CN107229801B - On-line Identification Method of Tire Rolling Resistance Coefficient - Google Patents
On-line Identification Method of Tire Rolling Resistance Coefficient Download PDFInfo
- Publication number
- CN107229801B CN107229801B CN201710436235.9A CN201710436235A CN107229801B CN 107229801 B CN107229801 B CN 107229801B CN 201710436235 A CN201710436235 A CN 201710436235A CN 107229801 B CN107229801 B CN 107229801B
- Authority
- CN
- China
- Prior art keywords
- vehicle
- resistance coefficient
- rolling resistance
- online
- wjw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000005096 rolling process Methods 0.000 claims abstract description 47
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 22
- 230000001133 acceleration Effects 0.000 claims description 34
- 238000005070 sampling Methods 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 abstract description 2
- 238000003064 k means clustering Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012821 model calculation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/15—Vehicle, aircraft or watercraft design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/06—Power analysis or power optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Control Of Transmission Device (AREA)
- Tires In General (AREA)
Abstract
本发明涉及一种轮胎滚动阻力系数在线辨识方法。首先利用行驶方程式建立辨识模型,然后结合在线聚类辨识算法实现了滚动阻力系数的在线辨识。辨识模型的建立融合了原始的行驶方程式和差分的行驶方程式,消除了整车质量的影响,弥补了以往需要依赖于整车质量计算滚动阻力系数的缺点。传统技术对轮胎滚动阻力系数的测量都是通过滑行试验获取,受单一试验环境限制,无法适应车辆行驶的复杂工况。本发明建立的在线辨识算法能够做到整车重要的参数在线获取,适应不同车辆运行状态和道路环境。
The invention relates to an online identification method for tire rolling resistance coefficient. Firstly, the identification model is established by using the driving equation, and then the online identification of the rolling resistance coefficient is realized by combining with the online cluster identification algorithm. The establishment of the identification model integrates the original driving equation and the differential driving equation, which eliminates the influence of the vehicle mass and makes up for the shortcomings of the previous need to rely on the vehicle mass to calculate the rolling resistance coefficient. The measurement of tire rolling resistance coefficient by traditional technology is obtained through sliding test, which is limited by a single test environment and cannot adapt to the complex working conditions of vehicle driving. The online identification algorithm established by the invention can achieve online acquisition of important parameters of the whole vehicle, and adapt to different vehicle operation states and road environments.
Description
技术领域technical field
本发明涉及汽车自动控制技术中的轮胎滚动阻力系数在线辨识方法,特别是一种不需要整车质量参数,利用纵向加速度传感器信息以及车辆行驶信息的轮胎滚动阻力系数在线辨识方法。The invention relates to an on-line identification method of tire rolling resistance coefficient in automobile automatic control technology, in particular to an on-line identification method of tire rolling resistance coefficient using longitudinal acceleration sensor information and vehicle driving information without requiring the quality parameters of the whole vehicle.
背景技术Background technique
轮胎滚动阻力系数是车辆运行经济性、动力性控制的重要参数,轮胎滚动阻力对整车纵向受力影响较大。随着自动控制技术的发展,许多整车控制参数已经能够做到在线辨识。然而滚动阻力系数是将滚动阻力简化表达为与整车质量成比例关系的抽象系数,不容易建立动力学或表达其产生机理的物理模型计算。Tire rolling resistance coefficient is an important parameter for vehicle operation economy and dynamic control, and tire rolling resistance has a great influence on the longitudinal force of the whole vehicle. With the development of automatic control technology, many vehicle control parameters can be identified online. However, the rolling resistance coefficient is an abstract coefficient that simplifies and expresses the rolling resistance as a proportional relationship with the mass of the whole vehicle, and it is not easy to establish the dynamics or to express the physical model calculation of its generation mechanism.
在整车条件下,常用的轮胎滚动阻力系数测量方法是滑行试验,在切断动力输出的前提下根据行驶阻力和空气阻力做功来计算。场地试验有诸多环境限制,例如温度,道路情况等等,针对特定环境测得的滚动阻力系数不能够表达多变工况下真实的滚动阻力。建立面向整车控制的轮胎滚动阻力系数在线辨识方法就是要摆脱试验场严苛的环境限制,采集行车过程中一些可以利用的行驶数据来实时辨识滚动阻力系数,使整车的自动控制能够做到重要参数的自适应。Under the condition of the whole vehicle, the commonly used tire rolling resistance coefficient measurement method is the sliding test, which is calculated according to the driving resistance and air resistance work under the premise of cutting off the power output. The field test has many environmental limitations, such as temperature, road conditions, etc. The rolling resistance coefficient measured for a specific environment cannot express the real rolling resistance under variable working conditions. The establishment of an online tire rolling resistance coefficient identification method for vehicle control is to get rid of the harsh environmental restrictions of the test site, collect some available driving data during the driving process to identify the rolling resistance coefficient in real time, and enable the automatic control of the vehicle to achieve Adaptation of important parameters.
传统的车辆固定参数辨识经常选用最小二乘算法,然而当真实的采样数据误差较大或者不是高斯白噪声时最小二乘算法将会产生较大误差。The traditional vehicle fixed parameter identification often uses the least squares algorithm. However, when the real sampled data has a large error or is not Gaussian white noise, the least squares algorithm will produce large errors.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于,为适应滚动阻力系数会随着车辆使用条件变化而变化,做到整车重要参数自适应,提出一种滚动阻力系数在线辨识方法,以实现滚动阻力系数的在线获取,适应不同工况环境,提高整车动力性和经济性控制系统的性能。The purpose of the present invention is to provide an online identification method of rolling resistance coefficient in order to adapt to the change of rolling resistance coefficient with the change of vehicle use conditions and to achieve self-adaptation of important parameters of the whole vehicle, so as to realize the online acquisition of rolling resistance coefficient and adapt to Different working conditions and environments, improve the performance of the vehicle dynamic and economical control system.
本发明滚动阻力系数在线聚类辨识方法,是基于车辆行驶状态信息和车载纵向加速度信息所建立的滚动阻力系数在线聚类辨识模型,包括以下步骤:The online clustering identification method of rolling resistance coefficient of the present invention is an online clustering identification model of rolling resistance coefficient established based on vehicle driving state information and vehicle longitudinal acceleration information, and includes the following steps:
S1.模型初始化S1. Model initialization
加载模型所需的固定参数,包含整车参数和算法参数;Fixed parameters required for loading the model, including vehicle parameters and algorithm parameters;
整车参数包含:整车传动效率η、轮胎滚动半径r、车辆行驶加速度av、飞轮转动惯量If、车轮转动惯量Iw、空气阻力系数CD、整车迎风面积A、空气密度ρ、重力加速度g;Vehicle parameters include: vehicle transmission efficiency η, tire rolling radius r, vehicle acceleration a v , flywheel moment of inertia I f , wheel moment of inertia I w , air resistance coefficient C D , vehicle windward area A, air density ρ, Gravitational acceleration g;
算法参数包含:聚类个数m,m个初始聚类中心 The algorithm parameters include: the number of clusters m, m initial cluster centers
S2.采集车辆行驶状态信息S2. Collect vehicle driving status information
在每一个采样时刻需要同步采集的CAN总线信息包含:整车速度v、发动机转速n、离合器踏板信号、制动踏板信号和纵向加速度传感器提供的加速度asen;The CAN bus information that needs to be collected synchronously at each sampling moment includes: vehicle speed v, engine speed n, clutch pedal signal, brake pedal signal and the acceleration a sen provided by the longitudinal acceleration sensor;
S3.判断是否是空挡滑行数据,如果是,继续执行后续步骤;如果不是,返回步骤S2采集下一时刻车辆行驶状态信息;S3. Determine whether it is the neutral gear sliding data, if so, continue to perform the subsequent steps; if not, return to step S2 to collect the vehicle driving state information at the next moment;
S4.计算整车质量表达式S4. Calculate the vehicle mass expression
首先计算整车纵向行驶滑行阻力,即Fwjw=-Fw-Fjw,First, calculate the sliding resistance of the vehicle in the longitudinal direction, namely F wjw = -F w -F jw ,
式中:为空气阻力;为车轮惯性力;av为车辆行驶加速度,是车速的导数;where: is air resistance; is the inertial force of the wheel; a v is the acceleration of the vehicle, which is the derivative of the vehicle speed;
然后利用差分法计算整车质量表达式:首先计算滑行阻力的差分量ΔFwjw,加速度传感器的差分量Δasen和车速平方值的差分量Δv2,然后根据差分的行驶方程式建立整车质量表达式为:M=ΔFwjw/Δasen;Then use the differential method to calculate the vehicle mass expression: first calculate the differential component ΔF wjw of the sliding resistance, the differential component Δa sen of the acceleration sensor and the differential component Δv 2 of the square value of the vehicle speed, and then establish the vehicle mass expression according to the differential driving equation is: M=ΔF wjw /Δa sen ;
S5.计算滚动阻力系数初步结果S5. Preliminary results of calculating rolling resistance coefficient
将整车质量表达式带入不含驱动力的行驶方程式,利用带遗忘因子的最小二乘算法估计该采样时刻(i)滚动阻力系数初步结果最小二乘的输入量为X=ΔFwjwg,输出量为Y=FwjwΔasen-asenΔFwjw;Bring the vehicle mass expression into the driving equation without driving force, and use the least squares algorithm with forgetting factor to estimate the initial result of the rolling resistance coefficient at the sampling time (i) The input quantity of the least squares is X=ΔF wjw g, and the output quantity is Y=F wjw Δa sen -a sen ΔF wjw ;
S6.对初步辨识结果利用在线K均值聚类,更新聚类中心S6. Use online K-means clustering for the preliminary identification results to update the cluster center
计算滚动阻力系数初步结果至各类聚类中心的距离待聚类点归类至距离最短的一类;更新输入量的聚类中心其中Fm(i)和Fm(i-1)分别是当前采样时刻以及前一采样时刻第m类的聚类中心。Calculate the distance from the preliminary results of the rolling resistance coefficient to the centers of various clusters The points to be clustered are classified into the class with the shortest distance; the cluster center of the input quantity is updated where F m (i) and F m (i-1) are the cluster centers of the mth class at the current sampling time and the previous sampling time, respectively.
S7.计算各类数据的占比,判断当前采样时刻的数据是否是数据量占比最大的一类;如果是,执行后续步骤,如果不是,返回步骤S2重新采集行驶状态信息;S7. Calculate the proportion of various types of data, and determine whether the data at the current sampling time is the category with the largest proportion of data; if so, perform subsequent steps, if not, return to step S2 to re-collect the driving state information;
S8.利用最小二乘算法对滚动阻力系数进一步辨识;S8. Use the least squares algorithm to further identify the rolling resistance coefficient;
S9.计算各类数据量,判断是否满足终止条件,当数据量最大的类满足设定数量时判别算法终止。S9. Calculate the amount of each type of data, and determine whether the termination condition is met. When the class with the largest amount of data meets the set amount, the algorithm terminates.
本发明建立了一种基于车辆行驶信息和纵向加速度传感器信息的滚动阻力系数在线聚类辨识模型。运用差分的纵向动力学公式和原始纵向动力学公式相融合的方法,消除了整车质量对辨识的影响,建立滚动阻力系数在线估计算法。建立的模型具有适应复杂工况的优点,在线K均值聚类算法能够有效剔除不良数据对辨识结果的影响。本发明设计了结合最小二乘算法和在线K均值聚类相结合的滚动阻力系数在线辨识方法,能够有效解决非高斯噪声分布对辨识结果产生不良影响的问题。The invention establishes an online cluster identification model of rolling resistance coefficient based on vehicle driving information and longitudinal acceleration sensor information. Using the method of integrating the differential longitudinal dynamics formula and the original longitudinal dynamics formula, the influence of the vehicle mass on the identification is eliminated, and an online estimation algorithm of the rolling resistance coefficient is established. The established model has the advantage of adapting to complex working conditions, and the online K-means clustering algorithm can effectively eliminate the influence of bad data on the identification results. The invention designs an online identification method of rolling resistance coefficient which combines the least squares algorithm and online K-means clustering, which can effectively solve the problem that the non-Gaussian noise distribution has an adverse effect on the identification result.
本发明滚动阻力系数在线辨识方法,能够在整车质量不同,道路环境变化等复杂工况环境下得到稳定可靠的滚动阻力系数,有助于提高整车动力性和经济性控制系统的性能。The on-line identification method for rolling resistance coefficient of the invention can obtain stable and reliable rolling resistance coefficient under complex working conditions such as different vehicle qualities and changes in road environment, and is helpful for improving the performance of the vehicle dynamic and economical control system.
附图说明Description of drawings
图1为本发明滚动阻力系数辨识方法流程示意图;Fig. 1 is the schematic flow chart of the rolling resistance coefficient identification method of the present invention;
具体实施方式Detailed ways
通过以下实施例的进一步具体描述,以便对本发明内容作进一步理解,但并不是对本发明的具体限定。The content of the present invention can be further understood through further detailed description of the following embodiments, but it is not intended to specifically limit the present invention.
实施例1Example 1
参照图1,一种滚动阻力系数在线辨识方法,是基于行驶信息和车载纵向加速度信息所建立的滚动阻力系数辨识模型,包括以下步骤:1, an online identification method for rolling resistance coefficient is a rolling resistance coefficient identification model established based on driving information and vehicle longitudinal acceleration information, including the following steps:
步骤S1:模型初始化。加载模型所需的固定参数,包含整车参数和算法参数。Step S1: Model initialization. Fixed parameters required for loading the model, including vehicle parameters and algorithm parameters.
整车参数包含:整车传动效率η、轮胎滚动半径r、车辆行驶加速度av、飞轮转动惯量If、车轮转动惯量Iw、空气阻力系数CD、整车迎风面积A、空气密度ρ、重力加速度g。算法参数包含:聚类个数m,m个初始聚类中心 Vehicle parameters include: vehicle transmission efficiency η, tire rolling radius r, vehicle acceleration a v , flywheel moment of inertia I f , wheel moment of inertia I w , air resistance coefficient C D , vehicle windward area A, air density ρ, Gravitational acceleration g. The algorithm parameters include: the number of clusters m, m initial cluster centers
步骤S2:采集车辆行驶状态信息。Step S2: Collect vehicle driving state information.
在每一个采样时刻需要同步采集的CAN总线信息包含:整车速度v、发动机转速n、离合器踏板信号、制动踏板信号和纵向加速度传感器提供的加速度asen。The CAN bus information that needs to be collected synchronously at each sampling moment includes: vehicle speed v, engine speed n, clutch pedal signal, brake pedal signal and the acceleration a sen provided by the longitudinal acceleration sensor.
步骤S3:判断是否是空挡滑行数据。如果是,继续执行后续步骤,如果不是返回S2采集下一时刻车辆行驶状态信息。Step S3: judging whether it is neutral sliding data. If yes, continue to perform the subsequent steps, if not, return to S2 to collect vehicle driving state information at the next moment.
步骤S4:计算整车质量表达式。Step S4: Calculate the vehicle mass expression.
首先计算滑行阻力。整车纵向受力平衡方程被运用于滑行阻力表达式的推导。整车纵向受力平衡方程为:First calculate the sliding resistance. The longitudinal force balance equation of the whole vehicle is used in the derivation of the sliding resistance expression. The longitudinal force balance equation of the vehicle is:
Ft=Ff+Fw+Fi+Fj (1)F t =F f +F w +F i +F j (1)
其中,为空气阻力;为汽车驱动力;为车轮加速阻力;为飞轮加速阻力;为变速器传动比与主减速器传动比的乘积;av是车辆行驶加速度,是车速的导数。接下来将加速阻力改写为:in, is air resistance; for the driving force of the car; resistance for wheel acceleration; Acceleration resistance for the flywheel; is the product of the transmission ratio and the final gear ratio; a v is the driving acceleration of the vehicle, which is the derivative of the vehicle speed. Next, rewrite the acceleration resistance as:
Fj=Fja+Fjw+Fjf (2)F j =F ja +F jw +F jf (2)
其中,Fja为整车平动加速阻力(Fja=mav);Fjw为车轮转动加速阻力Fjf为飞轮转动加速阻力 Among them, F ja is the vehicle translational acceleration resistance (F ja =ma v ); F jw is the wheel rotational acceleration resistance F jf is the acceleration resistance of flywheel rotation
将(2)式的表达带入(1)整理为:Bring the expression of (2) into (1) and organize it as:
Ft=Ff+Fw+Fi+Fja+Fjw+Fjf (3)F t =F f +F w +F i +F ja +F jw +F jf (3)
根据整车纵向受力平衡方程,在空挡滑行的过程中无驱动力和由发动机飞轮产生的惯性力,最终可得滑行阻力表达式:Fwjw=-Fw-Fjw。According to the longitudinal force balance equation of the whole vehicle, there is no driving force and inertial force generated by the engine flywheel during the neutral sliding process, and finally the sliding resistance expression can be obtained: F wjw = -F w -F jw .
另一方面,加速度传感器的测量值定义为:asen=gi+av,其中,asen是加速度传感器采集到的加速度值(单位m/s2)。根据加速度传感器定义式可得到含加速度传感器信息的滚动阻力系数辨识模型:On the other hand, the measurement value of the acceleration sensor is defined as: a sen =gi+ av , where a sen is the acceleration value (unit m/s 2 ) collected by the acceleration sensor. According to the definition of the acceleration sensor, the rolling resistance coefficient identification model containing the information of the acceleration sensor can be obtained:
Fwjw=m(gf+asen) (4)F wjw = m(gf+a sen ) (4)
然后利用差分的行驶方程式计算整车质量表达式。首先计算滑行阻力的差分量ΔFres,加速度传感器的差分量Δasen和车速平方值的差分量Δv2,然后根据差分的行驶方程式建立整车质量表达式为:M=ΔFwjw/Δasen Then use the differential driving equation to calculate the vehicle mass expression. First calculate the differential component ΔF res of the sliding resistance, the differential component Δa sen of the acceleration sensor and the differential component Δv 2 of the square value of the vehicle speed, and then establish the vehicle mass expression according to the differential driving equation: M=ΔF wjw /Δa sen
步骤S5:计算滚动阻力系数初步结果。Step S5: Calculate the preliminary result of the rolling resistance coefficient.
将整车质量表达式带入不含驱动力的行驶方程式,利用带遗忘因子的最小二乘算法估计该采样时刻(i)滚动阻力系数初步结果最小二乘的输入量为X=ΔFwjwg,输出量为Y=FwjwΔasen-asenΔFwjw Bring the vehicle mass expression into the driving equation without driving force, and use the least squares algorithm with forgetting factor to estimate the initial result of the rolling resistance coefficient at the sampling time (i) The input quantity of the least squares is X=ΔF wjw g, and the output quantity is Y=F wjw Δa sen -a sen ΔF wjw
步骤S6:对初步辨识结果利用在线K均值聚类,更新聚类中心。Step S6: Use online K-means clustering on the preliminary identification result to update the cluster center.
计算滚动阻力系数初步结果至各类聚类中心的距离待聚类点归类至距离最短的一类。更新输入量的聚类中心其中Fm(i)和Fm(i-1)分别是当前采样时刻以及前一采样时刻第m类的聚类中心。Calculate the distance from the preliminary results of the rolling resistance coefficient to the centers of various clusters The points to be clustered are classified into the class with the shortest distance. Update the cluster centers of the input where F m (i) and F m (i-1) are the cluster centers of the mth class at the current sampling time and the previous sampling time, respectively.
步骤S7:计算各类数据的占比,判断当前采样时刻的数据是否是数据量占比最大的一类。如果是,执行后续步骤,如果不是,返回S2重新采集行驶状态信息。Step S7: Calculate the proportions of various types of data, and determine whether the data at the current sampling time is the category with the largest proportion of data. If yes, perform the following steps, if not, return to S2 to collect the driving state information again.
步骤S8:滚动阻力系数进一步辨识。利用最小二乘算法对滚动阻力系数进一步辨识。Step S8: The rolling resistance coefficient is further identified. The rolling resistance coefficient is further identified by the least squares algorithm.
步骤S9:计算各类数据量,判断是否满足终止条件。当数据量最大的类满足一定数量时判别算法终止。本实施例推荐的数据数量是2000个。Step S9: Calculate the amount of various types of data, and determine whether the termination condition is satisfied. The discriminant algorithm terminates when the class with the largest amount of data satisfies a certain number. The recommended data quantity in this embodiment is 2000.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710436235.9A CN107229801B (en) | 2017-06-12 | 2017-06-12 | On-line Identification Method of Tire Rolling Resistance Coefficient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710436235.9A CN107229801B (en) | 2017-06-12 | 2017-06-12 | On-line Identification Method of Tire Rolling Resistance Coefficient |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107229801A CN107229801A (en) | 2017-10-03 |
CN107229801B true CN107229801B (en) | 2020-04-14 |
Family
ID=59934821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710436235.9A Expired - Fee Related CN107229801B (en) | 2017-06-12 | 2017-06-12 | On-line Identification Method of Tire Rolling Resistance Coefficient |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107229801B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109030019B (en) * | 2018-06-20 | 2020-04-07 | 吉林大学 | Online estimation method for automobile mass |
CN109255094B (en) * | 2018-08-10 | 2022-12-27 | 重庆邮电大学 | Commercial truck quality estimation method based on SVR-Adaboost improved algorithm |
DE102018129132B3 (en) * | 2018-11-20 | 2020-01-02 | Knorr-Bremse Systeme für Schienenfahrzeuge GmbH | Procedure for determining a braking distance |
CN112689585B (en) * | 2020-05-15 | 2022-03-08 | 华为技术有限公司 | Method and device for obtaining vehicle rolling resistance coefficient |
CN113267345B (en) * | 2021-04-23 | 2024-09-06 | 联合汽车电子有限公司 | Method, storage medium, controller and system for predicting resistance of unknown road section ahead of vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102410900A (en) * | 2010-09-20 | 2012-04-11 | 北汽福田汽车股份有限公司 | Tyre rolling resistance testing method and chassis dynamometer |
CN103946039A (en) * | 2011-09-22 | 2014-07-23 | 雷诺两合公司 | Method for estimating the rolling resistance of a vehicle wheel |
CN104973069A (en) * | 2015-07-10 | 2015-10-14 | 吉林大学 | Online synchronous identification method for heavy truck air resistance composite coefficient and mass |
-
2017
- 2017-06-12 CN CN201710436235.9A patent/CN107229801B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102410900A (en) * | 2010-09-20 | 2012-04-11 | 北汽福田汽车股份有限公司 | Tyre rolling resistance testing method and chassis dynamometer |
CN103946039A (en) * | 2011-09-22 | 2014-07-23 | 雷诺两合公司 | Method for estimating the rolling resistance of a vehicle wheel |
CN104973069A (en) * | 2015-07-10 | 2015-10-14 | 吉林大学 | Online synchronous identification method for heavy truck air resistance composite coefficient and mass |
Non-Patent Citations (3)
Title |
---|
A variable structure observer for an on-line estimation of a tyre rolling resistance and effective radius;C. El Tannoury 等;《2012 12th International Workshop on Variable Structure Systems》;20120114;第167-172页 * |
Finite element analysis of tire thermomechanical coupling rolling resistance;Guolin Wang 等;《2011 International Conference on Electric Information and Control Engineering》;20110417;第2200-2203页 * |
滚动阻力对车辆运动稳定性的影响分析;李玲 等;《汽车工程》;20170430;第39卷(第4期);第76-82页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107229801A (en) | 2017-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107229801B (en) | On-line Identification Method of Tire Rolling Resistance Coefficient | |
CN111806449A (en) | Method for estimating total vehicle mass and road surface gradient of pure electric vehicle | |
Li et al. | Two-layer structure based adaptive estimation for vehicle mass and road slope under longitudinal motion | |
CN102506160B (en) | Ramp based on longitudinal dynamics and vehicle load identification method | |
CN104973069B (en) | Online synchronous identification method for heavy truck air resistance composite coefficient and mass | |
CN103946679B (en) | Vehicle mass identification method and system | |
US20090177346A1 (en) | Dynamic estimation of vehicle inertial parameters and tire forces from tire sensors | |
CN110987470B (en) | Model iteration-based automobile quality online estimation method | |
CN112896178B (en) | Method and system for calculating total mass of vehicle | |
CN107491736A (en) | A kind of pavement adhesion factor identifying method based on convolutional neural networks | |
CN106840097A (en) | A kind of road grade method of estimation based on adaptive extended kalman filtering | |
CN102486400A (en) | Vehicle mass identification method and device | |
CN113859253B (en) | A real-time estimation method of vehicle mass during driving | |
CN104773173A (en) | Autonomous driving vehicle traveling status information estimation method | |
CN112373484B (en) | Method for acquiring vehicle mass dynamics based on feedforward neural network | |
CN113011016B (en) | Master cylinder hydraulic pressure estimation method based on brake friction factor correction | |
Wang et al. | A review of dynamic state estimation for the neighborhood system of connected vehicles | |
CN110341714B (en) | Method for simultaneously estimating vehicle mass center slip angle and disturbance | |
CN109684677A (en) | A kind of gradient evaluation method based on Kalman filtering algorithm | |
CN113183973A (en) | Tire pressure monitoring and road surface information intelligent sensing platform and method based on CAN network | |
CN109030019A (en) | A kind of On-line Estimation method of car mass | |
CN106203684A (en) | A kind of parameter identification for tire magic formula and optimization method | |
CN108287934A (en) | A kind of vehicle centroid side drift angle robust estimation method based on longitudinal force observer | |
CN115828425A (en) | Tire model and road surface adhesion coefficient cooperative identification method and system | |
CN109597346A (en) | A kind of novel commercial vehicle remained capacity and ramp estimation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200414 |