CN107233103A - High ferro dispatcher's fatigue state assessment method and system - Google Patents
High ferro dispatcher's fatigue state assessment method and system Download PDFInfo
- Publication number
- CN107233103A CN107233103A CN201710397928.1A CN201710397928A CN107233103A CN 107233103 A CN107233103 A CN 107233103A CN 201710397928 A CN201710397928 A CN 201710397928A CN 107233103 A CN107233103 A CN 107233103A
- Authority
- CN
- China
- Prior art keywords
- fatigue
- signal
- mrow
- index
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000001815 facial effect Effects 0.000 claims abstract description 86
- 230000004424 eye movement Effects 0.000 claims abstract description 77
- 230000004927 fusion Effects 0.000 claims abstract description 24
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 11
- 238000000605 extraction Methods 0.000 claims description 71
- 230000006870 function Effects 0.000 claims description 71
- 238000012545 processing Methods 0.000 claims description 32
- 230000009466 transformation Effects 0.000 claims description 19
- 238000001914 filtration Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 10
- 230000000747 cardiac effect Effects 0.000 claims 1
- 238000011156 evaluation Methods 0.000 abstract description 21
- 238000012544 monitoring process Methods 0.000 abstract description 12
- 238000012360 testing method Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 2
- 241001282135 Poromitra oscitans Species 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 206010048232 Yawning Diseases 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/18—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7242—Details of waveform analysis using integration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7282—Event detection, e.g. detecting unique waveforms indicative of a medical condition
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Psychiatry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Developmental Disabilities (AREA)
- Social Psychology (AREA)
- Psychology (AREA)
- Hospice & Palliative Care (AREA)
- Child & Adolescent Psychology (AREA)
- Educational Technology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明公开了一种高铁调度员疲劳状态测评方法和系统。其中,该方法可以包括获取高铁调度员的心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号;基于心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号,提取疲劳警戒值以下的特征值;基于疲劳警戒值以下的特征值,利用多通道数据融合算法,确定高铁调度员的疲劳状态。本发明实施例通过采取上述技术方案,以高铁调度员日常作业为测试背景,融合了多个信号进行判定,解决了如何提高测评的精度和准确度的技术问题,使得监测与测评更具有实际意义。
The invention discloses a method and a system for evaluating the fatigue state of a high-speed rail dispatcher. Among them, the method may include obtaining the heart rate signal, ECG signal, EEG signal, facial image signal and eye movement feature signal of the high-speed rail dispatcher; based on the heart rate signal, ECG signal, EEG signal, facial image signal and eye movement feature signal Signal, extract the eigenvalues below the fatigue warning value; based on the eigenvalues below the fatigue warning value, use the multi-channel data fusion algorithm to determine the fatigue state of the high-speed rail dispatcher. The embodiment of the present invention adopts the above-mentioned technical scheme, takes the daily operation of the high-speed rail dispatcher as the test background, combines multiple signals for judgment, and solves the technical problem of how to improve the precision and accuracy of the evaluation, making monitoring and evaluation more practical. .
Description
技术领域technical field
本发明实施例涉及高铁技术领域,尤其是涉及一种高铁调度员疲劳状态测评方法及系统。The embodiments of the present invention relate to the technical field of high-speed rail, in particular to a method and system for evaluating the fatigue state of a high-speed rail dispatcher.
背景技术Background technique
高铁调度员倒班制的工作方式决定了其需要较高的抗疲劳能力。目前,国内国外针对高铁调度员疲劳监测的系统较为鲜见。The high-speed rail dispatchers work in shifts, which requires a high fatigue resistance. At present, domestic and foreign systems for fatigue monitoring of high-speed rail dispatchers are relatively rare.
已有的疲劳监测设备涉及到的人员作业背景与高铁路调度员作业背景存在较大差异,不能简单地复制应用到高铁路调度员的疲劳监测与测评中;而且,已有的疲劳监测与测评设备多是基于单通道分析,其精度及准确度不高。The existing fatigue monitoring equipment involves personnel operating backgrounds that are quite different from those of high-speed railway dispatchers, and cannot be simply copied and applied to the fatigue monitoring and evaluation of high-speed railway dispatchers; moreover, the existing fatigue monitoring and evaluation Most of the equipment is based on single-channel analysis, and its precision and accuracy are not high.
因此,急需一套疲劳监测与干预装置来解决高铁调度员疲劳作业带来的危害。Therefore, there is an urgent need for a set of fatigue monitoring and intervention devices to solve the hazards caused by fatigue work of high-speed rail dispatchers.
发明内容Contents of the invention
本发明实施例的主要目的在于提供一种高铁调度员疲劳状态测评方法,其至少部分地解决了如何提高测评的精度和准确度的技术问题。此外,还提供一种高铁调度员疲劳状态测评系统。The main purpose of the embodiments of the present invention is to provide a method for evaluating the fatigue state of high-speed rail dispatchers, which at least partly solves the technical problem of how to improve the accuracy and precision of the evaluation. In addition, a high-speed rail dispatcher fatigue state evaluation system is also provided.
为了实现上述目的,根据本发明的一个方面,提供了以下技术方案:In order to achieve the above object, according to one aspect of the present invention, the following technical solutions are provided:
一种高铁调度员疲劳状态测评方法。该方法至少可以包括:A method for evaluating the fatigue state of high-speed rail dispatchers. The method may include at least:
获取所述高铁调度员的心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号;Obtaining the heart rate signal, electrocardiographic signal, electroencephalogram signal, facial image signal and eye movement characteristic signal of the high-speed rail dispatcher;
基于所述心率信号、所述心电信号、所述脑电信号、所述面部图像信号和所述眼动特征信号,提取疲劳警戒值以下的特征值;Based on the heart rate signal, the ECG signal, the EEG signal, the facial image signal and the eye movement characteristic signal, extracting a feature value below a fatigue warning value;
基于所述疲劳警戒值以下的特征值,利用多通道数据融合算法,确定所述高铁调度员的疲劳状态。Based on the eigenvalues below the fatigue warning value, a multi-channel data fusion algorithm is used to determine the fatigue state of the high-speed rail dispatcher.
进一步地,所述基于所述心率信号、所述心电信号、所述脑电信号、所述面部图像信号和所述眼动特征信号,提取疲劳警戒值以下的特征值,具体可以包括:Further, the extraction of feature values below the fatigue warning value based on the heart rate signal, the ECG signal, the EEG signal, the facial image signal and the eye movement feature signal may specifically include:
基于所述心率信号,提取心率指标疲劳警戒值以下的特征值;Based on the heart rate signal, extracting feature values below the fatigue warning value of the heart rate index;
基于所述心电信号,提取心电指标疲劳警戒值以下的特征值;Based on the electrocardiographic signal, extract the eigenvalues below the fatigue warning value of the electrocardiographic index;
基于所述脑电信号,提取脑电指标疲劳警戒值以下的特征值;Based on the EEG signal, extract the eigenvalues below the EEG index fatigue warning value;
基于所述面部图像信号,提取面部特征指标疲劳警戒值以下的特征值;Based on the facial image signal, extract the feature value below the fatigue warning value of the facial feature index;
基于所述眼动特征信号,提取眼动指标疲劳警戒值以下的特征值。Based on the eye movement feature signal, feature values below the eye movement index fatigue warning value are extracted.
进一步地,所述基于所述心率信号,提取心率指标疲劳警戒值以下的特征值,具体可以包括:Further, based on the heart rate signal, extracting feature values below the heart rate index fatigue warning value may specifically include:
基于所述心率信号,得到心率值;Obtaining a heart rate value based on the heart rate signal;
基于所述心率值,绘制心率变化曲线;Draw a heart rate change curve based on the heart rate value;
基于所述心率变化曲线,提取所述心率指标疲劳警戒值以下的特征值。Based on the heart rate change curve, feature values below the fatigue warning value of the heart rate index are extracted.
进一步地,所述基于所述心电信号,提取心电指标疲劳警戒值以下的特征值,具体可以包括:Further, based on the ECG signal, extracting the feature values below the fatigue warning value of the ECG index may specifically include:
对所述心电信号进行滤波;filtering the ECG signal;
对滤波后的信号进行去伪迹处理;De-aliasing processing is performed on the filtered signal;
对去伪迹后的信号进行时域至频域的变换;Transform the signal from the time domain to the frequency domain after removing the artifacts;
基于变换结果,提取频域特征;Based on the transformation result, extract frequency domain features;
基于所述频域特征,提取所述心电指标疲劳警戒值以下的特征值。Based on the frequency domain features, feature values below the fatigue warning value of the ECG index are extracted.
进一步地,所述基于所述脑电信号,提取脑电指标疲劳警戒值以下的特征值,具体可以包括:Further, the extraction of feature values below the fatigue warning value of the EEG index based on the EEG signal may specifically include:
对所述脑电信号进行滤波;filtering the EEG signal;
对滤波后的信号进行去伪迹处理;De-aliasing processing is performed on the filtered signal;
对去伪迹后的信号进行时域至频域的变换;Transform the signal from the time domain to the frequency domain after removing the artifacts;
基于变换后的信号,提取频域特征;Extract frequency domain features based on the transformed signal;
基于所述频域特征,提取所述脑电指标疲劳警戒值以下的特征值。Based on the frequency domain features, feature values below the fatigue warning value of the EEG index are extracted.
进一步地,所述基于所述面部图像信号,提取面部特征指标疲劳警戒值以下的特征值,具体可以包括:Further, the extraction of feature values below the fatigue warning value of the facial feature index based on the facial image signal may specifically include:
对所述面部图像信号进行数字图像处理;Carrying out digital image processing to described facial image signal;
基于处理后的结果,确定面部特征;Based on the processed results, determining facial features;
基于所述面部特征,确定面部疲劳表情特征;Based on the facial features, determine facial fatigue expression features;
基于所述面部疲劳表情特征,提取所述面部特征指标疲劳警戒值以下的特征值。Based on the facial fatigue expression features, feature values below the fatigue warning value of the facial feature index are extracted.
进一步地,所述基于所述眼动特征信号,提取眼动指标疲劳警戒值以下的特征值,具体可以包括:Further, the extraction of feature values below the eye movement indicator fatigue warning value based on the eye movement feature signal may specifically include:
对所述眼动特征信号进行数字图像处理;Carrying out digital image processing on the eye movement feature signal;
基于处理后的结果,提取眼动参数;Extract eye movement parameters based on the processed results;
基于所述眼动参数,提取所述眼动指标疲劳警戒值以下的特征值。Based on the eye movement parameters, feature values below the eye movement index fatigue warning value are extracted.
进一步地,所述基于所述疲劳警戒值以下的特征值,利用多通道数据融合算法,确定所述高铁调度员的疲劳状态,具体可以包括:Further, the determination of the fatigue state of the high-speed rail dispatcher by using a multi-channel data fusion algorithm based on the eigenvalue below the fatigue warning value may specifically include:
利用熵的方法,根据下式计算所述心率指标疲劳警戒值以下的特征值、所述心电指标疲劳警戒值以下的特征值、所述脑电指标疲劳警戒值以下的特征值、所述面部特征指标疲劳警戒值以下的特征值、所述眼动指标疲劳警戒值以下的特征值的概率:Using the method of entropy, according to the following formula, the eigenvalues below the heart rate index fatigue warning value, the eigenvalues below the ECG index fatigue warning value, the eigenvalues below the EEG index fatigue warning value, the facial features The probability of eigenvalues below the fatigue warning value of the characteristic index and the characteristic value below the fatigue warning value of the eye movement index:
mi(Θ)=-k[qiMF log2qiMF+(1-qiMF)log2(1-qiMF)]m i (Θ)=-k[q iMF log 2 q iMF +(1-q iMF )log 2 (1-q iMF )]
其中,所述所述MF表示疲劳;所述表示不疲劳;所述qiMF表示第i个通道判别高铁调度员处于疲劳状态的概率;所述1-qiMF表示第i个通道判别高铁调度员处于不疲劳状态的概率,所述i=1,2,…5;所述各通道分别输入所述心率指标疲劳警戒值以下的特征值、所述心电指标疲劳警戒值以下的特征值、所述脑电指标疲劳警戒值以下的特征值、所述面部特征指标疲劳警戒值以下的特征值、所述眼动指标疲劳警戒值以下的特征值;所述k表示调节因子,并且k∈(0,1);Among them, the The MF represents fatigue; the Represents no fatigue; said q iMF represents the probability that the i-th channel judges that the high-speed rail dispatcher is in a fatigue state; said 1-q iMF represents the probability that the i-th channel judges that the high-speed rail dispatcher is in a non-fatigue state, and said i=1 , 2, ... 5; the channels respectively input the eigenvalues below the heart rate index fatigue warning value, the eigenvalues below the ECG index fatigue warning value, the eigenvalues below the EEG index fatigue warning value, The feature value below the fatigue warning value of the facial feature index, the feature value below the fatigue warning value of the eye movement index; the k represents an adjustment factor, and k∈(0,1);
根据下式计算处于疲劳状态的基础分配概率和处于不疲劳状态的基础分配概率:Calculate the basic distribution probability in the fatigue state and the basic distribution probability in the non-fatigue state according to the following formula:
其中,所述mi(MF)表示处于疲劳状态的基础分配概率;所述表示处于不疲劳状态的基础分配概率;Wherein, the m i (MF) represents the basic distribution probability of being in a fatigue state; the Indicates the base distribution probability of being in a non-fatigue state;
根据下式进行基于D-S证据理论的多通道融合,计算高铁调度员处于疲劳状态的概率、高铁调度员处于不疲劳状态的概率以及所述各疲劳警戒值以下的特征值融合后的概率:Carry out multi-channel fusion based on the D-S evidence theory according to the following formula, calculate the probability that the high-speed rail dispatcher is in a fatigue state, the probability that the high-speed rail dispatcher is in a non-fatigue state, and the probability after the fusion of the eigenvalues below each fatigue warning value:
其中,所述m(MF)表示所述高铁调度员处于疲劳状态的概率;所述表示所述高铁调度员处于不疲劳状态的概率;所述m(Θ)表示所述疲劳警戒值以下的特征值融合后的概率;所述或Θ,所述i=1,2,......5,所述j=1,2k;Wherein, the m(MF) represents the probability that the high-speed rail dispatcher is in a state of fatigue; the Represent the probability that the high-speed rail dispatcher is in a non-fatigue state; the m (Θ) represents the probability after the fusion of the eigenvalues below the fatigue warning value; the Or Θ, the i=1,2,...5, the j=1,2k;
根据下式计算疲劳的信任函数和似然函数,以及不疲劳的信任函数和似然函数:The belief function and likelihood function for fatigue, and the belief function and likelihood function for non-fatigue are calculated according to the following formula:
Bel(MF)=m(MF)Bel(MF)=m(MF)
其中,所述Bel(MF)表示所述疲劳的信任函数;所述Pl(MF)表示所述疲劳的似然函数;所述表示所述不疲劳的信任函数;所述表示所述不疲劳的似然函数;Wherein, the Bel(MF) represents the belief function of the fatigue; the Pl(MF) represents the likelihood function of the fatigue; the Represents the non-fatigue trust function; the Represents the likelihood function of not being fatigued;
根据所述疲劳的信任函数和似然函数,以及所述不疲劳的信任函数和似然函数,判定所述高铁调度员是否处于疲劳状态。According to the fatigue trust function and likelihood function, and the non-fatigue trust function and likelihood function, it is determined whether the high-speed rail dispatcher is in a fatigue state.
进一步地,所述方法还可以包括:Further, the method may also include:
将所确定的所述疲劳状态与疲劳状态阈值进行比较;comparing said determined fatigue state with a fatigue state threshold;
若超过阈值,则进行预警干预。If the threshold is exceeded, an early warning intervention will be carried out.
根据本发明的另一个方面,还提供了一种高铁调度员疲劳状态测评系统。该系统至少可以包括:According to another aspect of the present invention, a high-speed rail dispatcher fatigue state evaluation system is also provided. The system can include at least:
获取模块,用于获取所述高铁调度员的心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号;An acquisition module, configured to acquire heart rate signals, electrocardiographic signals, electroencephalogram signals, facial image signals and eye movement characteristic signals of the high-speed rail dispatcher;
提取模块,用于基于所述心率信号、所述心电信号、所述脑电信号、所述面部图像信号和所述眼动特征信号,提取疲劳警戒值以下的特征值;An extraction module, configured to extract feature values below the fatigue warning value based on the heart rate signal, the ECG signal, the EEG signal, the facial image signal and the eye movement feature signal;
确定模块,用于基于所述疲劳警戒值以下的特征值,利用多通道数据融合算法,确定所述高铁调度员的疲劳状态。The determination module is used to determine the fatigue state of the high-speed rail dispatcher based on the feature value below the fatigue warning value and using a multi-channel data fusion algorithm.
进一步地,所述提取模块具体可以包括:Further, the extraction module may specifically include:
第一提取单元,用于基于所述心率信号,提取心率指标疲劳警戒值以下的特征值;A first extraction unit, configured to extract feature values below the heart rate indicator fatigue warning value based on the heart rate signal;
第二提取单元,用于基于所述心电信号,提取心电指标疲劳警戒值以下的特征值;The second extraction unit is used to extract, based on the ECG signal, a feature value below the fatigue warning value of the ECG index;
第三提取单元,用于基于所述脑电信号,提取脑电指标疲劳警戒值以下的特征值;The third extraction unit is used to extract feature values below the fatigue warning value of the EEG index based on the EEG signal;
第四提取单元,用于基于所述面部图像信号,提取面部特征指标疲劳警戒值以下的特征值;The fourth extraction unit is used to extract feature values below the fatigue warning value of the facial feature index based on the facial image signal;
第五提取单元,用于基于所述眼动特征信号,提取眼动指标疲劳警戒值以下的特征值。The fifth extraction unit is configured to extract feature values below the eye movement index fatigue warning value based on the eye movement characteristic signal.
进一步地,所述第一提取单元具体可以包括:Further, the first extraction unit may specifically include:
获取单元,用于基于所述心率信号,得到心率值;an acquisition unit, configured to obtain a heart rate value based on the heart rate signal;
绘制单元,用于基于所述心率值,绘制心率变化曲线;a drawing unit, configured to draw a heart rate change curve based on the heart rate value;
第一提取子单元,用于基于所述心率变化曲线,提取所述心率指标疲劳警戒值以下的特征值。The first extracting subunit is configured to extract, based on the heart rate variation curve, feature values below the heart rate index fatigue warning value.
进一步地,所述第二提取单元具体可以包括:Further, the second extraction unit may specifically include:
第一滤波单元,用于对所述心电信号进行滤波;a first filtering unit, configured to filter the electrocardiographic signal;
第一去伪迹单元,用于对滤波后的信号进行去伪迹处理;The first anti-aliasing unit is used to perform anti-artifact processing on the filtered signal;
第一变换单元,用于对去伪迹后的信号进行时域至频域的变换;The first transformation unit is used to transform the signal from the time domain to the frequency domain after de-aliasing;
第二提取子单元,用于基于变换结果,提取频域特征;The second extraction subunit is used to extract frequency domain features based on the transformation result;
第三提取子单元,用于基于所述频域特征,提取所述心电指标疲劳警戒值以下的特征值。The third extracting subunit is configured to extract feature values below the fatigue warning value of the ECG index based on the frequency domain features.
进一步地,所述第三提取单元具体可以包括:Further, the third extraction unit may specifically include:
第二滤波单元,用于对所述脑电信号进行滤波;a second filtering unit, configured to filter the EEG signal;
第二去伪迹单元,用于对滤波后的信号进行去伪迹处理;The second de-aliasing unit is used to perform de-aliasing processing on the filtered signal;
第二变换单元,用于对去伪迹后的信号进行时域至频域的变换;The second transformation unit is used to transform the signal from the time domain to the frequency domain after de-aliasing;
第四提取子单元,用于基于变换后的信号,提取频域特征;The fourth extraction subunit is used to extract frequency domain features based on the transformed signal;
第五提取子单元,用于基于所述频域特征,提取所述脑电指标疲劳警戒值以下的特征值。The fifth extraction subunit is configured to extract feature values below the fatigue warning value of the EEG index based on the frequency domain feature.
进一步地,所述第四提取单元具体可以包括:Further, the fourth extraction unit may specifically include:
第一处理单元,用于对所述面部图像信号进行数字图像处理;a first processing unit, configured to perform digital image processing on the facial image signal;
第一确定单元,用于基于处理后的结果,确定面部特征;a first determining unit, configured to determine facial features based on the processed result;
第二确定单元,用于基于所述面部特征,确定面部疲劳表情特征;The second determination unit is used to determine facial fatigue expression features based on the facial features;
第六提取子单元,用于基于所述面部疲劳表情特征,提取所述面部特征指标疲劳警戒值以下的特征值。The sixth extraction subunit is used to extract feature values below the fatigue warning value of the facial feature index based on the facial fatigue expression feature.
进一步地,所述第五提取单元具体可以包括:Further, the fifth extraction unit may specifically include:
第二处理单元,用于对所述眼动特征信号进行数字图像处理;a second processing unit, configured to perform digital image processing on the eye movement feature signal;
第七提取子单元,用于基于处理后的结果,提取眼动参数;The seventh extraction subunit is used to extract eye movement parameters based on the processed results;
第八提取子单元,用于基于所述眼动参数,提取所述眼动指标疲劳警戒值以下的特征值。The eighth extraction subunit is configured to extract feature values below the fatigue warning value of the eye movement index based on the eye movement parameters.
进一步地,所述确定模块具体可以包括:Further, the determining module may specifically include:
第一计算单元,用于利用熵的方法,根据下式计算所述心率指标疲劳警戒值以下的特征值、所述心电指标疲劳警戒值以下的特征值、所述脑电指标疲劳警戒值以下的特征值、所述面部特征指标疲劳警戒值以下的特征值、所述眼动指标疲劳警戒值以下的特征值的概率:The first calculation unit is used to use the method of entropy to calculate the eigenvalues below the heart rate index fatigue warning value, the eigenvalues below the ECG index fatigue warning value, and the EEG indicators below the fatigue warning value according to the following formula The probability of the eigenvalue of , the eigenvalue below the fatigue warning value of the facial feature index, and the eigenvalue below the fatigue warning value of the eye movement index:
mi(Θ)=-k[qiMF log2qiMF+(1-qiMF)log2(1-qiMF)]m i (Θ)=-k[q iMF log 2 q iMF +(1-q iMF )log 2 (1-q iMF )]
其中,所述所述MF表示疲劳;所述表示不疲劳;所述qiMF表示第i个通道判别高铁调度员处于疲劳状态的概率;所述1-qiMF表示第i个通道判别高铁调度员处于不疲劳状态的概率,所述i=1,2,…5;所述各通道分别输入所述心率指标疲劳警戒值以下的特征值、所述心电指标疲劳警戒值以下的特征值、所述脑电指标疲劳警戒值以下的特征值、所述面部特征指标疲劳警戒值以下的特征值、所述眼动指标疲劳警戒值以下的特征值;所述k表示调节因子,并且k∈(0,1);Among them, the The MF represents fatigue; the Represents no fatigue; said q iMF represents the probability that the i-th channel judges that the high-speed rail dispatcher is in a fatigue state; said 1-q iMF represents the probability that the i-th channel judges that the high-speed rail dispatcher is in a non-fatigue state, and said i=1 , 2, ... 5; the channels respectively input the eigenvalues below the heart rate index fatigue warning value, the eigenvalues below the ECG index fatigue warning value, the eigenvalues below the EEG index fatigue warning value, The feature value below the fatigue warning value of the facial feature index, the feature value below the fatigue warning value of the eye movement index; the k represents an adjustment factor, and k∈(0,1);
第二计算单元,用于根据下式计算处于疲劳状态的基础分配概率和处于不疲劳状态的基础分配概率:The second calculation unit is used to calculate the basic distribution probability in the fatigue state and the basic distribution probability in the non-fatigue state according to the following formula:
其中,所述mi(MF)表示处于疲劳状态的基础分配概率;所述表示处于不疲劳状态的基础分配概率;Wherein, the m i (MF) represents the basic distribution probability of being in a fatigue state; the Indicates the base distribution probability of being in a non-fatigue state;
第三计算单元,用于根据下式进行基于D-S证据理论的多通道融合,计算高铁调度员处于疲劳状态的概率、高铁调度员处于不疲劳状态的概率以及所述各疲劳警戒值以下的特征值融合后的概率:The third calculation unit is used to carry out multi-channel fusion based on the D-S evidence theory according to the following formula, calculate the probability that the high-speed rail dispatcher is in a fatigue state, the probability that the high-speed rail dispatcher is in a non-fatigue state, and the eigenvalues below each fatigue warning value Combined probability:
其中,所述m(MF)表示所述高铁调度员处于疲劳状态的概率;所述表示所述高铁调度员处于不疲劳状态的概率;所述m(Θ)表示所述疲劳警戒值以下的特征值融合后的概率;所述或Θ,所述i=1,2,......5,所述j=1,2k;Wherein, the m(MF) represents the probability that the high-speed rail dispatcher is in a state of fatigue; the Represent the probability that the high-speed rail dispatcher is in a non-fatigue state; the m (Θ) represents the probability after the fusion of the eigenvalues below the fatigue warning value; the Or Θ, the i=1,2,...5, the j=1,2k;
第四计算单元,用于根据下式计算疲劳的信任函数和似然函数,以及不疲劳的信任函数和似然函数:The fourth calculation unit is used to calculate the trust function and likelihood function of fatigue and the trust function and likelihood function of non-fatigue according to the following formula:
Bel(MF)=m(MF)Bel(MF)=m(MF)
其中,所述Bel(MF)表示所述疲劳的信任函数;所述Pl(MF)表示所述疲劳的似然函数;所述表示所述不疲劳的信任函数;所述表示所述不疲劳的似然函数;Wherein, the Bel(MF) represents the belief function of the fatigue; the Pl(MF) represents the likelihood function of the fatigue; the Represents the non-fatigue trust function; the Represents the likelihood function of not being fatigued;
判定单元,用于根据所述疲劳的信任函数和似然函数,以及所述不疲劳的信任函数和似然函数,判定所述高铁调度员是否处于疲劳状态。A judging unit, configured to judge whether the high-speed rail dispatcher is in a fatigued state according to the fatigued belief function and likelihood function, and the non-fatigued belief function and likelihood function.
进一步地,该系统还可以包括:Further, the system may also include:
比较单元,用于将所确定的所述疲劳状态与疲劳状态阈值进行比较;a comparison unit for comparing the determined fatigue state with a fatigue state threshold;
预警干预单元,用于在所述疲劳状态超过所述疲劳状态阈值的情况下,进行预警干预。The early warning intervention unit is configured to perform early warning intervention when the fatigue state exceeds the fatigue state threshold.
与现有技术相比,上述技术方案至少具有以下有益效果:Compared with the prior art, the above technical solution has at least the following beneficial effects:
本发明实施例提供一种高铁调度员疲劳状态测评方法和系统。其中,该方法可以包括获取高铁调度员的心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号;基于心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号,提取疲劳警戒值以下的特征值;基于疲劳警戒值以下的特征值,利用多通道数据融合算法,确定高铁调度员的疲劳状态。本发明实施例通过采取上述技术方案,以高铁调度员日常作业为测试背景,使得监测与测评更具有实际意义;又由于本发明实施例融合了多个信号进行判定,其判定的精度和准确度更高。Embodiments of the present invention provide a method and system for evaluating the fatigue state of high-speed rail dispatchers. Among them, the method may include obtaining the heart rate signal, ECG signal, EEG signal, facial image signal and eye movement feature signal of the high-speed rail dispatcher; based on the heart rate signal, ECG signal, EEG signal, facial image signal and eye movement feature signal Signal, extract the eigenvalues below the fatigue warning value; based on the eigenvalues below the fatigue warning value, use the multi-channel data fusion algorithm to determine the fatigue state of the high-speed rail dispatcher. The embodiment of the present invention adopts the above-mentioned technical scheme and takes the daily operation of the high-speed rail dispatcher as the test background, so that the monitoring and evaluation have more practical significance; higher.
当然,实施本发明的任一产品不一定需要同时实现以上所述的所有优点。Of course, any product implementing the present invention does not necessarily need to realize all the above-mentioned advantages at the same time.
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其它优点可通过在所写的说明书、权利要求书以及附图中所特别指出的方法来实现和获得。Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention may be realized and attained by the method particularly pointed out in the written description and claims hereof as well as the appended drawings.
附图说明Description of drawings
附图作为本发明的一部分,用来提供对本发明的进一步的理解,本发明的示意性实施例及其说明用于解释本发明,但不构成对本发明的不当限定。显然,下面描述中的附图仅仅是一些实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。在附图中:The accompanying drawings, as a part of the present invention, are used to provide a further understanding of the present invention, and the schematic embodiments of the present invention and their descriptions are used to explain the present invention, but do not constitute improper limitations to the present invention. Apparently, the drawings in the following description are only some embodiments, and those skilled in the art can also obtain other drawings based on these drawings without creative efforts. In the attached picture:
图1为根据一示例性实施例示出的高铁调度员疲劳状态测评方法的流程示意图;Fig. 1 is a schematic flow diagram of a high-speed rail dispatcher fatigue state evaluation method shown according to an exemplary embodiment;
图2为根据一示例性实施例示出的高铁调度员疲劳状态测评系统的结构示意图;Fig. 2 is a structural schematic diagram of a high-speed rail dispatcher fatigue state evaluation system shown according to an exemplary embodiment;
图3为根据另一示例性实施例示出的高铁调度员疲劳状态测评系统的结构示意图。Fig. 3 is a schematic structural diagram of a high-speed rail dispatcher fatigue state evaluation system according to another exemplary embodiment.
这些附图和文字描述并不旨在以任何方式限制本发明的构思范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。These drawings and written description are not intended to limit the scope of the inventive concept in any way, but to illustrate the inventive concept for those skilled in the art by referring to specific embodiments.
具体实施方式detailed description
下面结合附图以及具体实施例对本发明实施例解决的技术问题、所采用的技术方案以及实现的技术效果进行清楚、完整的描述。显然,所描述的实施例仅仅是本申请的一部分实施例,并不是全部实施例。基于本申请中的实施例,本领域普通技术人员在不付出创造性劳动的前提下,所获的所有其它等同或明显变型的实施例均落在本发明的保护范围内。本发明实施例可以按照权利要求中限定和涵盖的多种不同方式来具体化。The technical problems solved by the embodiments of the present invention, the technical solutions adopted and the technical effects achieved are clearly and completely described below in conjunction with the accompanying drawings and specific embodiments. Apparently, the described embodiments are only some of the embodiments of the present application, not all of them. Based on the embodiments in the present application, all other equivalent or obviously modified embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention. Embodiments of the invention can be embodied in many different ways as defined and covered by the claims.
需要说明的是,在下面的描述中,为了方便理解,给出了许多具体细节。但是很明显,本发明的实现可以没有这些具体细节。It should be noted that, in the following description, many specific details are given for the convenience of understanding. It may be evident, however, that the present invention may be practiced without these specific details.
还需要说明的是,在没有明确限定或不冲突的情况下,本发明中的各个实施例及其中的技术特征可以相互组合而形成技术方案。It should also be noted that, in the absence of specific limitations or conflicts, various embodiments of the present invention and technical features therein can be combined with each other to form a technical solution.
在实际应用中,为了解决如何提高高铁调度员疲劳状态测评的精度和准确度的技术问题,本发明实施例提供一种高铁调度员疲劳状态测评方法。该方法可以通过步骤S100至步骤S120来实现。In practical application, in order to solve the technical problem of how to improve the precision and accuracy of fatigue state evaluation of high-speed rail dispatchers, the embodiment of the present invention provides a fatigue state evaluation method of high-speed rail dispatchers. The method can be implemented through steps S100 to S120.
S100:获取高铁调度员的心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号。S100: Obtain heart rate signals, electrocardiographic signals, electroencephalogram signals, facial image signals and eye movement characteristic signals of the high-speed rail dispatcher.
本步骤中,高铁调度员的心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号可以通过信号采集设备来获得。其中,信号采集设备包括监控手环、监控脑环、图像采集设备(例如:摄像头、照相机等)和眼动仪。监控手环用于采集心率信号和心电信号。监控脑环用于采集脑电信号。图像采集设备用于采集面部图像信号。眼动仪用于采集眼动特征信号。In this step, the heart rate signal, ECG signal, EEG signal, facial image signal and eye movement feature signal of the high-speed rail dispatcher can be obtained through the signal acquisition device. Among them, the signal acquisition equipment includes a monitoring bracelet, a monitoring brain ring, an image acquisition equipment (such as a camera, a camera, etc.) and an eye tracker. The monitoring bracelet is used to collect heart rate signals and ECG signals. The monitoring brain loop is used to collect EEG signals. The image acquisition device is used to acquire facial image signals. The eye tracker is used to collect eye movement characteristic signals.
在实际应用中,可以将采集到的信号传输到数据库中。In practical applications, the collected signals can be transferred to the database.
S110:基于心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号,提取疲劳警戒值以下的特征值。S110: Based on heart rate signals, electrocardiographic signals, electroencephalogram signals, facial image signals and eye movement characteristic signals, extract feature values below the fatigue warning value.
具体地,本步骤可以通过S111至S115来实现。Specifically, this step can be implemented through S111 to S115.
S111:基于心率信号,提取心率指标疲劳警戒值以下的特征值。S111: Based on the heart rate signal, extract feature values below the fatigue warning value of the heart rate index.
在一些可选的实施例中,步骤S111具体还可以包括:In some optional embodiments, step S111 may specifically include:
步骤a1:基于心率信号,得到心率值。Step a1: Obtain a heart rate value based on the heart rate signal.
步骤a2:基于心率值,绘制心率变化曲线。Step a2: Draw a heart rate variation curve based on the heart rate value.
步骤a3:基于心率变化曲线,提取心率指标疲劳警戒值以下的特征值。Step a3: Based on the heart rate change curve, extract the feature values below the fatigue warning value of the heart rate index.
S112:基于心电信号,提取心电指标疲劳警戒值以下的特征值。S112: Based on the electrocardiographic signal, extract the feature value below the fatigue warning value of the electrocardiographic index.
在一些可选的实施例中,步骤S112具体还可以包括:In some optional embodiments, step S112 may specifically include:
步骤b1:对心电信号进行滤波。Step b1: filter the ECG signal.
步骤b2:对滤波后的信号进行去伪迹处理。Step b2: performing anti-artifact processing on the filtered signal.
步骤b3:对去伪迹后的信号进行时域至频域的变换。Step b3: performing time-domain to frequency-domain transformation on the de-aliased signal.
步骤b4:基于变换结果,提取频域特征。Step b4: Extract frequency domain features based on the transformation result.
步骤b5:基于频域特征,提取心电指标疲劳警戒值以下的特征值。Step b5: Based on the frequency domain feature, extract the feature value below the fatigue warning value of the ECG index.
S113:基于脑电信号,提取脑电指标疲劳警戒值以下的特征值。S113: Based on the EEG signal, extracting feature values below the fatigue warning value of the EEG index.
在一些可选的实施例中,步骤S113具体还可以包括:In some optional embodiments, step S113 may specifically include:
步骤c1:对脑电信号进行滤波。Step c1: filtering the EEG signal.
步骤c2:对滤波后的信号进行去伪迹处理。Step c2: performing anti-artifact processing on the filtered signal.
步骤c3:对去伪迹后的信号进行时域至频域的变换。Step c3: performing time-domain to frequency-domain transformation on the de-aliased signal.
步骤c4:基于变换后的信号,提取频域特征。Step c4: Extract frequency domain features based on the transformed signal.
步骤c5:基于频域特征,提取脑电指标疲劳警戒值以下的特征值。Step c5: Based on the frequency domain feature, extract the feature value below the fatigue warning value of the EEG index.
S114:基于面部图像信号,提取面部特征指标疲劳警戒值以下的特征值。S114: Based on the facial image signal, extract feature values below the fatigue warning value of the facial feature index.
在一些可选的实施例中,步骤S114具体还可以包括:In some optional embodiments, step S114 may specifically include:
步骤d1:对面部图像信号进行数字图像处理。Step d1: Perform digital image processing on the facial image signal.
步骤d2:基于处理后的结果,确定面部特征。Step d2: Determine facial features based on the processed results.
步骤d3:基于面部特征,确定面部疲劳表情特征。Step d3: Determine facial fatigue expression features based on facial features.
其中,面部疲劳表情特征例如可以为打哈欠面部疲劳表情等。Wherein, the feature of the facial fatigue expression may be, for example, a yawning facial fatigue expression and the like.
步骤d4:基于面部疲劳表情特征,提取面部特征指标疲劳警戒值以下的特征值。Step d4: Based on the facial fatigue expression feature, extract the feature value below the fatigue warning value of the facial feature index.
S115:基于眼动特征信号,提取眼动指标疲劳警戒值以下的特征值。S115: Based on the eye movement feature signal, extract feature values below the fatigue warning value of the eye movement index.
在一些可选的实施例中,步骤S115具体还可以包括:In some optional embodiments, step S115 may specifically include:
步骤e1:对眼动特征信号进行数字图像处理。Step e1: Carry out digital image processing on the eye movement characteristic signal.
步骤e2:基于处理后的结果,提取眼动参数。Step e2: Extract eye movement parameters based on the processed results.
其中,眼动参数包括但不限于眼睑开合度、眨眼频率和眼动轨迹。Wherein, the eye movement parameters include but not limited to eyelid opening and closing degree, blink frequency and eye movement trajectory.
步骤e3:基于眼动参数,提取眼动指标疲劳警戒值以下的特征值。Step e3: Based on the eye movement parameters, extract feature values below the eye movement index fatigue warning value.
S120:基于疲劳警戒值以下的特征值,利用多通道数据融合算法,确定高铁调度员的疲劳状态。S120: Based on the eigenvalues below the fatigue warning value, using a multi-channel data fusion algorithm to determine the fatigue state of the high-speed rail dispatcher.
因为根据某一种信号来判别高铁调度员是否处于疲劳状态的话,判断精度并不能达到100%。所以,本发明实施例采用诸如基于D-S证据理论的多通道融合算法等手段,融合多种信号进行判定,以此来提高判别精度和准确度。Because according to a certain signal to judge whether the high-speed rail dispatcher is in a state of fatigue, the judgment accuracy cannot reach 100%. Therefore, the embodiment of the present invention uses means such as a multi-channel fusion algorithm based on the D-S evidence theory to fuse multiple signals for determination, thereby improving the determination precision and accuracy.
具体地,本步骤可以包括:Specifically, this step may include:
步骤f1:利用熵的方法,根据下式确定心率指标疲劳警戒值以下的特征值、心电指标疲劳警戒值以下的特征值、脑电指标疲劳警戒值以下的特征值、面部特征指标疲劳警戒值以下的特征值、眼动指标疲劳警戒值以下的特征值的概率:Step f1: Using the entropy method, determine the eigenvalues below the fatigue warning value of the heart rate index, the eigenvalues below the fatigue warning value of the ECG index, the eigenvalues below the fatigue warning value of the EEG index, and the fatigue warning value of the facial feature index according to the following formula The following eigenvalues, the probability of eigenvalues below the eye movement index fatigue warning value:
mi(Θ)=-k[qiMF log2qiMF+(1-qiMF)log2(1-qiMF)]m i (Θ)=-k[q iMF log 2 q iMF +(1-q iMF )log 2 (1-q iMF )]
其中,MF表示疲劳;表示不疲劳;qiMF表示第i个通道判别高铁调度员处于疲劳状态的概率;1-qiMF表示第i个通道判别高铁调度员处于不疲劳状态的概率,i=1,2,…5;各个通道分别输入心率指标疲劳警戒值以下的特征值、心电指标疲劳警戒值以下的特征值、脑电指标疲劳警戒值以下的特征值、面部特征指标疲劳警戒值以下的特征值、眼动指标疲劳警戒值以下的特征值;k表示调节因子,并且k∈(0,1)。in, MF means fatigue; Indicates no fatigue; q iMF indicates the probability that the i-th channel judges that the high-speed rail dispatcher is in a fatigue state; 1-q iMF represents the probability that the i-th channel judges that the high-speed rail dispatcher is in a non-fatigue state, i=1,2,...5; Input the eigenvalues below the fatigue warning value of the heart rate index, the eigenvalues below the fatigue warning value of the ECG index, the eigenvalues below the fatigue warning value of the EEG index, the eigenvalues of the facial feature index below the fatigue warning value, and the eye movement index to each channel respectively. Eigenvalues below the fatigue warning value; k represents the adjustment factor, and k∈(0,1).
其中,各通道对高铁调度员是否处于疲劳状态识别结果均只有有限个:疲劳MF和不疲劳每个通道分别通过的是心率信号、心电信号、脑电信号、面部图像信号、眼动特征信号。Among them, each channel has only a limited number of identification results for whether the high-speed rail dispatcher is in a fatigue state: fatigue MF and non-fatigue Each channel passes through the heart rate signal, ECG signal, EEG signal, facial image signal, and eye movement characteristic signal respectively.
步骤f2:根据下式确定处于疲劳状态的基础分配概率和处于不疲劳状态的基础分配概率:Step f2: Determine the basic distribution probability of being in the fatigue state and the basic distribution probability of being in the non-fatigue state according to the following formula:
其中,mi(MF)表示处于疲劳状态的基础分配概率;表示处于不疲劳状态的基础分配概率。Among them, m i (MF) represents the basic distribution probability of being in a fatigue state; Indicates the base assigned probability of being in the non-fatigue state.
步骤f3:根据下式进行基于D-S证据理论的多通道融合,确定高铁调度员处于疲劳状态的概率、高铁调度员处于不疲劳状态的概率以及各个疲劳警戒值以下的特征值融合后的概率:Step f3: Carry out multi-channel fusion based on the D-S evidence theory according to the following formula to determine the probability of the high-speed rail dispatcher being in a fatigue state, the probability of the high-speed rail dispatcher being in a non-fatigue state, and the probability of fused eigenvalues below each fatigue warning value:
其中,m(MF)表示高铁调度员处于疲劳状态的概率;表示高铁调度员处于不疲劳状态的概率;m(Θ)表示疲劳警戒值以下的特征值融合后的概率;或Θ,i=1,2,…5,j=1,2。Among them, m(MF) represents the probability that the high-speed rail dispatcher is in a state of fatigue; Indicates the probability that the high-speed rail dispatcher is in a non-fatigue state; m(Θ) indicates the probability of fused eigenvalues below the fatigue warning value; Or Θ, i=1,2,...5, j=1,2.
步骤f4:根据下式计算疲劳的信任函数和似然函数,以及不疲劳的信任函数和似然函数:Step f4: Calculate the trust function and likelihood function of fatigue, and the trust function and likelihood function of non-fatigue according to the following formula:
Bel(MF)=m(MF)Bel(MF)=m(MF)
其中,Bel(MF)表示疲劳的信任函数;Pl(MF)表示疲劳的似然函数;表示不疲劳的信任函数;表示不疲劳的似然函数。Among them, Bel(MF) represents the trust function of fatigue; Pl(MF) represents the likelihood function of fatigue; Represents a trust function that is not fatigued; Represents the likelihood function of not being fatigued.
步骤f5:根据疲劳的信任函数和似然函数,以及不疲劳的信任函数和似然函数,判定高铁调度员是否处于疲劳状态。Step f5: According to the fatigue trust function and likelihood function, and the non-fatigue trust function and likelihood function, determine whether the high-speed rail dispatcher is in a fatigue state.
举例而言:For example:
当时,则判定高铁调度员处于疲劳状态;当时,则不能确定;当时,则判定高铁调度员处于不疲劳状态。when , it is determined that the high-speed rail dispatcher is in a fatigue state; when , it cannot be determined; when , it is determined that the high-speed rail dispatcher is not fatigued.
在一些可选的实施例中,在上述实施例的基础上,上述高铁调度员疲劳状态测评方法还可以包括:In some optional embodiments, on the basis of the above-mentioned embodiments, the above-mentioned high-speed rail dispatcher fatigue state evaluation method may also include:
S130:将所确定的疲劳状态与疲劳状态阈值进行比较。S130: Compare the determined fatigue state with a fatigue state threshold.
S140:若超过阈值,则进行预警干预。S140: If the threshold is exceeded, perform early warning intervention.
本发明实施例通过采取上述技术方案,以高铁调度员日常作业为测试背景,使得监测与测评更具有实际意义;又由于本发明实施例融合了多个信号进行判定,其判定的精度和准确度更高。The embodiment of the present invention adopts the above-mentioned technical scheme and takes the daily operation of the high-speed rail dispatcher as the test background, so that the monitoring and evaluation have more practical significance; higher.
上述实施例中虽然将各个步骤按照上述先后次序的方式进行了描述,但是本领域技术人员可以理解,为了实现本实施例的效果,不同的步骤之间不必按照这样的次序执行,其可以同时(并行)执行或以颠倒的次序执行,这些简单的变化都在本发明的保护范围之内。In the above embodiment, although the various steps are described according to the above sequence, those skilled in the art can understand that in order to achieve the effect of this embodiment, different steps do not have to be executed in this order, and they can be performed at the same time ( Parallel) execution or execution in reversed order, these simple changes are all within the protection scope of the present invention.
基于与方法实施例相同的技术构思,本发明实施例还提供一种高铁调度员疲劳状态测评系统。如图2所示,该系统20至少可以包括:获取模块22、提取模块24和确定模块26。其中,获取模块22用于获取高铁调度员的心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号。提取模块24用于基于心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号,提取疲劳警戒值以下的特征值。确定模块26用于基于疲劳警戒值以下的特征值,利用多通道数据融合算法,确定高铁调度员的疲劳状态。Based on the same technical concept as the method embodiment, the embodiment of the present invention also provides a high-speed rail dispatcher fatigue state evaluation system. As shown in FIG. 2 , the system 20 may at least include: an acquisition module 22 , an extraction module 24 and a determination module 26 . Wherein, the obtaining module 22 is used to obtain the heart rate signal, electrocardiographic signal, electroencephalogram signal, facial image signal and eye movement characteristic signal of the high-speed rail dispatcher. The extraction module 24 is used to extract feature values below the fatigue warning value based on heart rate signals, electrocardiographic signals, electroencephalogram signals, facial image signals and eye movement feature signals. The determination module 26 is used to determine the fatigue state of the high-speed rail dispatcher based on the feature value below the fatigue warning value and using a multi-channel data fusion algorithm.
在一些可选的实施例中,在上述实施例的基础上,上述提取模块具体可以包括:第一提取单元、第二提取单元、第三提取单元、第四提取单元和第五提取单元。其中,第一提取单元用于基于心率信号,提取心率指标疲劳警戒值以下的特征值。第二提取单元用于基于心电信号,提取心电指标疲劳警戒值以下的特征值。第三提取单元用于基于脑电信号,提取脑电指标疲劳警戒值以下的特征值。第四提取单元用于基于面部图像信号,提取面部特征指标疲劳警戒值以下的特征值。第五提取单元用于基于眼动特征信号,提取眼动指标疲劳警戒值以下的特征值。In some optional embodiments, on the basis of the above embodiments, the extraction module may specifically include: a first extraction unit, a second extraction unit, a third extraction unit, a fourth extraction unit, and a fifth extraction unit. Wherein, the first extraction unit is used for extracting feature values below the fatigue warning value of the heart rate index based on the heart rate signal. The second extraction unit is used for extracting the feature values below the fatigue warning value of the ECG index based on the ECG signal. The third extraction unit is used for extracting feature values below the fatigue warning value of the EEG index based on the EEG signal. The fourth extraction unit is used to extract feature values below the fatigue warning value of the facial feature index based on the facial image signal. The fifth extraction unit is used to extract feature values below the eye movement index fatigue warning value based on the eye movement characteristic signal.
在一些可选的实施例中,在上述实施例的基础上,上述第一提取单元具体可以包括:获取单元、绘制单元和第一提取子单元。其中,获取单元用于基于心率信号,得到心率值。绘制单元用于基于心率值,绘制心率变化曲线。第一提取子单元用于基于心率变化曲线,提取心率指标疲劳警戒值以下的特征值。In some optional embodiments, on the basis of the above embodiments, the first extraction unit may specifically include: an acquisition unit, a rendering unit, and a first extraction subunit. Wherein, the acquiring unit is used for obtaining the heart rate value based on the heart rate signal. The drawing unit is used for drawing a heart rate change curve based on the heart rate value. The first extracting subunit is used for extracting feature values below the fatigue warning value of the heart rate index based on the heart rate change curve.
在一些可选的实施例中,在上述实施例的基础上,上述第二提取单元具体可以包括:第一滤波单元、第一去伪迹单元、第一变换单元、第二提取子单元和第三提取子单元。其中,第一滤波单元用于对心电信号进行滤波。第一去伪迹单元用于对滤波后的信号进行去伪迹处理。第一变换单元用于对去伪迹后的信号进行时域至频域的变换。第二提取子单元用于基于变换结果,提取频域特征。第三提取子单元用于基于频域特征,提取心电指标疲劳警戒值以下的特征值。In some optional embodiments, on the basis of the above embodiments, the above-mentioned second extraction unit may specifically include: a first filtering unit, a first de-aliasing unit, a first transformation unit, a second extraction sub-unit, and a second Three extraction subunits. Wherein, the first filtering unit is used for filtering the ECG signal. The first anti-aliasing unit is used for performing anti-aliasing processing on the filtered signal. The first transformation unit is used for transforming the signal after de-aliasing from the time domain to the frequency domain. The second extraction subunit is used for extracting frequency domain features based on the transformation result. The third extraction subunit is used for extracting feature values below the fatigue warning value of the ECG index based on the frequency domain features.
在一些可选的实施例中,在上述实施例的基础上,上述第三提取单元具体包括:第二滤波单元、第二去伪迹单元、第二变换单元、第四提取子单元和第五提取子单元。其中,第二滤波单元用于对脑电信号进行滤波。第二去伪迹单元用于对滤波后的信号进行去伪迹处理。第二变换单元用于对去伪迹后的信号进行时域至频域的变换。第四提取子单元用于基于变换后的信号,提取频域特征。第五提取子单元用于基于频域特征,提取脑电指标疲劳警戒值以下的特征值。In some optional embodiments, on the basis of the above embodiments, the third extraction unit specifically includes: a second filtering unit, a second de-aliasing unit, a second transformation unit, a fourth extraction subunit, and a fifth Extract subunits. Wherein, the second filtering unit is used for filtering the EEG signal. The second de-aliasing unit is used to perform de-aliasing processing on the filtered signal. The second transformation unit is used for transforming the de-aliased signal from the time domain to the frequency domain. The fourth extraction subunit is used to extract frequency domain features based on the transformed signal. The fifth extraction subunit is used to extract feature values below the fatigue warning value of the EEG index based on frequency domain features.
在一些可选的实施例中,在上述实施例的基础上,上述第四提取单元具体包括:第一处理单元、第一确定单元、第二确定单元和第六提取子单元。其中,第一处理单元用于对面部图像信号进行数字图像处理。第一确定单元用于基于处理后的结果,确定面部特征。第二确定单元用于基于面部特征,确定面部疲劳表情特征。第六提取子单元用于基于面部疲劳表情特征,提取面部特征指标疲劳警戒值以下的特征值。In some optional embodiments, on the basis of the foregoing embodiments, the fourth extracting unit specifically includes: a first processing unit, a first determining unit, a second determining unit, and a sixth extracting subunit. Wherein, the first processing unit is used for performing digital image processing on the facial image signal. The first determining unit is used for determining facial features based on the processed result. The second determination unit is used to determine facial fatigue expression features based on facial features. The sixth extraction subunit is used to extract feature values below the fatigue warning value of the facial feature index based on facial fatigue expression features.
在一些可选的实施例中,在上述实施例的基础上,上述第五提取单元具体包括:第二处理单元、第七提取子单元和第八提取子单元。其中,第二处理单元用于对眼动特征信号进行数字图像处理。第七提取子单元用于基于处理后的结果,提取眼动参数。第八提取子单元用于基于眼动参数,提取眼动指标疲劳警戒值以下的特征值。In some optional embodiments, on the basis of the foregoing embodiments, the fifth extraction unit specifically includes: a second processing unit, a seventh extraction subunit, and an eighth extraction subunit. Wherein, the second processing unit is used for performing digital image processing on the eye movement characteristic signal. The seventh extracting subunit is used to extract eye movement parameters based on the processed result. The eighth extraction subunit is used to extract feature values below the eye movement index fatigue warning value based on the eye movement parameters.
在一些可选的实施例中,上述确定模块具体可以包括:第一计算单元、第二计算单元、第三计算单元、第四计算单元和判定单元。其中,第一计算单元用于利用熵的方法,根据下式计算心率指标疲劳警戒值以下的特征值、心电指标疲劳警戒值以下的特征值、脑电指标疲劳警戒值以下的特征值、面部特征指标疲劳警戒值以下的特征值、眼动指标疲劳警戒值以下的特征值的概率:In some optional embodiments, the above determination module may specifically include: a first calculation unit, a second calculation unit, a third calculation unit, a fourth calculation unit, and a determination unit. Wherein, the first calculation unit is used to use the entropy method to calculate the eigenvalues below the fatigue warning value of the heart rate index, the eigenvalues below the fatigue warning value of the ECG index, the eigenvalues below the fatigue warning value of the EEG index, and the facial features according to the following formula: Probability of the eigenvalues below the fatigue warning value of the feature index and the eigenvalues below the fatigue warning value of the eye movement index:
mi(Θ)=-k[qiMF log2qiMF+(1-qiMF)log2(1-qiMF)]m i (Θ)=-k[q iMF log 2 q iMF +(1-q iMF )log 2 (1-q iMF )]
其中,MF表示疲劳;表示不疲劳;qiMF表示第i个通道判别高铁调度员处于疲劳状态的概率;1-qiMF表示第i个通道判别高铁调度员处于不疲劳状态的概率,i=1,2,…5;各通道分别输入心率指标疲劳警戒值以下的特征值、心电指标疲劳警戒值以下的特征值、脑电指标疲劳警戒值以下的特征值、面部特征指标疲劳警戒值以下的特征值、眼动指标疲劳警戒值以下的特征值;k表示调节因子,并且k∈(0,1)。第二计算单元用于根据下式计算处于疲劳状态的基础分配概率和处于不疲劳状态的基础分配概率:in, MF means fatigue; Indicates no fatigue; q iMF indicates the probability that the i-th channel judges that the high-speed rail dispatcher is in a fatigue state; 1-q iMF represents the probability that the i-th channel judges that the high-speed rail dispatcher is in a non-fatigue state, i=1,2,...5; Input the eigenvalues below the fatigue warning value of the heart rate index, the eigenvalues below the fatigue warning value of the ECG index, the eigenvalues below the fatigue warning value of the EEG index, the eigenvalues of the facial feature index below the fatigue warning value, and the eye movement index to each channel respectively. Eigenvalues below the fatigue warning value; k represents the adjustment factor, and k∈(0,1). The second calculation unit is used to calculate the basic distribution probability in the fatigue state and the basic distribution probability in the non-fatigue state according to the following formula:
其中,mi(MF)表示处于疲劳状态的基础分配概率;表示处于不疲劳状态的基础分配概率。第三计算单元用于根据下式进行基于D-S证据理论的多通道融合,计算高铁调度员处于疲劳状态的概率、高铁调度员处于不疲劳状态的概率以及各疲劳警戒值以下的特征值融合后的概率:Among them, m i (MF) represents the basic distribution probability of being in a fatigue state; Indicates the base assigned probability of being in the non-fatigue state. The third calculation unit is used to carry out multi-channel fusion based on DS evidence theory according to the following formula, calculate the probability of the high-speed rail dispatcher being in a fatigue state, the probability of the high-speed rail dispatcher being in a non-fatigue state, and the eigenvalues below the fatigue warning value after fusion Probability:
其中,m(MF)表示高铁调度员处于疲劳状态的概率;表示高铁调度员处于不疲劳状态的概率;m(Θ)表示疲劳警戒值以下的特征值融合后的概率;或Θ,i=1,2,......5,j=1,2k。第四计算单元用于根据下式计算疲劳的信任函数和似然函数,以及不疲劳的信任函数和似然函数:Among them, m(MF) represents the probability that the high-speed rail dispatcher is in a state of fatigue; Indicates the probability that the high-speed rail dispatcher is in a non-fatigue state; m(Θ) indicates the probability of fused eigenvalues below the fatigue warning value; Or Θ, i=1,2,...5, j=1,2k. The fourth calculation unit is used to calculate the fatigue trust function and likelihood function according to the following formula, and the non-fatigue trust function and likelihood function:
Bel(MF)=m(MF)Bel(MF)=m(MF)
其中,Bel(MF)表示疲劳的信任函数;Pl(MF)表示疲劳的似然函数;表示不疲劳的信任函数;表示不疲劳的似然函数。判定单元用于根据疲劳的信任函数和似然函数,以及不疲劳的信任函数和似然函数,判定高铁调度员是否处于疲劳状态。Among them, Bel(MF) represents the trust function of fatigue; Pl(MF) represents the likelihood function of fatigue; Represents a trust function that is not fatigued; Represents the likelihood function of not being fatigued. The determination unit is used to determine whether the high-speed rail dispatcher is in a fatigue state according to the fatigue trust function and likelihood function, and the non-fatigue trust function and likelihood function.
在一些可选的实施例中,在图2所示实施例的基础上,上述高铁调度员疲劳状态测评系统还可以包括:比较单元和预警干预单元。其中,比较单元用于将所确定的疲劳状态与疲劳状态阈值进行比较。预警干预单元用于在疲劳状态超过疲劳状态阈值的情况下,进行预警干预。In some optional embodiments, on the basis of the embodiment shown in FIG. 2 , the above-mentioned high-speed rail dispatcher fatigue state evaluation system may further include: a comparison unit and an early warning intervention unit. Wherein, the comparison unit is used for comparing the determined fatigue state with a fatigue state threshold. The early warning intervention unit is used to perform early warning intervention when the fatigue state exceeds the fatigue state threshold.
图3示例性地示出了本发明实施例提供的高铁调度员疲劳状态测评系统的优选实现方式。其中,手环构件、脑环构件、摄像头和眼动仪用于采集高铁调度员的心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号。数据库用于存储高铁调度员的心率信号、心电信号、脑电信号、面部图像信号和眼动特征信号。处理构件用于执行上述提取模块和上述确定模块的操作。干预构件用于执行上述比较单元和上述预警干预单元的操作。打印机用于打印输出结果。Fig. 3 exemplarily shows a preferred implementation of the high-speed rail dispatcher fatigue state evaluation system provided by the embodiment of the present invention. Among them, the wristband component, the brain ring component, the camera and the eye tracker are used to collect the heart rate signal, ECG signal, EEG signal, facial image signal and eye movement characteristic signal of the high-speed rail dispatcher. The database is used to store the heart rate signal, ECG signal, EEG signal, facial image signal and eye movement characteristic signal of the high-speed rail dispatcher. The processing component is used to execute the operations of the above-mentioned extracting module and the above-mentioned determining module. The intervention component is used to execute the operations of the comparison unit and the warning intervention unit. The printer is used to print out the results.
本领域技术人员可以理解,上述高铁调度员疲劳状态测评系统还可以包括一些其他公知结构,例如处理器、存储器等,其中,存储器包括但不限于随机存储器、闪存、只读存储器、易失性存储器、非易失性存储器、串行存储器、并行存储器或寄存器等,处理器包括但不限于CPLD/FPGA、DSP、ARM处理器、MIPS处理器等,为了不必要地模糊本公开的实施例,这些公知的结构在图2中未示出。Those skilled in the art can understand that the above-mentioned high-speed rail dispatcher fatigue state evaluation system can also include some other known structures, such as processors, memory, etc., wherein, memory includes but not limited to random access memory, flash memory, read-only memory, volatile memory , non-volatile memory, serial memory, parallel memory or registers, etc., processors include but not limited to CPLD/FPGA, DSP, ARM processors, MIPS processors, etc., in order to unnecessarily obscure the embodiments of the present disclosure, these Known structures are not shown in FIG. 2 .
应该理解,图2中的各个模块的数量仅仅是示意性的。根据实现需要,可以具有任意数量的获取模块、提取模块和确定模块。It should be understood that the number of modules in Fig. 2 is only illustrative. There may be any number of acquiring modules, extracting modules and determining modules according to implementation requirements.
需要说明的是:上述实施例提供的高铁调度员疲劳状态测评系统在进行疲劳状态测评时,仅以上述各功能模块的划分进行举例说明,在实际应用中,还可以根据需要而将上述功能分配由不同的功能模块来完成,即将系统的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。It should be noted that: when the high-speed rail dispatcher fatigue state evaluation system provided by the above-mentioned embodiment is performing fatigue state evaluation, the division of the above-mentioned functional modules is used as an example for illustration. In practical applications, the above-mentioned functions can also be allocated according to needs. It is completed by different functional modules, that is, the internal structure of the system is divided into different functional modules to complete all or part of the functions described above.
如本文中所使用的,术语“模块”可以指代在计算系统上执行的软件对象或例程。可以将本文中所描述的不同模块实现为在计算系统上执行的对象或过程(例如,作为独立的线程)。虽然优选地以软件来实现本文中所描述的系统和方法,但是以硬件或者软件和硬件的组合的实现也是可以的并且是可以被设想的。As used herein, the term "module" may refer to software objects or routines that execute on a computing system. The different modules described herein may be implemented as objects or processes executing on a computing system (eg, as separate threads). While the systems and methods described herein are preferably implemented in software, implementations in hardware or a combination of software and hardware are also possible and contemplated.
上述系统实施例可以用于执行上述方法实施例,其技术原理、所解决的技术问题及产生的技术效果相似,所属技术领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。The above-mentioned system embodiment can be used to execute the above-mentioned method embodiment, and its technical principles, technical problems solved and produced technical effects are similar, and those skilled in the art can clearly understand that for the convenience and brevity of the description, the above description For the specific working process of the system, reference may be made to the corresponding process in the aforementioned method embodiments, which will not be repeated here.
应指出的是,上面分别对本发明的系统实施例和方法实施例进行了描述,但是对一个实施例描述的细节也可应用于另一个实施例。对于本发明实施例中涉及的模块、步骤的名称,仅仅是为了区分各个模块或者步骤,不视为对本发明的不当限定。本领域技术人员应该理解:本发明实施例中的模块或者步骤还可以再分解或者组合。例如上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。It should be noted that the above describes the system embodiment and the method embodiment of the present invention respectively, but the details described for one embodiment can also be applied to another embodiment. The names of the modules and steps involved in the embodiments of the present invention are only used to distinguish each module or step, and are not regarded as improperly limiting the present invention. Those skilled in the art should understand that the modules or steps in the embodiments of the present invention can be further decomposed or combined. For example, the modules in the above embodiments may be combined into one module, or further divided into multiple sub-modules.
以上对本发明实施例所提供的技术方案进行了详细的介绍。虽然本文应用了具体的个例对本发明的原理和实施方式进行了阐述,但是,上述实施例的说明仅适用于帮助理解本发明实施例的原理;同时,对于本领域技术人员来说,依据本发明实施例,在具体实施方式以及应用范围之内均会做出改变。The technical solutions provided by the embodiments of the present invention have been introduced in detail above. Although this paper uses specific examples to illustrate the principles and implementation methods of the present invention, the description of the above-mentioned embodiments is only applicable to help understand the principles of the embodiments of the present invention; meanwhile, for those skilled in the art, according to this In the embodiment of the invention, changes may be made within the scope of specific implementation and application.
这里,需要说明的是,本文中涉及到的流程图或框图不仅仅局限于本文所示的形式,其还可以进行划分和/或组合。Here, it should be noted that the flow charts or block diagrams involved in this document are not limited to the forms shown herein, and may also be divided and/or combined.
还需要说明的是:附图中的标记和文字只是为了更清楚地说明本发明,不视为对本发明保护范围的不当限定。It should also be noted that: the signs and characters in the drawings are only for illustrating the present invention more clearly, and are not regarded as improperly limiting the protection scope of the present invention.
术语“包括”或者任何其它类似用语旨在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备/装置不仅包括那些要素,而且还包括没有明确列出的其它要素,或者还包括这些过程、方法、物品或者设备/装置所固有的要素。The term "comprising" or any other similar term is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus/apparatus comprising a set of elements includes not only those elements but also other elements not expressly listed, or Also included are elements inherent in these processes, methods, articles, or devices/devices.
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的PC来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design alternative embodiments without departing from the scope of the appended claims. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word "comprising" does not exclude the presence of elements or steps not listed in a claim. The word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements. The invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed PC. In a unit claim enumerating several means, several of these means can be embodied by one and the same item of hardware. The use of the words first, second, and third, etc. does not indicate any order. These words can be interpreted as names.
本发明的各个步骤可以用通用的计算装置来实现,例如,它们可以集中在单个的计算装置上,例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备或者多处理器装置,也可以分布在多个计算装置所组成的网络上,它们可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。因此,本发明不限于任何特定的硬件和软件或者其结合。The various steps of the present invention can be realized with general-purpose computing devices, for example, they can be concentrated on a single computing device, such as: personal computer, server computer, handheld device or portable device, tablet type device or multi-processor device, also may be distributed over a network of multiple computing devices, which may perform the steps shown or described in a different order than here, or they may be fabricated as individual integrated circuit modules, or multiple modules of them may be Or the steps are fabricated into a single integrated circuit module to realize. Accordingly, the invention is not limited to any specific hardware and software or combination thereof.
本发明提供的方法可以使用可编程逻辑器件来实现,也可以实施为计算机程序软件或程序模块(其包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件或数据结构等等),例如根据本发明的实施例可以是一种计算机程序产品,运行该计算机程序产品使计算机执行用于所示范的方法。所述计算机程序产品包括计算机可读存储介质,该介质上包含计算机程序逻辑或代码部分,用于实现所述方法。所述计算机可读存储介质可以是被安装在计算机中的内置介质或者可以从计算机主体上拆卸下来的可移动介质(例如:采用热插拔技术的存储设备)。所述内置介质包括但不限于可重写的非易失性存储器,例如:RAM、ROM、快闪存储器和硬盘。所述可移动介质包括但不限于:光存储介质(例如:CD-ROM和DVD)、磁光存储介质(例如:MO)、磁存储介质(例如:磁带或移动硬盘)、具有内置的可重写非易失性存储器的媒体(例如:存储卡)和具有内置ROM的媒体(例如:ROM盒)。The method provided by the present invention can be implemented using programmable logic devices, and can also be implemented as computer program software or program modules (which include routines, programs, objects, components, or data structures that perform specific tasks or implement specific abstract data types, etc. ), for example, according to an embodiment of the present invention may be a computer program product, and the execution of the computer program product causes a computer to execute the exemplified method. The computer program product comprises a computer readable storage medium having computer program logic or code portions embodied thereon for implementing the method. The computer-readable storage medium may be a built-in medium installed in the computer or a removable medium detachable from the main body of the computer (for example, a storage device using a hot-swappable technology). The built-in medium includes but not limited to rewritable non-volatile memory, such as RAM, ROM, flash memory and hard disk. The removable media include but not limited to: optical storage media (such as: CD-ROM and DVD), magneto-optical storage media (such as: MO), magnetic storage media (such as: magnetic tape or mobile hard disk), with built-in Media that writes non-volatile memory (eg: memory card) and media with built-in ROM (eg: ROM cartridge).
本发明并不限于上述实施方式,在不背离本发明实质内容的情况下,本领域普通技术人员可以想到的任何变形、改进或替换均落入本发明的保护范围。The present invention is not limited to the above-mentioned embodiments, and without departing from the essence of the present invention, any deformation, improvement or replacement conceivable by those skilled in the art falls within the protection scope of the present invention.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710397928.1A CN107233103B (en) | 2017-05-27 | 2017-05-27 | Method and system for evaluating the fatigue state of high-speed rail dispatchers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710397928.1A CN107233103B (en) | 2017-05-27 | 2017-05-27 | Method and system for evaluating the fatigue state of high-speed rail dispatchers |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107233103A true CN107233103A (en) | 2017-10-10 |
CN107233103B CN107233103B (en) | 2020-11-20 |
Family
ID=59985289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710397928.1A Active CN107233103B (en) | 2017-05-27 | 2017-05-27 | Method and system for evaluating the fatigue state of high-speed rail dispatchers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107233103B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108852380A (en) * | 2018-07-09 | 2018-11-23 | 南京邮电大学 | Fatigue, mood analysis method based on ECG signal |
CN109431498A (en) * | 2018-11-14 | 2019-03-08 | 天津大学 | Wearable multi-modal physiological driver's condition monitoring system |
CN112450933A (en) * | 2020-11-10 | 2021-03-09 | 东北电力大学 | Driving fatigue monitoring method based on multiple types of characteristics of human body |
CN113509189A (en) * | 2021-07-07 | 2021-10-19 | 科大讯飞股份有限公司 | Learning state monitoring method and related equipment thereof |
CN113951903A (en) * | 2021-10-29 | 2022-01-21 | 西南交通大学 | Recognition method of overload state of high-speed railway dispatchers based on EEG data measurement |
CN114081491A (en) * | 2021-11-15 | 2022-02-25 | 西南交通大学 | Fatigue prediction method of high-speed railway dispatchers based on the measurement of EEG time series data |
CN115359545A (en) * | 2022-10-19 | 2022-11-18 | 深圳海星智驾科技有限公司 | Staff fatigue detection method and device, electronic equipment and storage medium |
US11813060B2 (en) | 2020-06-29 | 2023-11-14 | Lear Corporation | System and method for biometric evoked response monitoring and feedback |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101090482A (en) * | 2006-06-13 | 2007-12-19 | 唐琎 | Driver fatigue monitoring system and method based on image process and information mixing technology |
CN101540090A (en) * | 2009-04-14 | 2009-09-23 | 华南理工大学 | Driver fatigue monitoring device based on multivariate information fusion and monitoring method thereof |
CN101872171A (en) * | 2009-04-24 | 2010-10-27 | 中国农业大学 | Driver Fatigue State Recognition Method and System Based on Information Fusion |
WO2014204567A1 (en) * | 2013-06-19 | 2014-12-24 | Raytheon Company | Imaging-based monitoring of stress and fatigue |
CN104952210A (en) * | 2015-05-15 | 2015-09-30 | 南京邮电大学 | Fatigue driving state detecting system and method based on decision-making level data integration |
CN106462027A (en) * | 2014-06-23 | 2017-02-22 | 本田技研工业株式会社 | Systems and methods for responding to driver conditions |
CN106580349A (en) * | 2016-12-07 | 2017-04-26 | 中国民用航空总局第二研究所 | Controller fatigue detection method and device and controller fatigue responding method and device |
-
2017
- 2017-05-27 CN CN201710397928.1A patent/CN107233103B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101090482A (en) * | 2006-06-13 | 2007-12-19 | 唐琎 | Driver fatigue monitoring system and method based on image process and information mixing technology |
CN101540090A (en) * | 2009-04-14 | 2009-09-23 | 华南理工大学 | Driver fatigue monitoring device based on multivariate information fusion and monitoring method thereof |
CN101872171A (en) * | 2009-04-24 | 2010-10-27 | 中国农业大学 | Driver Fatigue State Recognition Method and System Based on Information Fusion |
WO2014204567A1 (en) * | 2013-06-19 | 2014-12-24 | Raytheon Company | Imaging-based monitoring of stress and fatigue |
US20140375785A1 (en) * | 2013-06-19 | 2014-12-25 | Raytheon Company | Imaging-based monitoring of stress and fatigue |
CN106462027A (en) * | 2014-06-23 | 2017-02-22 | 本田技研工业株式会社 | Systems and methods for responding to driver conditions |
CN104952210A (en) * | 2015-05-15 | 2015-09-30 | 南京邮电大学 | Fatigue driving state detecting system and method based on decision-making level data integration |
CN106580349A (en) * | 2016-12-07 | 2017-04-26 | 中国民用航空总局第二研究所 | Controller fatigue detection method and device and controller fatigue responding method and device |
Non-Patent Citations (1)
Title |
---|
邓三鹏等: "基于D-S证据理论的驾驶员疲劳监测方法研究", 《车辆与动力技术》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108852380A (en) * | 2018-07-09 | 2018-11-23 | 南京邮电大学 | Fatigue, mood analysis method based on ECG signal |
CN109431498A (en) * | 2018-11-14 | 2019-03-08 | 天津大学 | Wearable multi-modal physiological driver's condition monitoring system |
US11813060B2 (en) | 2020-06-29 | 2023-11-14 | Lear Corporation | System and method for biometric evoked response monitoring and feedback |
CN112450933A (en) * | 2020-11-10 | 2021-03-09 | 东北电力大学 | Driving fatigue monitoring method based on multiple types of characteristics of human body |
CN112450933B (en) * | 2020-11-10 | 2022-09-20 | 东北电力大学 | Driving fatigue monitoring method based on multiple types of characteristics of human body |
CN113509189A (en) * | 2021-07-07 | 2021-10-19 | 科大讯飞股份有限公司 | Learning state monitoring method and related equipment thereof |
CN113951903A (en) * | 2021-10-29 | 2022-01-21 | 西南交通大学 | Recognition method of overload state of high-speed railway dispatchers based on EEG data measurement |
CN113951903B (en) * | 2021-10-29 | 2022-07-08 | 西南交通大学 | Recognition method of overload state of high-speed railway dispatchers based on EEG data measurement |
CN114081491A (en) * | 2021-11-15 | 2022-02-25 | 西南交通大学 | Fatigue prediction method of high-speed railway dispatchers based on the measurement of EEG time series data |
CN114081491B (en) * | 2021-11-15 | 2023-04-25 | 西南交通大学 | Fatigue prediction method for high-speed railway dispatcher based on electroencephalogram time sequence data measurement |
CN115359545A (en) * | 2022-10-19 | 2022-11-18 | 深圳海星智驾科技有限公司 | Staff fatigue detection method and device, electronic equipment and storage medium |
CN115359545B (en) * | 2022-10-19 | 2023-01-24 | 深圳海星智驾科技有限公司 | Staff fatigue detection method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN107233103B (en) | 2020-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107233103A (en) | High ferro dispatcher's fatigue state assessment method and system | |
Tiwari et al. | Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals | |
CN104887224B (en) | Feature extraction and automatic identifying method towards epileptic EEG Signal | |
Akbari et al. | Recognizing seizure using Poincaré plot of EEG signals and graphical features in DWT domain | |
Zhang et al. | Recognition of mental workload levels under complex human–machine collaboration by using physiological features and adaptive support vector machines | |
JP2011018240A (en) | Device and method for detecting state and program | |
Kaleem et al. | Patient-specific seizure detection in long-term EEG using signal-derived empirical mode decomposition (EMD)-based dictionary approach | |
CN113749619B (en) | A method for evaluating mental fatigue based on K-TRCA | |
Al-Salman et al. | Detection of EEG K-complexes using fractal dimension of time frequency images technique coupled with undirected graph features | |
CN107233104A (en) | Cognition is divert one's attention assessment method and system | |
CN102824172A (en) | EEG (electroencephalogram) feature extraction method | |
CN115081486B (en) | System and method for positioning epileptic focus by using intracranial brain electrical network in early stage of epileptic seizure | |
CN110109543A (en) | C-VEP recognition methods based on subject migration | |
Zhang et al. | Approximate entropy and support vector machines for electroencephalogram signal classification | |
Nhu et al. | Deep learning for automated epileptiform discharge detection from scalp EEG: A systematic review | |
WO2023082406A1 (en) | Federated learning-based electroencephalogram signal classification model training method and device | |
Sinha et al. | Statistical feature analysis for EEG baseline classification: Eyes Open vs Eyes Closed | |
Liu et al. | A novel fatigue driving state recognition and warning method based on EEG and EOG signals | |
CN106580350A (en) | Fatigue condition monitoring method and device | |
Mahapatra et al. | Decoding of imagined speech electroencephalography neural signals using transfer learning method | |
Thilagaraj et al. | Identification of drivers drowsiness based on features extracted from EEG signal using SVM classifier | |
CN103632162B (en) | Disease-related electrocardiogram feature selection method | |
EP3176726A1 (en) | Method and device for positioning human eyes | |
JP2012161379A5 (en) | ||
Hellar et al. | Epileptic electroencephalography classification using embedded dynamic mode decomposition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |