CN107231819A - The manufacture method of solar cell module and solar cell module - Google Patents
The manufacture method of solar cell module and solar cell module Download PDFInfo
- Publication number
- CN107231819A CN107231819A CN201580074723.9A CN201580074723A CN107231819A CN 107231819 A CN107231819 A CN 107231819A CN 201580074723 A CN201580074723 A CN 201580074723A CN 107231819 A CN107231819 A CN 107231819A
- Authority
- CN
- China
- Prior art keywords
- solar cell
- eva
- cell module
- light
- organosilicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims description 16
- 239000005038 ethylene vinyl acetate Substances 0.000 claims abstract description 87
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims abstract description 87
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 84
- 239000000463 material Substances 0.000 claims abstract description 70
- 239000000758 substrate Substances 0.000 claims abstract description 53
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 21
- 239000010703 silicon Substances 0.000 claims description 17
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- 238000006116 polymerization reaction Methods 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 230000003014 reinforcing effect Effects 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 238000004132 cross linking Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000005022 packaging material Substances 0.000 abstract description 16
- 210000004027 cell Anatomy 0.000 description 135
- 239000011521 glass Substances 0.000 description 25
- -1 polyethylene terephthalate Polymers 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 13
- 150000002430 hydrocarbons Chemical group 0.000 description 11
- 229910021419 crystalline silicon Inorganic materials 0.000 description 10
- 229920006136 organohydrogenpolysiloxane Polymers 0.000 description 10
- 239000002131 composite material Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000005538 encapsulation Methods 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000000565 sealant Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 6
- 238000006459 hydrosilylation reaction Methods 0.000 description 6
- 229920000554 ionomer Polymers 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920002620 polyvinyl fluoride Polymers 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 238000007259 addition reaction Methods 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 5
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 239000007809 chemical reaction catalyst Substances 0.000 description 4
- 229910021485 fumed silica Inorganic materials 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 229940008099 dimethicone Drugs 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008393 encapsulating agent Substances 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000001451 organic peroxides Chemical class 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- 239000004342 Benzoyl peroxide Substances 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 150000001336 alkenes Chemical group 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920001843 polymethylhydrosiloxane Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- WRXCBRHBHGNNQA-UHFFFAOYSA-N (2,4-dichlorobenzoyl) 2,4-dichlorobenzenecarboperoxoate Chemical compound ClC1=CC(Cl)=CC=C1C(=O)OOC(=O)C1=CC=C(Cl)C=C1Cl WRXCBRHBHGNNQA-UHFFFAOYSA-N 0.000 description 1
- KWEKXPWNFQBJAY-UHFFFAOYSA-N (dimethyl-$l^{3}-silanyl)oxy-dimethylsilicon Chemical compound C[Si](C)O[Si](C)C KWEKXPWNFQBJAY-UHFFFAOYSA-N 0.000 description 1
- QYLFHLNFIHBCPR-UHFFFAOYSA-N 1-ethynylcyclohexan-1-ol Chemical compound C#CC1(O)CCCCC1 QYLFHLNFIHBCPR-UHFFFAOYSA-N 0.000 description 1
- ZHJVTEQTDADLKP-UHFFFAOYSA-N 1-methyl-4-(4-methylphenyl)peroxybenzene Chemical compound C1=CC(C)=CC=C1OOC1=CC=C(C)C=C1 ZHJVTEQTDADLKP-UHFFFAOYSA-N 0.000 description 1
- VMAWODUEPLAHOE-UHFFFAOYSA-N 2,4,6,8-tetrakis(ethenyl)-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C=C[Si]1(C)O[Si](C)(C=C)O[Si](C)(C=C)O[Si](C)(C=C)O1 VMAWODUEPLAHOE-UHFFFAOYSA-N 0.000 description 1
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- QYXVDGZUXHFXTO-UHFFFAOYSA-L 3-oxobutanoate;platinum(2+) Chemical compound [Pt+2].CC(=O)CC([O-])=O.CC(=O)CC([O-])=O QYXVDGZUXHFXTO-UHFFFAOYSA-L 0.000 description 1
- 229910002018 Aerosil® 300 Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920012753 Ethylene Ionomers Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000002998 adhesive polymer Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000005388 dimethylhydrogensiloxy group Chemical group 0.000 description 1
- 229920005645 diorganopolysiloxane polymer Polymers 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- PARWUHTVGZSQPD-UHFFFAOYSA-N phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 150000003254 radicals Chemical group 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- CXUYURWORTZPEG-UHFFFAOYSA-N tert-butyl (2-methylpropan-2-yl)oxy carbonate;hexane-1,6-diol Chemical compound OCCCCCCO.CC(C)(C)OOC(=O)OC(C)(C)C CXUYURWORTZPEG-UHFFFAOYSA-N 0.000 description 1
- RUPAXCPQAAOIPB-UHFFFAOYSA-N tert-butyl formate Chemical compound CC(C)(C)OC=O RUPAXCPQAAOIPB-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 125000000725 trifluoropropyl group Chemical group [H]C([H])(*)C([H])([H])C(F)(F)F 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- ORGHESHFQPYLAO-UHFFFAOYSA-N vinyl radical Chemical compound C=[CH] ORGHESHFQPYLAO-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/80—Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
- H10F19/804—Materials of encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/80—Encapsulations or containers for integrated devices, or assemblies of multiple devices, having photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
Abstract
太阳能电池组件,是在受光面侧具有透光性基板、在背面侧具有背面保护材料的太阳能电池组件,作为受光面侧透光性基板与太阳能电池元件之间的封装材料,为EVA(乙烯-醋酸乙烯酯共聚物)与有机硅邻接且层叠的结构,太阳能电池元件与背面保护材料之间为用EVA密封的结构。本发明的太阳能电池组件在太阳能电池组件制造工序中不存在大幅的改变,能够使用真空层压机容易地制作,并且对于PID现象具有极大的耐性,抑制与PID现象相伴的太阳能电池组件的输出功率降低。
The solar cell module is a solar cell module with a light-transmitting substrate on the light-receiving side and a back protection material on the back side. As the packaging material between the light-receiving side light-transmitting substrate and the solar cell element, EVA (ethylene- Vinyl acetate copolymer) and silicone are adjacent and laminated, and the solar cell element and the back protection material are sealed with EVA. The solar cell module of the present invention does not undergo significant changes in the solar cell module manufacturing process, can be easily produced using a vacuum laminator, and has great resistance to the PID phenomenon, suppressing the output of the solar cell module associated with the PID phenomenon Reduced power.
Description
技术领域technical field
本发明涉及太阳能电池组件及其制造方法。The present invention relates to a solar cell module and a manufacturing method thereof.
背景技术Background technique
使由硅等的半导体基板构成的太阳能电池元件连结而形成的结晶型太阳能电池组件在受光面侧具有玻璃等的透光性基板,在最背面侧具有玻璃等的透光性基板或PET膜等的背面保护材料,作为在其间存在的封装材料,广泛地使用了EVA。A crystalline solar cell module formed by connecting solar cell elements made of semiconductor substrates such as silicon has a light-transmitting substrate such as glass on the light-receiving surface side, and has a light-transmitting substrate such as glass or a PET film on the rearmost side EVA is widely used as an encapsulation material in between for the back protection material.
另一方面,近年来大量地建设了称为Mega Solar的具有大规模发电容量的太阳光发电系统。这样的具有大规模发电容量的太阳光发电系统有时对各个太阳能电池组件施加的电压成为高电压,因所设置的室外的状况的不同,发生太阳能电池组件的输出功率降低的现象。该输出功率降低现象称为PID(Potential Induced Degradation)。On the other hand, in recent years, a large number of photovoltaic power generation systems called mega solars have been constructed with large-scale power generation capacity. In such a photovoltaic power generation system having a large-scale power generation capacity, the voltage applied to each solar cell module may become a high voltage, and the output of the solar cell module may decrease depending on the outdoor conditions where it is installed. This output power reduction phenomenon is called PID (Potential Induced Degradation).
作为原因之一,报道了如下等:通过对组件单独施加高电压,从而玻璃中的Na+成分在封装材料中通过,到达了太阳能电池单元表面,结果发生太阳能电池单元的表面再结合,使输出功率降低(非专利文献1)。As one of the reasons, it has been reported that by applying a high voltage to the module alone, the Na + component in the glass passes through the encapsulation material and reaches the surface of the solar cell, and as a result, the surface of the solar cell recombines and the output Power reduction (Non-Patent Document 1).
作为用于改善这样的问题的对策,有太阳能电池单元的受光面减反射膜的改进(专利文献1)。As a measure for improving such a problem, there is an improvement of an anti-reflection film on a light-receiving surface of a solar battery cell (Patent Document 1).
但是,就受光面减反射膜的改进而言,存在使太阳能电池单元输出功率少许降低、在太阳能电池单元减反射膜形成工序中必须在设备上进行改进等问题。However, the improvement of the anti-reflection coating on the light-receiving surface has problems such as slightly lowering the output power of the solar cell and requiring improvement in equipment in the process of forming the anti-reflection film of the solar cell.
另外,作为太阳光发电系统的对策,有如下方法:使用绝缘变压器附属的变换器,以使太阳能电池组件的发电元件部成为负电位。但是,以变换器的高效率化、成本降低为目的,大量导入无变压器型变换器,采用系统改变的对策困难。In addition, as a countermeasure for the solar power generation system, there is a method of using an inverter attached to an insulating transformer to make the power generation element part of the solar cell module a negative potential. However, a large number of transformerless converters have been introduced for the purpose of increasing the efficiency of the converter and reducing the cost, and it is difficult to take measures to change the system.
作为用于改善这样的问题的对策,有封装材料的改变。PID现象一般在使用了EVA的情况下大量地得以确认(非专利文献1)。作为具有PID耐性的封装材料,可列举出离聚物,但离聚物具有成本高、使太阳能电池组件生产成本上升的问题。As a countermeasure for improving such a problem, there is a change of packaging material. A large number of PID phenomena are generally confirmed when EVA is used (Non-Patent Document 1). Ionomers are mentioned as encapsulating materials having PID resistance, but ionomers have a problem of high cost, which increases the production cost of solar cell modules.
另外,也提出了用离聚物与EVA的层叠体进行密封的结构的太阳能电池组件(非专利文献2)。在该结构中,离聚物防止来自受光面玻璃的Na+扩散,能够抑制PID发生。但是,离聚物与EVA用真空层压机重叠而进行加热·真空·压制的情况下,在界面容易残留气泡,难以良好地得到成型体。作为其对策,提出了在EVA与离聚物之间插入透明PET树脂膜片的方法(专利文献2)。In addition, a solar cell module having a structure sealed with a laminate of an ionomer and EVA has also been proposed (Non-Patent Document 2). In this structure, the ionomer prevents the diffusion of Na + from the light-receiving glass, and can suppress the occurrence of PID. However, when the ionomer and EVA are stacked on a vacuum laminator and heated, vacuumed, and pressed, air bubbles tend to remain at the interface, making it difficult to obtain a good molded body. As a countermeasure against this, a method of inserting a transparent PET resin film between EVA and ionomer has been proposed (Patent Document 2).
在该方法中,在玻璃与单元之间必须使离聚物、PET树脂膜、EVA这3层层叠而进行层压,工序繁杂。In this method, it is necessary to laminate three layers of ionomer, PET resin film, and EVA between the glass and the cell, and the steps are complicated.
另外,作为不发生PID的封装材料,可列举出有机硅。在使用了有机硅作为封装材料的太阳能电池组件中,报道了不易发生PID现象(非专利文献1)。In addition, silicone is exemplified as a sealing material that does not generate PID. It has been reported that the PID phenomenon is less likely to occur in a solar cell module using silicone as an encapsulating material (Non-Patent Document 1).
但是,一般有机硅为液体,为了导入太阳能电池组件工序,新的设备投入变得必要,除此以外,还存在材料成本高、太阳能电池组件的制造成本上升的问题。However, silicone is generally a liquid, and new equipment needs to be invested in order to introduce it into the solar cell module process. In addition, there is a problem of high material cost and an increase in the production cost of the solar cell module.
现有技术文献prior art literature
专利文献patent documents
专利文献1:日本特开2014-11246号公报Patent Document 1: Japanese Patent Laid-Open No. 2014-11246
专利文献2:日本特开2014-157874号公报Patent Document 2: Japanese Patent Laid-Open No. 2014-157874
非专利文献non-patent literature
非专利文献1:PVeye8月号(2012)Non-Patent Document 1: August Issue of PVeye (2012)
非专利文献2:P.Hacke等,“Characterization of Multicrystalline SiliconeModules with System Bias Voltage Applied in Damp Heat”,25th EuropeanPhotovoltaic Solar Energy Conference and Exhibition,Valensia,Spain,2010Non-Patent Document 2: P. Hacke et al., "Characterization of Multicrystalline Silicone Modules with System Bias Voltage Applied in Damp Heat", 25th European Photovoltaic Solar Energy Conference and Exhibition, Valensia, Spain, 2010
发明内容Contents of the invention
发明要解决的课题The problem to be solved by the invention
本发明为了解决上述课题而完成,目的在于提供太阳能电池组件工序容易、并且获得良好的层压密封、PID耐性优异的太阳能电池组件及其制造方法。The present invention was made in order to solve the above-mentioned problems, and an object of the present invention is to provide a solar cell module and a method of manufacturing the same, in which the steps of the solar cell module are easy, good lamination sealing is obtained, and PID resistance is excellent.
用于解决课题的手段means to solve the problem
本发明人为了实现上述目的而进行了锐意研究,结果获知将EVA与有机硅的层叠体用于太阳能电池元件串(多个太阳能电池元件和将这些太阳能电池元件连结的连结体)的密封是有效的。The inventors of the present invention conducted earnest research in order to achieve the above object. As a result, it was found that it is effective to use a laminated body of EVA and silicone for sealing a string of solar cell elements (a plurality of solar cell elements and a connecting body connecting these solar cell elements). of.
即,本发明提供下述太阳能电池组件及其制造方法。That is, the present invention provides the following solar cell module and its manufacturing method.
[1]太阳能电池组件,是在受光面侧具有透光性基板、在背面侧具有背面保护材料的太阳能电池组件,其特征在于,作为受光面侧透光性基板与太阳能电池元件之间的封装材料,为EVA(乙烯-醋酸乙烯酯共聚物)与有机硅邻接且层叠了的结构,太阳能电池元件与背面保护材料之间为用EVA密封的结构。[1] The solar cell module is a solar cell module having a light-transmitting substrate on the light-receiving surface side and a back protection material on the back side, and is characterized in that it is used as a package between the light-receiving surface-side light-transmitting substrate and the solar cell element The material is a structure in which EVA (ethylene-vinyl acetate copolymer) and silicone are adjacent and laminated, and the structure between the solar cell element and the back protection material is sealed with EVA.
[2]太阳能电池组件,是在受光面侧具有透光性基板、在背面侧具有背面保护材料的太阳能电池组件,其特征在于,作为受光面侧透光性基板与太阳能电池元件之间的封装材料,为EVA(乙烯-醋酸乙烯酯共聚物)与有机硅邻接且层叠了的结构,并且在背面保护材料与太阳能电池元件之间为EVA(乙烯-醋酸乙烯酯共聚物)与有机硅邻接层叠了的结构。[2] A solar cell module having a light-transmitting substrate on the light-receiving side and a back protection material on the back side, characterized in that it is used as a package between the light-receiving side light-transmitting substrate and the solar cell element The material is a structure in which EVA (ethylene-vinyl acetate copolymer) and silicone are adjacently laminated, and EVA (ethylene-vinyl acetate copolymer) and silicone are adjacently laminated between the back protection material and the solar cell element. up the structure.
[3][1]所述的太阳能电池组件,其特征在于,是EVA与受光面侧透光性基板相接、邻接的有机硅与太阳能电池元件相接的结构。[3] The solar cell module described in [1], wherein the EVA is in contact with the light-receiving side light-transmitting substrate, and the adjacent silicone is in contact with the solar cell element.
[4][1]所述的太阳能电池组件,其特征在于,是有机硅与受光面侧透光性基板相接、邻接的EVA与太阳能电池元件相接的结构。[4] The solar cell module described in [1], wherein the silicone is in contact with the light-receiving side light-transmitting substrate, and the adjacent EVA is in contact with the solar cell element.
[5][2]所述的太阳能电池组件,其特征在于,是EVA分别与受光面侧透光性基板和背面保护材料相接、邻接的有机硅分别与太阳能电池元件相接的结构。[5] The solar cell module described in [2], wherein EVA is in contact with the light-receiving side light-transmitting substrate and the back protection material, respectively, and the adjacent silicone is in contact with the solar cell element.
[6][2]所述的太阳能电池组件,其特征在于,是有机硅分别与受光面侧透光性基板和背面保护材料相接、邻接的EVA分别与太阳能电池元件相接的结构。[6] The solar cell module described in [2], wherein the silicone is in contact with the light-receiving side light-transmitting substrate and the back protection material, and the adjacent EVA is in contact with the solar cell element.
[7][2]所述的太阳能电池组件,其特征在于,是EVA与受光面侧透光性基板相接、与其邻接的有机硅与太阳能电池元件受光面相接、并且有机硅与背面保护材料相接、与其邻接的EVA与太阳能电池元件背面相接的结构。[7] The solar cell module described in [2] is characterized in that the EVA is in contact with the light-receiving surface side light-transmitting substrate, the silicone adjacent to it is in contact with the light-receiving surface of the solar cell element, and the silicone is in contact with the back protection The material is in contact, and the adjacent EVA is in contact with the back of the solar cell element.
[8][2]所述的太阳能电池组件,其特征在于,是有机硅与受光面侧透光性基板相接、与其邻接的EVA与太阳能电池元件受光面相接、并且EVA与背面保护材料相接、与其邻接的有机硅与太阳能电池元件背面相接的结构。[8] The solar cell module described in [2] is characterized in that the silicone is in contact with the light-receiving surface side light-transmitting substrate, the EVA adjacent thereto is in contact with the light-receiving surface of the solar cell element, and the EVA is in contact with the back protection material. A structure in which the silicone adjacent to it is in contact with the back of the solar cell element.
[9][1]~[8]的任一项所述的太阳能电池组件,其特征在于,上述EVA与有机硅形成了EVA与有机硅重叠为2层结构的复合层叠体,有机硅的厚度为0.05~3mm,复合层叠体的厚度为0.45~3.6mm。[9] The solar cell module according to any one of [1] to [8], wherein the above-mentioned EVA and organic silicon form a composite laminate in which EVA and organic silicon overlap to form a two-layer structure, and the thickness of the organic silicon is is 0.05 to 3 mm, and the thickness of the composite laminate is 0.45 to 3.6 mm.
[10][1]~[9]的任一项所述的太阳能电池组件,其特征在于,上述有机硅为包含下述组分的有机硅组合物的固化物:[10] The solar cell module according to any one of [1] to [9], wherein the silicone is a cured product of a silicone composition comprising the following components:
(A)由下述平均组成式(I)(A) consists of the following average composition formula (I)
R1 aSiO(4-a)/2 (I)R 1 a SiO (4-a)/2 (I)
(式中,R1表示相同或不同的未取代或取代的1价烃基,a为1.95~2.05的正数。)(In the formula, R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon groups, and a is a positive number from 1.95 to 2.05.)
表示的聚合度为100以上的有机聚硅氧烷:100质量份,Organopolysiloxane with a degree of polymerization of 100 or more: 100 parts by mass,
(B)比表面积为50m2/g以上的补强性二氧化硅:20~150质量份,(B) Reinforcing silica having a specific surface area of 50 m 2 /g or more: 20 to 150 parts by mass,
(C)固化剂:使(A)成分固化的有效量。(C) Curing agent: The effective amount which hardens (A) component.
[11][1]~[10]的任一项所述的太阳能电池组件,其特征在于,为使用了背面透光性基板作为背面保护材料的结构。[11] The solar cell module according to any one of [1] to [10], which is characterized in that it has a structure using a rear light-transmitting substrate as a rear protection material.
[12][1]~[11]的任一项所述的太阳能电池组件的制造方法,其特征在于,上述太阳能电池组件通过如下而成为组件:在受光面侧具有透光性基板,使EVA与未硫化状态的有机硅组合物重叠为2层结构的层叠体载置于透光性基板,在该层叠体上部载置太阳能电池元件串,在太阳能电池元件串背面上载置EVA单层、或者EVA与未硫化状态的有机硅组合物重叠为2层结构的层叠体,在最背面侧层叠了背面保护材料后,使用真空层压机,在真空下进行加热挤压,使未硫化状态的有机硅组合物和EVA交联。[12] The method for manufacturing a solar cell module according to any one of [1] to [11], wherein the solar cell module is formed as a module by having a light-transmitting substrate on the light-receiving surface side, and using EVA A laminated body stacked with an unvulcanized silicone composition to form a two-layer structure is placed on a light-transmitting substrate, a solar cell element string is placed on the upper part of the laminated body, and an EVA single layer is placed on the back of the solar cell element string, or EVA and unvulcanized silicone composition are stacked to form a laminate with a two-layer structure. After the back protection material is laminated on the backmost side, a vacuum laminator is used to heat and extrude the unvulcanized organic silicon composition under vacuum. Silicon composition and EVA cross-linked.
发明的效果The effect of the invention
本发明的太阳能电池组件在太阳能电池组件制造工序中没有大幅的变动,能够使用真空层压机容易地制作,并且对于PID现象具有极大的耐性,抑制与PID现象相伴的太阳能电池组件的输出功率降低。The solar cell module of the present invention can be easily produced using a vacuum laminator without significant fluctuations in the solar cell module manufacturing process, has great resistance to the PID phenomenon, and suppresses the output power of the solar cell module accompanying the PID phenomenon reduce.
附图说明Description of drawings
图1为本发明的第1实施例涉及的太阳能电池组件的截面图。FIG. 1 is a cross-sectional view of a solar cell module according to a first embodiment of the present invention.
图2为本发明的第2实施例涉及的太阳能电池组件的截面图。Fig. 2 is a cross-sectional view of a solar cell module according to a second embodiment of the present invention.
图3为本发明的第3实施例涉及的太阳能电池组件的截面图。Fig. 3 is a cross-sectional view of a solar cell module according to a third embodiment of the present invention.
图4为本发明的第4实施例涉及的太阳能电池组件的截面图。Fig. 4 is a cross-sectional view of a solar cell module according to a fourth embodiment of the present invention.
图5为本发明的第5实施例涉及的太阳能电池组件的截面图。Fig. 5 is a cross-sectional view of a solar cell module according to a fifth embodiment of the present invention.
图6为本发明的第6实施例涉及的太阳能电池组件的截面图。Fig. 6 is a cross-sectional view of a solar cell module according to a sixth embodiment of the present invention.
图7为第1比较例涉及的太阳能电池组件的截面图。Fig. 7 is a cross-sectional view of a solar cell module according to a first comparative example.
图8为第2比较例涉及的太阳能电池组件的截面图。Fig. 8 is a cross-sectional view of a solar cell module according to a second comparative example.
图9为第3比较例涉及的太阳能电池组件的截面图。9 is a cross-sectional view of a solar cell module according to a third comparative example.
图10为第4比较例涉及的太阳能电池组件的截面图。10 is a cross-sectional view of a solar cell module according to a fourth comparative example.
具体实施方式detailed description
本发明涉及的太阳能电池组件在受光面侧具有透光性基板,在背面侧具有背面保护材料,在这些受光面与背面之间配设多个太阳能电池元件和由将这些多个太阳能电池元件连结的连结体构成的太阳能电池元件串,将封装该串的表侧密封剂填充到透光性基板与太阳能电池元件串之间,另外,将背侧密封剂充填到背面保护材料与太阳能电池元件串之间。The solar cell module according to the present invention has a light-transmitting substrate on the light-receiving surface side, a rear-surface protective material on the back side, and a plurality of solar cell elements are arranged between the light-receiving surface and the back surface, and these plurality of solar cell elements are connected. The solar cell element string composed of connected bodies, the front side sealant for encapsulating the string is filled between the light-transmitting substrate and the solar cell element string, and the back side sealant is filled between the back side protective material and the solar cell element string between.
这种情况下,上述太阳能电池元件可以分别适用于包括P型半导体基板的产物、包括N型半导体基板的产物、包括薄膜元件的产物,全部显现出效果。In this case, the above-mentioned solar cell element can be applied to products including a P-type semiconductor substrate, a product including an N-type semiconductor substrate, and a product including a thin-film element, respectively, and all exhibit effects.
另外,作为透光性基板,使用白板玻璃、聚碳酸酯、亚克力板等。其中,白板玻璃一般使用钠钙玻璃。就钠钙玻璃而言,Na+离子的产生容易发生,系统化后,如果将太阳能电池组件多个串联地连结,在单元侧产生了高电压(负)负荷时,Na+离子移动至单元侧,到达单元表面,发生再结合,引起太阳能电池组件的输出功率降低,但本发明由于对于PID现象的耐性高,能够抑制与PID现象相伴的太阳能电池组件的输出功率降低,因此能够有效地使用白板玻璃。In addition, as the translucent substrate, whiteboard glass, polycarbonate, acrylic board, etc. are used. Among them, soda-lime glass is generally used for whiteboard glass. In soda lime glass, Na + ions are easily generated. After systemization, if a plurality of solar cell modules are connected in series and a high voltage (negative) load is generated on the cell side, Na + ions will move to the cell side. , reach the unit surface, recombination occurs, and cause the output power of the solar cell module to decrease, but the present invention has high tolerance to the PID phenomenon and can suppress the decrease in the output power of the solar cell module accompanied by the PID phenomenon, so the whiteboard can be effectively used Glass.
作为背面保护材料,使用TPT“PVF(聚氟乙烯)/粘接剂/PET(聚对苯二甲酸乙二醇酯)/粘接剂/PVF”、TPE“PVF/粘接剂/PET/粘接剂/EVA”、或者特别是“PVF/粘接剂/PET”中所示的层叠体的膜等。另外,作为背面保护材料,也可以使用与上述表面侧同样的透光性基板。As the back protection material, TPT "PVF (polyvinyl fluoride)/adhesive/PET (polyethylene terephthalate)/adhesive/PVF", TPE "PVF/adhesive/PET/adhesive Adhesive/EVA", or especially a film of a laminate shown in "PVF/adhesive/PET". In addition, as the rear surface protection material, the same light-transmitting substrate as that on the above-mentioned front side can also be used.
本发明中,作为上述表侧密封剂,使用EVA与有机硅的复合层叠体。另一方面,作为背侧密封剂,可单独使用EVA,也可使用与表侧密封剂同样的EVA与有机硅的复合层叠体。In the present invention, a composite laminate of EVA and silicone is used as the front side sealing agent. On the other hand, as the back sealant, EVA may be used alone, or a composite laminate of EVA and silicone may be used as in the front sealant.
这种情况下,作为表侧密封剂的使用方式,EVA与有机硅的任一个都可以位于透光性基板侧,另外,作为背面保护材料使用上述复合层叠体的情况下,EVA与有机硅的任一个都可以位于背面保护材料侧。In this case, either EVA or silicone may be used on the side of the light-transmitting substrate as the front side sealant. In addition, in the case of using the above-mentioned composite laminate as the back protection material, the difference between EVA and silicone may be used. Either may be located on the back protection material side.
图1~图6表示这样的密封剂的配设方式。即,图1为有关本发明的第1实施方式的太阳能电池组件100,从太阳光入射方向,以作为透光性基板101的白板玻璃、封装材料EVA102、有机硅103、结晶硅太阳能电池元件串104、封装材料EVA102、背面保护材料105的顺序构成。对于这些的层叠体而言,用真空层压机在真空下加热挤压、使其交联并且一体化。这样形成的太阳能电池组件100用铝框将外周部包围,连接至接地的金属台架。1 to 6 show how such a sealant is arranged. That is, FIG. 1 shows a solar cell module 100 according to the first embodiment of the present invention. From the direction of sunlight incidence, whiteboard glass as a light-transmitting substrate 101, packaging material EVA102, organic silicon 103, and crystalline silicon solar cell element strings are shown. 104. The encapsulation material EVA102 and the back protection material 105 are formed in sequence. These laminates are heated and pressed in a vacuum using a vacuum laminator to be crosslinked and integrated. The solar cell module 100 thus formed was surrounded by an aluminum frame and connected to a grounded metal stand.
另外,图2为有关本发明的第2实施方式的太阳能电池组件200,从太阳光入射方向,以作为透光性基板101的白板玻璃、封装材料有机硅103、EVA102、结晶硅太阳能电池元件串104、封装材料EVA102、背面保护材料105的顺序构成。In addition, FIG. 2 shows a solar cell module 200 according to a second embodiment of the present invention. From the direction of sunlight incidence, whiteboard glass as a light-transmitting substrate 101, packaging material silicone 103, EVA102, and crystalline silicon solar cell element strings are shown. 104. The encapsulation material EVA102 and the back protection material 105 are formed in sequence.
图3为有关本发明的第3实施方式的太阳能电池组件300,从太阳光入射方向,以作为透光性基板101的白板玻璃、封装材料EVA102、有机硅103、结晶硅太阳能电池元件串104、封装材料EVA102、有机硅103、背面保护材料105的顺序构成。3 is a solar cell module 300 according to the third embodiment of the present invention. From the incident direction of sunlight, whiteboard glass as a light-transmitting substrate 101, packaging material EVA102, organic silicon 103, crystalline silicon solar cell element strings 104, The encapsulation material EVA102, the silicone 103, and the back surface protection material 105 are constructed in sequence.
图4为有关本发明的第4实施方式的太阳能电池组件400,从太阳光入射方向,以作为透光性基板101的白板玻璃、封装材料有机硅103、EVA102、结晶硅太阳能电池元件串104、封装材料EVA102、有机硅103、背面保护材料105的顺序构成。4 is a solar cell module 400 according to the fourth embodiment of the present invention. From the direction of sunlight incidence, whiteboard glass as a light-transmitting substrate 101, packaging material silicone 103, EVA102, crystalline silicon solar cell element strings 104, The encapsulation material EVA102, the silicone 103, and the back surface protection material 105 are constructed in sequence.
图5为有关本发明的第5实施方式的太阳能电池组件500,从太阳光入射方向,以作为透光性基板101的白板玻璃、封装材料EVA102、有机硅103、结晶硅太阳能电池元件串104、封装材料有机硅103、EVA102、背面保护材料105的顺序构成。5 is a solar cell module 500 according to the fifth embodiment of the present invention. From the incident direction of sunlight, whiteboard glass as a light-transmitting substrate 101, packaging material EVA102, organic silicon 103, crystalline silicon solar cell element strings 104, The encapsulating material silicone 103, EVA 102, and back protection material 105 are sequentially constituted.
图6为有关本发明的第6实施方式的太阳能电池组件600,从太阳光入射方向,以作为透光性基板101的白板玻璃、封装材料有机硅103、EVA102、结晶硅太阳能电池元件串104、封装材料有机硅103、EVA102、背面保护材料105的顺序构成。6 is a solar cell module 600 according to the sixth embodiment of the present invention. From the direction of sunlight incidence, whiteboard glass as a light-transmitting substrate 101, packaging material silicone 103, EVA102, crystalline silicon solar cell element strings 104, The encapsulating material silicone 103, EVA 102, and back protection material 105 are sequentially constituted.
其中,在上述复合层叠体中,有机硅的厚度优选0.05~3mm,特别优选0.1~1mm,EVA的厚度优选0.4~0.6mm。这种情况下,复合层叠体的厚度优选0.45~3.6mm,特别优选0.5~1.6mm。Among them, in the above composite laminate, the thickness of the silicone is preferably 0.05 to 3 mm, particularly preferably 0.1 to 1 mm, and the thickness of the EVA is preferably 0.4 to 0.6 mm. In this case, the thickness of the composite laminate is preferably 0.45 to 3.6 mm, particularly preferably 0.5 to 1.6 mm.
另一方面,只使用EVA作为背侧密封剂的情况下,其厚度优选为0.4~0.6mm。On the other hand, when only EVA is used as the back sealant, the thickness is preferably 0.4 to 0.6 mm.
本发明中,作为EVA(乙烯-醋酸乙烯酯共聚物),使用在太阳能电池组件中通常使用的EVA,可使用市售品。作为一般的EVA,将乙烯和醋酸乙烯酯以质量比75:25~65:35的比例共聚而成的产物可作为市售品得到。In the present invention, as EVA (ethylene-vinyl acetate copolymer), EVA generally used in solar cell modules is used, and a commercially available product can be used. As a general EVA, the thing which copolymerized ethylene and vinyl acetate in the mass ratio of 75:25-65:35 is available as a commercial item.
另外,本发明中,有机硅优选通过将包含下述(A)~(C)成分的有机硅组合物固化而得到。Moreover, in this invention, it is preferable that silicone is obtained by hardening the silicone composition containing following (A)-(C) component.
(A)由下述平均组成式(I)(A) consists of the following average composition formula (I)
R1 aSiO(4-a)/2 (I)R 1 a SiO (4-a)/2 (I)
(式中,R1表示相同或不同的未取代或取代的1价烃基,a为1.95~2.05的正数。)(In the formula, R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon groups, and a is a positive number from 1.95 to 2.05.)
表示的聚合度为100以上的有机聚硅氧烷:100质量份、Organopolysiloxane with a degree of polymerization of 100 or more: 100 parts by mass,
(B)比表面积为50m2/g以上的补强性二氧化硅:20~150质量份、(B) Reinforcing silica having a specific surface area of 50 m 2 /g or more: 20 to 150 parts by mass,
(C)固化剂:使(A)成分固化的有效量。(C) Curing agent: The effective amount which hardens (A) component.
更详细地说,上述(A)成分为由下述平均组成式(I)表示的聚合度为100以上的有机聚硅氧烷。More specifically, the above-mentioned (A) component is an organopolysiloxane having a degree of polymerization represented by the following average composition formula (I) of 100 or more.
R1 aSiO(4-a)/2 (I)R 1 a SiO (4-a)/2 (I)
(式中,R1表示相同或不同的未取代或取代的1价烃基,a为1.95~2.05的正数。)(In the formula, R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon groups, and a is a positive number from 1.95 to 2.05.)
上述平均组成式(I)中,R1表示相同或不同的未取代或取代的1价烃基,通常优选碳数1~12、特别地碳数1~8的1价烃基,具体地,可列举出甲基、乙基、丙基、丁基、己基、辛基等烷基、环戊基、环己基等环烷基、乙烯基、烯丙基、丙烯基等烯基、环烯基、苯基、甲苯基等芳基、苄基、2-苯基乙基等芳烷基、或者这些基团的氢原子的一部分或全部被卤素原子或氰基等取代的基团,优选甲基、乙烯基、苯基、三氟丙基,特别优选甲基、乙烯基。In the above-mentioned average composition formula (I), R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon groups, usually preferably a monovalent hydrocarbon group with 1 to 12 carbon atoms, especially a monovalent hydrocarbon group with 1 to 8 carbon atoms, specifically, Alkyl such as methyl, ethyl, propyl, butyl, hexyl, octyl, cycloalkyl such as cyclopentyl and cyclohexyl, alkenyl such as vinyl, allyl, propenyl, cycloalkenyl, benzene Aryl groups such as radicals, tolyl groups, benzyl groups, aralkyl groups such as 2-phenylethyl groups, or groups in which some or all of the hydrogen atoms in these groups are substituted by halogen atoms or cyano groups, preferably methyl, vinyl radical, phenyl, trifluoropropyl, particularly preferably methyl, vinyl.
具体地,优选该有机聚硅氧烷的主链由二甲基硅氧烷重复单元组成的产物、或者在由构成该主链的二甲基硅氧烷重复单元组成的二甲基聚硅氧烷结构的一部分中导入了具有苯基、乙烯基、3,3,3-三氟丙基等的二苯基硅氧烷单元、甲基苯基硅氧烷单元、甲基乙烯基硅氧烷单元、甲基-3,3,3-三氟丙基硅氧烷单元等的产物等。Specifically, a product in which the main chain of the organopolysiloxane is composed of dimethylsiloxane repeating units, or a dimethylpolysiloxane composed of dimethylsiloxane repeating units constituting the main chain is preferred. Diphenylsiloxane units, methylphenylsiloxane units, methylvinylsiloxane units having phenyl, vinyl, 3,3,3-trifluoropropyl, etc. Units, products of methyl-3,3,3-trifluoropropylsiloxane units, etc.
特别地,有机聚硅氧烷优选在1分子中具有2个以上的烯基、环烯基等脂肪族不饱和基团,特别优选为乙烯基。这种情况下,优选全部R1中的0.01~20摩尔%、特别地0.02~10摩尔%为脂肪族不饱和基团。再有,该脂肪族不饱和基团可以在分子链末端与硅原子键合,也可与分子链的中途的硅原子键合,还可以是这两者,但优选至少与分子链末端的硅原子键合。另外,a为1.95~2.05的正数,优选为1.98~2.02的正数,更优选为1.99~2.01的正数。In particular, the organopolysiloxane preferably has two or more aliphatic unsaturated groups such as alkenyl groups and cycloalkenyl groups in one molecule, particularly preferably vinyl groups. In this case, preferably 0.01 to 20 mol%, particularly 0.02 to 10 mol%, of all R 1 are aliphatic unsaturated groups. Furthermore, the aliphatic unsaturated group may be bonded to a silicon atom at the end of the molecular chain, or may be bonded to a silicon atom in the middle of the molecular chain, or both, but is preferably at least bonded to the silicon atom at the end of the molecular chain. Atoms are bonded. In addition, a is a positive number of 1.95 to 2.05, preferably a positive number of 1.98 to 2.02, more preferably a positive number of 1.99 to 2.01.
(A)成分的有机聚硅氧烷,可以优选地列举出分子链末端被三甲基甲硅烷氧基、二甲基苯基甲硅烷氧基、二甲基羟基甲硅烷氧基、二甲基乙烯基甲硅烷氧基、甲基二乙烯基甲硅烷氧基、三乙烯基甲硅烷氧基等三有机甲硅烷氧基封端的产物。作为特别优选的有机聚硅氧烷,可以列举出甲基乙烯基聚硅氧烷、甲基苯基乙烯基聚硅氧烷、甲基三氟丙基乙烯基聚硅氧烷等。(A) The organopolysiloxane of the component preferably includes trimethylsiloxy, dimethylphenylsiloxy, dimethylhydroxysiloxy, dimethyl Vinylsiloxy, methyldivinylsiloxy, trivinylsiloxy and other triorganosiloxy-capped products. As particularly preferable organopolysiloxanes, methylvinylpolysiloxane, methylphenylvinylpolysiloxane, methyltrifluoropropylvinylpolysiloxane, and the like are exemplified.
这样的有机聚硅氧烷例如可以通过使有机卤代硅烷的1种或2种以上(共)水解缩合而得到,或者将环状聚硅氧烷(硅氧烷的3聚体、4聚体等)使用碱性或酸性的催化剂进行开环聚合而得到。它们基本上是直链状的二有机聚硅氧烷,作为(A)成分,可以是分子量(聚合度)、分子结构不同的2种或3种以上的混合物。Such an organopolysiloxane can be obtained, for example, by (co)hydrolyzing and condensing one or more organohalosilanes, or by combining a cyclic polysiloxane (trimer, tetramer of siloxane etc.) are obtained by ring-opening polymerization using a basic or acidic catalyst. These are basically straight-chain diorganopolysiloxanes, and may be a mixture of two or more different molecular weights (polymerization degrees) and molecular structures as the component (A).
再有,上述有机聚硅氧烷的聚合度为100以上,优选为100~100,000,特别优选为3,000~20,000。再有,该聚合度可以作为采用凝胶渗透色谱(GPC)分析的聚苯乙烯换算的重均聚合度测定。Furthermore, the degree of polymerization of the organopolysiloxane is 100 or more, preferably 100 to 100,000, particularly preferably 3,000 to 20,000. In addition, this degree of polymerization can be measured as a polystyrene-equivalent weight average degree of polymerization analyzed by gel permeation chromatography (GPC).
(B)成分的BET比表面积50m2/g以上的补强性二氧化硅是为了得到固化前后的机械强度优异的组合物而添加的。这种情况下,为了提高有机硅封装材料的透明性,优选BET比表面积超过200m2/g,更优选为250m2/g以上。如果BET比表面积为200m2/g以下,有时固化物的透明性降低。再有,对其上限并无特别限制,但通常为500m2/g以下。(B) Reinforcing silica having a BET specific surface area of 50 m 2 /g or more is added in order to obtain a composition excellent in mechanical strength before and after curing. In this case, in order to improve the transparency of the silicone encapsulating material, the BET specific surface area is preferably greater than 200 m 2 /g, more preferably greater than 250 m 2 /g. When the BET specific surface area is 200 m 2 /g or less, the transparency of the cured product may decrease. In addition, the upper limit is not particularly limited, but is usually 500 m 2 /g or less.
作为这样的(B)成分的补强性二氧化硅,可以列举出烟雾质二氧化硅(干式二氧化硅或气相法二氧化硅)、沉淀二氧化硅(湿式二氧化硅)等。另外,也优选使用将它们的表面用氯硅烷、烷氧基硅烷、六甲基二硅氮烷等进行了疏水化处理的产物。特别是采用六甲基二硅氮烷的处理,透明性升高而优选。要提高透明性时,作为补强性二氧化硅,优选使用烟雾质二氧化硅。补强性二氧化硅可以1种单独地使用,也可将2种以上并用。Examples of the reinforcing silica of such (B) component include fumed silica (dry silica or fumed silica), precipitated silica (wet silica), and the like. In addition, those whose surfaces have been hydrophobized with chlorosilane, alkoxysilane, hexamethyldisilazane, or the like are also preferably used. In particular, the treatment with hexamethyldisilazane is preferable because transparency increases. When transparency is to be improved, it is preferable to use fumed silica as the reinforcing silica. Reinforcing silica may be used individually by 1 type, and may use 2 or more types together.
作为(B)成分的补强性二氧化硅,可以使用市售品,例如可列举出AEROSIL 130、AEROSIL 200、AEROSIL 300、AEROSIL R-812、AEROSIL R-972、AEROSIL R-974等AEROSIL系列(日本AEROSIL(株)制造)、Cabosil MS-5、MS-7(Cabot Corporation制造)、REOLOSIL QS-102、103、MT-10((株)德山制造)等表面未处理或表面疏水化处理过的(即,亲水性或疏水性的)气相法二氧化硅、トクシールUS-F((株)德山制造)、NIPSIL-SS、NIPSIL-LP(日本二氧化硅工业(株)制造)等表面未处理或表面疏水化处理过的沉淀二氧化硅等。As the reinforcing silica of the (B) component, commercially available products can be used, for example, AEROSIL series ( Japan AEROSIL (manufactured by Co., Ltd.), Cabosil MS-5, MS-7 (manufactured by Cabot Corporation), REOLOSIL QS-102, 103, MT-10 (manufactured by Tokuyama Co., Ltd.), etc., have no surface treatment or surface hydrophobization treatment (that is, hydrophilic or hydrophobic) fumed silica, Tokusil US-F (manufactured by Tokuyama Co., Ltd.), NIPSIL-SS, NIPSIL-LP (manufactured by Nippon Silica Industry Co., Ltd.), etc. Untreated or surface hydrophobized precipitated silica, etc.
(B)成分的补强性二氧化硅的配合量,相对于(A)成分的有机聚硅氧烷100质量份,为20~150质量份,优选为30~90质量份,更优选为50~90质量份。(B)成分的配合量过少的情况下,无法获得固化前后的补强效果,另外,有机硅封装材料的固化后的透明性降低。过多的情况下,有可能在二氧化硅在有机硅封装材料中的分散变得困难的同时向片状的加工性变差。The compounding quantity of the reinforcing silica of component (B) is 20-150 mass parts with respect to 100 mass parts of organopolysiloxanes of (A) component, Preferably it is 30-90 mass parts, More preferably, it is 50 mass parts. ~90 parts by mass. When the compounding quantity of (B) component is too small, the reinforcement effect before and behind hardening cannot be acquired, and the transparency after hardening of the silicone sealing material falls. When too much, dispersion|distribution of silicon dioxide in a silicone encapsulant becomes difficult, and there exists a possibility that the processability to sheet shape may deteriorate.
作为(C)成分的固化剂,只要可使(A)成分固化,则并无特别限定,优选广泛作为有机硅组合物的固化剂公知的(a)加成反应(氢化硅烷化反应)型固化剂、即有机氢聚硅氧烷(交联剂)与氢化硅烷化反应催化剂的组合、或(b)有机过氧化物。The curing agent for component (C) is not particularly limited as long as it can cure component (A), but (a) addition reaction (hydrosilylation reaction) type curing widely known as a curing agent for silicone compositions is preferred. agent, that is, a combination of an organohydrogenpolysiloxane (crosslinking agent) and a hydrosilylation reaction catalyst, or (b) an organic peroxide.
作为上述(a)加成反应(氢化硅烷化反应)中的交联剂的有机氢聚硅氧烷,在1分子中含有至少2个与硅原子键合的氢原子(SiH基),可以应用由下述平均组成式(II)The organohydrogenpolysiloxane used as a crosslinking agent in the above (a) addition reaction (hydrosilylation reaction) contains at least two hydrogen atoms (SiH groups) bonded to silicon atoms in one molecule, and can be used Composed of the following average formula (II)
R2 bHcSiO(4-b-c)/2 (II)R 2 b H c SiO (4-bc)/2 (II)
(式中,R2为碳数1~6的未取代或取代的1价烃基,优选为不具有脂肪族不饱和键的1价烃基。作为具体例,为甲基、乙基、丙基、丁基、戊基、己基等的烷基、环己基、环己烯基、苯基等未取代的1价烃基、3,3,3-三氟丙基、氰基甲基等上述1价烃基的氢原子的至少一部分被卤素原子、氰基取代了的取代烷基等取代的1价烃基。b为0.7~2.1、c为0.01~1.0、并且b+c满足0.8~3.0的正数,优选地,b为0.8~2.0、c为0.2~1.0、并且b+c满足1.0~2.5的正数。)(wherein, R 2 is an unsubstituted or substituted monovalent hydrocarbon group with 1 to 6 carbon atoms, preferably a monovalent hydrocarbon group that does not have an aliphatic unsaturated bond. As specific examples, it is methyl, ethyl, propyl, Alkyl groups such as butyl, pentyl, and hexyl, unsubstituted monovalent hydrocarbon groups such as cyclohexyl, cyclohexenyl, and phenyl, and the above monovalent hydrocarbon groups such as 3,3,3-trifluoropropyl and cyanomethyl A monovalent hydrocarbon group in which at least a part of the hydrogen atoms is substituted by a halogen atom, a substituted alkyl group substituted with a cyano group, etc. b is 0.7 to 2.1, c is 0.01 to 1.0, and b+c satisfies a positive number of 0.8 to 3.0, preferably Specifically, b is 0.8-2.0, c is 0.2-1.0, and b+c is a positive number satisfying 1.0-2.5.)
表示的以往公知的有机氢聚硅氧烷。另外,有机氢聚硅氧烷的分子结构可以为直链状、环状、分支状、三维网状的任一种结构。这种情况下,优选使用1分子中的硅原子的数(或聚合度)为2~300个、特别地4~200个左右的室温下为液体的有机氢聚硅氧烷。再有,与硅原子键合的氢原子(SiH基)可以位于分子链末端,也可位于侧链,还可以位于这两者,使用在1分子中含有至少2个(通常2~300个)、优选地3个以上(例如3~200个)、更优选地4~150个左右的SiH基的有机氢聚硅氧烷。represents a conventionally known organohydrogenpolysiloxane. In addition, the molecular structure of the organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures. In this case, it is preferable to use an organohydrogenpolysiloxane that is liquid at room temperature and has about 2 to 300 silicon atoms (or a degree of polymerization) in one molecule, particularly about 4 to 200. In addition, the hydrogen atom (SiH group) bonded to the silicon atom may be located at the terminal of the molecular chain, may be located at the side chain, or may be located at both, and at least 2 (usually 2 to 300) are used in 1 molecule. , preferably 3 or more (for example, 3 to 200), more preferably 4 to 150 or so SiH-based organohydrogenpolysiloxanes.
作为该有机氢聚硅氧烷,具体地,可列举出1,1,3,3-四甲基二硅氧烷、1,3,5,7-四甲基环四硅氧烷、甲基氢环聚硅氧烷、甲基氢硅氧烷-二甲基硅氧烷环状共聚物、三(二甲基氢甲硅烷氧基)甲基硅烷、三(二甲基氢甲硅烷氧基)苯基硅烷、两末端三甲基甲硅烷氧基封端甲基氢聚硅氧烷、两末端三甲基甲硅烷氧基封端二甲基硅氧烷·甲基氢硅氧烷共聚物、两末端二甲基氢甲硅烷氧基封端二甲基聚硅氧烷、两末端二甲基氢甲硅烷氧基封端二甲基硅氧烷·甲基氢硅氧烷共聚物、两末端三甲基甲硅烷氧基封端甲基氢硅氧烷·二苯基硅氧烷共聚物、两末端三甲基甲硅烷氧基封端甲基氢硅氧烷-二苯基硅氧烷-二甲基硅氧烷共聚物、环状甲基氢聚硅氧烷、环状甲基氢硅氧烷-二甲基硅氧烷共聚物、环状甲基氢硅氧烷-二苯基硅氧烷-二甲基硅氧烷共聚物、由(CH3)2HSiO1/2单元和SiO4/2单元组成的共聚物、由(CH3)2HSiO1/2单元和SiO4/2单元和(C6H5)SiO3/2单元组成的共聚物等、上述各例示化合物中甲基的一部分或全部被乙基、丙基等其他烷基、苯基等芳基替换的产物等。Specific examples of the organohydrogenpolysiloxane include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, methyl Hydrocyclopolysiloxane, Methylhydrogensiloxane-Dimethicone Cyclic Copolymer, Tris(Dimethylhydrogensiloxy)methylsilane, Tris(Dimethylhydrogensiloxy) ) phenylsilane, two-terminal trimethylsiloxy-blocked methylhydrogenpolysiloxane, two-terminal trimethylsiloxy-blocked dimethylsiloxane-methylhydrogensiloxane copolymer , two-terminal dimethylhydrogensiloxy-blocked dimethylpolysiloxane, two-terminal dimethylhydrogensiloxy-blocked dimethylsiloxane-methylhydrogensiloxane copolymer, two Terminal trimethylsiloxy-blocked methylhydrogensiloxane-diphenylsiloxane copolymer, both-terminal trimethylsiloxy-blocked methylhydrogensiloxane-diphenylsiloxane -Dimethicone Copolymer, Cyclic Methylhydrogenpolysiloxane, Cyclic Methylhydrogensiloxane-Dimethicone Copolymer, Cyclic Methylhydrogensiloxane-Diphenyl Siloxane-dimethylsiloxane copolymers, copolymers consisting of (CH 3 ) 2 HSiO 1/2 units and SiO 4/2 units, copolymers consisting of (CH 3 ) 2 HSiO 1/2 units and SiO 4/ Copolymers composed of 2 units and (C 6 H 5 )SiO 3/2 units, etc., products in which part or all of the methyl groups in the above-mentioned exemplified compounds are replaced by other alkyl groups such as ethyl and propyl groups, and aryl groups such as phenyl groups Wait.
该有机氢聚硅氧烷的配合量,相对于(A)成分的有机聚硅氧烷100质量份,优选设为0.1~30质量份,更优选设为0.1~10质量份,进一步优选设为0.3~10质量份。The blending amount of the organohydrogenpolysiloxane is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.3 to 10 parts by mass.
另外,该有机氢聚硅氧烷优选以如下的量配合:(C)成分中的与硅原子键合的氢原子(即,SiH基)对于(A)成分中的与硅原子键合的烯基的摩尔比成为0.5~5摩尔/摩尔、优选地0.8~4摩尔/摩尔、更优选地1~3摩尔/摩尔。In addition, the organohydrogenpolysiloxane is preferably blended in such an amount that hydrogen atoms bonded to silicon atoms (that is, SiH groups) in the component (C) are relative to olefins bonded to silicon atoms in the component (A). The molar ratio of the groups is 0.5 to 5 mol/mol, preferably 0.8 to 4 mol/mol, more preferably 1 to 3 mol/mol.
另外,在上述(a)加成反应(氢化硅烷化反应)的交联反应中所使用的氢化硅烷化反应催化剂,可应用公知的催化剂,例如可列举出铂黑、氯化铂、氯铂酸、氯铂酸与1元醇的反应物、氯铂酸与烯烃类的络合物、双乙酰乙酸铂等铂系催化剂、钯系催化剂、铑系催化剂等。再有,该氢化硅烷化反应催化剂的配合量可以设为催化剂量,通常,换算为铂族金属质量,优选1~1,000ppm,更优选5~100ppm的范围。如果不到1ppm,有可能加成反应没有充分地进行,固化变得不充分,添加超过1,000ppm的量是不经济的。In addition, as the hydrosilylation reaction catalyst used in the crosslinking reaction of the above (a) addition reaction (hydrosilylation reaction), known catalysts can be applied, for example, platinum black, platinum chloride, chloroplatinic acid , Reactants of chloroplatinic acid and monohydric alcohols, complexes of chloroplatinic acid and olefins, platinum-based catalysts such as platinum diacetoacetate, palladium-based catalysts, rhodium-based catalysts, etc. In addition, the blending amount of the hydrosilylation reaction catalyst may be a catalyst amount, and usually, it is preferably in the range of 1 to 1,000 ppm, more preferably in the range of 5 to 100 ppm in terms of the mass of the platinum group metal. If it is less than 1 ppm, there is a possibility that the addition reaction does not proceed sufficiently and curing becomes insufficient, so adding an amount exceeding 1,000 ppm is not economical.
另外,除了上述的反应催化剂以外,为了调节固化速度或适用期,可使用加成反应控制剂。具体地,可列举出乙炔基环己醇、四甲基四乙烯基环四硅氧烷等。In addition, in addition to the above-mentioned reaction catalysts, in order to adjust the curing speed or pot life, an addition reaction control agent may be used. Specific examples thereof include ethynylcyclohexanol, tetramethyltetravinylcyclotetrasiloxane, and the like.
另一方面,作为(b)有机过氧化物,例如可列举出过氧化苯甲酰、过氧化2,4-二氯苯甲酰、过氧化对-甲基苯甲酰、过氧化邻-甲基苯甲酰、过氧化2,4-二枯基、2,5-二甲基-双(2,5-叔-丁基过氧)己烷、过氧化二-叔-丁基、过苯甲酸叔丁酯、1,6-己二醇-双-叔-丁基过氧碳酸酯等。On the other hand, examples of (b) organic peroxides include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-toluyl peroxide, o-formyl peroxide Benzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl-bis(2,5-tert-butylperoxy)hexane, di-tert-butyl peroxide, benzene peroxide tert-butyl formate, 1,6-hexanediol-bis-tert-butyl peroxycarbonate, etc.
该(b)有机过氧化物的添加量,相对于(A)成分100质量份,优选0.1~15质量份,特别优选0.2~10质量份。如果添加量过少,则交联反应无法充分地进行,有时发生硬度降低、强度不足,如果过多,不仅在成本上不利,而且大量产生固化剂的分解物,有时使片材的变色增大。The addition amount of this (b) organic peroxide is 0.1-15 mass parts with respect to 100 mass parts of (A) components, Preferably it is 0.1-15 mass parts, Especially preferably, it is 0.2-10 mass parts. If the amount added is too small, the cross-linking reaction will not proceed sufficiently, and the hardness may decrease and the strength may be insufficient. If it is too large, not only the cost is disadvantageous, but also a large amount of decomposition products of the curing agent may be generated, and the discoloration of the sheet may increase. .
本发明涉及的有机硅组合物中,除了上述成分以外,在不损害本发明的目的的范围内,能够添加阻燃性赋予剂、着色剂、具有烷氧基甲硅烷基的碳官能硅烷等增粘剂。In the silicone composition according to the present invention, in addition to the above-mentioned components, within the range that does not impair the object of the present invention, flame retardancy imparting agents, colorants, carbon functional silanes having alkoxysilyl groups, etc. adhesive.
本发明涉及的有机硅组合物可以通过用双联辊、捏合机、班伯里混炼机等对上述的成分的规定量进行混炼而得到。The silicone composition according to the present invention can be obtained by kneading predetermined amounts of the above-mentioned components with twin rolls, a kneader, a Banbury mixer, or the like.
这样制备的有机硅组合物的固化前的可塑度成为150~1,000,优选成为200~800,更优选成为250~600。如果可塑度比150小,则未固化片材的形状维持困难,变得粘性强而难以使用。另外,如果超过1,000,则成为干干巴巴,片材化工序变得困难。应予说明,可塑度可以按照JIS K 6249测定.The plasticity before hardening of the silicone composition prepared in this way is 150-1,000, Preferably it is 200-800, More preferably, it is 250-600. If the degree of plasticity is less than 150, it will be difficult to maintain the shape of the uncured sheet, and it will become sticky and difficult to handle. On the other hand, if it exceeds 1,000, it becomes dry and dry, making the sheeting process difficult. It should be noted that plasticity can be measured in accordance with JIS K 6249.
将本发明涉及的未硫化状态的有机硅组合物成型为片状的情况下,作为成型方法,并无特别限定,可使用挤出成型、压延成型等。此时,有机硅组合物片材的厚度优选为0.05~3mm。When molding the unvulcanized silicone composition according to the present invention into a sheet shape, the molding method is not particularly limited, and extrusion molding, calender molding, and the like can be used. In this case, the thickness of the silicone composition sheet is preferably 0.05 to 3 mm.
对于本发明涉及的未硫化状态的有机硅组合物,可以以EVA作为基材,边使EVA与有机硅组合物的一面贴合边进行成型加工。The silicone composition in an unvulcanized state according to the present invention can be molded by using EVA as a base material and bonding one side of the EVA and the silicone composition together.
例如,作为未硫化状态的有机硅组合物与EVA的层叠方法,有用辊同时地将预先两者层叠的片材挤压成型,或者以有机硅单层用辊挤压成型后,在卷取过程中边与EVA同时地层叠边粘贴成型的方法等。For example, as the lamination method of the silicone composition and EVA in the unvulcanized state, the sheets laminated in advance are simultaneously extruded with a roll, or the silicone monolayer is extruded with a roll, and then rolled up in the coiling process. The method of laminating and pasting the middle side and EVA at the same time, etc.
再有,上述有机硅组合物的固化可以通过在120~150℃下加热20~60分钟而进行。In addition, curing of the silicone composition can be performed by heating at 120 to 150° C. for 20 to 60 minutes.
在此,对本发明的太阳能电池组件的制造方法进行说明,上述太阳能电池组件能够通过如下而成为组件:在受光面侧具有透光性基板,使EVA与未硫化状态的有机硅组合物重叠为2层结构的层叠体载置于透光性基板,在该层叠体上部载置太阳能电池元件串,在太阳能电池元件串背面上载置EVA单层、或者EVA与未硫化状态的有机硅组合物重叠为2层结构的层叠体,在最背面侧层叠了背面保护材料后,使用真空层压机,在真空下进行加热挤压,使未硫化状态的有机硅组合物和EVA交联。Here, the method for manufacturing the solar cell module of the present invention will be described. The solar cell module can be a module by having a light-transmitting substrate on the light-receiving surface side, and overlapping EVA and an unvulcanized silicone composition in two layers. The laminated body of the layer structure is placed on a light-transmitting substrate, a solar cell element string is placed on the upper part of the laminated body, and a single layer of EVA is placed on the back of the solar cell element string, or EVA and an unvulcanized silicone composition are stacked to form In the laminate of the two-layer structure, after laminating the back protection material on the backmost side, the silicone composition and EVA in the unvulcanized state are cross-linked by heating and pressing under vacuum using a vacuum laminator.
实施例Example
以下示出实施例和比较例,对本发明具体地说明,但本发明并不限于下述的实施例。应予说明,配合量的单位的份为质量份。另外,重均分子量、重均聚合度为凝胶渗透色谱(GPC)分析中的聚苯乙烯换算值。Examples and comparative examples are shown below to describe the present invention in detail, but the present invention is not limited to the following examples. In addition, the part of the unit of a compounding quantity is a mass part. In addition, the weight average molecular weight and weight average degree of polymerization are polystyrene-equivalent values in gel permeation chromatography (GPC) analysis.
[实施例、比较例][Example, comparative example]
首先,对实施例和比较例中使用的有机硅进行说明。First, silicones used in Examples and Comparative Examples will be described.
添加由二甲基硅氧烷单元99.85摩尔%、甲基乙烯基硅氧烷单元0.025摩尔%、二甲基乙烯基硅氧烷单元0.125摩尔%组成、平均聚合度为约6,000的有机聚硅氧烷100份、BET比表面积300m2/g的二氧化硅(商品名AEROSIL 300、日本AEROSIL(株)制造)70份、作为分散剂的六甲基二硅氮烷16份、水4份,用捏合机进行混炼,在170℃下加热处理2小时,制备了混炼胶。Added an organic polymer consisting of 99.85 mol% of dimethylsiloxane units, 0.025 mol% of methylvinylsiloxane units, and 0.125 mol% of dimethylvinylsiloxane units, with an average degree of polymerization of about 6,000. 100 parts of siloxane, 70 parts of silica (trade name AEROSIL 300, manufactured by Nippon Aerosil Co., Ltd.) with a BET specific surface area of 300 m 2 /g, 16 parts of hexamethyldisilazane as a dispersant, 4 parts of water , kneaded with a kneader, and heat-treated at 170° C. for 2 hours to prepare a rubber compound.
相对于上述混炼胶100份,用双辊将作为加成交联固化剂的C-25A(铂催化剂)/C-25B(有机氢聚硅氧烷)(都为信越化学工业(株)制造)各自0.5份/2.0份均匀混合后,采用压延辊制作了未硫化状态的有机硅组合物的片材。With respect to 100 parts of the above rubber compound, C-25A (platinum catalyst)/C-25B (organohydrogenpolysiloxane) (both manufactured by Shin-Etsu Chemical Co., Ltd.) After uniformly mixing 0.5 part/2.0 parts each, a sheet of the silicone composition in an unvulcanized state was produced using a calender roll.
另外,作为EVA使用サンビック(株)制太阳能电池用EVA片材(快速固化型),作为表面的透光性基板,使用中岛硝子工业(株)制白板玻璃(3.2mm厚、带有单面压花形状),作为背面保护材料,使用(株)エムエーパッケージング的TPT(Tedlar-PET-Tedlar:PTD250),制作了实施例和比较例的太阳能电池组件。In addition, as the EVA, an EVA sheet for solar cells (rapid curing type) manufactured by Sunbick Co., Ltd. was used, and as a light-transmitting substrate on the surface, whiteboard glass (3.2 mm thick, with a single-sided embossed shape) as the back protection material, using TPT (Tedlar-PET-Tedlar: PTD250) of Emme-Pakkerging Co., Ltd., to produce solar cell modules of Examples and Comparative Examples.
即,按照上述的图1~图6的构成,得到了实施例1~6的太阳能电池组件100~600。That is, according to the configurations of FIGS. 1 to 6 described above, the solar cell modules 100 to 600 of Examples 1 to 6 were obtained.
另外,得到了图7中所示的太阳能电池组件700(比较例1)。其从太阳光入射方向按作为透光性基板101的白板玻璃、封装材料EVA102、结晶硅太阳能电池元件串104、封装材料EVA102、有机硅103、背面保护材料105的顺序构成。In addition, a solar cell module 700 (Comparative Example 1) shown in FIG. 7 was obtained. It is composed of whiteboard glass as translucent substrate 101 , encapsulating material EVA102 , crystalline silicon solar cell element strings 104 , encapsulating material EVA102 , silicone 103 , and back protection material 105 in order from the direction of sunlight incidence.
图8为太阳能电池组件800(比较例2),从太阳光入射方向按作为透光性基板101的白板玻璃、封装材料EVA102、结晶硅太阳能电池元件串104、封装材料有机硅103、EVA102、背面保护材料105的顺序构成。Fig. 8 is a solar cell module 800 (comparative example 2), according to the whiteboard glass as the light-transmitting substrate 101, the packaging material EVA102, the crystalline silicon solar cell element string 104, the packaging material organic silicon 103, EVA102, the back side from the incident direction of sunlight The protection material 105 is constructed sequentially.
图9为太阳能电池组件900(比较例3),从太阳光入射方向按作为透光性基板101的白板玻璃、封装材料EVA102、结晶硅太阳能电池元件串104、封装材料EVA102、背面保护材料105的顺序构成。Fig. 9 is a solar cell module 900 (comparative example 3), according to the whiteboard glass as the light-transmitting substrate 101, the packaging material EVA102, the crystalline silicon solar cell element string 104, the packaging material EVA102, and the rear surface protection material 105 from the incident direction of sunlight. sequential composition.
图10为太阳能电池组件1000(比较例4),从太阳光入射方向按作为透光性基板101的白板玻璃、封装材料有机硅103、结晶硅太阳能电池元件串104、封装材料有机硅103、背面保护材料105的顺序构成。Fig. 10 is a solar cell module 1000 (comparative example 4), according to the whiteboard glass as the light-transmitting substrate 101, the encapsulating material organic silicon 103, the crystalline silicon solar cell element string 104, the encapsulating material organic silicon 103, and the back surface from the sunlight incident direction. The protection material 105 is constructed sequentially.
其中,封装材料EVA102的厚度为0.45mm,为片状。另外,封装材料有机硅103的厚度为0.5mm,太阳能电池组件100~700为有机硅103与EVA102一体化的片状。即,EVA有机硅层叠体的总厚度为0.95mm。在太阳能电池组件800中,封装材料有机硅103为厚度0.5mm的单体。Wherein, the packaging material EVA102 has a thickness of 0.45mm and is in the shape of a sheet. In addition, the thickness of the packaging material organic silicon 103 is 0.5mm, and the solar cell modules 100-700 are in the shape of a sheet in which the organic silicon 103 and the EVA 102 are integrated. That is, the total thickness of the EVA silicone laminate was 0.95 mm. In the solar cell module 800 , the encapsulation material silicone 103 is a single body with a thickness of 0.5 mm.
另外,就太阳能电池组件100而言,制作未硫化状态的封装材料有机硅103的厚度为0.05、0.1、0.25、0.5、1、3mm的6种,分别与EVA102一体化而成。因此,封装材料EVA有机硅层叠体的厚度分别为0.5、0.55、0.7、0.95、1.45、3.45mm。In addition, regarding the solar battery module 100 , six types of unvulcanized encapsulating material silicone 103 with a thickness of 0.05, 0.1, 0.25, 0.5, 1, and 3 mm are made, which are integrated with EVA 102 respectively. Therefore, the thicknesses of the packaging material EVA silicone laminates are 0.5, 0.55, 0.7, 0.95, 1.45, and 3.45 mm, respectively.
接下来,对各太阳能电池组件的制造中的各工序进行说明。Next, each step in the manufacture of each solar cell module will be described.
[太阳能电池组件的制作][Production of solar cell modules]
[1]EVA有机硅层叠体片材的制作[1] Production of EVA silicone laminate sheet
通过压延加工将上述有机硅组合物形成为片材。此时,以未硫化状态的有机硅组合物的厚度成为0.05、0.1、0.25、0.5、1、3mm厚的方式制备,边以EVA作为基材进行粘贴边加工成型。The above silicone composition is formed into a sheet by calendering. At this time, the thickness of the silicone composition in the unvulcanized state was prepared so that the thickness was 0.05, 0.1, 0.25, 0.5, 1, and 3 mm, and it was molded while pasting EVA as a base material.
对于未硫化状态的有机硅组合物上面而言,按压压花膜,边保护有机硅面边形成。On the top of the silicone composition in an unvulcanized state, an embossed film is pressed and formed while protecting the silicone surface.
[2]太阳能电池元件(单元)的构成[2] Configuration of solar cell elements (units)
太阳能电池单元104使用了156mm四方的太阳能电池用p型单晶单元。The solar cell 104 used a 156 mm square p-type single crystal cell for solar cells.
[3]太阳能电池元件(单元)串的制作[3] Fabrication of solar cell element (unit) strings
太阳能电池单元串104是排列为4方尺寸(2×2列),将连接配线各自串联地连接而形成。The solar battery cell string 104 is arranged in a quadrangular size (2×2 rows), and is formed by connecting connection wires in series.
[4]太阳能电池组件的形成[4] Formation of solar cell modules
以太阳能电池组件100为例进行说明。The solar cell module 100 is taken as an example for description.
在白板玻璃(透光性基板101)的上面,以EVA102配置在与白板玻璃相接的一侧的形式载置EVA有机硅复合体(102、103)。在有机硅103上面载置上述太阳能电池单元串104,在其上面载置EVA102,最终载置背面保护材料105。EVA-silicon composites (102, 103) are placed on the upper surface of whiteboard glass (light-transmitting substrate 101) such that EVA 102 is arranged on a side in contact with whiteboard glass. The solar battery cell string 104 described above is placed on the silicone 103 , the EVA 102 is placed thereon, and finally the back surface protection material 105 is placed thereon.
将这样得到的玻璃·封装材料·单元封装材料、背面保护材料的层叠体用真空层压机在140℃、真空下加热挤压,形成了太阳能电池组件。在没有在EVA102与有机硅103之间产生通过目视确认的界面,没有产生褶皱、起伏的情况下,可以良好地进行层压密封。The thus-obtained laminate of glass, encapsulant, cell encapsulant, and rear surface protection material was heated and extruded at 140° C. under vacuum with a vacuum laminator to form a solar cell module. When there is no visually confirmed interface between the EVA 102 and the silicone 103, and no wrinkles or undulations occur, lamination sealing can be performed satisfactorily.
经过上述工序制作的太阳能电池组件,在周围安装由铝合金构成的框,封入有机硅等边缘封装材料,最终将框的角落部进行螺丝紧固固定,从而最终完成了太阳能电池组件。After the solar cell module produced through the above process, a frame made of aluminum alloy is installed around it, and edge sealing materials such as silicone are sealed, and finally the corners of the frame are screwed and fixed, and the solar cell module is finally completed.
接下来,示出PID试验的实施例和比较例。Next, examples and comparative examples of the PID test are shown.
[PID试验][PID test]
对于上述这样制作的太阳能电池组件,使受光面侧玻璃向下,在水槽中将受光面侧白板玻璃浸入水面,并且在温度60℃、湿度85%RH环境下进行了试验。The solar cell module fabricated as above was tested under an environment of temperature 60° C. and humidity 85% RH with the light-receiving side glass facing down, and the white plate glass on the light-receiving side was immersed in water in a water tank.
在外侧铝框与太阳能电池单元配线间施加在太阳能电池单元内部成为-1,000V的电压,实施了96小时。输出功率测定使用脉冲波IV模拟器、在试验前与试验后测定、比较。测定试验条件为25℃、照度1,000W/m2。A voltage of -1,000 V inside the solar battery cell was applied between the outer aluminum frame and the solar battery cell wiring, and the test was carried out for 96 hours. The output power was measured using a pulse wave IV simulator, measured and compared before and after the test. The measurement test conditions are 25°C and 1,000W/m 2 illuminance.
将结果示于表1、2中。The results are shown in Tables 1 and 2.
[表1][Table 1]
[表2][Table 2]
如表1中所示那样,可知太阳能电池组件100、200、300、400、500、600的试验后的输出功率维持率(初期)为100±0.2%以内,抑制了PID现象。As shown in Table 1, the output power maintenance rate (initial stage) after the test of the solar cell modules 100, 200, 300, 400, 500, and 600 was found to be within 100±0.2%, and the PID phenomenon was suppressed.
如表2中所示那样,可知太阳能电池组件700、800的试验后的输出功率维持率(初期)分别为72.6%、68.9%,发生了PID现象。该结果表示如果在受光面侧白板玻璃与太阳能电池单元之间不存在有机硅,则不能抑制PID。另外,太阳能电池组件900的试验后的输出功率维持率(初期)为60.1%,PID现象的发生状况最大。As shown in Table 2, it can be seen that the output power maintenance ratios (initial stage) of the solar cell modules 700 and 800 after the test were 72.6% and 68.9%, respectively, and the PID phenomenon occurred. This result shows that PID cannot be suppressed unless silicone is present between the light-receiving surface side whiteboard glass and the solar cell. In addition, the output maintenance rate (initial stage) of the solar cell module 900 after the test was 60.1%, and the occurrence state of the PID phenomenon was the largest.
太阳能电池组件1000的试验后的输出功率维持率为100.1%,抑制了PID现象。对于该结构体而言,认为太阳能电池组件的PID耐性最大,但存在太阳能电池生产成本的问题。The output maintenance rate of the solar cell module 1000 after the test was 100.1%, and the PID phenomenon was suppressed. This structure is considered to have the highest PID resistance of the solar cell module, but there is a problem of solar cell production cost.
另外,将在太阳能电池组件100中使有机硅的厚度改变的评价结果示于表3中。In addition, Table 3 shows the evaluation results of changing the thickness of the silicone in the solar cell module 100 .
[表3][table 3]
如表3中所示那样,在0.05mm下输出功率维持率为98.0%,在有机硅的厚度0.1、0.25、0.5、1、3mm下,为100±0.2%。即使是0.05mm厚,也获得PID现象抑制效果,但优选0.1mm厚以上。As shown in Table 3, the output retention rate was 98.0% at 0.05 mm, and 100±0.2% at thicknesses of silicone of 0.1, 0.25, 0.5, 1, and 3 mm. Even if it is 0.05 mm thick, the PID phenomenon suppression effect can be obtained, but it is preferably 0.1 mm thick or more.
由以上所述,本发明涉及的太阳能电池组件通过使用EVA和有机硅的复合体作为封装材料,并且在由玻璃等构成的透过性基板与太阳能电池单元之间层叠该密封复合体,从而能够抑制PID发生,并且在不使太阳能电池组件的生产成本大幅地上升的情况下能够容易地获得良好的层压密封。From the above, the solar battery module according to the present invention can use a composite of EVA and silicone as a sealing material, and laminate the sealing composite between a transparent substrate made of glass or the like and a solar battery unit. Good lamination sealing can be easily obtained without greatly increasing the production cost of the solar cell module while suppressing the occurrence of PID.
附图标记的说明Explanation of reference signs
100、200、300、400、500、600、700、800、900、1000:太阳能电池组件100, 200, 300, 400, 500, 600, 700, 800, 900, 1000: solar cell modules
101:透光性基板101: Translucent substrate
102:封装材料EVA102: Packaging material EVA
103:封装材料有机硅103: Encapsulation material silicone
104:太阳能电池元件串104: solar cell element string
105:背面保护材料105: Back protection material
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015013157A JP6319118B2 (en) | 2015-01-27 | 2015-01-27 | Solar cell module and method for manufacturing solar cell module |
JP2015-013157 | 2015-01-27 | ||
PCT/JP2015/081545 WO2016121188A1 (en) | 2015-01-27 | 2015-11-10 | Solar cell module and method for producing solar cell module |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107231819A true CN107231819A (en) | 2017-10-03 |
Family
ID=56542826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201580074723.9A Withdrawn CN107231819A (en) | 2015-01-27 | 2015-11-10 | The manufacture method of solar cell module and solar cell module |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6319118B2 (en) |
KR (1) | KR20170107977A (en) |
CN (1) | CN107231819A (en) |
TW (1) | TWI677107B (en) |
WO (1) | WO2016121188A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111732902A (en) * | 2020-07-02 | 2020-10-02 | 常州斯威克光伏新材料有限公司 | A kind of anti-polarization encapsulation film for double-sided battery and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10321886A (en) * | 1997-05-21 | 1998-12-04 | Shibata Ind Co Ltd | Method of manufacturing solar cell module |
CN102892837A (en) * | 2010-03-05 | 2013-01-23 | 迈图高新材料有限责任公司 | Curable polyorganosiloxane composition for use as encapsulant for solar cell module |
JP2013191673A (en) * | 2012-03-13 | 2013-09-26 | Fuji Electric Co Ltd | Flexible solar battery module |
US20140106497A1 (en) * | 2007-03-20 | 2014-04-17 | Sanyo Electric Co., Ltd. | Solar cell module with sealing members |
JP2014225550A (en) * | 2013-05-16 | 2014-12-04 | 富士電機株式会社 | Solar battery module and method for manufacturing solar battery module |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10321888A (en) * | 1997-05-21 | 1998-12-04 | Shibata Ind Co Ltd | Protective sheet for solar cell module |
JPH11103085A (en) * | 1997-09-29 | 1999-04-13 | Shin Etsu Polymer Co Ltd | Solar battery, its manufacture and solar battery unit |
EP2588314B1 (en) * | 2010-07-02 | 2020-08-19 | 3M Innovative Properties Company | Barrier assembly with encapsulant and photovoltaic cell |
JP2013153085A (en) * | 2012-01-25 | 2013-08-08 | Shin Etsu Chem Co Ltd | Manufacturing method of solar cell module and solar cell module |
JP2014165296A (en) * | 2013-02-25 | 2014-09-08 | Panasonic Corp | Solar cell module and manufacturing method thereof |
-
2015
- 2015-01-27 JP JP2015013157A patent/JP6319118B2/en active Active
- 2015-11-10 CN CN201580074723.9A patent/CN107231819A/en not_active Withdrawn
- 2015-11-10 WO PCT/JP2015/081545 patent/WO2016121188A1/en active Application Filing
- 2015-11-10 KR KR1020177017396A patent/KR20170107977A/en not_active Withdrawn
- 2015-12-03 TW TW104140553A patent/TWI677107B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10321886A (en) * | 1997-05-21 | 1998-12-04 | Shibata Ind Co Ltd | Method of manufacturing solar cell module |
US20140106497A1 (en) * | 2007-03-20 | 2014-04-17 | Sanyo Electric Co., Ltd. | Solar cell module with sealing members |
CN102892837A (en) * | 2010-03-05 | 2013-01-23 | 迈图高新材料有限责任公司 | Curable polyorganosiloxane composition for use as encapsulant for solar cell module |
JP2013191673A (en) * | 2012-03-13 | 2013-09-26 | Fuji Electric Co Ltd | Flexible solar battery module |
JP2014225550A (en) * | 2013-05-16 | 2014-12-04 | 富士電機株式会社 | Solar battery module and method for manufacturing solar battery module |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111732902A (en) * | 2020-07-02 | 2020-10-02 | 常州斯威克光伏新材料有限公司 | A kind of anti-polarization encapsulation film for double-sided battery and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201631789A (en) | 2016-09-01 |
WO2016121188A1 (en) | 2016-08-04 |
KR20170107977A (en) | 2017-09-26 |
TWI677107B (en) | 2019-11-11 |
JP6319118B2 (en) | 2018-05-09 |
JP2016139683A (en) | 2016-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101614981B1 (en) | Photovoltaic cell module | |
JP6217328B2 (en) | UV shielding silicone adhesive sheet for solar cell sealing and solar cell module using the same | |
KR101644809B1 (en) | Solar cell encapsulant silicone composition and solar cell module | |
KR101133061B1 (en) | Sheet for photovoltaic cell | |
KR102000793B1 (en) | Method for producing a solar cell module | |
CN103636005B (en) | Solar module and manufacture method thereof | |
JP6784186B2 (en) | Manufacturing method of solar cell module | |
WO2023136147A1 (en) | Solar cell module, method for producing same, and solar cell sealing material | |
KR101064584B1 (en) | Photovoltaic Sheet | |
JP6269527B2 (en) | Manufacturing method of solar cell module | |
KR102165215B1 (en) | Silicone adhesive sheet for sealing a solar cell and method for producing a solar cell module using the same | |
CN107231819A (en) | The manufacture method of solar cell module and solar cell module | |
JP2015115442A (en) | Manufacturing method of solar cell module | |
JP2017163064A (en) | Solar cell module and method for manufacturing solar cell module | |
JP2019110327A (en) | Solar cell module and manufacturing method of the same | |
KR101413892B1 (en) | Photovoltaic cell module | |
JP2017191813A (en) | Solar cell module and manufacturing method thereof | |
JP6512113B2 (en) | Method of manufacturing solar cell module | |
JP2018082073A (en) | Manufacturing method for solar cell module | |
JP6540560B2 (en) | Method of manufacturing solar cell module | |
JP6589701B2 (en) | Method for producing flame retardant solar cell module | |
TW201810700A (en) | Thin film solar cell module and manufacturing method thereof | |
WO2019082927A1 (en) | Solar battery module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20171003 |
|
WW01 | Invention patent application withdrawn after publication |