CN107245497A - VIGS silencing system for identifying peony type xanthose transferase gene - Google Patents
VIGS silencing system for identifying peony type xanthose transferase gene Download PDFInfo
- Publication number
- CN107245497A CN107245497A CN201710607382.8A CN201710607382A CN107245497A CN 107245497 A CN107245497 A CN 107245497A CN 201710607382 A CN201710607382 A CN 201710607382A CN 107245497 A CN107245497 A CN 107245497A
- Authority
- CN
- China
- Prior art keywords
- sequence
- gene
- vigs
- psuf3gt
- psuf5gt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000028604 virus induced gene silencing Effects 0.000 title claims abstract description 41
- 230000030279 gene silencing Effects 0.000 title claims abstract description 37
- 241000736199 Paeonia Species 0.000 title abstract description 39
- 235000006484 Paeonia officinalis Nutrition 0.000 title abstract description 31
- 108090000992 Transferases Proteins 0.000 title 1
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 55
- 235000010208 anthocyanin Nutrition 0.000 claims abstract description 36
- 229930002877 anthocyanin Natural products 0.000 claims abstract description 36
- 239000004410 anthocyanin Substances 0.000 claims abstract description 36
- 150000004636 anthocyanins Chemical class 0.000 claims abstract description 36
- 239000013598 vector Substances 0.000 claims abstract description 30
- 229930003935 flavonoid Natural products 0.000 claims abstract description 29
- 150000002215 flavonoids Chemical class 0.000 claims abstract description 29
- 235000017173 flavonoids Nutrition 0.000 claims abstract description 29
- 239000002773 nucleotide Substances 0.000 claims abstract description 19
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 19
- 230000014509 gene expression Effects 0.000 claims abstract description 18
- 239000012634 fragment Substances 0.000 claims description 41
- 240000005001 Paeonia suffruticosa Species 0.000 claims description 26
- 108700023372 Glycosyltransferases Proteins 0.000 claims description 24
- 235000003889 Paeonia suffruticosa Nutrition 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 21
- 241000723573 Tobacco rattle virus Species 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 241000894006 Bacteria Species 0.000 claims description 9
- 230000008595 infiltration Effects 0.000 claims description 8
- 238000001764 infiltration Methods 0.000 claims description 8
- 108090000790 Enzymes Proteins 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 102000004190 Enzymes Human genes 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 241000589158 Agrobacterium Species 0.000 claims description 5
- 241000588724 Escherichia coli Species 0.000 claims description 5
- 230000029087 digestion Effects 0.000 claims description 5
- 238000009825 accumulation Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 2
- 239000000969 carrier Substances 0.000 claims 6
- 108091008146 restriction endonucleases Proteins 0.000 claims 2
- 230000009661 flower growth Effects 0.000 claims 1
- 238000005286 illumination Methods 0.000 claims 1
- 238000012216 screening Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 238000011160 research Methods 0.000 abstract description 5
- 238000010367 cloning Methods 0.000 abstract description 3
- 230000009456 molecular mechanism Effects 0.000 abstract description 2
- 238000004458 analytical method Methods 0.000 description 24
- 238000011282 treatment Methods 0.000 description 22
- YTMNONATNXDQJF-UBNZBFALSA-N chrysanthemin Chemical compound [Cl-].O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC2=C(O)C=C(O)C=C2[O+]=C1C1=CC=C(O)C(O)=C1 YTMNONATNXDQJF-UBNZBFALSA-N 0.000 description 13
- 230000001580 bacterial effect Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 241000196324 Embryophyta Species 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 9
- 238000000605 extraction Methods 0.000 description 8
- 101100437168 Arabidopsis thaliana A3G2XYLT gene Proteins 0.000 description 6
- VEVZSMAEJFVWIL-UHFFFAOYSA-O cyanidin cation Chemical compound [O+]=1C2=CC(O)=CC(O)=C2C=C(O)C=1C1=CC=C(O)C(O)=C1 VEVZSMAEJFVWIL-UHFFFAOYSA-O 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000011987 methylation Effects 0.000 description 5
- 238000007069 methylation reaction Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000003753 real-time PCR Methods 0.000 description 5
- 101100208784 Fragaria ananassa FGT gene Proteins 0.000 description 4
- YKRGDOXKVOZESV-WRJNSLSBSA-N Paeoniflorin Chemical compound C([C@]12[C@H]3O[C@]4(O)C[C@](O3)([C@]1(C[C@@H]42)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)C)OC(=O)C1=CC=CC=C1 YKRGDOXKVOZESV-WRJNSLSBSA-N 0.000 description 4
- 102000055026 Protein O-Methyltransferase Human genes 0.000 description 4
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 description 4
- 101100262694 Vitis vinifera UFGT gene Proteins 0.000 description 4
- 229930182470 glycoside Natural products 0.000 description 4
- 150000002338 glycosides Chemical class 0.000 description 4
- 230000013595 glycosylation Effects 0.000 description 4
- 238000006206 glycosylation reaction Methods 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- YKRGDOXKVOZESV-UHFFFAOYSA-N paeoniflorin Natural products O1C(C)(C2(CC34)OC5C(C(O)C(O)C(CO)O5)O)CC3(O)OC1C24COC(=O)C1=CC=CC=C1 YKRGDOXKVOZESV-UHFFFAOYSA-N 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 102000051366 Glycosyltransferases Human genes 0.000 description 3
- 235000005733 Raphanus sativus var niger Nutrition 0.000 description 3
- 244000155437 Raphanus sativus var. niger Species 0.000 description 3
- 101000937157 Vitis vinifera Flavonoid 3',5'-methyltransferase Proteins 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 235000007336 cyanidin Nutrition 0.000 description 3
- 238000001976 enzyme digestion Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 235000009973 maize Nutrition 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 2
- ORTBMTXABUAMJS-VGEDXCMYSA-N Cyanidin 3-arabinoside Chemical compound [Cl-].O[C@H]1[C@H](O)[C@H](O)CO[C@H]1OC1=CC2=C(O)C=C(O)C=C2[O+]=C1C1=CC=C(O)C(O)=C1 ORTBMTXABUAMJS-VGEDXCMYSA-N 0.000 description 2
- KUCVMQMKRICXJC-FBVAEJEDSA-O Cyanidin 3-arabinoside Natural products O([C@H]1[C@@H](O)[C@@H](O)[C@H](O)CO1)c1c(-c2cc(O)c(O)cc2)[o+]c2c(c(O)cc(O)c2)c1 KUCVMQMKRICXJC-FBVAEJEDSA-O 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 241000880493 Leptailurus serval Species 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 241001106477 Paeoniaceae Species 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- XCCTYIAWTASOJW-XVFCMESISA-N Uridine-5'-Diphosphate Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 XCCTYIAWTASOJW-XVFCMESISA-N 0.000 description 2
- 240000006365 Vitis vinifera Species 0.000 description 2
- 235000014787 Vitis vinifera Nutrition 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000132 electrospray ionisation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 230000008124 floral development Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 238000012215 gene cloning Methods 0.000 description 2
- 238000012226 gene silencing method Methods 0.000 description 2
- 229930182478 glucoside Natural products 0.000 description 2
- 150000008131 glucosides Chemical class 0.000 description 2
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 2
- 102000045442 glycosyltransferase activity proteins Human genes 0.000 description 2
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 2
- 108010025306 histidylleucine Proteins 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 108010064235 lysylglycine Proteins 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000001743 silencing effect Effects 0.000 description 2
- 230000009889 stress physiology Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- XYKDZXKKYOOTGC-FXQIFTODSA-N Ala-Cys-Met Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)O)N XYKDZXKKYOOTGC-FXQIFTODSA-N 0.000 description 1
- FUSPCLTUKXQREV-ACZMJKKPSA-N Ala-Glu-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O FUSPCLTUKXQREV-ACZMJKKPSA-N 0.000 description 1
- PUBLUECXJRHTBK-ACZMJKKPSA-N Ala-Glu-Ser Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O PUBLUECXJRHTBK-ACZMJKKPSA-N 0.000 description 1
- OKEWAFFWMHBGPT-XPUUQOCRSA-N Ala-His-Gly Chemical compound OC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CN=CN1 OKEWAFFWMHBGPT-XPUUQOCRSA-N 0.000 description 1
- ZBLQIYPCUWZSRZ-QEJZJMRPSA-N Ala-Phe-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@H](C)N)CC1=CC=CC=C1 ZBLQIYPCUWZSRZ-QEJZJMRPSA-N 0.000 description 1
- OSRZOHXQCUFIQG-FPMFFAJLSA-N Ala-Phe-Pro Chemical compound C([C@H](NC(=O)[C@@H]([NH3+])C)C(=O)N1[C@H](CCC1)C([O-])=O)C1=CC=CC=C1 OSRZOHXQCUFIQG-FPMFFAJLSA-N 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 101710117679 Anthocyanidin 3-O-glucosyltransferase Proteins 0.000 description 1
- HULHGJZIZXCPLD-FXQIFTODSA-N Arg-Ala-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N HULHGJZIZXCPLD-FXQIFTODSA-N 0.000 description 1
- VWVPYNGMOCSSGK-GUBZILKMSA-N Arg-Arg-Asn Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(O)=O VWVPYNGMOCSSGK-GUBZILKMSA-N 0.000 description 1
- YFHATWYGAAXQCF-JYJNAYRXSA-N Arg-Pro-Phe Chemical compound NC(N)=NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 YFHATWYGAAXQCF-JYJNAYRXSA-N 0.000 description 1
- XZFONYMRYTVLPL-NHCYSSNCSA-N Asn-Val-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CC(=O)N)N XZFONYMRYTVLPL-NHCYSSNCSA-N 0.000 description 1
- NYQHSUGFEWDWPD-ACZMJKKPSA-N Asp-Gln-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(=O)O)N NYQHSUGFEWDWPD-ACZMJKKPSA-N 0.000 description 1
- SNAWMGHSCHKSDK-GUBZILKMSA-N Asp-Gln-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(=O)O)N SNAWMGHSCHKSDK-GUBZILKMSA-N 0.000 description 1
- XWSIYTYNLKCLJB-CIUDSAMLSA-N Asp-Lys-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O XWSIYTYNLKCLJB-CIUDSAMLSA-N 0.000 description 1
- DONWIPDSZZJHHK-HJGDQZAQSA-N Asp-Lys-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(=O)O)N)O DONWIPDSZZJHHK-HJGDQZAQSA-N 0.000 description 1
- 102000003712 Complement factor B Human genes 0.000 description 1
- 108090000056 Complement factor B Proteins 0.000 description 1
- RKWHWFONKJEUEF-GQUPQBGVSA-O Cyanidin 3-O-glucoside Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC2=C(O)C=C(O)C=C2[O+]=C1C1=CC=C(O)C(O)=C1 RKWHWFONKJEUEF-GQUPQBGVSA-O 0.000 description 1
- RDFLLVCQYHQOBU-GPGGJFNDSA-O Cyanin Natural products O([C@H]1[C@H](O)[C@H](O)[C@H](O)[C@H](CO)O1)c1c(-c2cc(O)c(O)cc2)[o+]c2c(c(O[C@H]3[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O3)cc(O)c2)c1 RDFLLVCQYHQOBU-GPGGJFNDSA-O 0.000 description 1
- CFQVGYWKSLKWFX-KBIXCLLPSA-N Cys-Glu-Ile Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O CFQVGYWKSLKWFX-KBIXCLLPSA-N 0.000 description 1
- JDHMXPSXWMPYQZ-AAEUAGOBSA-N Cys-Gly-Trp Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CS)N JDHMXPSXWMPYQZ-AAEUAGOBSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241001071795 Gentiana Species 0.000 description 1
- QQAPDATZKKTBIY-YUMQZZPRSA-N Gln-Gly-Met Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CCSC)C(O)=O QQAPDATZKKTBIY-YUMQZZPRSA-N 0.000 description 1
- FTIJVMLAGRAYMJ-MNXVOIDGSA-N Gln-Ile-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CCC(N)=O FTIJVMLAGRAYMJ-MNXVOIDGSA-N 0.000 description 1
- QKCZZAZNMMVICF-DCAQKATOSA-N Gln-Leu-Glu Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O QKCZZAZNMMVICF-DCAQKATOSA-N 0.000 description 1
- RBSKVTZUFMIWFU-XEGUGMAKSA-N Gln-Trp-Ala Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](C)C(O)=O RBSKVTZUFMIWFU-XEGUGMAKSA-N 0.000 description 1
- NCWOMXABNYEPLY-NRPADANISA-N Glu-Ala-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O NCWOMXABNYEPLY-NRPADANISA-N 0.000 description 1
- DSPQRJXOIXHOHK-WDSKDSINSA-N Glu-Asp-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O DSPQRJXOIXHOHK-WDSKDSINSA-N 0.000 description 1
- WATXSTJXNBOHKD-LAEOZQHASA-N Glu-Asp-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O WATXSTJXNBOHKD-LAEOZQHASA-N 0.000 description 1
- IDEODOAVGCMUQV-GUBZILKMSA-N Glu-Ser-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O IDEODOAVGCMUQV-GUBZILKMSA-N 0.000 description 1
- VNCNWQPIQYAMAK-ACZMJKKPSA-N Glu-Ser-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O VNCNWQPIQYAMAK-ACZMJKKPSA-N 0.000 description 1
- SABZDFAAOJATBR-QWRGUYRKSA-N Gly-Cys-Phe Chemical compound [H]NCC(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O SABZDFAAOJATBR-QWRGUYRKSA-N 0.000 description 1
- SOEATRRYCIPEHA-BQBZGAKWSA-N Gly-Glu-Glu Chemical compound [H]NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O SOEATRRYCIPEHA-BQBZGAKWSA-N 0.000 description 1
- UFPXDFOYHVEIPI-BYPYZUCNSA-N Gly-Gly-Asp Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CC(O)=O UFPXDFOYHVEIPI-BYPYZUCNSA-N 0.000 description 1
- GDOZQTNZPCUARW-YFKPBYRVSA-N Gly-Gly-Glu Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CCC(O)=O GDOZQTNZPCUARW-YFKPBYRVSA-N 0.000 description 1
- JPVGHHQGKPQYIL-KBPBESRZSA-N Gly-Phe-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CC1=CC=CC=C1 JPVGHHQGKPQYIL-KBPBESRZSA-N 0.000 description 1
- BNMRSWQOHIQTFL-JSGCOSHPSA-N Gly-Val-Phe Chemical compound NCC(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 BNMRSWQOHIQTFL-JSGCOSHPSA-N 0.000 description 1
- YGHSQRJSHKYUJY-SCZZXKLOSA-N Gly-Val-Pro Chemical compound CC(C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)CN YGHSQRJSHKYUJY-SCZZXKLOSA-N 0.000 description 1
- OHOXVDFVRDGFND-YUMQZZPRSA-N His-Cys-Gly Chemical compound N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CS)C(=O)NCC(O)=O OHOXVDFVRDGFND-YUMQZZPRSA-N 0.000 description 1
- NKRJALPCDNXULF-BYULHYEWSA-N Ile-Asp-Gly Chemical compound [H]N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O NKRJALPCDNXULF-BYULHYEWSA-N 0.000 description 1
- CDGLBYSAZFIIJO-RCOVLWMOSA-N Ile-Gly-Gly Chemical compound CC[C@H](C)[C@H]([NH3+])C(=O)NCC(=O)NCC([O-])=O CDGLBYSAZFIIJO-RCOVLWMOSA-N 0.000 description 1
- VOBYAKCXGQQFLR-LSJOCFKGSA-N Ile-Gly-Val Chemical compound CC[C@H](C)[C@H](N)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O VOBYAKCXGQQFLR-LSJOCFKGSA-N 0.000 description 1
- ZDNNDIJTUHQCAM-MXAVVETBSA-N Ile-Ser-Phe Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N ZDNNDIJTUHQCAM-MXAVVETBSA-N 0.000 description 1
- 206010061217 Infestation Diseases 0.000 description 1
- LZDNBBYBDGBADK-UHFFFAOYSA-N L-valyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)C(N)C(C)C)C(O)=O)=CNC2=C1 LZDNBBYBDGBADK-UHFFFAOYSA-N 0.000 description 1
- LJHGALIOHLRRQN-DCAQKATOSA-N Leu-Ala-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N LJHGALIOHLRRQN-DCAQKATOSA-N 0.000 description 1
- QPRQGENIBFLVEB-BJDJZHNGSA-N Leu-Ala-Ile Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O QPRQGENIBFLVEB-BJDJZHNGSA-N 0.000 description 1
- DZQMXBALGUHGJT-GUBZILKMSA-N Leu-Glu-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O DZQMXBALGUHGJT-GUBZILKMSA-N 0.000 description 1
- HQUXQAMSWFIRET-AVGNSLFASA-N Leu-Glu-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CCCCN HQUXQAMSWFIRET-AVGNSLFASA-N 0.000 description 1
- PRZVBIAOPFGAQF-SRVKXCTJSA-N Leu-Glu-Met Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCSC)C(O)=O PRZVBIAOPFGAQF-SRVKXCTJSA-N 0.000 description 1
- ZRHDPZAAWLXXIR-SRVKXCTJSA-N Leu-Lys-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O ZRHDPZAAWLXXIR-SRVKXCTJSA-N 0.000 description 1
- YRRCOJOXAJNSAX-IHRRRGAJSA-N Leu-Pro-Lys Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)O)N YRRCOJOXAJNSAX-IHRRRGAJSA-N 0.000 description 1
- ADJWHHZETYAAAX-SRVKXCTJSA-N Leu-Ser-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N ADJWHHZETYAAAX-SRVKXCTJSA-N 0.000 description 1
- FGZVGOAAROXFAB-IXOXFDKPSA-N Leu-Thr-His Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CC(C)C)N)O FGZVGOAAROXFAB-IXOXFDKPSA-N 0.000 description 1
- ZTPWXNOOKAXPPE-DCAQKATOSA-N Lys-Arg-Cys Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CS)C(=O)O)N ZTPWXNOOKAXPPE-DCAQKATOSA-N 0.000 description 1
- AAORVPFVUIHEAB-YUMQZZPRSA-N Lys-Asp-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O AAORVPFVUIHEAB-YUMQZZPRSA-N 0.000 description 1
- IBQMEXQYZMVIFU-SRVKXCTJSA-N Lys-Asp-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCCCN)N IBQMEXQYZMVIFU-SRVKXCTJSA-N 0.000 description 1
- NJNRBRKHOWSGMN-SRVKXCTJSA-N Lys-Leu-Asn Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O NJNRBRKHOWSGMN-SRVKXCTJSA-N 0.000 description 1
- WVJNGSFKBKOKRV-AJNGGQMLSA-N Lys-Leu-Ile Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WVJNGSFKBKOKRV-AJNGGQMLSA-N 0.000 description 1
- MEQLGHAMAUPOSJ-DCAQKATOSA-N Lys-Ser-Val Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O MEQLGHAMAUPOSJ-DCAQKATOSA-N 0.000 description 1
- JHNOXVASMSXSNB-WEDXCCLWSA-N Lys-Thr-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O JHNOXVASMSXSNB-WEDXCCLWSA-N 0.000 description 1
- ZEVPMOHYCQFWSE-NAKRPEOUSA-N Met-Ile-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCSC)N ZEVPMOHYCQFWSE-NAKRPEOUSA-N 0.000 description 1
- IQJMEDDVOGMTKT-SRVKXCTJSA-N Met-Val-Val Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(O)=O IQJMEDDVOGMTKT-SRVKXCTJSA-N 0.000 description 1
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 1
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 1
- AJHCSUXXECOXOY-UHFFFAOYSA-N N-glycyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)CN)C(O)=O)=CNC2=C1 AJHCSUXXECOXOY-UHFFFAOYSA-N 0.000 description 1
- 108010079364 N-glycylalanine Proteins 0.000 description 1
- 108010066427 N-valyltryptophan Proteins 0.000 description 1
- BQVUABVGYYSDCJ-UHFFFAOYSA-N Nalpha-L-Leucyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)C(N)CC(C)C)C(O)=O)=CNC2=C1 BQVUABVGYYSDCJ-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- JEBWZLWTRPZQRX-QWRGUYRKSA-N Phe-Gly-Asp Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O JEBWZLWTRPZQRX-QWRGUYRKSA-N 0.000 description 1
- BYAIIACBWBOJCU-URLPEUOOSA-N Phe-Ile-Thr Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(O)=O BYAIIACBWBOJCU-URLPEUOOSA-N 0.000 description 1
- HJSCRFZVGXAGNG-SRVKXCTJSA-N Pro-Gln-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H]1CCCN1 HJSCRFZVGXAGNG-SRVKXCTJSA-N 0.000 description 1
- IURWWZYKYPEANQ-HJGDQZAQSA-N Pro-Thr-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O IURWWZYKYPEANQ-HJGDQZAQSA-N 0.000 description 1
- NBDHWLZEMKSVHH-UVBJJODRSA-N Pro-Trp-Ala Chemical compound C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@@H]3CCCN3 NBDHWLZEMKSVHH-UVBJJODRSA-N 0.000 description 1
- 108700040119 Protein O-Methyltransferase Proteins 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 241000109329 Rosa xanthina Species 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- XXXAXOWMBOKTRN-XPUUQOCRSA-N Ser-Gly-Val Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O XXXAXOWMBOKTRN-XPUUQOCRSA-N 0.000 description 1
- BMKNXTJLHFIAAH-CIUDSAMLSA-N Ser-Ser-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O BMKNXTJLHFIAAH-CIUDSAMLSA-N 0.000 description 1
- IGROJMCBGRFRGI-YTLHQDLWSA-N Thr-Ala-Ala Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O IGROJMCBGRFRGI-YTLHQDLWSA-N 0.000 description 1
- SWIKDOUVROTZCW-GCJQMDKQSA-N Thr-Asn-Ala Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](C)C(=O)O)N)O SWIKDOUVROTZCW-GCJQMDKQSA-N 0.000 description 1
- MROIJTGJGIDEEJ-RCWTZXSCSA-N Thr-Pro-Pro Chemical compound C[C@@H](O)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 MROIJTGJGIDEEJ-RCWTZXSCSA-N 0.000 description 1
- UKINEYBQXPMOJO-UBHSHLNASA-N Trp-Asn-Ser Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N UKINEYBQXPMOJO-UBHSHLNASA-N 0.000 description 1
- HDQJVXVRGJUDML-UBHSHLNASA-N Trp-Cys-Asn Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(=O)N)C(=O)O)N HDQJVXVRGJUDML-UBHSHLNASA-N 0.000 description 1
- XGFGVFMXDXALEV-XIRDDKMYSA-N Trp-Leu-Asn Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N XGFGVFMXDXALEV-XIRDDKMYSA-N 0.000 description 1
- HJXOFWKCWLHYIJ-SZMVWBNQSA-N Trp-Lys-Glu Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O HJXOFWKCWLHYIJ-SZMVWBNQSA-N 0.000 description 1
- BOBZBMOTRORUPT-XIRDDKMYSA-N Trp-Ser-Leu Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O)=CNC2=C1 BOBZBMOTRORUPT-XIRDDKMYSA-N 0.000 description 1
- 101150089926 UFGT gene Proteins 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- LABUITCFCAABSV-BPNCWPANSA-N Val-Ala-Tyr Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 LABUITCFCAABSV-BPNCWPANSA-N 0.000 description 1
- LABUITCFCAABSV-UHFFFAOYSA-N Val-Ala-Tyr Natural products CC(C)C(N)C(=O)NC(C)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 LABUITCFCAABSV-UHFFFAOYSA-N 0.000 description 1
- XPYNXORPPVTVQK-SRVKXCTJSA-N Val-Arg-Met Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCSC)C(=O)O)N XPYNXORPPVTVQK-SRVKXCTJSA-N 0.000 description 1
- ZMDCGGKHRKNWKD-LAEOZQHASA-N Val-Asn-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N ZMDCGGKHRKNWKD-LAEOZQHASA-N 0.000 description 1
- FPCIBLUVDNXPJO-XPUUQOCRSA-N Val-Cys-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CS)C(=O)NCC(O)=O FPCIBLUVDNXPJO-XPUUQOCRSA-N 0.000 description 1
- GBESYURLQOYWLU-LAEOZQHASA-N Val-Glu-Asp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)O)C(=O)O)N GBESYURLQOYWLU-LAEOZQHASA-N 0.000 description 1
- ZXAGTABZUOMUDO-GVXVVHGQSA-N Val-Glu-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N ZXAGTABZUOMUDO-GVXVVHGQSA-N 0.000 description 1
- SYOMXKPPFZRELL-ONGXEEELSA-N Val-Gly-Lys Chemical compound CC(C)[C@@H](C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)O)N SYOMXKPPFZRELL-ONGXEEELSA-N 0.000 description 1
- XXROXFHCMVXETG-UWVGGRQHSA-N Val-Gly-Val Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O XXROXFHCMVXETG-UWVGGRQHSA-N 0.000 description 1
- LYERIXUFCYVFFX-GVXVVHGQSA-N Val-Leu-Glu Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N LYERIXUFCYVFFX-GVXVVHGQSA-N 0.000 description 1
- JVGHIFMSFBZDHH-WPRPVWTQSA-N Val-Met-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)O)N JVGHIFMSFBZDHH-WPRPVWTQSA-N 0.000 description 1
- QSPOLEBZTMESFY-SRVKXCTJSA-N Val-Pro-Val Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(O)=O QSPOLEBZTMESFY-SRVKXCTJSA-N 0.000 description 1
- UFCHCOKFAGOQSF-BQFCYCMXSA-N Val-Trp-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N UFCHCOKFAGOQSF-BQFCYCMXSA-N 0.000 description 1
- DFQZDQPLWBSFEJ-LSJOCFKGSA-N Val-Val-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(=O)N)C(=O)O)N DFQZDQPLWBSFEJ-LSJOCFKGSA-N 0.000 description 1
- NLNCNKIVJPEFBC-DLOVCJGASA-N Val-Val-Glu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O NLNCNKIVJPEFBC-DLOVCJGASA-N 0.000 description 1
- JSOXWWFKRJKTMT-WOPDTQHZSA-N Val-Val-Pro Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)O)N JSOXWWFKRJKTMT-WOPDTQHZSA-N 0.000 description 1
- 241000219095 Vitis Species 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 108010087924 alanylproline Proteins 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- RDFLLVCQYHQOBU-ZOTFFYTFSA-O cyanin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC(C(=[O+]C1=CC(O)=C2)C=3C=C(O)C(O)=CC=3)=CC1=C2O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 RDFLLVCQYHQOBU-ZOTFFYTFSA-O 0.000 description 1
- 108010016616 cysteinylglycine Proteins 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- HQVFCQRVQFYGRJ-UHFFFAOYSA-N formic acid;hydrate Chemical compound O.OC=O HQVFCQRVQFYGRJ-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 108010042598 glutamyl-aspartyl-glycine Proteins 0.000 description 1
- 108010008237 glutamyl-valyl-glycine Proteins 0.000 description 1
- 108010079547 glutamylmethionine Proteins 0.000 description 1
- 238000005858 glycosidation reaction Methods 0.000 description 1
- 239000000348 glycosyl donor Substances 0.000 description 1
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 1
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 description 1
- 235000002532 grape seed extract Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000000318 high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 108010034529 leucyl-lysine Proteins 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 108010043322 lysyl-tryptophyl-alpha-lysine Proteins 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000011369 optimal treatment Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 108010084525 phenylalanyl-phenylalanyl-glycine Proteins 0.000 description 1
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000023276 regulation of development, heterochronic Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- SWGJCIMEBVHMTA-UHFFFAOYSA-K trisodium;6-oxido-4-sulfo-5-[(4-sulfonatonaphthalen-1-yl)diazenyl]naphthalene-2-sulfonate Chemical compound [Na+].[Na+].[Na+].C1=CC=C2C(N=NC3=C4C(=CC(=CC4=CC=C3O)S([O-])(=O)=O)S([O-])(=O)=O)=CC=C(S([O-])(=O)=O)C2=C1 SWGJCIMEBVHMTA-UHFFFAOYSA-K 0.000 description 1
- 108010073969 valyllysine Proteins 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/66—General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Virology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明涉及生物技术领域,特别涉及鉴定牡丹类黄酮糖基转移酶基因的VIGS沉默体系。The invention relates to the field of biotechnology, in particular to a VIGS silencing system for identifying flavonoid glycosyltransferase genes of peony.
背景技术Background technique
牡丹(Paeonia suffruticosa)为芍药科(Paeoniaceae)芍药属(Paeonia)牡丹组(Section Moutan)落叶亚灌木,是我国传统名花。牡丹花色形成的化学基础研究较为深入,花瓣中含有12种花青苷,即天竺葵素3-葡萄糖苷(Pg3G)、天竺葵素3,5-二葡萄糖苷(Pg3G5G)、矢车菊素3-葡萄糖苷(Cy3G)、矢车菊素3,5-二葡萄糖苷(Cy3G5G)、芍药花素3-葡萄糖苷(Pn3G)、芍药花素3,5-二葡萄糖苷(Pn3G5G)、矢车菊素3,5-二己糖苷(Cy-3,5-di-hexoside)、矢车菊素3-葡萄糖-5-阿拉伯糖苷(Cy3G5Ara)、矢车菊素3-阿拉伯糖苷(Cy3Ara)、矢车菊素3-没食子酰葡萄糖苷(Cy3galloylG);芍药花素3-阿拉伯糖苷(Pn3Ara)和芍药花素5-没食子酰葡萄糖苷(Pn5galloylG),其中Pg3G、Pg3G5G、Cy3G、Cy3G5G、Pn3G和Pn3G5G是主要的花青苷(Wang L S,Shiraishi A,Hashimoto F,Aoki N,Shimizu K,SakataY.2001.Analysis of petal anthocyanins to investigate flower coloration ofZhongyuan(Chinese)and Daikon Island(Japanese)tree peony cultivars.J PlantRes,114:33-43.;Wang L S,Hashimoto F,Shiraishi A,Aoki N,Li J J,SakataY.2004.Chemical taxonomy of the Xibei tree peony from China by floralpigmentation.J Plant Res,117:47-55.;李崇晖,2010.牡丹花瓣类黄酮成分分析及其对花色的影响,中国科学院植物研究所博士学位论文),栽培品种尤其是西北牡丹品种群花瓣基部具有鲜艳、硕大的色斑,不仅增加了观赏价值,而且常作为品种分类的重要依据之一,这些非斑部分花青苷主要由Pn3G5G、Cy3G5G和Cy3G组成,Pn3G含量很低,几乎不含Pg型色素,推测花瓣基部Cy的糖苷化、甲基化和高含量是形成色斑的主要原因。Zhang et al.(2007)分析了35个西北牡丹品种花瓣的花青苷组成,斑中以Cy3G为主,非斑以Pn3G5G为主,斑中色素含量明显高于非斑中的色素含量(Zhang J J,Wang L S,Shu Q Y,Liu Z A,Li CH,Zhang J,Wei X L,Tian D K.2007.Comparison of anthocyanins in non-blotchesand blotches of the petals of Xibei tree peony.Sci Hortic,114:104-111.)。可见花青苷的糖基化修饰在牡丹花色素的合成与积累过程中占有重要的地位(Wang L S,Shiraishi A,Hashimoto F,Aoki N,Shimizu K,Sakata Y.2001.Analysis of petalanthocyanins to investigate flower coloration of Zhongyuan(Chinese)and DaikonIsland(Japanese)tree peony cultivars.J Plant Res,114:33-43.)。Peony (Paeonia suffruticosa) is a deciduous subshrub of Paeoniaceae (Paeoniaceae) Paeonia (Paeonia) peony group (Section Moutan), and is a traditional famous flower in my country. The research on the chemical basis of peony flower color formation is relatively in-depth. There are 12 kinds of anthocyanins in the petals, namely geranoid 3-glucoside (Pg3G), geranoid 3,5-diglucoside (Pg3G5G), cyanidin 3-glucoside (Cy3G), cyanidin 3,5-diglucoside (Cy3G5G), paeoniflorin 3-glucoside (Pn3G), paeoniflorin 3,5-diglucoside (Pn3G5G), cyanidin 3, 5-di-hexoside (Cy-3,5-di-hexoside), cyanidin 3-glucose-5-arabinoside (Cy3G5Ara), cyanidin 3-arabinoside (Cy3Ara), cyanidin 3 -galloyl glucoside (Cy3galloylG); paeoniflorin 3-arabinoside (Pn3Ara) and paeoniflorin 5-galloyl glucoside (Pn5galloylG), of which Pg3G, Pg3G5G, Cy3G, Cy3G5G, Pn3G and Pn3G5G are the main cyanines Glycosides (Wang L S, Shiraishi A, Hashimoto F, Aoki N, Shimizu K, SakataY. 2001. Analysis of petal anthocyanins to investigate flower coloration of Zhongyuan (Chinese) and Daikon Island (Japanese) tree peony cultivars. J PlantRes, 114: 33- 43.; Wang L S, Hashimoto F, Shiraishi A, Aoki N, Li J J, SakataY.2004.Chemical taxonomy of the Xibei tree peony from China by floralpigmentation.J Plant Res, 117:47-55.; Li Chonghui, 2010. Peony Analysis of petal flavonoids and their effects on flower color, doctoral dissertation of Institute of Botany, Chinese Academy of Sciences), cultivated varieties, especially Northwest peony varieties, have bright and large color spots at the base of petals, which not only increase the ornamental value, but are often used as varieties One of the important basis for classification, these non-spotted part anthocyanins are mainly composed of Pn3G5G, Cy3G5G and Cy3G, the content of Pn3G is very low, and almost does not contain Pg-type pigments, it is speculated that the glycosylation, methylation and high content of Cy at the base of the petals are The main cause of stains. Zhang et al. (2007) analyzed the composition of anthocyanins in the petals of 35 Northwest peony varieties. Cy3G is the main component in the spots, and Pn3G5G is the main component in the spots. The pigment content in spots is significantly higher than that in non spots (Zhang J J, Wang L S, Shu Q Y, Liu Z A, Li CH, Zhang J, Wei X L, Tian D K. 2007. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony. Sci Hortic, 114: 104-111 .). It can be seen that the glycosylation modification of anthocyanins plays an important role in the synthesis and accumulation of peony anthocyanins (Wang L S, Shiraishi A, Hashimoto F, Aoki N, Shimizu K, Sakata Y.2001. Analysis of petalanthocyanins to investigate flower coloration of Zhongyuan (Chinese) and Daikon Island (Japanese) tree peony cultivars. J Plant Res, 114: 33-43.).
类黄酮是植物中一类重要的次生代谢产物,通常需要在合成的最后一步进行糖苷化修饰,以增加其在细胞内的稳定性、溶解性并影响对花的显色(田鹏,刘占林.2011.糖基转移酶超家族[J].2011.生命的化学,31:732–736)。类黄酮糖苷化由糖基转移酶(UDP-glucose:flavonoid glycosyltransferases,UFGTs)完成,其糖基供体通常是核苷酸糖(nucleotide sugar,Uridine diphosphate,UDP)如UDP-葡萄糖等。最早发现的是控制玉米黑色素的基因Bronze1,其编码类黄酮UDP-糖基转移酶(Dooner H K,Nelson OE.1997.Controlling element-induced alterations in UDP glucose flavonoidglucosyltransferase,the enzyme specified by the bronze locus in maize.ProcNatl Acad Sci USA,74:5623-5627.)。之后,在很多植物中发现了类黄酮糖基转移酶基因(UFGT)如玉米、金鱼草、龙胆和牵牛等的UF3GT(Schiefelbein J W,Raboy V,Fedoroff NV,Nelson Jr O E.1985.Deletions within a defective suppressor-mutator elementin maize affect the frequency and developmental timing of its excision fromthe bronze locus.Proc Natl Acad Sci USA,82:4783-4787.)及龙胆和葡萄的UF5GT等(Yang Y Z,Labate J A,Liang Z C,Cousins P,Prins B,Preece J E,Aradhya M,Zhong GY.2014.Multiple loss-of-function5-O-glucosyltransferase alleles revealed inVitis vinifera,but not in other Vitis species.Theor Appl Genet,127:2433-2451.)。此外,在月季中还有一种糖基转移酶先将花青苷5-O糖苷化后再继续将3-O修饰形成3,5-双-O-糖苷,聚类分析表明其与花青苷3GT-和5GT-糖基转移酶亚家族明显不同(Ogata J,Kanno Y,Itoh Y,Tsugawa H,Suzuki M.2005.Plant biochemistry:anthocyanin biosynthesis in roses.Nature,435:757-758.;Purkayastha A,DasguptaI.2009.Virus-induced gene silencing:A versatile tool for discovery of genefunctions in plants[J].Plant Physiol Biochem,47:967-976),可见在不同物种中,类黄酮糖苷化修饰基因存在多样性并由超家族基因组成。牡丹花瓣中类黄酮(包括花青苷)合成途径中部分相关酶基因已有克隆和表达分析(Du H,Wu J,Ji K X,Zeng Q Y,Bhuiyad MW,Su S,Shu Q Y,Ren H X,Liu Z A,Wang L S.2015.Methylation mediated by ananthocyanin O-methyltransferase,is involved in purple flower coloration inPaeonia.J Exp Bot,66:6563-77.),而类黄酮糖基转移酶基因相关研究尚未见报道,因此开展相关基因功能研究对于理解其花色形成具有重要意义。Flavonoids are an important class of secondary metabolites in plants, and usually require glycosylation modification in the last step of synthesis to increase their stability and solubility in cells and affect the color development of flowers (Tian Peng, Liu Zhanlin .2011. Glycosyltransferase superfamily [J]. 2011. Chemistry of Life, 31:732–736). Flavonoid glycosidation is completed by glycosyltransferases (UDP-glucose: flavonoid glycosyltransferases, UFGTs), and its glycosyl donor is usually nucleotide sugar (nucleotide sugar, Uridine diphosphate, UDP) such as UDP-glucose. The earliest discovery was the gene Bronze1 that controls maize melanin, which encodes flavonoid UDP-glycosyltransferase (Dooner H K, Nelson OE.1997. Controlling element-induced alterations in UDP glucose flavonoidglucosyltransferase, the enzyme specified by the bronze locus in maize. ProcNatl Acad Sci USA, 74:5623-5627.). Afterwards, found flavonoid glycosyltransferase gene (UFGT) such as the UF3GT (Schiefelbein J W, Raboy V, Fedoroff NV, Nelson Jr O E.1985.Deletions Within a defective suppressor-mutator elementin maize affect the frequency and developmental timing of its excision from the bronze locus. Proc Natl Acad Sci USA, 82: 4783-4787.) and UF5GT of gentian and grape, etc. (Yang Y Z, Labate J A, Liang Z C, Cousins P, Prins B, Preece J E, Aradhya M, Zhong GY. 2014. Multiple loss-of-function5-O-glucosyltransferase alleles revealed in Vitis vinifera, but not in other Vitis species. Theor Appl Genet, 127: 2433-2451 .). In addition, there is a glycosyltransferase in rose that first glycosylates anthocyanin 5-O and then continues to modify 3-O to form 3,5-bis-O-glycoside. Cluster analysis shows that it is closely related to anthocyanin The 3GT- and 5GT-glycosyltransferase subfamilies are distinct (Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M. 2005. Plant biochemistry: anthocyanin biosynthesis in roses. Nature, 435: 757-758.; Purkayastha A , DasguptaI.2009.Virus-induced gene silencing: A versatile tool for discovery of gene functions in plants[J].Plant Physiol Biochem, 47:967-976), it can be seen that in different species, there is diversity in flavonoid glycosylation modification genes And consists of superfamily genes. Some related enzyme genes in the synthetic pathway of flavonoids (including anthocyanins) in peony petals have been cloned and expressed (Du H, Wu J, Ji K X, Zeng Q Y, Bhuiyad MW, Su S, Shu Q Y, Ren H X, Liu Z A, Wang L S.2015. Methylation mediated by ananthocyanin O-methyltransferase, is involved in purple flower coloration in Paeonia. J Exp Bot, 66: 6563-77.), while studies on flavonoid glycosyltransferase genes have not been reported yet, Therefore, it is of great significance to carry out research on the function of related genes to understand the formation of its flower color.
牡丹再生和遗传转化很困难,尚未见其遗传转化体系的报道,利用转基因技术验证牡丹基因的功能存在技术瓶颈。此外,牡丹从实生苗到开花需要3年左右的时间,开花相关基因的表型鉴定困难较大。Regeneration and genetic transformation of tree peony are very difficult, there is no report on its genetic transformation system, and there is a technical bottleneck in the verification of gene functions of tree peony using transgenic technology. In addition, peony takes about 3 years from seedling to flowering, and it is difficult to identify the phenotype of flowering-related genes.
病毒诱导的基因沉默VIGS(Virus-induced gene silencing)是近年来发现的一种转录后基因沉默现象,可引起内源mRNA序列特异性降解(Ratcliff F,Martin-HemandezA M,Baulcombe D C.2001.Tobacco rattle virus as a vector for analysis of genefunction by silencing.Plant J,25:237-245.)。Virus-induced gene silencing VIGS (Virus-induced gene silencing) is a post-transcriptional gene silencing phenomenon discovered in recent years, which can cause specific degradation of endogenous mRNA sequences (Ratcliff F, Martin-HemandezA M, Baulcombe D C.2001. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J, 25: 237-245.).
发明内容Contents of the invention
为了弥补以上领域的缺陷,本发明提供了鉴定牡丹类黄酮糖基转移酶基因的VIGS沉默体系。In order to make up for the deficiencies in the above fields, the present invention provides a VIGS silencing system for identifying flavonoid glycosyltransferase genes of tree peony.
本发明所提供的鉴定牡丹类黄酮糖基转移酶基因的VIGS沉默体系,包含:在VIGS沉默载体上插入目的基因得到的重组载体;所述目的基因为序列表中序列1所示核苷酸序列和/或序列表中序列3所示核苷酸序列。The VIGS silencing system for identifying the flavonoid glycosyltransferase gene of peony provided by the present invention comprises: a recombinant vector obtained by inserting a target gene into a VIGS silencing vector; the target gene is the nucleotide sequence shown in Sequence 1 in the sequence listing And/or the nucleotide sequence shown in sequence 3 in the sequence listing.
所述VIGS沉默载体为烟草脆裂病毒TRV2载体。The VIGS silencing vector is a tobacco rattle virus TRV2 vector.
本发明还提供了所述鉴定牡丹类黄酮糖基转移酶基因的VIGS沉默体系的构建方法。The invention also provides a method for constructing the VIGS silencing system for identifying the flavonoid glycosyltransferase gene of tree peony.
本发明所提供的所述鉴定牡丹类黄酮糖基转移酶基因的VIGS沉默体系的构建方法,包括如下步骤:The construction method of the VIGS silencing system for identifying the flavonoid glycosyltransferase gene of peony provided by the present invention comprises the following steps:
(1)利用添加了BamH I酶切位点和Xho I酶切位点的特异性引物进行目的基因片段的PCR扩增,分别得到用于VIGS沉默的PsUF3GT靶片段、PsUF5GT靶片段;(1) PCR amplification of the target gene fragment was carried out using specific primers added with BamH I restriction site and Xho I restriction site to obtain the PsUF3GT target fragment and PsUF5GT target fragment for VIGS silencing, respectively;
所述PsUF3GT靶片段的核苷酸序列如序列表中序列1所示;扩增所述PsUF3GT靶片段的特异性引物如下:The nucleotide sequence of the PsUF3GT target fragment is shown in Sequence 1 in the sequence listing; the specific primers for amplifying the PsUF3GT target fragment are as follows:
3GT-VF1:AAGGATCCCATGGCTCAATGACCAAAAGGCTAA;3GT-VF1: AA GGATCC CATGGCTCAATGACCAAAAAGGCTAA;
3GT-VR1:TTACTCGAGCATTCTTCGTAAATACTCCACCGTCG;3GT-VR1: TTA CTCGAGC ATTCTTCGTAAATACTCCACCGTCG;
所述PsUF5GT靶片段的核苷酸序列如序列表中序列3所示;扩增所述PsUF5GT靶片段的特异性引物如下:The nucleotide sequence of the PsUF5GT target fragment is shown in sequence 3 in the sequence listing; the specific primers for amplifying the PsUF5GT target fragment are as follows:
5GT-VF1:AAGGATCCTTTGGAAAAGCAAGGAATGGTGGTG;5GT-VF1: AA GGATCC TTTGGAAAAGCAAGGAATGGTGGTG;
5GT-VR1:ACGCTCGAGTCACAAATCACCACCTTTCCCCACC;5GT-VR1: ACG CTCGAG TCACAAATCACCACCTTTCCCCACC;
(2)用BamH I酶和Xho I酶将所述PsUF3GT靶片段或PsUF5GT靶片段和TRV2载体进行双酶切,酶切完成后将PsUF3GT靶片段或PsUF5GT靶片段与烟草脆裂病毒TRV2载体进行连接,连接之后转化E.coLi DH5α感受态细胞,筛选阳性单菌落,然后转化到农杆菌GV3101中,即得到所述VIGS沉默体系。(2) Double digestion of the PsUF3GT target fragment or the PsUF5GT target fragment and the TRV2 vector with BamH I enzyme and Xho I enzyme, after the enzyme digestion is completed, the PsUF3GT target fragment or the PsUF5GT target fragment is connected to the tobacco rattle virus TRV2 vector , after connection, transform E.coLi DH5α competent cells, screen positive single colonies, and then transform into Agrobacterium GV3101 to obtain the VIGS silencing system.
所述鉴定牡丹类黄酮糖基转移酶基因的VIGS沉默体系在鉴定牡丹类黄酮糖基转移酶基因PsUF3GT和/或PsUF5GT中的应用也属于本发明的保护范围。The application of the VIGS silencing system for identifying peony flavonoid glycosyltransferase genes in identifying the peony flavonoid glycosyltransferase genes PsUF3GT and/or PsUF5GT also belongs to the protection scope of the present invention.
一种鉴定牡丹类黄酮糖基转移酶基因的方法也属于本发明的保护范围。A method for identifying the flavonoid glycosyltransferase gene of tree peony also belongs to the protection scope of the present invention.
本发明所提供的使用鉴定牡丹类黄酮糖基转移酶基因的方法,使用所述的VIGS沉默体系。The method for identifying the flavonoid glycosyltransferase gene of peony provided by the present invention uses the VIGS silencing system.
所述方法包括如下步骤:The method comprises the steps of:
以牡丹带花柄的花朵为材料,浸没在含有所述VIGS沉默载体的菌液,真空渗透,负压处理,放气;Using peony flowers with pedicels as materials, submerged in the bacterial solution containing the VIGS silencing carrier, vacuum infiltration, negative pressure treatment, and deflation;
将真空渗透后的花瓣用去离子水漂洗,去除多余菌液;Rinse the petals after vacuum infiltration with deionized water to remove excess bacteria;
将所述花柄采用水培方式进行培养,之后检测目的基因的表达水平以及花青苷积累量的变化。The flower stalk is cultured in a hydroponic manner, and then the expression level of the target gene and the change of anthocyanin accumulation are detected.
所述带花柄的花朵的花发育时期为全开或花苞。The flower development period of the flowers with pedicels is full bloom or flower buds.
抽真空渗透的持续时间为10min-15min。The duration of vacuum infiltration is 10min-15min.
将所述花柄采用水培方式进行培养的条件为:将花柄浸于去离子水中,在温度为8℃、湿度60%的条件下暗培养1天;之后转移至温度为23-25℃、湿度60%的条件下正常光照培养3天。The conditions for culturing the flower stalks in a hydroponic manner are as follows: soak the flower stalks in deionized water, and culture them in the dark at a temperature of 8°C and a humidity of 60% for 1 day; then transfer them to a temperature of 23-25°C 1. Cultivate under normal light for 3 days under the condition of humidity 60%.
所述含有权利要求1或2所述重组载体的菌液为:含有在烟草脆裂病毒TRV2载体上插入序列表中序列1所示核苷酸序列和/或序列表中序列3所示核苷酸序列得到的重组载体菌液以及含有烟草脆裂病毒TRV1载体的菌液。The bacterium solution containing the recombinant vector of claim 1 or 2 is: containing the nucleotide sequence shown in sequence 1 in the sequence listing and/or the nucleoside shown in sequence 3 in the sequence listing inserted on the tobacco rattle virus TRV2 vector The recombinant vector bacterial liquid obtained from the acid sequence and the bacterial liquid containing the tobacco rattle virus TRV1 vector.
本发明利用同源克隆技术克隆了牡丹类黄酮糖基转移酶基因PsUF3GT和PsUF5GT保守区段作为靶基因构建TRV2载体,成功建立了VIGS沉默体系,有效地降低了这两个基因的表达量和总花青苷含量。本研究结果对牡丹基因功能研究具有重要意义,也为解析牡丹色斑形成的分子机制奠定了基础。The present invention utilizes homologous cloning technology to clone the conserved segments of peony flavonoid glycosyltransferase genes PsUF3GT and PsUF5GT as target genes to construct TRV2 vectors, successfully establishes a VIGS silencing system, and effectively reduces the expression and total expression of these two genes. Anthocyanin content. The results of this study are of great significance to the study of the gene function of peony, and also lay a foundation for the analysis of the molecular mechanism of the formation of peony stains.
影响VIGS沉默效果的因素很多。首先是沉默基因片段长度和位置的选择,本发明利用扩增保守区段长度在400-450bp的片段来沉默同源家族基因,取得了较好的沉默效果。如针对某一特异基因进行沉默时,则需考虑序列的特异性,可以通过沉默非翻译区或者特异区段的办法,确保沉默特异目标基因。本发明采用烟草脆裂病毒TRV为载体,其能有效地将目标基因在生长点或分生组织中沉默,并获得系统的沉默效果。此外,利用TRV沉默基因后的植物材料对温度比较敏感,本发明在光照培养箱控温(25℃)控湿(相对湿度60%)的条件下进行,获得了较好的实验结果。因此,成功沉默基因需要严格掌控好每个技术环节。There are many factors that affect the silencing effect of VIGS. The first is the selection of the length and position of the silenced gene fragments. The present invention utilizes amplified fragments with a conserved segment length of 400-450 bp to silence homologous family genes, and achieves a better silencing effect. For example, when silencing a specific gene, the specificity of the sequence needs to be considered, and the method of silencing the untranslated region or specific segment can be used to ensure the silencing of the specific target gene. The invention adopts tobacco rattle virus TRV as a carrier, which can effectively silence the target gene in the growth point or meristem, and obtain a systematic silence effect. In addition, the plant material after using TRV to silence the gene is more sensitive to temperature. The present invention is carried out under the conditions of temperature control (25° C.) and humidity control (relative humidity 60%) in a light incubator, and better experimental results have been obtained. Therefore, the successful silencing of genes requires strict control over every technical link.
针对牡丹遗传转化困难、无法验证基因功能等问题,本发明通过VIGS技术,采用二因素三水平共9个试验处理,利用VIGS技术成功沉默了PsUF3GT和PsUF5GT基因。建立了PsUFGTs最佳VIGS体系,用PsUFGTs基因保守区段为靶片段,以S4或者S2期带花柄的花朵为材料,抽真空渗透10min-15min后置于去离子水中,暗培养1d(8℃,湿度60%);之后转移至23-25℃、湿度60%的环境,正常光照培养3d后进行检测和分析。本结果为验证牡丹UFGTs基因的功能奠定了基础,也为验证牡丹中其他重要功能基因提供了研究思路和技术依据。Aiming at the problems of difficult genetic transformation of tree peony and inability to verify gene functions, the present invention successfully silenced the PsUF3GT and PsUF5GT genes through VIGS technology, using two factors and three levels of nine experimental treatments. The best VIGS system of PsUFGTs was established. The conserved region of PsUFGTs gene was used as the target fragment, and flowers with flower stalks in S4 or S2 stage were used as materials. After vacuum infiltration for 10min-15min, they were placed in deionized water and cultured in dark for 1d (8°C). , humidity 60%); then transferred to an environment at 23-25° C. and humidity 60%, and cultured under normal light for 3 days before detection and analysis. This result laid the foundation for verifying the function of UFGTs genes in peony, and also provided research ideas and technical basis for verifying other important functional genes in peony.
附图说明Description of drawings
图1为PsUF3GT靶片段核苷酸及推测编码的氨基酸序列;下划线表示PSPG-box。Figure 1 shows the nucleotide and deduced encoded amino acid sequence of the PsUF3GT target fragment; the underline indicates PSPG-box.
图2为PsUF5GT靶片段核苷酸及推测编码的氨基酸序列;下划线表示UDPG特征序列。Figure 2 shows the nucleotide and deduced encoded amino acid sequences of the PsUF5GT target fragment; the underline indicates the characteristic sequence of UDPG.
图3为含有TRV载体的菌液凝胶电泳检测结果;M为分子量标准从上到下分别为1000bp、900、800、700、600、500、400、300、200、100bp。Figure 3 is the results of gel electrophoresis detection of bacterial solution containing TRV vector; M is the molecular weight standards from top to bottom are 1000bp, 900, 800, 700, 600, 500, 400, 300, 200, 100bp respectively.
图4不同处理沉默花瓣中PsUF3GT基因的表达量分析;小写字母表示显著性程度的差异。Fig. 4 Analysis of the expression level of the PsUF3GT gene in the silenced petals of different treatments; the lowercase letters indicate the difference in the degree of significance.
图5不同处理沉默花瓣中PsUF5GT基因的表达量分析;小写字母表示显著性程度的差异。Fig. 5 Analysis of the expression level of PsUF5GT gene in silencing petals under different treatments; lowercase letters indicate the difference of significance degree.
图6不同处理沉默PsUFGTs的花斑中的花青苷含量和成分分析。Fig. 6 Analysis of anthocyanin content and components in versicolor of PsUFGTs silenced by different treatments.
具体实施方式detailed description
用于本发明的紫斑牡丹品种‘青海湖银波’(P.suffruticosa‘Qing Hai Hu YinBo’)栽植于中国科学院植物研究所牡丹芍药种质资源圃,其斑为紫红色,非斑为白色,非斑部分未检测出花青苷,斑部花青苷有四种:Pn3G、Pn3G5G、Cy3G和Cy3G5G(记载过该紫斑牡丹品种‘青海湖银波’(P.suffruticosa‘Qing Hai Hu Yin Bo’)的非专利文献是:Zhang J J,Wang L S,Shu Q Y,Liu Z A,Li C H,Zhang J,Wei X L,Tian D K.2007.Comparison ofanthocyanins in non-blotches and blotches of the petals of Xibei treepeony.Sci Hortic,114:104-111)。The purple-spotted peony variety 'Qinghai Lake Yinbo' (P.suffruticosa 'Qing Hai Hu YinBo') used in the present invention is planted in the peony and peony germplasm resource nursery of the Institute of Botany, Chinese Academy of Sciences. Its spots are purple-red, and non-spots are white. Anthocyanins were not detected in the non-spotted part, and there are four kinds of anthocyanins in the spotted part: Pn3G, Pn3G5G, Cy3G and Cy3G5G (the purple-spotted peony cultivar 'Qinghai Lake Yinbo' (P.suffruticosa'Qing Hai Hu Yin Bo' )’s non-patent literature is: Zhang J J, Wang L S, Shu Q Y, Liu Z A, Li C H, Zhang J, Wei X L, Tian D K.2007.Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei treepeony.Sci Hortic, 114:104-111).
本发明所用VIGS载体来自烟草脆裂病毒载体(tobacco rattle virus,TRV),TRV1/TRV2为中国农业大学观赏植物采后和逆境生理实验室马男教授馈赠(记载过该载体的非专利文献是:Tian J,Pei H X,Zhang S,Chen J W,Chen W,Yang R Y,Meng Y L,YouJ,Gao J P,Ma N.2014.TRV-GFP:a modified Tobacco rattle virus vector forefficient and visualizable analysis of gene function.J Exp Bot,65:311-322.),其带有卡那筛选标记和35S启动子,pTRV2带有BamH I和Xho I等多克隆位点。The VIGS carrier used in the present invention comes from tobacco rattle virus carrier (tobacco rattle virus, TRV), and TRV1/TRV2 is a gift from Professor Ma Nan of the Ornamental Plant Postharvest and Stress Physiology Laboratory of China Agricultural University (the non-patent literature that has recorded the carrier is: Tian J,Pei H X,Zhang S,Chen J W,Chen W,Yang R Y,Meng Y L,YouJ,Gao J P,Ma N.2014.TRV-GFP:a modified Tobacco rattle virus vector efficient and visualizable analysis of gene function.J Exp Bot, 65:311-322.), which has a Kanna selection marker and a 35S promoter, and pTRV2 has multiple cloning sites such as BamH I and Xho I.
所用标准品矢车菊素-3-葡糖苷(Cy3G)购自法国Extrasynthese公司(Genay,France)。The standard product cyanidin-3-glucoside (Cy3G) was purchased from French Extrasynthese company (Genay, France).
实施例1、Embodiment 1,
一、基因克隆1. Gene cloning
花瓣总RNA的提取参照试剂盒说明书进行(RNAprep Pure Plant Kit,FastQuantcDNA天根生化科技(北京)有限公司)。根据公共数据库中UF3GT和UF5GT序列设计上下游引物克隆靶片段。用于VIGS沉默的PsUF3GT和PsUF5GT片段设计上下游引物并添加BamH I和Xho I酶切位点。扩增引物见表1。The extraction of petal total RNA was carried out according to the kit instructions (RNAprep Pure Plant Kit, FastQuantcDNA Tiangen Biochemical Technology (Beijing) Co., Ltd.). The upstream and downstream primers were designed according to the UF3GT and UF5GT sequences in the public database to clone the target fragment. The PsUF3GT and PsUF5GT fragments used for VIGS silencing were designed with upstream and downstream primers and added BamH I and Xho I restriction sites. The amplification primers are listed in Table 1.
表1 本发明所用引物序列相关信息Table 1 Related information of primer sequences used in the present invention
注:下划线表示碱基酶切位点。Note: The underline indicates the base restriction site.
(1)PsUF3GT靶片段的克隆序列分析(1) Cloned sequence analysis of PsUF3GT target fragment
根据上下游引物扩增PsUF3GT靶片段长度为413bp,其核苷酸序列如序列表中序列1所示。所用的PCR反应体系和程序见表2和表3,所扩增的片段利用凝胶回收试剂盒(EasyPure Quick Gel Extraction,全式金生物技术有限公司)按照说明书进行回收,并连接到pEASY-T3载体(购自全式金生物技术有限公司),转化大肠杆菌感受态细胞(Trans1-T1Phage Resistant Chemically Competent Cell,购自全式金生物技术有限公司)。阳性克隆进行测序(由北京博迈德基因技术有限公司完成)。序列用DNAman5.0及在线网络软件(http://prosite.expasy.org/mydomains/)分析,其属于Glycosyltransferase_GTB_type超家族,含有PSPG基序(plant secondary product glycosyltransferase box,图1下划线表示)。PsUF3GT靶片段编码的PsUF3GT蛋白的氨基酸序列如序列表中序列2所示。The length of the PsUF3GT target fragment amplified according to the upstream and downstream primers is 413bp, and its nucleotide sequence is shown in sequence 1 in the sequence list. The PCR reaction system and procedures used are shown in Table 2 and Table 3. The amplified fragments were recovered according to the instructions using the gel extraction kit (EasyPure Quick Gel Extraction, Quanshijin Biotechnology Co., Ltd.) and connected to pEASY-T3 The vector (purchased from Quanshijin Biotechnology Co., Ltd.) was transformed into Escherichia coli competent cells (Trans1-T1Phage Resistant Chemically Competent Cell, purchased from Quanshijin Biotechnology Co., Ltd.). Positive clones were sequenced (completed by Beijing Bomaide Gene Technology Co., Ltd.). The sequence was analyzed with DNAman5.0 and online network software (http://prosite.expasy.org/mydomains/), which belongs to the Glycosyltransferase_GTB_type superfamily and contains a PSPG motif (plant secondary product glycosyltransferase box, underlined in Figure 1). The amino acid sequence of the PsUF3GT protein encoded by the PsUF3GT target fragment is shown in Sequence 2 in the sequence listing.
表2:PCR反应体系Table 2: PCR reaction system
表3:PCR扩增程序Table 3: PCR Amplification Procedure
(2)PsUF5GT基因克隆和序列分析(2) PsUF5GT gene cloning and sequence analysis
克隆的PsUF5GT靶片段长度为418bp,其核苷酸序列如序列表中序列3所示。所用的PCR反应体系和程序等方法同PsUF3GT。序列用DNAman5.0进行分析,并与公共数据可进行BlastP分析,其属于Glycosyltransferase_GTB_type超家族,其氨基酸在337-380处有UDPG(UDP-glycosyltransferases)特征序列即WcnQleVLshksvgCFLTHCGwnSsleSLvcgv.PvvafPqwaDQ(图2下划线所示)。PsUF5GT靶片段编码的PsUF5GT蛋白的氨基酸序列如序列表中序列4所示。The length of the cloned PsUF5GT target fragment is 418bp, and its nucleotide sequence is shown as sequence 3 in the sequence list. The PCR reaction system and procedures used are the same as those of PsUF3GT. The sequence was analyzed with DNAman5.0, and BlastP analysis could be performed with public data. It belongs to the Glycosyltransferase_GTB_type superfamily, and its amino acid has a UDPG (UDP-glycosyltransferases) characteristic sequence at 337-380, namely WcnQleVLshksvgCFLTHCGwnSsleSLvcgv.PvvafPqwaDQ (shown underlined in Figure 2) . The amino acid sequence of the PsUF5GT protein encoded by the PsUF5GT target fragment is shown in sequence 4 in the sequence listing.
二、制备重组载体2. Preparation of recombinant vector
首先对含有TRV2和TRV1的菌液(为中国农业大学观赏植物采后和逆境生理实验室马男教授馈赠;记载过TRV1/TRV2的非专利文献是:Tian J,Pei H X,Zhang S,Chen J W,Chen W,Yang R Y,Meng Y L,You J,Gao J P,Ma N.2014.TRV-GFP:a modified Tobaccorattle virus vector for efficient and visualizable analysis of genefunction.J Exp Bot,65:311-322.))进行PCR鉴定,鉴定引物见表1,扩增体系和程序见表4和表5。所扩增长度分别为500bp(TRV1)和200bp(TRV2)(图3)。Firstly, the bacterial liquid containing TRV2 and TRV1 (gifted by Professor Ma Nan of the Ornamental Plant Postharvest and Stress Physiology Laboratory of China Agricultural University; the non-patent literatures that have recorded TRV1/TRV2 are: Tian J, Pei H X, Zhang S, Chen J W , Chen W, Yang R Y, Meng Y L, You J, Gao J P, Ma N. 2014. TRV-GFP: a modified Tobaccorattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot, 65: 311-322.)) PCR identification was carried out, the identification primers are shown in Table 1, and the amplification system and procedures are shown in Table 4 and Table 5. The amplified lengths were 500bp (TRV1) and 200bp (TRV2) respectively ( FIG. 3 ).
表4:PCR反应体系Table 4: PCR reaction system
PCR扩增程序如下表5:The PCR amplification program is as follows in Table 5:
表5:PCR扩增程序Table 5: PCR Amplification Procedure
含有TRV载体的菌液凝胶电泳检测结果见图3。TRV1所扩增片段大小为500bp左右,TRV2大小为200bp左右,证实扩增正确,可以用于后续研究。Figure 3 shows the results of gel electrophoresis detection of bacterial solution containing TRV vector. The size of the amplified fragment of TRV1 is about 500bp, and the size of TRV2 is about 200bp, which confirms that the amplification is correct and can be used for follow-up research.
上述所克隆的PsUF3GT/PsUF5GT序列上下游分别含有BamH I和Xho I酶切位点,含有目的片段和TRV2载体的菌液进行质粒提取,采用无内毒素质粒中提试剂盒(EndoFreePlasmind Midi Kit,购自康为世纪生物科技有限公司),提取方法参照试剂盒说明书进行。同时用上述2个酶将靶片段和TRV2进行双酶切(内切酶购自NEB),酶切反应根据试剂说明书进行,并见表6。酶切体系混匀后,置于37℃水浴过夜。The upstream and downstream sequences of the cloned PsUF3GT/PsUF5GT contained BamH I and Xho I restriction sites, respectively, and the bacterial solution containing the target fragment and TRV2 vector was used for plasmid extraction, using an endotoxin-free plasmid extraction kit (EndoFreePlasmind Midi Kit, purchased from From Kangwei Century Biotechnology Co., Ltd.), the extraction method was carried out according to the kit instructions. At the same time, the target fragment and TRV2 were double-digested with the above two enzymes (the endonuclease was purchased from NEB). After mixing the enzyme digestion system, place it in a 37°C water bath overnight.
表6:双酶切体系Table 6: Double Enzyme Digestion System
酶切完成后将PsUF3GT/PsUF5GT靶片段与TRV2载体进行连接,采用T4DNA连接酶,连接体系见表7。After digestion, the PsUF3GT/PsUF5GT target fragment was ligated with the TRV2 vector using T4 DNA ligase. The ligation system is shown in Table 7.
表7:连接体系Table 7: Connection System
连接之后转化E.coLi DH5α感受态细胞(购自康为世纪生物科技有限公司),用含kan抗性的LB培养基筛选阳性单菌落,再进行PCR、质粒酶切鉴定。鉴定正确,将确定含有TRV2-PsUF3GT和TRV2-PsUF5GT大肠杆菌菌液进行测序(由北京博迈德基因技术有限公司完成),确保序列的正确性。测序结果正确,然后转化到农杆菌GV3101中(农杆菌感受态细胞购自北京博迈德基因技术有限公司)转化方法为常规冻融法,转化后的农杆菌培养2-3d后,将单菌落菌液进行测序验证,对验证正确的农杆菌进行培养,用于VIGS试验。After ligation, E.coLi DH5α competent cells (purchased from Kangwei Century Biotechnology Co., Ltd.) were transformed, and positive single colonies were screened with kan-resistant LB medium, and then identified by PCR and plasmid digestion. If the identification is correct, the Escherichia coli liquid containing TRV2-PsUF3GT and TRV2-PsUF5GT will be determined to be sequenced (completed by Beijing Biomed Gene Technology Co., Ltd.) to ensure the correctness of the sequence. The sequencing result was correct, and then transformed into Agrobacterium GV3101 (Agrobacterium competent cells were purchased from Beijing Bomed Gene Technology Co., Ltd.). The transformation method was the conventional freeze-thaw method. The bacterial liquid was sequenced and verified, and the verified Agrobacterium was cultured for the VIGS test.
三、VIGS体系建立3. Establishment of VIGS system
采用二因素三水平试验体系(表8)进行VIGS试验。因素A:花发育时期,对应的A1(全开,S4);A2(半开,S3);A3(花苞,S2)。因素B:真空渗透时间,分别为10min(B1)、15min(B2)和20min(B3)。TRV2-3GT和TRV2-5GT为目标基因,相应的TRV2空载体为对照。转化方法参照文献Tian J,Pei H X,Zhang S,Chen J W,Chen W,Yang R Y,Meng Y L,You J,Gao JP,Ma N.2014.TRV-GFP:a modified Tobacco rattle virus vector for efficient andvisualizable analysis of gene function.J Exp Bot,65:311-322.,采用抽真空法。主要细节包括重悬菌液的OD600=1.0,且pTRV2-3/5GT、pTRV1和pTRV2菌液的OD600值相同。将pTRV2-3/5GT和pTRV1,pTRV2和pTRV1菌液按体积比1:1分别混合,暗处静置4h。牡丹花朵带5cm花柄剪下,随机分布于不同处理,浸没在菌液中,抽真空至0.7atm,负压处理,缓慢放气。每个处理三朵花即重复3次。将抽吸后的花瓣用去离子水漂洗,去除多余菌液。花柄浸于去离子水中,8℃,湿度60%左右,暗培养1d;之后转移至23-25℃,湿度60%左右,正常光照培养3d。侵染4d后采样,将花瓣的斑与非斑部分分开。选取花瓣作为RNA提取检测样本和色素抽提样本,RNA检测样本置于液氮中速冻并存于-80℃,色素抽提样本经冷冻干燥处理后保存于茶色干燥器中。之后检测目的基因的表达水平以及花青苷积累量相对于对照的变化。因非斑部分不积累花青苷,所以侵染后仅测斑部花青苷成分及含量。The VIGS test was carried out using a two-factor and three-level test system (Table 8). Factor A: flower development period, corresponding to A1 (fully open, S4); A2 (half open, S3); A3 (bud, S2). Factor B: vacuum infiltration time, respectively 10min (B1), 15min (B2) and 20min (B3). TRV2-3GT and TRV2-5GT were the target genes, and the corresponding TRV2 empty vector was the control. The transformation method refers to the literature Tian J, Pei HX, Zhang S, Chen JW, Chen W, Yang RY, Meng YL, You J, Gao JP, Ma N.2014.TRV-GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot, 65: 311-322., using the vacuum method. The main details include that the OD 600 of the resuspended bacteria solution is 1.0, and the OD 600 values of the pTRV2-3/5GT, pTRV1 and pTRV2 bacterial solutions are the same. Mix the pTRV2-3/5GT and pTRV1, pTRV2 and pTRV1 bacterial solutions at a volume ratio of 1:1, and let stand in the dark for 4 hours. Peony flowers with 5cm flower stalks are cut off, randomly distributed in different treatments, submerged in the bacterial solution, vacuumed to 0.7atm, treated with negative pressure, and slowly deflated. Each treatment of three flowers was repeated 3 times. Rinse the aspirated petals with deionized water to remove excess bacterial fluid. The flower stalks were soaked in deionized water at 8°C and the humidity was about 60%, and cultured in the dark for 1 day; then transferred to 23-25°C and the humidity was about 60%, and cultivated under normal light for 3 days. Sampling was performed 4 days after infestation, and the spots and non-spots of the petals were separated. Petals were selected as RNA extraction test samples and pigment extraction samples. RNA test samples were quickly frozen in liquid nitrogen and stored at -80°C. Pigment extraction samples were freeze-dried and stored in a brown desiccator. Then detect the expression level of the target gene and the change of anthocyanin accumulation relative to the control. Since anthocyanins do not accumulate in non-spotted parts, only the composition and content of anthocyanins in spotted parts were measured after infection.
表8 用于VIGS体系的二因素三水平试验处理Table 8 Experimental treatment of two factors and three levels for VIGS system
四、基因表达分析4. Gene expression analysis
基因表达分析参照文献(Du H,Wu J,Ji K X,Zeng Q Y,Bhuiyad M W,Su S,Shu QY,Ren H X,Liu Z A,Wang L S.2015.Methylation mediated by an anthocyanin O-methyltransferase,is involved in purple flower coloration in Paeonia.J ExpBot,66:6563-77),将所有样品进行总RNA的提取,并反转录成cDNA,作为荧光定量PCR的模板。具体方法参照试剂盒说明进行(FastQuant cDNA和SYBR Green,天根生化科技(北京)有限公司)并参考文献(Du H,Wu J,Ji K X,Zeng Q Y,Bhuiyad M W,Su S,Shu Q Y,Ren H X,Liu Z A,Wang L S.2015.Methylation mediated by an anthocyanin O-methyltransferase,is involved in purple flower coloration in Paeonia.J ExpBot,66:6563-77),荧光定量的反应体系和程序见表9和表10。本研究采用2-△△CT(Livak)法计算实时荧光定量PCR实验中基因的相对表达量,PsTubulin(accession no.EF608942)作为内参基因(Du H,Wu J,Ji K X,Zeng Q Y,Bhuiyad M W,Su S,Shu Q Y,Ren H X,Liu ZA,Wang L S.2015.Methylation mediated by an anthocyanin O-methyltransferase,isinvolved in purple flower coloration in Paeonia.J Exp Bot,66:6563-77)。将花瓣斑与非斑分开进行表达量分析,分3次生物学和3次技术重复。Gene expression analysis refers to literature (Du H, Wu J, Ji KX, Zeng QY, Bhuiyad MW, Su S, Shu QY, Ren HX, Liu ZA, Wang L S.2015. Methylation mediated by an anthocyanin O-methyltransferase, is involved in purple flower coloration in Paeonia.J ExpBot, 66:6563-77), all samples were extracted from total RNA, and reverse transcribed into cDNA, which was used as a template for fluorescent quantitative PCR. The specific method was carried out according to the instructions of the kit (FastQuant cDNA and SYBR Green, Tiangen Biochemical Technology (Beijing) Co., Ltd.) and references (Du H, Wu J, Ji KX, Zeng QY, Bhuiyad MW, Su S, Shu QY, Ren HX, Liu ZA, Wang L S.2015. Methylation mediated by an anthocyanin O-methyltransferase, is involved in purple flower coloration in Paeonia. J ExpBot, 66: 6563-77), the reaction system and program of fluorescence quantification are shown in Table 9 and Table 10. In this study, the 2- △△CT (Livak) method was used to calculate the relative expression of genes in real-time fluorescent quantitative PCR experiments, and PsTubulin (accession no.EF608942) was used as an internal reference gene (Du H, Wu J, Ji KX, Zeng QY, Bhuiyad MW , Su S, Shu QY, Ren HX, Liu ZA, Wang L S. 2015. Methylation mediated by an anthocyanin O-methyltransferase, is involved in purple flower coloration in Paeonia. J Exp Bot, 66: 6563-77). The expression level analysis of petal spots and non-spots was divided into 3 biological and 3 technical replicates.
表9 荧光定量PCR扩增体系Table 9 Fluorescent quantitative PCR amplification system
表10 荧光定量PCR扩增程序Table 10 Fluorescent quantitative PCR amplification program
结果:花瓣中沉默UFGTs后基因的表达量分析Results: Analysis of gene expression after silencing UFGTs in petals
利用所扩增保守区片段长分别为413bp和418bp的PsUF3GT和PsUF5GT基因片段构建TRV2载体,用于沉默目的基因。通过二因素三水平9个试验,寻找UFGT基因沉默的最佳处理,对沉默后的基因表达量进行分析(图4和图5)。通过对不同处理的斑与非斑中PsUF3GT和PsUF5GT基因表达量分析发现,9个处理中PsUF3GT基因的表达量在处理2的斑中降低最多,比对照处理1、处理6和处理8分别降低了65.0%、45.0%和71.0%。PsUF5GT在处理7的非斑中表达量降低最多,比对照处理1和8分别降低了15.9%和85.0%。The PsUF3GT and PsUF5GT gene fragments with amplified conserved region fragment lengths of 413bp and 418bp were used to construct TRV2 vectors for silencing the target gene. Through 9 experiments with two factors and three levels, the optimal treatment of UFGT gene silencing was found, and the gene expression after silencing was analyzed (Figure 4 and Figure 5). By analyzing the expression of PsUF3GT and PsUF5GT genes in spots and non-spots of different treatments, it was found that the expression of PsUF3GT gene among the nine treatments decreased the most in the spots of treatment 2, which was lower than that of control treatment 1, treatment 6 and treatment 8 respectively. 65.0%, 45.0%, and 71.0%. The expression level of PsUF5GT decreased the most in the non-plaques of treatment 7, which was 15.9% and 85.0% lower than the control treatment 1 and 8, respectively.
五、斑部花青苷测定5. Determination of spot anthocyanins
将干燥后的花斑进行称重提取花青苷(Li C H,Du H,Wang L S,Shu Q Y,Zheng YR,Xu Y J,Zhang J J,Zhang J,Yang R Z,Ge Y X.2009.Flavonoid composition andantioxidant activity of tree peony(Paeonia Section Moutan)Yellow Flowers.JAgric Food Chem,57:8496–8503.),即称取干燥花瓣0.1-0.2g,用0.2%甲酸甲醇溶液超声20min,并黑暗放置2h后12,000rpm离心5min充分提取,各3个重复。使用HPLC分析前,取1mL提取液,用0.22μm尼龙微孔滤器过滤到样品瓶中。所用分析系统为Dionex HPLC-DAD系统,色谱柱为TSK gel ODS-80Ts QA,4.6mm(内径)×150mm(柱长)(日本Tosoh株式会社)。花青苷的定性和定量分析参照(Zhang J J,Wang L S,Shu Q Y,Liu Z A,Li C H,Zhang J,WeiX L,Tian D K.2007.Comparison of anthocyanins in non-blotches and blotches ofthe petals of Xibei tree peony.Sci Hortic,114:104-111.;Li C H,Du H,Wang L S,Shu Q Y,Zheng Y R,Xu Y J,Zhang J J,Zhang J,Yang R Z,Ge Y X.2009.Flavonoidcomposition and antioxidant activity of tree peony(Paeonia Section Moutan)Yellow Flowers.J Agric Food Chem,57:8496–8503.),即液相色谱分析条件:色谱柱TSKgel ODS-80Ts QA,4.6mm(内径)×150mm(长);柱温35℃,流速0.8mL/min,进样体积10μL。具体A相:10%甲醇水溶液;B相:1%甲酸水;C相:纯甲醇;D相:甲酸:乙腈(0.1:99.9V/V)溶液。线性梯度洗脱程序:0-50min,B相5%-20%,C相95%-80%;50-60min,B相20%-5%,C相80%-95%。流速0.8mL/min,柱温35℃,进样体积10μL,检测波长525nm(花青苷分析)。利用Agilent 1100LC/MSD Trap VL液质联用仪(Agilent Technologies,Palo Alto,CA,USA)进行HPLC-ESI-MS2分析。质谱分析条件:电喷雾离子化(ESI),离子阱分析器,毛细管电压3.5kV,喷雾器压力241.3kPa,干燥温度350℃,干燥气(N2)流速6.0mL/min。用LC/MSD Trap软件(V5.2)分析结果。利用Agilent 1100LC/MSD Trap VL液质联用仪(AgilentTechnologies,Palo Alto,CA,USA)进行HPLC-ESI-MS/MS2分析。标准品为矢车菊素3-O-葡萄糖苷(Cy3G),通过标准品半定量法计算花青苷含量(Wang L S,Shiraishi A,HashimotoF,Aoki N,Shimizu K,Sakata Y.2001.Analysis of petal anthocyanins toinvestigate flower coloration of Zhongyuan(Chinese)and Daikon Island(Japanese)tree peony cultivars.J Plant Res,114:33–43.),即使用不同浓度包括0.015625mg/ml、0.03125mg/ml、0.0625mg/ml、0.125mg/ml、0.025mg/mL、0.05mg/mL、1.0mg/mL的标准品,制作的标准曲线公式为:花青苷含量TA(total anthocyanin)[mAU]=0.0012[Cy3G(μg/mL)]+0.0121(R2=0.994)。花青苷含量以mg/g干燥花瓣(DW)计。用Chameleon软件(Ver.6.60)分析结果。Anthocyanins were extracted from the dried piebald by weighing (Li CH, Du H, Wang LS, Shu QY, Zheng YR, Xu YJ, Zhang JJ, Zhang J, Yang RZ, Ge Y X.2009.Flavonoid composition and antioxidant activity of tree peony (Paeonia Section Moutan) Yellow Flowers. JAgric Food Chem, 57:8496–8503.), that is, weigh 0.1-0.2g of dried petals, use 0.2% methanol solution of formic acid to sonicate for 20min, and place in the dark for 2h at 12,000rpm Centrifuge for 5 minutes to fully extract, and repeat 3 times. Before analysis by HPLC, take 1 mL of the extract and filter it into a sample bottle with a 0.22 μm nylon microporous filter. The analysis system used was Dionex HPLC-DAD system, and the chromatographic column was TSK gel ODS-80Ts QA, 4.6mm (inner diameter)×150mm (column length) (Tosoh Corporation, Japan). The qualitative and quantitative analysis of anthocyanins refer to (Zhang JJ, Wang LS, Shu QY, Liu ZA, Li CH, Zhang J, WeiX L, Tian D K.2007.Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony. Sci Hortic, 114: 104-111.; Li CH, Du H, Wang LS, Shu QY, Zheng YR, Xu YJ, Zhang JJ, Zhang J, Yang RZ, Ge Y X. 2009. Flavonoid composition and antioxidant activity of tree peony (Paeonia Section Moutan) Yellow Flowers. J Agric Food Chem, 57: 8496–8503.), that is, liquid chromatography analysis conditions: chromatographic column TSKgel ODS-80Ts QA, 4.6mm (inner diameter) × 150mm (length); The column temperature was 35°C, the flow rate was 0.8mL/min, and the injection volume was 10μL. Specific phase A: 10% methanol aqueous solution; phase B: 1% formic acid water; phase C: pure methanol; phase D: formic acid: acetonitrile (0.1:99.9V/V) solution. Linear gradient elution program: 0-50min, 5%-20% of phase B, 95%-80% of phase C; 50-60min, 20%-5% of phase B, 80%-95% of phase C. The flow rate is 0.8mL/min, the column temperature is 35°C, the injection volume is 10μL, and the detection wavelength is 525nm (analysis of anthocyanins). HPLC-ESI-MS 2 analysis was performed using an Agilent 1100LC/MSD Trap VL liquid-mass spectrometer (Agilent Technologies, Palo Alto, CA, USA). Mass spectrometry conditions: electrospray ionization (ESI), ion trap analyzer, capillary voltage 3.5kV, nebulizer pressure 241.3kPa, drying temperature 350°C, drying gas (N2) flow rate 6.0mL/min. The results were analyzed with LC/MSD Trap software (V5.2). HPLC-ESI-MS/MS 2 analysis was performed using an Agilent 1100LC/MSD Trap VL liquid-mass spectrometer (Agilent Technologies, Palo Alto, CA, USA). The standard product is cyanidin 3-O-glucoside (Cy3G), and the anthocyanin content is calculated by the standard product semi-quantitative method (Wang LS, Shiraishi A, Hashimoto F, Aoki N, Shimizu K, Sakata Y.2001.Analysis of petal anthocyanins to investigate flower coloration of Zhongyuan (Chinese) and Daikon Island (Japanese) tree peony cultivars.J Plant Res, 114:33–43.), that is, use different concentrations including 0.015625mg/ml, 0.03125mg/ml, 0.0625mg/ml ml, 0.125mg/ml, 0.025mg/mL, 0.05mg/mL, 1.0mg/mL standard products, the standard curve formula is: anthocyanin content TA (total anthocyanin) [mAU] = 0.0012 [Cy3G (μg /mL)] + 0.0121 (R 2 =0.994). The anthocyanin content is expressed in mg/g dry petals (DW). The results were analyzed with Chameleon software (Ver. 6.60).
数据分析方法:Data analysis method:
本研究中的序列利用DNAMAN5.0进行序列分析。荧光定量PCR数据采用软件SPSS13.0v(SPSS Inc.,Chicago,IL)进行显著性差异分析(P<0.05),采用Excel 2007软件绘制图表。The sequences in this study were analyzed using DNAMAN5.0. Fluorescent quantitative PCR data were analyzed by software SPSS13.0v (SPSS Inc., Chicago, IL) for significant difference analysis (P<0.05), and Excel 2007 software was used to draw charts.
结果:沉默后的花斑中花青苷含量的测定和分析Results: Determination and Analysis of Anthocyanin Content in Silenced Versicolor
在对基因沉默后不同处理的花瓣斑与非斑中的表达量进行分析的基础上,对9个处理花斑中花青苷成分和含量进行了测定(图6),检测结果与荧光定量结果基本一致,即:处理2中4种花青苷总量比对照处理1降低了24.2%,其中降低最多的是Pn3G占20.0%,其次为Cy3G、Pn3G5G、Cy3G5G,分别为2.3%、1.4%和0.1%;3G型糖苷降低了92.2%,3G5G型降低了7.8%。处理7中总花青苷比对照处理8降低了28.2%,其中降低最多的是Pn3G占12.5%,其次是Pn3G5G、Cy3G5G、Cy3G分别降低了9.3%、6.1%和0.01%;3G5G型糖苷降低54.9%而3G型糖苷降低45.1%。On the basis of analyzing the expression levels in the petal spots and non-spots of different treatments after gene silencing, the components and contents of anthocyanins in the nine treatment spots were determined (Figure 6). The detection results were compared with the fluorescence quantitative results. Basically the same, that is: the total amount of 4 kinds of anthocyanins in treatment 2 decreased by 24.2% compared with control treatment 1, among which Pn3G accounted for 20.0% of the decrease, followed by Cy3G, Pn3G5G, Cy3G5G, which were 2.3%, 1.4% and 0.1% respectively. %; 3G type glycosides decreased by 92.2%, 3G5G type decreased by 7.8%. Total anthocyanins in treatment 7 decreased by 28.2% compared with control treatment 8, among which Pn3G accounted for 12.5% of the largest decrease, followed by Pn3G5G, Cy3G5G, Cy3G decreased by 9.3%, 6.1% and 0.01% respectively; 3G5G type glycosides decreased by 54.9% % while 3G-type glycosides decreased by 45.1%.
<110> 中国科学院植物研究所<110> Institute of Botany, Chinese Academy of Sciences
<120> 鉴定牡丹类黄酮糖基转移酶基因的VIGS沉默体系<120> VIGS silencing system for identification of flavonoid glycosyltransferase gene in tree peony
<130> P170440/ZWY<130> P170440/ZWY
<160> 4<160> 4
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 413<211> 413
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> PsUF3GT<223> PsUF3GT
<400> 1<400> 1
catggctcaa tgaccaaaag gctgaatccg tcgcgtacat cagctttggc acggctgcga 60catggctcaa tgaccaaaag gctgaatccg tcgcgtacat cagctttggc acggctgcga 60
ctccacctcc aaccgagatt ttagctatag cagaagcatt agaagcaagt ggggttgcct 120ctccacctcc aaccgagatt ttagctatag cagaagcatt agaagcaagt ggggttgcct 120
ttttatggtc acttaaggac catttaaatg tgcatttgcc aaaagggttt ttagacaaaa 180ttttatggtc acttaaggac catttaaatg tgcatttgcc aaaagggttt ttagacaaaa 180
caagagcatg tggaatggtt gtgccatggg ctcctcaatt acaaatacta gcacatggtg 240caagagcatg tggaatggtt gtgccatggg ctcctcaatt acaaatacta gcacatggtg 240
ctgttggggt gtttataacg cattgtggtt ggaactcggt actagagagt atcggaggtg 300ctgttggggt gtttataacg cattgtggtt ggaactcggt actagagagt atcggaggtg 300
gagtgcctat gatttgtagg ccattcttcg gcgaccaaaa gttgaacgcg tgtatggtgg 360gagtgcctat gatttgtagg ccattcttcg gcgaccaaaa gttgaacgcg tgtatggtgg 360
aggacgtgtg ggaaattggt gtgaaaatcg acggtggagt atttacgaag aat 413aggacgtgtg ggaaattggt gtgaaaatcg acggtggagt atttacgaag aat 413
<210> 2<210> 2
<211> 136<211> 136
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> PsUF3GT<223> PsUF3GT
<400> 2<400> 2
Trp Leu Asn Asp Gln Lys Ala Glu Ser Val Ala Tyr Ile Ser Phe GlyTrp Leu Asn Asp Gln Lys Ala Glu Ser Val Ala Tyr Ile Ser Phe Gly
1 5 10 151 5 10 15
Thr Ala Ala Thr Pro Pro Pro Thr Glu Ile Leu Ala Ile Ala Glu AlaThr Ala Ala Thr Pro Pro Pro Thr Glu Ile Leu Ala Ile Ala Glu Ala
20 25 30 20 25 30
Leu Glu Ala Ser Gly Val Ala Phe Leu Trp Ser Leu Lys Asp His LeuLeu Glu Ala Ser Gly Val Ala Phe Leu Trp Ser Leu Lys Asp His Leu
35 40 45 35 40 45
Asn Val His Leu Pro Lys Gly Phe Leu Asp Lys Thr Arg Ala Cys GlyAsn Val His Leu Pro Lys Gly Phe Leu Asp Lys Thr Arg Ala Cys Gly
50 55 60 50 55 60
Met Val Val Pro Trp Ala Pro Gln Leu Gln Ile Leu Ala His Gly AlaMet Val Val Pro Trp Ala Pro Gln Leu Gln Ile Leu Ala His Gly Ala
65 70 75 8065 70 75 80
Val Gly Val Phe Ile Thr His Cys Gly Trp Asn Ser Val Leu Glu SerVal Gly Val Phe Ile Thr His Cys Gly Trp Asn Ser Val Leu Glu Ser
85 90 95 85 90 95
Ile Gly Gly Gly Val Pro Met Ile Cys Arg Pro Phe Phe Gly Asp GlnIle Gly Gly Gly Val Pro Met Ile Cys Arg Pro Phe Phe Gly Asp Gln
100 105 110 100 105 110
Lys Leu Asn Ala Cys Met Val Glu Asp Val Trp Glu Ile Gly Val LysLys Leu Asn Ala Cys Met Val Glu Asp Val Trp Glu Ile Gly Val Lys
115 120 125 115 120 125
Ile Asp Gly Gly Val Phe Thr LysIle Asp Gly Gly Val Phe Thr Lys
130 135 130 135
<210> 3<210> 3
<211> 418<211> 418
<212> DNA<212>DNA
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> PsUF5GT<223> PsUF5GT
<400> 3<400> 3
tttggaaaag caaggaatgg tggtgccatg gtgtaatcaa ttagaggttc tgtctcataa 60tttggaaaag caaggaatgg tggtgccatg gtgtaatcaa ttagaggttc tgtctcataa 60
gtcagtgggt tgttttctga cacattgtgg gtggaattcg agtttggaga gtttggtttg 120gtcagtgggt tgttttctga cacattgtgg gtggaattcg agtttggaga gtttggtttg 120
tggggtgccg gtggtggcgt ttcctcagtg ggcggatcaa gccaccaatg ccaagctgat 180tggggtgccg gtggtggcgt ttcctcagtg ggcggatcaa gccaccaatg ccaagctgat 180
tgaagatgtg tggaagactg gggtgagaat ggtggtgaat gaagatggtg tggttgaagg 240tgaagatgtg tggaagactg gggtgagaat ggtggtgaat gaagatggtg tggttgaagg 240
ttgtgagatt aagagatgtt tggaaatggt tatgggaggt ggagagagag gggaggaaat 300ttgtgagatt aagagatgtt tggaaatggt tatgggaggt ggagagagag gggaggaaat 300
gagaaggaat gttgagaaat ggaaggagtt ggcgagggaa gctgtcaagg atggtgagtc 360gagaaggaat gttgagaaat ggaaggagtt ggcgagggaa gctgtcaagg atggtgagtc 360
ttctgacaaa aatctaaaag cttttgtcaa tgaggtgggg aaaggtggtg atttgtga 418ttctgacaaa aatctaaaag cttttgtcaa tgaggtgggg aaaggtggtg atttgtga 418
<210> 4<210> 4
<211> 138<211> 138
<212> PRT<212> PRT
<213> Artificial Sequence<213> Artificial Sequence
<220><220>
<223> PsUF5GT<223> PsUF5GT
<400> 4<400> 4
Leu Glu Lys Gln Gly Met Val Val Pro Trp Cys Asn Gln Leu Glu ValLeu Glu Lys Gln Gly Met Val Val Pro Trp Cys Asn Gln Leu Glu Val
1 5 10 151 5 10 15
Leu Ser His Lys Ser Val Gly Cys Phe Leu Thr His Cys Gly Trp AsnLeu Ser His Lys Ser Val Gly Cys Phe Leu Thr His Cys Gly Trp Asn
20 25 30 20 25 30
Ser Ser Leu Glu Ser Leu Val Cys Gly Val Pro Val Val Ala Phe ProSer Ser Leu Glu Ser Leu Val Cys Gly Val Pro Val Val Ala Phe Pro
35 40 45 35 40 45
Gln Trp Ala Asp Gln Ala Thr Asn Ala Lys Leu Ile Glu Asp Val TrpGln Trp Ala Asp Gln Ala Thr Asn Ala Lys Leu Ile Glu Asp Val Trp
50 55 60 50 55 60
Lys Thr Gly Val Arg Met Val Val Asn Glu Asp Gly Val Val Glu GlyLys Thr Gly Val Arg Met Val Val Asn Glu Asp Gly Val Val Glu Gly
65 70 75 8065 70 75 80
Cys Glu Ile Lys Arg Cys Leu Glu Met Val Met Gly Gly Gly Glu ArgCys Glu Ile Lys Arg Cys Leu Glu Met Val Met Gly Gly Gly Glu Arg
85 90 95 85 90 95
Gly Glu Glu Met Arg Arg Asn Val Glu Lys Trp Lys Glu Leu Ala ArgGly Glu Glu Met Arg Arg Asn Val Glu Lys Trp Lys Glu Leu Ala Arg
100 105 110 100 105 110
Glu Ala Val Lys Asp Gly Glu Ser Ser Asp Lys Asn Leu Lys Ala PheGlu Ala Val Lys Asp Gly Glu Ser Ser Asp Lys Asn Leu Lys Ala Phe
115 120 125 115 120 125
Val Asn Glu Val Gly Lys Gly Gly Asp LeuVal Asn Glu Val Gly Lys Gly Gly Asp Leu
130 135 130 135
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710607382.8A CN107245497B (en) | 2017-07-24 | 2017-07-24 | Identify the VIGS silencing system of tree peony flavonoids glycosyltransferase gene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710607382.8A CN107245497B (en) | 2017-07-24 | 2017-07-24 | Identify the VIGS silencing system of tree peony flavonoids glycosyltransferase gene |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107245497A true CN107245497A (en) | 2017-10-13 |
CN107245497B CN107245497B (en) | 2019-08-23 |
Family
ID=60011816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710607382.8A Active CN107245497B (en) | 2017-07-24 | 2017-07-24 | Identify the VIGS silencing system of tree peony flavonoids glycosyltransferase gene |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107245497B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107936104A (en) * | 2017-12-29 | 2018-04-20 | 中国科学院植物研究所 | Tree peony PsMYB12 transcription factors and its encoding gene and application |
CN108070603A (en) * | 2017-12-28 | 2018-05-25 | 河南健特生物科技集团有限公司 | A kind of transgenic method for improving oil and using peony seeds oil content |
CN108165579A (en) * | 2017-12-26 | 2018-06-15 | 北京农学院 | A kind of method of the VIGS silencing systems of the identification Chinese rose RhPDS genes of optimization |
CN109022482A (en) * | 2018-09-11 | 2018-12-18 | 西北农林科技大学 | The method of TRV carrier mediated Gene Silencing systemic infection tree peony seedling |
CN109022483A (en) * | 2018-09-11 | 2018-12-18 | 西北农林科技大学 | The method of TRV carrier mediated Gene Silencing systemic vaccination tree peony floral organ |
CN112795591A (en) * | 2019-11-14 | 2021-05-14 | 青岛农业大学 | A VIGS silencing system for identification of peony pollination and fertilization genes |
CN114574462A (en) * | 2022-03-24 | 2022-06-03 | 中国科学院植物研究所 | Key glycosyltransferase for forming and coloring piebald and coding gene and application thereof |
CN114807160A (en) * | 2022-03-10 | 2022-07-29 | 上海师范大学 | Gene RcGT for regulating and controlling color of Chinese rose petals, protein, recombinant vector, recombinant transformant, application and method |
CN114836437A (en) * | 2022-05-20 | 2022-08-02 | 扬州大学 | Application of peony PsMYB4 gene in changing color and size of plant petal color spot |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104781407A (en) * | 2012-09-07 | 2015-07-15 | 洛克菲勒大学 | Transcriptional gene silencing of endogenes in plants |
CN106191109A (en) * | 2016-07-19 | 2016-12-07 | 中国农业科学院北京畜牧兽医研究所 | Identify the VIGS silencing system of alfalfa MsPDS gene and structure thereof and authentication method |
CN106381302A (en) * | 2016-09-12 | 2017-02-08 | 南京农业大学 | Method for quickly identifying chrysanthemum nankingense gene function based on TRV-VIGS technology |
-
2017
- 2017-07-24 CN CN201710607382.8A patent/CN107245497B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104781407A (en) * | 2012-09-07 | 2015-07-15 | 洛克菲勒大学 | Transcriptional gene silencing of endogenes in plants |
CN106191109A (en) * | 2016-07-19 | 2016-12-07 | 中国农业科学院北京畜牧兽医研究所 | Identify the VIGS silencing system of alfalfa MsPDS gene and structure thereof and authentication method |
CN106381302A (en) * | 2016-09-12 | 2017-02-08 | 南京农业大学 | Method for quickly identifying chrysanthemum nankingense gene function based on TRV-VIGS technology |
Non-Patent Citations (1)
Title |
---|
舒庆艳 等: "基于牡丹类黄酮糖基转移酶基因建立VIGS技术体系", 《园艺学报》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108165579B (en) * | 2017-12-26 | 2020-12-11 | 北京农学院 | An optimized method for the identification of the VIGS silencing system of the RhPDS gene of Chinese rose |
CN108165579A (en) * | 2017-12-26 | 2018-06-15 | 北京农学院 | A kind of method of the VIGS silencing systems of the identification Chinese rose RhPDS genes of optimization |
CN108070603A (en) * | 2017-12-28 | 2018-05-25 | 河南健特生物科技集团有限公司 | A kind of transgenic method for improving oil and using peony seeds oil content |
CN108070603B (en) * | 2017-12-28 | 2021-06-08 | 洛阳健特药业有限公司 | Transgenic method for improving oil content of oil peony seeds |
CN107936104A (en) * | 2017-12-29 | 2018-04-20 | 中国科学院植物研究所 | Tree peony PsMYB12 transcription factors and its encoding gene and application |
CN107936104B (en) * | 2017-12-29 | 2020-03-24 | 中国科学院植物研究所 | Peony PsMYB12 transcription factor and coding gene and application thereof |
CN109022483A (en) * | 2018-09-11 | 2018-12-18 | 西北农林科技大学 | The method of TRV carrier mediated Gene Silencing systemic vaccination tree peony floral organ |
CN109022482A (en) * | 2018-09-11 | 2018-12-18 | 西北农林科技大学 | The method of TRV carrier mediated Gene Silencing systemic infection tree peony seedling |
CN112795591A (en) * | 2019-11-14 | 2021-05-14 | 青岛农业大学 | A VIGS silencing system for identification of peony pollination and fertilization genes |
CN112795591B (en) * | 2019-11-14 | 2023-02-17 | 青岛农业大学 | VIGS silencing system for identifying peony pollination fertilization gene |
CN114807160A (en) * | 2022-03-10 | 2022-07-29 | 上海师范大学 | Gene RcGT for regulating and controlling color of Chinese rose petals, protein, recombinant vector, recombinant transformant, application and method |
CN114807160B (en) * | 2022-03-10 | 2023-11-14 | 上海师范大学 | Gene RcGT for regulating and controlling petal color of China rose, protein, recombinant vector, recombinant transformant, application and method |
CN114574462A (en) * | 2022-03-24 | 2022-06-03 | 中国科学院植物研究所 | Key glycosyltransferase for forming and coloring piebald and coding gene and application thereof |
CN114574462B (en) * | 2022-03-24 | 2023-11-03 | 中国科学院植物研究所 | Key glycosyltransferase for forming and coloring flower spots, and coding gene and application thereof |
CN114836437A (en) * | 2022-05-20 | 2022-08-02 | 扬州大学 | Application of peony PsMYB4 gene in changing color and size of plant petal color spot |
CN114836437B (en) * | 2022-05-20 | 2023-06-20 | 扬州大学 | Application of Peony PsMYB4 Gene in Changing the Color and Size of Plant Petal Spots |
Also Published As
Publication number | Publication date |
---|---|
CN107245497B (en) | 2019-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107245497B (en) | Identify the VIGS silencing system of tree peony flavonoids glycosyltransferase gene | |
Shi et al. | Metabolomic and transcriptomic analyses of anthocyanin biosynthesis mechanisms in the color mutant Ziziphus jujuba cv. Tailihong | |
Salvatierra et al. | Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene | |
Chen et al. | A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco | |
Kim et al. | Expression of potato S-adenosyl-L-methionine synthase (SbSAMS) gene altered developmental characteristics and stress responses in transgenic Arabidopsis plants | |
CN107267522A (en) | Pears transcription factor PyMYB114 and its recombinant expression carrier and application | |
Wang et al. | Functional identification of a flavone synthase and a flavonol synthase genes affecting flower color formation in Chrysanthemum morifolium | |
EP3042953A1 (en) | Method for using hexenol glycosyl transferase | |
CN112391398B (en) | Apple flavone ketotransferase gene MdGT1 and application thereof | |
CN106480063A (en) | A kind of tea tree myb transcription factor CsAN1 and its application in regulation and control anthocyanidin metabolism | |
Abbas et al. | Putative regulatory role of hexokinase and fructokinase in terpenoid aroma biosynthesis in Lilium ‘Siberia’ | |
Li et al. | Establishment of virus-induced gene silencing system and functional analysis of ScbHLH17 in Senecio cruentus | |
Hu et al. | Overexpression of chalcone synthase improves flavonoid accumulation and drought tolerance in tobacco | |
Hou et al. | Virus-induced gene silencing (VIGS) for functional analysis of genes involved in the regulation of anthocyanin biosynthesis in the perianth of Phalaenopsis-type Dendrobium hybrids | |
Millar et al. | Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids | |
Deng et al. | Tobacco rattle virus-induced phytoene desaturase (PDS) silencing in Centaurea cyanus | |
Sui et al. | RrGT1, a key gene associated with anthocyanin biosynthesis, was isolated from Rosa rugosa and identified via overexpression and VIGS | |
Menu et al. | High hexokinase activity in tomato fruit perturbs carbon and energy metabolism and reduces fruit and seed size | |
Su et al. | Comprehensive metabolome and transcriptome analyses demonstrate divergent anthocyanin and carotenoid accumulation in fruits of wild and cultivated loquats | |
Cui et al. | R2R3-MYB transcription factor PhMYB2 positively regulates anthocyanin biosynthesis in Pericallis hybrida | |
CN105646686A (en) | Gene for regulating and controlling synthesis of plant flavonol and application | |
JP6296465B2 (en) | Novel proteins and genes related to flavonoid O-methyltransferase (FOMT) and their use | |
Bao et al. | A freezing responsive UDP-glycosyltransferase improves potato freezing tolerance via modifying flavonoid metabolism | |
Cui et al. | Tyrosine promotes anthocyanin biosynthesis in pansy (Viola× wittrockiana) by inducing ABA synthesis | |
KR101730074B1 (en) | A flavonol synthase gene and a transgenic plant with the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |