting furnace for melting, and melt evenly until 15 minutes before it is released from the furnace. Fe 74.5 Cu 1.5 Mo 2.7 prepared in the third step above The Si 11.5 B 9.8 amorphous ribbon F is expressed in terms of mass percentage as AxFy=(Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 )70(Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 )30 The mass percentage of the composition is added Remelt the homogeneous Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 master alloy A ingot melt, and then mix (Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 )70(Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 ) 30 molten slag, in the atmosphere at a speed of 40m / s to spray tape, that is, the iron-based amorphous nanocrystalline thin strip magnets.
经游标卡尺及千分尺测定:本实施例所制得的铁基非晶纳米晶薄带磁体的厚度为25μm,带宽为40mm;根据Jade软件计算,非晶薄带F中晶态相的质量分数为11.6%。Measured by a vernier caliper and a micrometer: the thickness of the iron-based amorphous nanocrystalline thin strip magnet prepared in this embodiment is 25 μm, and the bandwidth is 40 mm; calculated according to Jade software, the mass fraction of the crystalline phase in the amorphous thin strip F is 11.6 %.
上述铁基非晶纳米晶薄带磁体的应用方法,用于制备铁基非晶纳米晶软磁合金铁芯产品,步骤如下:The application method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet is used to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products, and the steps are as follows:
第一步,制备铁基非晶铁芯:The first step is to prepare the iron-based amorphous iron core:
将上述铁基非晶纳米晶薄带磁体的制备方法制得的铁基非晶纳米晶薄带磁体通过卷带机卷制成所需的相应规格的铁基非晶铁芯;The iron-based amorphous nanocrystalline thin-ribbon magnet obtained by the above method for preparing the iron-based amorphous nanocrystalline thin-ribbon magnet is rolled into an iron-based amorphous iron core of corresponding specifications by a winding machine;
第二步,制备铁基非晶纳米晶软磁合金铁芯产品:The second step is to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products:
将上述第一步卷制得的铁基非晶铁芯放入退火炉中,在540℃进行退火,获得在非晶基体上均匀分布的纳米晶,即制得铁基非晶纳米晶软磁合金铁芯产品。Put the iron-based amorphous iron core prepared in the first step above into an annealing furnace, and anneal at 540°C to obtain nanocrystals uniformly distributed on the amorphous matrix, that is, to obtain iron-based amorphous nanocrystalline soft magnetic Alloy core products.
经游标卡尺测定:本实施例所制得的铁基非晶纳米晶软磁合金铁芯产品的尺寸为外径×内径×高=D×d×h=Φ30mm×Φ24.92mm×40mm;根据Jade软件计算:(Fe74.5Cu1.5Mo2.7Si11.5B9.8)70(Fe74.5Cu1.5Mo2.7Si11.5B9.8)30非晶纳米晶薄带磁体中晶态相的质量分数为82.3%;经MATS-2010SD型软磁直流测量装置测定该产品磁性能为:饱和磁感应强度为1.28T,初始磁导率为132k。Measured by a vernier caliper: the size of the iron-based amorphous nanocrystalline soft magnetic alloy iron core product obtained in this embodiment is outer diameter × inner diameter × height = D × d × h = Φ30mm × Φ24.92mm × 40mm; according to Jade software Calculation: The mass fraction of crystalline phase in (Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 )70(Fe 74.5 Cu 1.5 Mo 2.7 Si 11.5 B 9.8 )30 amorphous nanocrystalline thin strip magnet is 82.3%; by MATS-2010SD The magnetic properties of this product measured by the type soft magnetic DC measuring device are: the saturation magnetic induction is 1.28T, and the initial magnetic permeability is 132k.
实施例6Example 6
本实施例的铁基非晶纳米晶薄带磁体,其质量百分比组成表达式为AxFy,式中,A组分是原子百分比组成为Fe72.5Cu1.2Nb2V1.5Si14.5B8.3的主合金A,F组分是与A组分主合金A的组成相对应的非晶薄带F,其中所含晶态相的质量百分数为5.5%;A组分的组成质量百分比x为70,F组分的组成质量百分比y为30。The iron-based amorphous nanocrystalline thin strip magnet of this embodiment has a mass percentage composition expression of AxFy, where the A component is the main alloy A with an atomic percentage composition of Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 , the F component is an amorphous thin strip F corresponding to the composition of the main alloy A of the A component, and the mass percentage of the crystalline phase contained in it is 5.5%; the composition mass percentage x of the A component is 70, and the F component The composition mass percentage y is 30.
上述铁基非晶纳米晶薄带磁体的制备方法,步骤如下:The preparation method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet, the steps are as follows:
第一步,配制原料:The first step is to prepare raw materials:
按原子百分比计的组成式Fe72.5Cu1.2Nb2V1.5Si14.5B8.3计算各元素质量,称取所需原料:铌铁、硼铁、钒铁、纯硅、纯铜和纯铁,完成原料的配制;The composition formula in atomic percentage is Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 Calculate the mass of each element, weigh the required raw materials: ferroniobium, ferroboron, ferrovanadium, pure silicon, pure copper and pure iron, and complete the raw materials preparation;
第二步,制备Fe72.5Cu1.2Nb2V1.5Si14.5B8.3主合金A铸锭:The second step is to prepare Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 main alloy A ingot:
将上述第一步配制的原料加入熔炼炉中,对炉体抽真空至真空度<5×10-1Pa,加热熔炼,直到所加入的全部原料熔化,且使成分均匀分布为止,之后对熔融液进行打渣和除渣,最后倒入模具中冷却,制得原子百分比组成为Fe72.5Cu1.2Nb2V1.5Si14.5B8.3的主合金A铸锭;Add the raw materials prepared in the first step above into the smelting furnace, evacuate the furnace body to a vacuum degree of <5×10 -1 Pa, heat and melt until all the raw materials added are melted and the ingredients are evenly distributed, and then the melted Slagging and slag removal, and finally poured into a mold for cooling to obtain a main alloy A ingot with an atomic percentage composition of Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 ;
第三步,制备Fe72.5Cu1.2Nb2V1.5Si14.5B8.3非晶薄带F:The third step is to prepare Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 thin amorphous ribbon F:
将上述第二步制得的Fe72.5Cu1.2Nb2V1.5Si14.5B8.3主合金A铸锭装入熔体快淬炉中,重新熔融后以45m/s的线速度在铜辊轮上进行熔体快淬,由此制得Fe72.5Cu1.2Nb2V1.5Si14.5B8.3非晶薄带F;Put the ingot of Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 main alloy A obtained in the second step above into the melt rapid quenching furnace, and re-melt it on the copper roller at a line speed of 45m/s Rapid quenching of the melt, thus producing Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 amorphous ribbon F;
第四步,制备铁基非晶纳米晶薄带磁体:The fourth step is to prepare iron-based amorphous and nanocrystalline thin strip magnets:
将上述第二步制得的Fe72.5Cu1.2Nb2V1.5Si14.5B8.3主合金A铸锭放入重熔炉中熔化,熔炼均匀待出炉前10min将上述第三步制备的Fe72.5Cu1.2Nb2V1.5Si14.5B8.3非晶薄带F按质量百分比组成表达式为AxFy=(Fe72.5Cu1.2Nb2V1.5Si14.5B8.3)70(Fe72.5Cu1.2Nb2V1.5Si14.5B8.3)30中的组成质量百分比加入重熔均匀的Fe72.5Cu1.2Nb2V1.5Si14.5B8.3的主合金A铸锭的熔液中,然后对混合的(Fe72.5Cu1.2Nb2V1.5Si14.5B8.3)70(Fe72.5Cu1.2Nb2V1.5Si14.5B8.3)30熔液进行打渣,在大气中以20m/s速度进行喷带,即制得铁基非晶纳米晶薄带磁体。Put the ingot of Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 main alloy A prepared in the second step above into the remelting furnace and melt it, and melt it evenly . The composition expression of 2 V 1.5 Si 14.5 B 8.3 amorphous ribbon F in terms of mass percentage is AxFy=(Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 )70(Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 ) The mass percentage of the composition in 30 is added to the melt of the main alloy A ingot of remelted uniform Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 , and then the mixed (Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 )70(Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 )30 melt is slag-stripped, and sprayed in the atmosphere at a speed of 20m/s to obtain an iron-based amorphous and nanocrystalline thin-ribbon magnet.
经游标卡尺及千分尺测定:本实施例所制得的铁基非晶纳米晶薄带磁体的厚度为35μm,带宽为40mm;根据Jade软件计算:非晶薄带F中晶态相的质量分数为5.5%。Measured by a vernier caliper and a micrometer: the thickness of the iron-based amorphous nanocrystalline thin strip magnet prepared in this embodiment is 35 μm, and the bandwidth is 40 mm; calculated according to Jade software: the mass fraction of the crystalline phase in the amorphous thin strip F is 5.5 %.
上述铁基非晶纳米晶薄带磁体的应用方法,用于制备铁基非晶纳米晶软磁合金铁芯产品,步骤如下:The application method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet is used to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products, and the steps are as follows:
第一步,制备铁基非晶铁芯:The first step is to prepare the iron-based amorphous iron core:
将上述铁基非晶纳米晶薄带磁体的制备方法制得的铁基非晶纳米晶薄带磁体通过卷带机卷制成所需的相应规格的铁基非晶铁芯;The iron-based amorphous nanocrystalline thin-ribbon magnet obtained by the above method for preparing the iron-based amorphous nanocrystalline thin-ribbon magnet is rolled into an iron-based amorphous iron core of corresponding specifications by a winding machine;
第二步,制备铁基非晶纳米晶软磁合金铁芯产品:The second step is to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products:
将上述第一步卷制得的铁基非晶铁芯放入退火炉中,在560℃进行退火,获得在非晶基体上均匀分布的纳米晶,即制得铁基非晶纳米晶软磁合金铁芯产品。Put the iron-based amorphous iron core rolled in the first step above into an annealing furnace, and anneal at 560°C to obtain nanocrystals uniformly distributed on the amorphous matrix, that is, to obtain iron-based amorphous nanocrystalline soft magnetic Alloy core products.
经游标卡尺测定:本实施例所制得的铁基非晶纳米晶软磁合金铁芯产品的尺寸为外径×内径×高=D×d×h=Φ30mm×Φ24.92mm×40mm;根据Jade软件计算:(Fe72.5Cu1.2Nb2V1.5Si14.5B8.3)70(Fe72.5Cu1.2Nb2V1.5Si14.5B8.3)30铁基非晶纳米晶薄带磁体中晶态相的质量分数为83.3%;经MATS-2010SD型软磁直流测量装置测定该产品磁性能为:饱和磁感应强度为1.41T,初始磁导率为146k。Measured by a vernier caliper: the size of the iron-based amorphous nanocrystalline soft magnetic alloy iron core product obtained in this embodiment is outer diameter × inner diameter × height = D × d × h = Φ30mm × Φ24.92mm × 40mm; according to Jade software Calculation: The mass fraction of crystalline phase in (Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 )70(Fe 72.5 Cu 1.2 Nb 2 V 1.5 Si 14.5 B 8.3 )30 Fe-based amorphous nanocrystalline thin strip magnet is 83.3 %; The magnetic properties of this product are measured by the MATS-2010SD soft magnetic DC measuring device: the saturation magnetic induction is 1.41T, and the initial magnetic permeability is 146k.
实施例7Example 7
本实施例的铁基非晶纳米晶薄带磁体,其质量百分比组成表达式为AxFy,式中,A组分是原子百分比组成为Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3的主合金A,F组分是与A组分主合金A的组成相对应的非晶薄带F,其中所含晶态相的质量百分数为2.0%;A组分的组成质量百分比为70,F组分的组成质量百分比y为30。The iron-based amorphous nanocrystalline thin strip magnet of this embodiment has a mass percentage composition expression of AxFy, where the A component is the main alloy A with an atomic percentage composition of Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 , the F component is an amorphous thin strip F corresponding to the composition of the main alloy A of the A component, and the mass percentage of the crystalline phase contained in it is 2.0%; the composition mass percentage of the A component is 70, and the F component Composition mass percentage y is 30.
上述铁基非晶纳米晶薄带磁体的制备方法,步骤如下:The preparation method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet, the steps are as follows:
第一步,配制原料:The first step is to prepare raw materials:
按原子百分比计的组成式Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3计算各元素质量,称取所需原料:铌铁、硼铁、钼铁、纯硅、纯铜和纯铁,完成原料的配制;The composition formula in atomic percentage is Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 Calculate the mass of each element, weigh the required raw materials: ferroniobium, ferroboron, ferromolybdenum, pure silicon, pure copper and pure iron, and complete the raw materials preparation;
第二步,制备Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3主合金A铸锭:The second step is to prepare Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 main alloy A ingot:
将上述第一步配制的原料加入熔炼炉中,对炉体抽真空至真空度<5×10-1Pa,加热熔炼,直到所加入的全部原料熔化,且使成分均匀分布为止,之后对熔融液进行打渣和除渣,最后倒入模具中冷却,制得原子百分比组成为Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3的主合金A铸锭;Add the raw materials prepared in the first step above into the smelting furnace, evacuate the furnace body to a vacuum degree of <5×10 -1 Pa, heat and melt until all the raw materials added are melted and the ingredients are evenly distributed, and then the melted Slag removal and slag removal, and finally poured into a mold for cooling to obtain a main alloy A ingot with an atomic percentage composition of Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 ;
第三步,制备Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3非晶薄带F:The third step is to prepare Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 thin amorphous ribbon F:
将上述第二步制得的Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3主合金A铸锭装入熔体快淬炉中,重新熔融后以45m/s的线速度在铜辊轮上进行熔体快淬,由此制得Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3非晶薄带F;Put the ingot of Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 main alloy A obtained in the second step above into the melt quenching furnace, re-melt it on the copper roller at a line speed of 45m/s Rapid quenching of the melt, thus producing Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 amorphous ribbon F;
第四步,制备铁基非晶纳米晶薄带磁体:The fourth step is to prepare iron-based amorphous and nanocrystalline thin strip magnets:
将上述第二步制得的Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3主合金A铸锭放入重熔炉中熔化,熔炼均匀待出炉前10min将上述第三步制备的Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3非晶薄带F按质量百分比组成表达式为AxFy=(Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3)70(Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3)30中的组成质量百分比加入重熔均匀的Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3的主合金A铸锭的熔液中,然后对混合的(Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3)70(Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3)30熔液进行打渣,在大气中以20m/s速度进行喷带,即制得铁基非晶纳米晶薄带磁体。Put the ingot of Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 main alloy A prepared in the second step above into the remelting furnace and melt it, and melt it evenly . 2 Mo 1.5 Si 14.5 B 8.3 Amorphous ribbon F is expressed in mass percent as AxFy=(Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 )70(Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 ) The mass percentage of the composition in 30 is added to the melt of the main alloy A ingot of remelted uniform Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 , and then the mixed (Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 )70(Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 )30 melt is slag-stripped, and sprayed with a speed of 20m/s in the atmosphere to obtain an iron-based amorphous nanocrystalline thin-ribbon magnet.
经游标卡尺及千分尺测定:本实施例所制得的铁基非晶纳米晶薄带磁体的厚度为35μm,带宽为40mm;根据Jade软件计算,非晶薄带F中晶态相的质量分数为2.0%。Measured by a vernier caliper and a micrometer: the thickness of the iron-based amorphous nanocrystalline thin strip magnet prepared in this embodiment is 35 μm, and the bandwidth is 40 mm; calculated according to Jade software, the mass fraction of the crystalline phase in the amorphous thin strip F is 2.0 %.
上述铁基非晶纳米晶薄带磁体的应用方法,用于制备铁基非晶纳米晶软磁合金铁芯产品,步骤如下:The application method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet is used to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products, and the steps are as follows:
第一步,制备铁基非晶铁芯:The first step is to prepare the iron-based amorphous iron core:
将上述铁基非晶纳米晶薄带磁体的制备方法制得的铁基非晶纳米晶薄带磁体通过卷带机卷制成所需的相应规格的铁基非晶铁芯;The iron-based amorphous nanocrystalline thin-ribbon magnet obtained by the above method for preparing the iron-based amorphous nanocrystalline thin-ribbon magnet is rolled into an iron-based amorphous iron core of corresponding specifications by a winding machine;
第二步,制备铁基非晶纳米晶软磁合金铁芯产品:The second step is to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products:
将上述第一步卷制得的铁基非晶铁芯放入退火炉中,在560℃进行退火,获得在非晶基体上均匀分布的纳米晶,即制得铁基非晶纳米晶软磁合金铁芯产品。Put the iron-based amorphous iron core rolled in the first step above into an annealing furnace, and anneal at 560°C to obtain nanocrystals uniformly distributed on the amorphous matrix, that is, to obtain iron-based amorphous nanocrystalline soft magnetic Alloy core products.
经游标卡尺测定:本实施例所制得的铁基非晶纳米晶软磁合金铁芯产品的尺寸为外径×内径×高=D×d×h=Φ30mm×Φ24.92mm×40mm;根据Jade软件计算:(Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3)70(Fe72.5Cu1.2Nb2Mo1.5Si14.5B8.3)30非晶纳米晶薄带磁体中晶态相的质量分数为81.6%;经MATS-2010SD型软磁直流测量装置测定该产品磁性能为:饱和磁感应强度为1.38T,初始磁导率为137k。Measured by a vernier caliper: the size of the iron-based amorphous nanocrystalline soft magnetic alloy iron core product obtained in this embodiment is outer diameter × inner diameter × height = D × d × h = Φ30mm × Φ24.92mm × 40mm; according to Jade software Calculation: the mass fraction of crystalline phase in (Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 )70(Fe 72.5 Cu 1.2 Nb 2 Mo 1.5 Si 14.5 B 8.3 )30 amorphous nanocrystalline thin strip magnet is 81.6%; The magnetic properties of this product are measured by the MATS-2010SD soft magnetic DC measuring device: the saturation magnetic induction is 1.38T, and the initial magnetic permeability is 137k.
实施例8Example 8
本实施例的铁基非晶纳米晶薄带磁体,其质量百分比组成表达式为AxFy,式中,A组分是原子百分比组成为Fe70Cu1Nb2.5Si12B14.5的主合金A,F组分是与A组分主合金A的组成相对应的非晶薄带F,其中所含晶态相的质量百分数为30.0%;A组分的组成质量百分比x为70,F组分的组成质量百分比y为30。The iron-based amorphous nanocrystalline thin strip magnet of this embodiment has a mass percentage composition expression of AxFy, where the A component is the main alloy A and F of which the atomic percentage composition is Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 The component is an amorphous thin strip F corresponding to the composition of the main alloy A of the A component, and the mass percentage of the crystalline phase contained therein is 30.0%; the composition mass percentage x of the A component is 70, and the composition of the F component The mass percentage y is 30.
第一步,配制原料:The first step is to prepare raw materials:
按原子百分比计的组成式Fe70Cu1Nb2.5Si12B14.5计算各元素质量,称取所需原料:铌铁、硼铁、纯硅、纯铜和纯铁,完成原料的配制;Calculate the mass of each element according to the composition formula Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 in atomic percentage, and weigh the required raw materials: ferroniobium, ferroboron, pure silicon, pure copper and pure iron to complete the preparation of raw materials;
第二步,制备Fe70Cu1Nb2.5Si12B14.5主合金A铸锭:The second step is to prepare Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 main alloy A ingot:
将上述第一步配制的原料加入熔炼炉中,对炉体抽真空至真空度<5×10-1Pa,加热熔炼,直到所加入的全部原料熔化,且使成分均匀分布为止,之后对熔融液进行打渣和除渣,最后倒入模具中冷却,制得原子百分比组成为Fe70Cu1Nb2.5Si12B14.5的主合金A铸锭;Add the raw materials prepared in the first step above into the smelting furnace, evacuate the furnace body to a vacuum degree of <5×10 -1 Pa, heat and melt until all the raw materials added are melted and the ingredients are evenly distributed, and then the melted Slag removal and slag removal, and finally poured into a mold for cooling to obtain a main alloy A ingot with an atomic percentage composition of Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 ;
第三步,制备Fe70Cu1Nb2.5Si12B14.5非晶薄带F:The third step is to prepare Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 amorphous ribbon F:
将上述第二步制得的Fe70Cu1Nb2.5Si12B14.5主合金A铸锭装入熔体快淬炉中,重新熔融后以20m/s的线速度在铜辊轮上进行熔体快淬,由此制得Fe70Cu1Nb2.5Si12B14.5非晶薄带F;Put the Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 main alloy A ingot obtained in the second step above into the melt quenching furnace, and melt it on the copper roller at a line speed of 20m/s after remelting Rapid quenching, thus producing Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 amorphous ribbon F;
第四步,制备铁基非晶纳米晶薄带磁体:The fourth step is to prepare iron-based amorphous and nanocrystalline thin strip magnets:
将上述第二步制得的Fe70Cu1Nb2.5Si12B14.5主合金A铸锭放入重熔炉中熔化,熔炼均匀待出炉前20min将上述第三步制备的Fe70Cu1Nb2.5Si12B14.5非晶薄带F按质量百分比组成表达式为AxFy=(Fe70Cu1Nb2.5Si12B14.5)70(Fe70Cu1Nb2.5Si12B14.5)30中的组成质量百分比加入重熔均匀的Fe70Cu1Nb2.5Si12B14.5的主合金A铸锭熔液中,然后对混合的(Fe70Cu1Nb2.5Si12B14.5)70(Fe70Cu1Nb2.5Si12B14.5)30熔液进行打渣,在大气中以30m/s速度进行喷带,即制得铁基非晶纳米晶薄带磁体。Put the ingot of Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 main alloy A prepared in the second step above into the remelting furnace to melt, melt evenly and wait for 20 minutes before being released from the furnace to melt the Fe 70 Cu 1 Nb 2.5 Si prepared in the third step above 12 B 14.5 Amorphous Ribbon F is expressed in mass percentage as AxFy=(Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 )70(Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 ) Melt homogeneous Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 main alloy A ingot melt, and then mix (Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 )70(Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 ) Slagging the 30% melt, and spraying strips in the atmosphere at a speed of 30m/s to obtain an iron-based amorphous and nanocrystalline thin-strip magnet.
经游标卡尺及千分尺测定:本实施例所制得的铁基非晶纳米晶薄带磁体的厚度为30μm,带宽为20mm;根据Jade软件计算:非晶薄带F中晶态相的质量分数为30.0%。Measured by a vernier caliper and a micrometer: the thickness of the iron-based amorphous nanocrystalline thin strip magnet prepared in this embodiment is 30 μm, and the bandwidth is 20 mm; calculated according to Jade software: the mass fraction of the crystalline phase in the amorphous thin strip F is 30.0 %.
上述铁基非晶纳米晶薄带磁体的应用方法,用于制备铁基非晶纳米晶软磁合金铁芯产品,步骤如下:The application method of the above-mentioned iron-based amorphous nanocrystalline thin strip magnet is used to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products, and the steps are as follows:
第一步,制备铁基非晶铁芯:The first step is to prepare the iron-based amorphous iron core:
将上述铁基非晶纳米晶薄带磁体的制备方法制得的铁基非晶纳米晶薄带磁体通过卷带机卷制成所需的相应规格的铁基非晶铁芯;The iron-based amorphous nanocrystalline thin-ribbon magnet obtained by the above method for preparing the iron-based amorphous nanocrystalline thin-ribbon magnet is rolled into an iron-based amorphous iron core of corresponding specifications by a winding machine;
第二步,制备铁基非晶纳米晶软磁合金铁芯产品:The second step is to prepare iron-based amorphous nanocrystalline soft magnetic alloy iron core products:
将上述第一步卷制得的铁基非晶铁芯放入退火炉中,在580℃进行退火,获得在非晶基体上均匀分布的纳米晶,即制得铁基非晶纳米晶软磁合金铁芯产品。Put the iron-based amorphous iron core rolled in the first step above into an annealing furnace, and anneal at 580°C to obtain nanocrystals uniformly distributed on the amorphous matrix, that is, to obtain iron-based amorphous nanocrystalline soft magnetic Alloy core products.
经游标卡尺测定:本实施例所制得的铁基非晶纳米晶软磁合金铁芯产品的尺寸为外径×内径×高=D×d×h=Φ30mm×Φ24.92mm×20mm;根据Jade软件计算:(Fe70Cu1Nb2.5Si12B14.5)70(Fe70Cu1Nb2.5Si12B14.5)30铁基非晶纳米晶薄带磁体中晶态相的质量分数为86.2%;经MATS-2010SD型软磁直流测量装置测定该产品磁性能为:饱和磁感应强度为1.26T,初始磁导率为125k。Measured by a vernier caliper: the size of the iron-based amorphous nanocrystalline soft magnetic alloy iron core product obtained in this embodiment is outer diameter × inner diameter × height = D × d × h = Φ30mm × Φ24.92mm × 20mm; according to Jade software Calculation: The mass fraction of crystalline phase in (Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 )70(Fe 70 Cu 1 Nb 2.5 Si 12 B 14.5 )30 Fe-based amorphous nanocrystalline thin strip magnet is 86.2%; by MATS -2010SD type soft magnetic DC measuring device measures the magnetic properties of this product: the saturation magnetic induction is 1.26T, and the initial permeability is 125k.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710450342.7A CN107245673B (en) | 2017-06-15 | 2017-06-15 | Iron-based amorphous nanometer crystalline thin strip magnet and its preparation method and application method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710450342.7A CN107245673B (en) | 2017-06-15 | 2017-06-15 | Iron-based amorphous nanometer crystalline thin strip magnet and its preparation method and application method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107245673A CN107245673A (en) | 2017-10-13 |
CN107245673B true CN107245673B (en) | 2018-12-07 |
Family
ID=60019226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710450342.7A Expired - Fee Related CN107245673B (en) | 2017-06-15 | 2017-06-15 | Iron-based amorphous nanometer crystalline thin strip magnet and its preparation method and application method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107245673B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112877616B (en) * | 2021-01-11 | 2022-06-24 | 秦皇岛市燕秦纳米科技有限公司 | Preparation method of low-remanence amorphous nanocrystalline soft magnetic material |
CN116356221B (en) * | 2023-04-06 | 2024-08-16 | 沈阳工业大学 | An in-situ synthesized iron-based amorphous nanocrystalline alloy ribbon |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101796207A (en) * | 2008-03-31 | 2010-08-04 | 日立金属株式会社 | Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core |
CN103060722A (en) * | 2011-10-21 | 2013-04-24 | 江苏奥玛德新材料科技有限公司 | Iron-based amorphous or nanocrystalline soft magnetic alloy and preparation method thereof |
CN103602931A (en) * | 2013-11-07 | 2014-02-26 | 同济大学 | Iron-based amorphous nanocrystalline soft magnetic alloy and preparation method thereof |
CN105593382A (en) * | 2013-09-27 | 2016-05-18 | 日立金属株式会社 | Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core |
EP3089175A1 (en) * | 2015-04-30 | 2016-11-02 | Metglas, Inc. | A wide iron-based amorphous alloy, precursor to nanocrystalline alloy |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10134056B8 (en) * | 2001-07-13 | 2014-05-28 | Vacuumschmelze Gmbh & Co. Kg | Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process |
-
2017
- 2017-06-15 CN CN201710450342.7A patent/CN107245673B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101796207A (en) * | 2008-03-31 | 2010-08-04 | 日立金属株式会社 | Thin strip of amorphous alloy, nanocrystal soft magnetic alloy, and magnetic core |
CN103060722A (en) * | 2011-10-21 | 2013-04-24 | 江苏奥玛德新材料科技有限公司 | Iron-based amorphous or nanocrystalline soft magnetic alloy and preparation method thereof |
CN105593382A (en) * | 2013-09-27 | 2016-05-18 | 日立金属株式会社 | Method for producing fe-based nano-crystal alloy, and method for producing fe-based nano-crystal alloy magnetic core |
CN103602931A (en) * | 2013-11-07 | 2014-02-26 | 同济大学 | Iron-based amorphous nanocrystalline soft magnetic alloy and preparation method thereof |
EP3089175A1 (en) * | 2015-04-30 | 2016-11-02 | Metglas, Inc. | A wide iron-based amorphous alloy, precursor to nanocrystalline alloy |
Also Published As
Publication number | Publication date |
---|---|
CN107245673A (en) | 2017-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101834046B (en) | High saturation magnetization intensity Fe-based nanocrystalline magnetically soft alloy material and preparation method thereof | |
JP7387008B2 (en) | Iron-based amorphous alloy containing sub-nanoscale ordered clusters, method for preparing the same, and nanocrystalline alloy derivatives using the same | |
CN104878324B (en) | A kind of soft magnetic FeCoNiMB high entropy bulk amorphous alloy and its preparation method | |
CN107245672B (en) | A kind of iron-based amorphous nanometer crystalline thin strip magnet and its methods for making and using same | |
CN102304669B (en) | High saturation magnetic induction and low cost Fe-based nanocrystalline soft magnetic alloy | |
CN110387500B (en) | High-magnetic-induction high-frequency iron-based nanocrystalline magnetically soft alloy and preparation method thereof | |
CN104934179A (en) | Fe-based nanocrystalline soft magnetic alloy with strong amorphous forming ability and preparing method of Fe-based nanocrystalline soft magnetic alloy | |
CN102543347A (en) | Iron-based nanometer crystal magnetically soft alloy and preparation method thereof | |
CN109930085B (en) | A kind of high temperature and corrosion resistant high entropy amorphous soft magnetic alloy and preparation method thereof | |
CN110306130A (en) | A kind of Fe-Si-B-P-Cu-Nb amorphous nanocrystalline soft magnetic alloy with high iron content and preparation method | |
CN101215679A (en) | A kind of non-magnetic iron-based bulk amorphous alloy and preparation method thereof | |
CN105755404A (en) | Fe-based amorphous/nanocrystalline soft magnetic alloy thin belt and preparation method thereof | |
CN106917042A (en) | A kind of high frequency high magnetic flux density Fe-based nanocrystalline magnetically soft alloy and preparation method thereof | |
CN103187136A (en) | Ferrum-based amorphous soft magnetic material and preparation method thereof | |
CN101792890B (en) | Iron-based nanocrystalline strip with super-high saturated magnetic flux density | |
CN101430958B (en) | Preparation method of Sm(Co,M)7 type alloy thin strip magnet | |
CN110541116A (en) | A kind of iron-based nanocrystalline soft magnetic alloy with controllable crystallization and preparation method thereof | |
CN106756488B (en) | A kind of iron-based sub-nanometer magnetically soft alloy and preparation method thereof | |
Zheng et al. | Enhanced Ms of Fe-rich Fe-B-Cu amorphous/nanocrystalline alloys achieved by annealing treatments | |
CN101787499B (en) | Iron-based nano-crystalline thin ribbon and manufacturing method thereof | |
CN107245673B (en) | Iron-based amorphous nanometer crystalline thin strip magnet and its preparation method and application method | |
CN107103976A (en) | A kind of iron cobalt-based toughness nano-crystal soft magnetic alloy and preparation method thereof | |
JP2022516968A (en) | Amorphous strip master alloy and its manufacturing method | |
CN102832006B (en) | High-effective-magnetic-permeability cobalt-nickel based microcrystalline magnetic material and preparation method thereof | |
CN104805382B (en) | A thin strip of amorphous nanocrystalline alloy and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181207 |
|
CF01 | Termination of patent right due to non-payment of annual fee |