CN107229690B - High-precision dynamic map data processing system and method based on roadside sensors - Google Patents
High-precision dynamic map data processing system and method based on roadside sensors Download PDFInfo
- Publication number
- CN107229690B CN107229690B CN201710359395.8A CN201710359395A CN107229690B CN 107229690 B CN107229690 B CN 107229690B CN 201710359395 A CN201710359395 A CN 201710359395A CN 107229690 B CN107229690 B CN 107229690B
- Authority
- CN
- China
- Prior art keywords
- road
- map
- data
- dynamic
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title abstract description 16
- 230000004927 fusion Effects 0.000 claims abstract description 27
- 238000000605 extraction Methods 0.000 claims abstract description 24
- 238000013461 design Methods 0.000 claims abstract description 23
- 238000012800 visualization Methods 0.000 claims abstract description 7
- 230000003068 static effect Effects 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 238000013480 data collection Methods 0.000 claims description 24
- 238000013135 deep learning Methods 0.000 claims description 23
- 230000009466 transformation Effects 0.000 claims description 18
- 238000009825 accumulation Methods 0.000 claims description 15
- 238000012795 verification Methods 0.000 claims description 15
- 238000007781 pre-processing Methods 0.000 claims description 14
- 238000005516 engineering process Methods 0.000 claims description 13
- 238000012216 screening Methods 0.000 claims description 10
- 238000012544 monitoring process Methods 0.000 claims description 8
- 238000003702 image correction Methods 0.000 claims description 7
- 238000003672 processing method Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 238000002372 labelling Methods 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 34
- 238000004458 analytical method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 206010039203 Road traffic accident Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007526 fusion splicing Methods 0.000 description 1
- 238000009440 infrastructure construction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
- G06V20/54—Surveillance or monitoring of activities, e.g. for recognising suspicious objects of traffic, e.g. cars on the road, trains or boats
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096766—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
- G08G1/096783—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Multimedia (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及计算机技术领域,具体涉及一种基于路侧传感器的高精度动态地图数据处理系统及方法。The invention relates to the technical field of computers, in particular to a high-precision dynamic map data processing system and method based on roadside sensors.
背景技术Background technique
当前,随着自动驾驶技术的快速发展,高精度地图重要性日益凸显,已成为实现无人驾驶和智能交通不可或缺的重要一环。现有导航地图精度一般不高,并且以整条道路作为对象提供道路信息数据或进行导航指令发布,这种导航地图称之为道路级别地图,是对实际交通环境的大幅度简化,能提供的信息内容少,精确度低,对驾驶员的辅助能力较低。At present, with the rapid development of autonomous driving technology, the importance of high-precision maps has become increasingly prominent, and it has become an indispensable part of the realization of driverless and intelligent transportation. The accuracy of the existing navigation maps is generally not high, and the entire road is used as the object to provide road information data or to issue navigation instructions. This type of navigation map is called a road-level map, which greatly simplifies the actual traffic environment and can provide The information content is low, the accuracy is low, and the driver's assistance ability is low.
自动驾驶所需要的地图不仅要具备高精度,还要拥有大量丰富的道路周边细节,普通地图导航精度只能达到米量级,高精度地图可精确到10cm级别,不仅增加了车道属性相关数据,还增加了高架物体、防护栏、障碍物、道路边缘类型、路边地标等多种类型数据。多元异构的海量地图数据需要占用大量存储空间,单图层的高精度地图无法满足实时更新的需求。The maps required for autonomous driving must not only have high precision, but also have a large number of rich road surrounding details. The navigation accuracy of ordinary maps can only reach the level of meters, and the high-precision maps can be accurate to the level of 10cm, which not only increases the data related to lane attributes, Various types of data such as overhead objects, guardrails, obstacles, road edge types, roadside landmarks, etc. have also been added. Multivariate and heterogeneous massive map data takes up a lot of storage space, and a single-layer high-precision map cannot meet the needs of real-time update.
深度学习、图像识别等技术在高精度地图领域的应用,能够大幅度提升地图数据采集和处理效率。自动驾驶技术和用户需求的不断提升,对高精度地图的数据容量、精确程度、更新频率等提出了更高的要求,传统的地图数据采集绘制方式存在诸多技术瓶颈,利用图像识别、大数据处理、深度学习等人工智能技术,能够自动识别交通标志、地面标志、车道线、信号灯等,实现全景图像自动化提取道路及POI信息,提高数据加工效率和更新频次,保证数据的准确性。The application of technologies such as deep learning and image recognition in the field of high-precision maps can greatly improve the efficiency of map data collection and processing. The continuous improvement of autonomous driving technology and user needs has put forward higher requirements for the data capacity, accuracy and update frequency of high-precision maps. There are many technical bottlenecks in the traditional map data collection and drawing methods. Image recognition, big data processing, etc. , deep learning and other artificial intelligence technologies can automatically identify traffic signs, ground signs, lane lines, signal lights, etc., realize automatic extraction of road and POI information from panoramic images, improve data processing efficiency and update frequency, and ensure data accuracy.
目前高精度地图的生产大多由专业的工作人员重新采集所有的道路信息,并计划采集完成后周期性地对大部分区域重新更新。这种方法的采集设备往往是安装了激光雷达等专用设备的采集车。三菱和丰田等日本汽车厂商联合日本图商Zenrin正在制作三维的动态地图。其计划是采用装有高端传感器的专用汽车对道路进行侧绘,第一步是覆盖日本300公里的主要高速公路。Here、TomTom和谷歌也采用类似方式制作三维地图。国内的传统图商高德通过装配2个激光雷达和4个摄像头的方式来满足所需要的10cm级别精度。腾讯、百度、四维图新等公司也在用类似的方式制作高精度地图。At present, most of the high-precision maps are produced by professional staff to re-collect all road information, and plan to periodically re-update most areas after the collection is completed. The acquisition equipment of this method is often a collection vehicle equipped with special equipment such as lidar. Japanese automakers such as Mitsubishi and Toyota have teamed up with Japanese map maker Zenrin to make three-dimensional dynamic maps. The plan is to profile roads with specialized vehicles equipped with high-end sensors, the first step being to cover 300 kilometers of Japan's main highways. Here, TomTom, and Google are doing 3D maps in a similar way. The domestic traditional map dealer AutoNavi meets the required 10cm-level accuracy by assembling 2 lidars and 4 cameras. Tencent, Baidu, NavInfo and other companies are also making high-precision maps in a similar way.
上述用专门的车载传感器采集的原始地图信息准确性很高,然而存在以下问题:The above-mentioned original map information collected by special on-board sensors is very accurate, but there are the following problems:
1)、车载设备成本居高不下,使用激光雷达采集信息精度高,全局性好,但成本高昂,数据量大,且生成图像为反射率图像,与现实景物存在差异;1) The cost of in-vehicle equipment remains high. The use of lidar to collect information has high accuracy and good overallity, but the cost is high, the amount of data is large, and the generated image is a reflectivity image, which is different from the real scene;
2)、数据处理效率较低,地图数据采集到实现地图更新的周期长,会出现在地图更新时实际路况特征属性状态早已改变的现象,无法及时有效反应实际道路的动态特征信息,阻碍位置服务的快速发展,降低了无人驾驶的安全性和可靠性;2) The data processing efficiency is low, the period from map data collection to map update is long, and the actual road condition feature attribute state has already changed when the map is updated, which cannot effectively reflect the dynamic feature information of the actual road in a timely manner, hindering location services. The rapid development of autonomous driving has reduced the safety and reliability of unmanned vehicles;
3)、采集到的数据是稠密的点云,数据密度极大,消耗大量的计算资源,且后期地图通信量高;3) The collected data is a dense point cloud, the data density is extremely large, consumes a lot of computing resources, and the later map traffic is high;
4)、采集的道路特征信息内容有限,针对有些特定的道路特征需要特定的传感器(如温湿度、道路积水等天气相关的动态特征数据)完成数据采集,因此车载采集方式无法满足自动驾驶对高精度地图内容方面的需求。4) The collected road feature information content is limited. For some specific road features, specific sensors (such as temperature and humidity, road water and other weather-related dynamic feature data) are required to complete data collection. Therefore, the vehicle-mounted collection method cannot meet the requirements of automatic driving. High-precision map content requirements.
因此,如何低成本、高效且准确地生产或更新高精度地图是亟待解决的问题。Therefore, how to produce or update high-precision maps with low cost, high efficiency and accuracy is an urgent problem to be solved.
发明内容SUMMARY OF THE INVENTION
有鉴于此,为了解决现有技术中地图采集方式数据量大、处理困难、成本高、地图更新周期长的问题,本发明提出一种基于路侧传感器的高精度动态地图数据处理系统及方法,通过路侧传感器和AI技术实现高精度地图生成,成本低、生成结果能实时有效反馈道路特征当前的状态,为自动驾驶提供准确的驾驶辅助信息。In view of this, in order to solve the problems of large data volume, difficult processing, high cost, and long map update cycle in the prior art map collection method, the present invention proposes a high-precision dynamic map data processing system and method based on roadside sensors, High-precision map generation is realized through roadside sensors and AI technology, with low cost, and the generated results can effectively feed back the current state of road features in real time, providing accurate driving assistance information for autonomous driving.
本发明通过以下技术手段解决上述问题:The present invention solves the above-mentioned problems through the following technical means:
一种基于路侧传感器的高精度动态地图数据处理系统,包括:A high-precision dynamic map data processing system based on roadside sensors, comprising:
地图数据采集端,用于为高精度地图生成服务端提供海量、多元化的地图道路原始数据;The map data collection terminal is used to provide massive and diversified raw map road data for the high-precision map generation server;
高精度地图生成服务端,用于根据地图数据采集端提供的海量、多元化的地图道路原始数据生成高精度动态地图;The high-precision map generation server is used to generate high-precision dynamic maps according to the massive and diversified raw data of map roads provided by the map data collection terminal;
所述高精度地图生成服务端包括:The high-precision map generation server includes:
地图数据处理模块,用于将地图道路原始数据进行道路特征提取,对所有的道路特征采用分层设计,将同一道路信息进行拼接,先在道路特征层面完成道路特征数据融合,最后在图像层面完成图像拼接,拼接的结果生成道路的俯视投影图;The map data processing module is used to extract road features from the original data of map roads, adopt layered design for all road features, splicing the same road information, first complete the road feature data fusion at the road feature level, and finally complete it at the image level. Image stitching, the result of stitching generates the overhead projection map of the road;
地图生成可视化模块,用于在俯视投影图上标注道路信息,标注完的道路信息和俯视投影图共同组成高精度地图的地图数据,将地图数据进行可视化编辑,生成高精度动态地图。The map generation visualization module is used to mark road information on the overhead projection map. The marked road information and the overhead projection map together form the map data of the high-precision map, and the map data is visually edited to generate a high-precision dynamic map.
进一步地,所述地图数据采集端包括:Further, the map data collection terminal includes:
图像数据采集模块,用于采集海量的地图原始道路图像数据;The image data collection module is used to collect a large amount of original road image data of the map;
路况数据采集模块,用于采集海量的地图原始道路路况数据。The road condition data collection module is used to collect massive amounts of original road condition data on maps.
进一步地,所述地图数据处理模块包括:Further, the map data processing module includes:
图像数据预处理单元,用于将地图原始道路图像数据进行图像校正、图像坐标变换、图像投影变换的预处理,预处理后相邻位置的图像数据采集模块采集的图像重叠区能够对齐;The image data preprocessing unit is used to perform image correction, image coordinate transformation, and image projection transformation on the original road image data of the map, and the overlapping areas of the images collected by the image data acquisition modules at adjacent positions after the preprocessing can be aligned;
道路特征提取单元,用于从地图原始道路图像数据中识别道路动态特征;根据现有导航地图进行精细化特征建模,得到道路静态特征;通过对地图原始道路路况数据做数据筛选验证,抽取对应的道路半静态特征和道路半动态特征;The road feature extraction unit is used to identify the road dynamic features from the original road image data of the map; carry out refined feature modeling according to the existing navigation map to obtain the static features of the road; through the data screening and verification of the original road condition data of the map, extract the corresponding road semi-static characteristics and road semi-dynamic characteristics;
道路特征设计单元,用于从内容上对所有道路特征进行分层设计,第一层为道路静态特征,第二层为道路半静态特征,第三层为道路半动态特征,第四层为道路动态特征;The road feature design unit is used for hierarchical design of all road features in terms of content. The first layer is the road static feature, the second layer is the road semi-static feature, the third layer is the road semi-dynamic feature, and the fourth layer is the road. dynamic features;
多维道路信息融合拼接单元,用于将同一道路信息进行拼接,先在道路特征层面完成道路特征数据融合,最后将预处理后的图像在图像层面完成图像拼接,拼接的结果生成道路的俯视投影图。The multi-dimensional road information fusion and splicing unit is used to splicing the same road information. First, the road feature data fusion is completed at the road feature level, and finally the preprocessed image is completed at the image level. .
进一步地,所述道路特征提取单元包括:Further, the road feature extraction unit includes:
动态特征提取子单元,用于利用深度学习、图像识别的相关AI技术建立一个深度学习道路动态特征识别模型,采用深度学习道路动态特征识别模型从地图原始道路图像数据中识别道路动态特征;The dynamic feature extraction sub-unit is used to establish a deep learning road dynamic feature recognition model by using AI technologies related to deep learning and image recognition, and use the deep learning road dynamic feature recognition model to identify road dynamic features from the original road image data of the map;
静态特征提取子单元,用于根据现有导航地图进行精细化特征建模,得到道路静态特征;The static feature extraction subunit is used to perform refined feature modeling according to the existing navigation map to obtain road static features;
半静态特征提取子单元,用于通过对地图原始道路路况数据做数据筛选验证,抽取对应的道路半静态特征;The semi-static feature extraction sub-unit is used to extract the corresponding semi-static features of the road by performing data screening and verification on the original road condition data of the map;
半动态特征提取子单元,用于通过对地图原始道路路况数据做数据筛选验证,抽取对应的道路半动态特征。The semi-dynamic feature extraction sub-unit is used to extract the corresponding semi-dynamic features of the road by performing data screening and verification on the original road condition data of the map.
进一步地,所述多维道路信息融合拼接单元包括:Further, the multi-dimensional road information fusion and splicing unit includes:
道路特征融合拼接子单元,用于将提取的所有道路特征按照特征分层进行拼接,先拼接静态特征,最后融合动态特征;The road feature fusion and splicing sub-unit is used to splicing all the extracted road features according to feature layers, first splicing static features, and finally merging dynamic features;
图像拼接子单元,用于将预处理后的图像进行融合拼接成一张基础的俯视投影图。The image stitching subunit is used to fuse and stitch the preprocessed images into a basic overhead projection image.
进一步地,所述地图生成可视化模块包括:Further, the map generation visualization module includes:
地理信息标注单元,用于在俯视投影图上标注道路信息,标注完的道路信息和俯视投影图共同组成高精度地图的地图数据;The geographic information labeling unit is used to label road information on the overhead projection map, and the marked road information and the overhead projection map together form the map data of the high-precision map;
地理信息校准验证单元,用于对标注完的道路信息进行校准验证;Geographic information calibration and verification unit, used to calibrate and verify the marked road information;
地图生成单元,用于将地图数据进行可视化编辑,生成高精度动态地图。The map generation unit is used to visually edit the map data to generate a high-precision dynamic map.
进一步地,所述图像数据采集模块为摄像头,所述路况数据采集模块包括GPS、温湿度传感器、积水传感器。Further, the image data acquisition module is a camera, and the road condition data acquisition module includes a GPS, a temperature and humidity sensor, and a water accumulation sensor.
进一步地,所述摄像头为城市交通所用的安防监控摄像头和物联网智慧路灯杆上挂载的摄像头;GPS为当前智慧城市中的GPS基站,温湿度传感器、积水传感器为物联网智慧路灯杆上集成的温湿度传感器、积水传感器;地图原始道路图像数据和地图原始道路路况数据通过物联网智慧路灯杆上配置的公共网关模块传输到高精度地图生成服务端。Further, the camera is a security monitoring camera used in urban traffic and a camera mounted on a smart street light pole of the Internet of Things; GPS is a GPS base station in the current smart city, and the temperature and humidity sensor and the water accumulation sensor are on the smart street light pole of the Internet of Things. The integrated temperature and humidity sensor and water accumulation sensor; the original road image data of the map and the original road condition data of the map are transmitted to the high-precision map generation server through the public gateway module configured on the IoT smart street light pole.
一种基于路侧传感器的高精度动态地图数据处理方法,包括:A high-precision dynamic map data processing method based on roadside sensors, comprising:
S1、采集海量的地图原始道路图像数据和地图原始道路路况数据;S1. Collect massive amounts of map original road image data and map original road condition data;
S2、将地图原始道路图像数据进行图像校正、图像坐标变换、图像投影变换的预处理,预处理后相邻位置的图像数据采集模块采集的图像重叠区能够对齐;S2. Perform image correction, image coordinate transformation, and image projection transformation preprocessing on the original road image data of the map, and the overlapping areas of the images collected by the image data acquisition modules at adjacent positions after preprocessing can be aligned;
S3、利用深度学习、图像识别的相关AI技术建立一个深度学习道路动态特征识别模型,采用深度学习道路动态特征识别模型从地图原始道路图像数据中识别道路动态特征;S3. Establish a deep learning road dynamic feature recognition model by using AI technologies related to deep learning and image recognition, and use the deep learning road dynamic feature recognition model to identify road dynamic features from the original road image data of the map;
根据现有导航地图进行精细化特征建模,得到道路静态特征;Perform refined feature modeling according to the existing navigation map to obtain road static features;
通过对地图原始道路路况数据做数据筛选验证,抽取对应的道路半静态特征和道路半动态特征;Extract the corresponding semi-static and semi-dynamic features of the road by filtering and verifying the original road condition data of the map;
S4、从内容上对所有道路特征进行分层设计,第一层为道路静态特征,第二层为道路半静态特征,第三层为道路半动态特征,第四层为道路动态特征;S4. Carry out hierarchical design for all road features in terms of content, the first layer is the road static feature, the second layer is the road semi-static feature, the third layer is the road semi-dynamic feature, and the fourth layer is the road dynamic feature;
S5、将同一道路信息进行拼接,先在道路特征层面完成道路特征数据融合,最后将预处理后的图像在图像层面完成图像拼接,拼接的结果生成道路的俯视投影图;S5, splicing the same road information, first completing the road feature data fusion at the road feature level, and finally completing the image splicing of the preprocessed image at the image level, and the result of the splicing generates an overhead projection map of the road;
S6、在俯视投影图上标注道路信息,标注完的道路信息和俯视投影图共同组成高精度地图的地图数据;S6, marking the road information on the overhead projection map, and the marked road information and the overhead projection map together form the map data of the high-precision map;
S7、对标注完的道路信息进行校准验证;S7, calibrating and verifying the marked road information;
S8、将地图数据进行可视化编辑,生成高精度动态地图。S8. Visually edit the map data to generate a high-precision dynamic map.
进一步地,步骤S1中,采用摄像头采集海量的地图原始道路图像数据,采用GPS、温湿度传感器、积水传感器采集地图原始道路路况数据;Further, in step S1, a camera is used to collect a large amount of original road image data of the map, and GPS, a temperature and humidity sensor, and a water accumulation sensor are used to collect the original road condition data of the map;
所述摄像头为城市交通所用的安防监控摄像头和物联网智慧路灯杆上挂载的摄像头;GPS为当前智慧城市中的GPS基站,温湿度传感器、积水传感器为物联网智慧路灯杆上集成的温湿度传感器、积水传感器;地图原始道路图像数据和地图原始道路路况数据通过物联网智慧路灯杆上配置的公共网关模块传输到高精度地图生成服务端。The cameras are the security monitoring cameras used in urban traffic and the cameras mounted on the IoT smart street light poles; GPS is the GPS base station in the current smart city, and the temperature and humidity sensors and the water accumulation sensors are the temperature and humidity sensors integrated on the IoT smart street light poles. Humidity sensor, water accumulation sensor; map original road image data and map original road condition data are transmitted to the high-precision map generation server through the public gateway module configured on the IoT smart street light pole.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
1)、本发明采集路侧图像的摄像头部署在路侧基础设施上(路灯杆、高架杆),比车载摄像头采集的地图数据更具有实时有效性;1), the camera that collects roadside images of the present invention is deployed on roadside infrastructure (street light poles, elevated poles), and is more effective in real time than the map data collected by the vehicle-mounted camera;
2)、本发明通过物联网一体化灯杆挂载的多种传感器终端设备,可实时采集高精度地图的多维动态信息(路面积水、湿度、天气、街道标志等),这些信息只需要后台进行简单地验证处理,就可以发布到高精度地图的应用平台,实时服务于智能交通领域;2), the present invention can collect multi-dimensional dynamic information of high-precision maps in real time (road area water, humidity, weather, street signs, etc.) through various sensor terminal equipment mounted on the integrated light pole of the Internet of Things, and these information only need the background After a simple verification process, it can be published to the application platform of high-precision maps and serve the field of intelligent transportation in real time;
3)、本发明中的地图数据采集充分利用了当前智慧城市的基础设施(智慧路灯、路侧摄像头、GPS基站),通过共享智慧城市的路侧传感器方式,以及地图数据的自动采集上传方式,能从多方面降低高精度地图的生成成本;3), the map data collection in the present invention makes full use of the current smart city infrastructure (smart street lights, roadside cameras, GPS base stations), by sharing the roadside sensor method of the smart city, and the automatic collection and uploading method of map data, It can reduce the cost of generating high-precision maps in many ways;
4)、本发明通过对道路特征分层设计、特征分层融合拼接、以及支持增量更新的数据格式存储,可实现高精度动态地图的快速更新。4) The present invention can realize the rapid update of high-precision dynamic maps through the layered design of road features, the fusion and splicing of feature layers, and the storage of data formats that support incremental update.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1是本发明基于路侧传感器的高精度动态地图数据处理系统的结构示意图;1 is a schematic structural diagram of a high-precision dynamic map data processing system based on roadside sensors of the present invention;
图2是本发明基于路侧传感器的高精度动态地图数据处理系统的拓扑图;2 is a topology diagram of a high-precision dynamic map data processing system based on roadside sensors of the present invention;
图3是本发明基于路侧传感器的高精度动态地图数据处理系统的工作流程图;Fig. 3 is the working flow chart of the high-precision dynamic map data processing system based on the roadside sensor of the present invention;
图4是本发明采集地图的摄像头部署图;Fig. 4 is the camera deployment diagram of the present invention to collect map;
图5是本发明基于路侧传感器的高精度动态地图数据处理方法的流程图。FIG. 5 is a flow chart of the method for processing high-precision dynamic map data based on roadside sensors according to the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面将结合附图和具体的实施例对本发明的技术方案进行详细说明。需要指出的是,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the above objects, features and advantages of the present invention more clearly understood, the technical solutions of the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. It should be pointed out that the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, those of ordinary skill in the art can obtain all the Other embodiments fall within the protection scope of the present invention.
实施例1Example 1
如图1所示,本发明提供一种基于路侧传感器的高精度动态地图数据处理系统,包括:As shown in Figure 1, the present invention provides a high-precision dynamic map data processing system based on roadside sensors, including:
地图数据采集端,用于为高精度地图生成服务端提供海量、多元化的地图道路原始数据;The map data collection terminal is used to provide massive and diversified raw map road data for the high-precision map generation server;
高精度地图生成服务端,用于根据地图数据采集端提供的海量、多元化的地图道路原始数据生成高精度动态地图;The high-precision map generation server is used to generate high-precision dynamic maps according to the massive and diversified raw data of map roads provided by the map data collection terminal;
所述高精度地图生成服务端包括:The high-precision map generation server includes:
地图数据处理模块,用于将地图道路原始数据进行道路特征提取,对所有的道路特征采用分层设计,将同一道路信息进行拼接,先在道路特征层面完成道路特征数据融合,最后在图像层面完成图像拼接,拼接的结果生成道路的俯视投影图;The map data processing module is used to extract road features from the original data of map roads, adopt layered design for all road features, splicing the same road information, first complete the road feature data fusion at the road feature level, and finally complete it at the image level. Image stitching, the result of stitching generates the overhead projection map of the road;
地图生成可视化模块,用于在俯视投影图上标注道路信息,标注完的道路信息和俯视投影图共同组成高精度地图的地图数据,将地图数据进行可视化编辑,生成高精度动态地图。The map generation visualization module is used to mark road information on the overhead projection map. The marked road information and the overhead projection map together form the map data of the high-precision map, and the map data is visually edited to generate a high-precision dynamic map.
所述地图数据采集端包括:The map data collection terminal includes:
图像数据采集模块,用于采集海量的地图原始道路图像数据;The image data collection module is used to collect a large amount of original road image data of the map;
路况数据采集模块,用于采集海量的地图原始道路路况数据。The road condition data collection module is used to collect massive amounts of original road condition data on maps.
所述图像数据采集模块为摄像头,所述路况数据采集模块包括GPS、温湿度传感器、积水传感器等。The image data acquisition module is a camera, and the road condition data acquisition module includes GPS, a temperature and humidity sensor, a water accumulation sensor, and the like.
所述摄像头为城市交通所用的安防监控摄像头和物联网智慧路灯杆上挂载的摄像头;GPS为当前智慧城市中的GPS基站,温湿度传感器、积水传感器为物联网智慧路灯杆上集成的温湿度传感器、积水传感器。The cameras are the security monitoring cameras used in urban traffic and the cameras mounted on the IoT smart street light poles; GPS is the GPS base station in the current smart city, and the temperature and humidity sensors and the water accumulation sensors are the temperature and humidity sensors integrated on the IoT smart street light poles. Humidity sensor, water sensor.
所述地图数据处理模块包括:The map data processing module includes:
图像数据预处理单元,用于将地图原始道路图像数据进行图像校正、图像坐标变换、图像投影变换的预处理,预处理后相邻位置的图像数据采集模块采集的图像重叠区能够对齐;The image data preprocessing unit is used to perform image correction, image coordinate transformation, and image projection transformation on the original road image data of the map, and the overlapping areas of the images collected by the image data acquisition modules at adjacent positions after the preprocessing can be aligned;
道路特征提取单元,用于从地图原始道路图像数据中识别道路动态特征;根据现有导航地图进行精细化特征建模,得到道路静态特征;通过对地图原始道路路况数据做数据筛选验证,抽取对应的道路半静态特征和道路半动态特征;The road feature extraction unit is used to identify the road dynamic features from the original road image data of the map; carry out refined feature modeling according to the existing navigation map to obtain the static features of the road; through the data screening and verification of the original road condition data of the map, extract the corresponding road semi-static characteristics and road semi-dynamic characteristics;
道路特征设计单元,用于从内容上对所有道路特征进行分层设计,第一层为道路静态特征,第二层为道路半静态特征,第三层为道路半动态特征,第四层为道路动态特征;The road feature design unit is used for hierarchical design of all road features in terms of content. The first layer is the road static feature, the second layer is the road semi-static feature, the third layer is the road semi-dynamic feature, and the fourth layer is the road. dynamic features;
多维道路信息融合拼接单元,用于将同一道路信息进行拼接,先在道路特征层面完成道路特征数据融合,最后将预处理后的图像在图像层面完成图像拼接,拼接的结果生成道路的俯视投影图。The multi-dimensional road information fusion and splicing unit is used to splicing the same road information. First, the road feature data fusion is completed at the road feature level, and finally the preprocessed image is completed at the image level. .
所述道路特征提取单元包括:The road feature extraction unit includes:
动态特征提取子单元,用于利用深度学习、图像识别的相关AI技术建立一个深度学习道路动态特征识别模型,采用深度学习道路动态特征识别模型从地图原始道路图像数据中识别道路动态特征;The dynamic feature extraction sub-unit is used to establish a deep learning road dynamic feature recognition model by using AI technologies related to deep learning and image recognition, and use the deep learning road dynamic feature recognition model to identify road dynamic features from the original road image data of the map;
静态特征提取子单元,用于根据现有导航地图进行精细化特征建模,得到道路静态特征;The static feature extraction subunit is used to perform refined feature modeling according to the existing navigation map to obtain road static features;
半静态特征提取子单元,用于通过对地图原始道路路况数据做数据筛选验证,抽取对应的道路半静态特征;The semi-static feature extraction sub-unit is used to extract the corresponding semi-static features of the road by performing data screening and verification on the original road condition data of the map;
半动态特征提取子单元,用于通过对地图原始道路路况数据做数据筛选验证,抽取对应的道路半动态特征。The semi-dynamic feature extraction sub-unit is used to extract the corresponding semi-dynamic features of the road by performing data screening and verification on the original road condition data of the map.
所述多维道路信息融合拼接单元包括:The multi-dimensional road information fusion and splicing unit includes:
道路特征融合拼接子单元,用于将提取的所有道路特征按照特征分层进行拼接,先拼接静态特征,最后融合动态特征;The road feature fusion and splicing sub-unit is used to splicing all the extracted road features according to feature layers, first splicing static features, and finally merging dynamic features;
图像拼接子单元,用于将预处理后的图像进行融合拼接成一张基础的俯视投影图。The image stitching subunit is used to fuse and stitch the preprocessed images into a basic overhead projection image.
所述地图生成可视化模块包括:The map generation visualization module includes:
地理信息标注单元,用于在俯视投影图上标注道路信息,标注完的道路信息和俯视投影图共同组成高精度地图的地图数据;The geographic information labeling unit is used to label road information on the overhead projection map, and the marked road information and the overhead projection map together form the map data of the high-precision map;
地理信息校准验证单元,用于对标注完的道路信息进行校准验证;Geographic information calibration and verification unit, used to calibrate and verify the marked road information;
地图生成单元,用于将地图数据进行可视化编辑,生成高精度动态地图。The map generation unit is used to visually edit the map data to generate a high-precision dynamic map.
如图2所示,地图数据采集端中的图像采集,所用的摄像头是城市交通所用的安防监控摄像头和智慧路灯杆上挂载的摄像头。随着智慧城市建设日趋成熟,摄像头的覆盖越来越密集,每个摄像头采集所在区域对应监控范围内的道路属性图像,上传到高精度地图生成服务端。如图4所示,采集道路图像的摄像头挂载在路灯杆、高架杆等路侧设施上。针对摄像头没法获取的其他道路路况属性如(温湿度、路面积水等数据),通过物联网一体化灯杆上集成的温湿度传感器、积水传感器进行获取,物联网一体化灯杆上的传感设备终端可根据情况灵活选配,数据通过灯杆上配置的公共网关模块传输到高精度地图生成服务端。As shown in Figure 2, in the image acquisition in the map data acquisition terminal, the cameras used are the security surveillance cameras used in urban traffic and the cameras mounted on the smart street light poles. As the construction of smart cities becomes more and more mature, the coverage of cameras becomes more and more dense. Each camera collects road attribute images within the monitoring range corresponding to the area where it is located, and uploads it to the high-precision map generation server. As shown in Figure 4, the cameras that collect road images are mounted on roadside facilities such as street light poles and overhead poles. For other road conditions attributes that cannot be obtained by the camera (such as data such as temperature and humidity, road area water, etc.), the temperature and humidity sensors and water accumulation sensors integrated on the IoT integrated light pole are used to obtain the data. The sensing equipment terminal can be flexibly selected according to the situation, and the data is transmitted to the high-precision map generation server through the public gateway module configured on the light pole.
道路特征设计单元,根据自动驾驶对高精度地图的需求,从内容上对道路特征进行建模设计,分层设计道路网络的特征。第一层为道路的静态特征,静态特征信息包含:道路线车道线的位置、交通信号和交通标志的位置;道路ID号、形状、坡度、宽度等基础信息。第二层为道路的半静态特征:交通规则信息(例如潮汐路段等)、道路施工信息、广泛地区天气信息(雨雪天气)等;第三层为道路特征的半动态信息:交通事故位置、交通拥堵位置、交通积水位置、道路坑洼位置、道路障碍物位置等;第四层道路特征为动态信息:行人、汽车、自行车、摩托车等目标当前坐标、运动轨迹。道路特征设计单元的结果是将设计的所有道路特征信息抽象为高精度地图中的数据实体和对象。道路特征设计采用的原则是不同自动驾驶级别对高精度地图内容和精度的需求,随着自动驾驶级别不断提升,道路特征需要不断细化和丰富。The road feature design unit, according to the requirements of automatic driving for high-precision maps, models and designs the road features from the content, and designs the features of the road network in layers. The first layer is the static feature of the road, and the static feature information includes: the position of the road line lane line, the position of the traffic signal and the traffic sign; the basic information such as the road ID number, shape, slope, width, etc. The second layer is the semi-static characteristics of the road: traffic rule information (such as tidal road sections, etc.), road construction information, weather information in a wide range of areas (rain and snow weather), etc.; the third layer is the semi-dynamic information of road characteristics: traffic accident location, The location of traffic congestion, the location of traffic water, the location of road potholes, the location of road obstacles, etc.; the fourth layer of road features is dynamic information: the current coordinates and motion trajectories of pedestrians, cars, bicycles, motorcycles and other objects. The result of the road feature design unit is to abstract all the designed road feature information into data entities and objects in the high-precision map. The principle adopted in the design of road features is the demand for high-precision map content and accuracy for different levels of autonomous driving. With the continuous improvement of autonomous driving levels, road features need to be continuously refined and enriched.
图像数据预处理单元对上传的地图原始道路图像数据首先需要进行图像校正、图像坐标变换、图像投影变换等一系列的预处理;针对处理完后的同一坐标系下的图像数据,采用深度学习、图像识别等相关的AI技术提取道路动态特征,比如采用事先训练好的深度学习模型识别高精度地图中的动态道路特征(信号灯、行人、汽车、自行车、摩托车)。The image data preprocessing unit first needs to perform a series of preprocessing such as image correction, image coordinate transformation, and image projection transformation for the uploaded original road image data of the map; for the processed image data in the same coordinate system, deep learning, Image recognition and other related AI technologies extract road dynamic features, such as using pre-trained deep learning models to identify dynamic road features (signal lights, pedestrians, cars, bicycles, motorcycles) in high-precision maps.
多维道路信息融合拼接是针对高精度地图中同一道路信息进行拼接,先在道路特征层面完成道路特征数据融合分析,最后在图像层面完成图像拼接,拼接的结果生成道路的俯视图,最终通过道路属性的标注、道路特征数据库的可视化编辑生成高精度动态地图。Multi-dimensional road information fusion stitching is to stitch the same road information in the high-precision map. First, the road feature data fusion analysis is completed at the road feature level, and finally the image stitching is completed at the image level. The visual editing of annotation and road feature database generates high-precision dynamic maps.
本发明提出的基于路侧传感器的高精度动态地图数据处理系统,整合了智慧路灯、路侧摄像头,通信基站等基础设施,能有效降低高精度地图的生成成本。本发明中的路侧传感数据处理、基于AI的道路特征提取分析、多维道路特征分析融合在服务端或云端,传感设备终端只需要负责数据的采集与上传数据给服务后台,因此对传感设备终端没有过多的存储计算资源要求,实现了整个地图生成方案的可行性。The high-precision dynamic map data processing system based on roadside sensors proposed by the invention integrates infrastructures such as smart street lamps, roadside cameras, communication base stations, etc., and can effectively reduce the cost of generating high-precision maps. In the present invention, roadside sensing data processing, AI-based road feature extraction and analysis, and multi-dimensional road feature analysis are integrated on the server or cloud, and the sensing device terminal only needs to be responsible for data collection and uploading data to the service backend. The sensor device terminal does not have excessive storage and computing resource requirements, which realizes the feasibility of the entire map generation scheme.
如图3所示,本发明基于路侧传感器的高精度动态地图数据处理系统工作流程如下:As shown in Figure 3, the workflow of the high-precision dynamic map data processing system based on roadside sensors of the present invention is as follows:
1)、路侧摄像头的覆盖。本发明用于采集路侧图像数据的摄像头安装部署在道路两侧的路灯杆上,随着城市的智慧化发展,市政道路两侧的路灯有关的基础设施建设越发完善,市政道路路灯间距离一般在30米左右。如图4所示,假定用于采集路侧图像的摄像头视角是θ度,路灯杆高为m米,摄像头可采集图像的范围米。通过计算,只要采集路侧图像的摄像头视角θ大于摄像头采集区域范围l则大于30米,基于路侧摄像头采集的道路数据就不会出现遗漏。1) Coverage of roadside cameras. The camera used for collecting roadside image data in the present invention is installed and deployed on the street lamp poles on both sides of the road. With the intelligent development of the city, the infrastructure construction related to the street lamps on both sides of the municipal road is more and more perfect, and the distance between the street lamps on the municipal road is generally around 30 meters. As shown in Figure 4, assuming that the angle of view of the camera used to collect roadside images is θ degrees, the height of the street light pole is m meters, and the range of images that can be collected by the camera is Meter. Through calculation, as long as the camera angle of view θ for collecting roadside images is greater than The range l of the camera collection area is greater than 30 meters, and the road data collected based on the roadside camera will not be omitted.
2)、针对道路特征稳定路段的摄像头数据可以按一定周期上传到服务端进行处理,针对道路特征复杂多变或交通主动安全需求级别高的路段(如十字路口),需缩短上传图像到服务端的周期,确保获取的动态道路路段的特征数据准确有效。2) The camera data for the road sections with stable road characteristics can be uploaded to the server for processing in a certain period. For road sections with complex and changeable road characteristics or high demand for active traffic safety (such as crossroads), it is necessary to shorten the time required for uploading images to the server. Period to ensure that the acquired characteristic data of dynamic road sections is accurate and effective.
3)、城市物联网一体化灯杆覆盖。物联网一体化灯杆可集成物联网充电桩、智能照明、监控摄像头、微型气象站、电子公告屏、报警按钮等功能,各部分以模块化方式集成,可根据情况灵活选配。本发明利用一体化灯杆上的传感设备采集道路状况数据、一体化灯杆上各传感设备数据通过灯杆上配置的公共网关模块传输到地图数据处理服务端,地图数据处理服务端可以通过统一的管理平台进行各部分远程控制、远程管理、数据采集、数据分析、消息发布、故障监测等。3), urban IoT integrated light pole coverage. The IoT integrated light pole can integrate IoT charging piles, intelligent lighting, surveillance cameras, micro weather stations, electronic bulletin screens, alarm buttons and other functions. The present invention uses the sensing equipment on the integrated light pole to collect road condition data, and the data of each sensing equipment on the integrated light pole is transmitted to the map data processing server through the public gateway module configured on the light pole, and the map data processing server can Remote control, remote management, data acquisition, data analysis, message release, fault monitoring, etc. of each part are carried out through a unified management platform.
4)、图像数据空间变换处理。由于城市路灯的部署是以不同的位置排列,故挂载在路灯杆上的摄像头部署和排列方式也不尽相同,没法保证所有采集道路图像数据的摄像头在同一个平面上,故需要对所有原始图像进行坐标变换和投影变换处理。处理后的相邻位置摄像头采集的图像重叠区能够对齐,对齐后的图像便于后面的道路特征提取拼接和地图图像融合拼接。4), image data space transformation processing. Since the deployment of urban street lights is arranged in different positions, the deployment and arrangement of the cameras mounted on the street light poles are also different, and there is no guarantee that all the cameras that collect road image data are on the same plane. The original image is processed by coordinate transformation and projection transformation. After processing, the overlapping areas of images collected by cameras at adjacent positions can be aligned, and the aligned images are convenient for subsequent road feature extraction and splicing and map image fusion splicing.
5)、道路特征实体设计。根据自动驾驶对高精度地图的内容和精度两方面需求,对所有的道路特征采用分层设计。第一层为道路的静态特征,静态特征信息包含:道路线车道线的位置、交通信号和交通标志位置、道路ID号、形状、坡度、宽度等基础信息。第二层为道路的半静态特征:交通规则信息(例如潮汐路段等)、道路施工信息、广泛地区天气信息(雨雪天气)等;第三层为道路特征的半动态信息:交通事故位置、交通拥堵位置、交通积水位置、道路坑洼位置、道路障碍物位置等;第四层道路特征为动态信息:行人、汽车、自行车、摩托车等目标当前坐标、运动轨迹。道路特征设计模块的结果是将设计的所有道路特征信息抽象为高精度地图中的数据实体和对象,如图4、图5所示。5), road feature entity design. According to the content and accuracy requirements of high-precision maps for autonomous driving, a layered design is adopted for all road features. The first layer is the static features of the road. The static feature information includes: the position of the road line lane line, the position of the traffic signal and the traffic sign, the road ID number, the shape, the slope, the width and other basic information. The second layer is the semi-static characteristics of the road: traffic rule information (such as tidal road sections, etc.), road construction information, weather information in a wide range of areas (rain and snow weather), etc.; the third layer is the semi-dynamic information of road characteristics: traffic accident location, The location of traffic congestion, the location of traffic water, the location of road potholes, the location of road obstacles, etc.; the fourth layer of road features is dynamic information: the current coordinates and motion trajectories of pedestrians, cars, bicycles, motorcycles and other objects. The result of the road feature design module is to abstract all the designed road feature information into data entities and objects in the high-precision map, as shown in Figure 4 and Figure 5.
6)、道路特征提取。第一层静态道路特征可以根据现有导航地图进行精细化特征建模,得到每个特征实体,最后采用适宜的数据结构存储在数据库的表中。第二、三层的道路特征可以通过对地图数据采集端上报的路况数据做简单预处理(数据筛选验证),最终抽取对应的半静态和半动态特征。6), road feature extraction. The first layer of static road features can be refined and modeled according to the existing navigation map, and each feature entity can be obtained, and finally stored in the table of the database using an appropriate data structure. The road features of the second and third layers can be simply preprocessed (data screening and verification) on the road condition data reported by the map data collection terminal, and finally the corresponding semi-static and semi-dynamic features can be extracted.
7)、第四层的道路动态特征采用深度学习、图像识别的相关AI技术从地图图像数据中识别道路中的行人、汽车、自行车、摩托车。地图数据处理服务端首先针对一个大规模的包含行人、汽车、自行车、摩托车等对象类别的图像库进行深度学习训练,训练完建立一个能准确识别道路动态特征的模型。地图数据采集端上传当前道路图像时,可以快速有效地识别当前道路所包含的交通对象特征,将这些识别出来的动态道路特征更新到高精度地图第四层特征对应的数据库,则可以快速真实反馈当前的道路状况。7) The fourth layer of road dynamic features uses deep learning and image recognition related AI technologies to identify pedestrians, cars, bicycles, and motorcycles on the road from map image data. The map data processing server first performs deep learning training on a large-scale image library containing object categories such as pedestrians, cars, bicycles, and motorcycles, and then builds a model that can accurately identify road dynamic features. When the map data collection end uploads the current road image, it can quickly and effectively identify the characteristics of the traffic objects contained in the current road, and update these identified dynamic road characteristics to the database corresponding to the fourth-layer features of the high-precision map, which can quickly and truly feedback Current road conditions.
8)、道路特征提取完,所有特征以一个完整的数据实体形式存储在数据库中,该数据库支持道路特征增量更新。8) After the extraction of road features, all features are stored in a database in the form of a complete data entity, and the database supports incremental update of road features.
9)、多维道路特征融合拼接。基于准确的道路特征数据库进行一系列操作,完成道路特征的融合拼接,道路特征的融合拼接将上述6)、7)中提取的所有道路特征按照特征分层进行拼接,先拼接静态特征,最后融合动态特征。9) Multi-dimensional road feature fusion and splicing. Based on the accurate road feature database, a series of operations are performed to complete the fusion and splicing of road features. The fusion and splicing of road features splices all the road features extracted in the above 6) and 7) according to feature layers, first splicing static features, and finally merging dynamic features.
10)、将5)中图像空间变换后的路侧图融合拼接成一张基础的俯视投影图,最后在这张图像上标注道路信息,包括:道路边沿、车道线、路口点等,标注完的信息共同组成高精度地图的地图数据;10) Fusion and splicing the roadside map after image space transformation in 5) into a basic overhead projection map, and finally label road information on this image, including: road edges, lane lines, intersection points, etc. The information together form the map data of the high-precision map;
11)、将地图数据库中的数据进行可视化编辑,可观察到车道级高精度道路地图和道路动态特征,其中数据精度可达厘米级。地图数据库一旦有动态道路特征更新,可快速体现在可视化的地图上。11) Visually edit the data in the map database, and observe the lane-level high-precision road map and road dynamic characteristics, in which the data accuracy can reach centimeter-level. Once the map database is updated with dynamic road features, it can be quickly reflected on the visual map.
实施例2Example 2
如图5所示,本发明还一种基于路侧传感器的高精度动态地图数据处理方法,包括:As shown in FIG. 5 , the present invention also provides a high-precision dynamic map data processing method based on roadside sensors, including:
S1、采集海量的地图原始道路图像数据和地图原始道路路况数据;S1. Collect massive amounts of map original road image data and map original road condition data;
S2、将地图原始道路图像数据进行图像校正、图像坐标变换、图像投影变换的预处理,预处理后相邻位置的图像数据采集模块采集的图像重叠区能够对齐;S2. Perform image correction, image coordinate transformation, and image projection transformation preprocessing on the original road image data of the map, and the overlapping areas of the images collected by the image data acquisition modules at adjacent positions after preprocessing can be aligned;
S3、利用深度学习、图像识别的相关AI技术建立一个深度学习道路动态特征识别模型,采用深度学习道路动态特征识别模型从地图原始道路图像数据中识别道路动态特征;S3. Establish a deep learning road dynamic feature recognition model by using AI technologies related to deep learning and image recognition, and use the deep learning road dynamic feature recognition model to identify road dynamic features from the original road image data of the map;
根据现有导航地图进行精细化特征建模,得到道路静态特征;Perform refined feature modeling according to the existing navigation map to obtain road static features;
通过对地图原始道路路况数据做数据筛选验证,抽取对应的道路半静态特征和道路半动态特征;Extract the corresponding semi-static and semi-dynamic features of the road by filtering and verifying the original road condition data of the map;
S4、从内容上对所有道路特征进行分层设计,第一层为道路静态特征,第二层为道路半静态特征,第三层为道路半动态特征,第四层为道路动态特征;S4. Carry out hierarchical design for all road features in terms of content, the first layer is the road static feature, the second layer is the road semi-static feature, the third layer is the road semi-dynamic feature, and the fourth layer is the road dynamic feature;
S5、将同一道路信息进行拼接,先在道路特征层面完成道路特征数据融合,最后将预处理后的图像在图像层面完成图像拼接,拼接的结果生成道路的俯视投影图;S5, splicing the same road information, first completing the road feature data fusion at the road feature level, and finally completing the image splicing of the preprocessed image at the image level, and the result of the splicing generates an overhead projection map of the road;
S6、在俯视投影图上标注道路信息,标注完的道路信息和俯视投影图共同组成高精度地图的地图数据;S6, marking the road information on the overhead projection map, and the marked road information and the overhead projection map together form the map data of the high-precision map;
S7、对标注完的道路信息进行校准验证;S7, calibrating and verifying the marked road information;
S8、将地图数据进行可视化编辑,生成高精度动态地图。S8. Visually edit the map data to generate a high-precision dynamic map.
步骤S1中,采用摄像头采集海量的地图原始道路图像数据,采用GPS、温湿度传感器、积水传感器采集地图原始道路路况数据;In step S1, a camera is used to collect a large amount of original road image data of the map, and GPS, a temperature and humidity sensor, and a water accumulation sensor are used to collect the original road condition data of the map;
所述摄像头为城市交通所用的安防监控摄像头和物联网智慧路灯杆上挂载的摄像头;GPS为当前智慧城市中的GPS基站,温湿度传感器、积水传感器为物联网智慧路灯杆上集成的温湿度传感器、积水传感器。The cameras are the security monitoring cameras used in urban traffic and the cameras mounted on the IoT smart street light poles; GPS is the GPS base station in the current smart city, and the temperature and humidity sensors and the water accumulation sensors are the temperature and humidity sensors integrated on the IoT smart street light poles. Humidity sensor, water sensor.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
1)、本发明采集路侧图像的摄像头部署在路侧基础设施上(路灯杆、高架杆),比车载摄像头采集的地图数据更具有实时有效性;1), the camera that collects roadside images of the present invention is deployed on roadside infrastructure (street light poles, elevated poles), and is more effective in real time than the map data collected by the vehicle-mounted camera;
2)、本发明通过物联网一体化灯杆挂载的多种传感器终端设备,可实时采集高精度地图的多维动态信息(路面积水、湿度、天气、街道标志等),这些信息只需要后台进行简单地验证处理,就可以发布到高精度地图的应用平台,实时服务于智能交通领域;2), the present invention can collect multi-dimensional dynamic information of high-precision maps in real time (road area water, humidity, weather, street signs, etc.) through various sensor terminal equipment mounted on the integrated light pole of the Internet of Things, and these information only need the background After a simple verification process, it can be published to the application platform of high-precision maps and serve the field of intelligent transportation in real time;
3)、本发明中的地图数据采集充分利用了当前智慧城市的基础设施(智慧路灯、路侧摄像头、GPS基站),通过共享智慧城市的路侧传感器方式,以及地图数据的自动采集上传方式,能从多方面降低高精度地图的生成成本;3), the map data collection in the present invention makes full use of the current smart city infrastructure (smart street lights, roadside cameras, GPS base stations), by sharing the roadside sensor method of the smart city, and the automatic collection and uploading method of map data, It can reduce the cost of generating high-precision maps in many ways;
4)、本发明通过对道路特征分层设计、特征分层融合拼接、以及支持增量更新的数据格式存储,可实现高精度动态地图的快速更新。4) The present invention can realize the rapid update of high-precision dynamic maps through the layered design of road features, the fusion and splicing of feature layers, and the storage of data formats that support incremental updating.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as limiting the scope of the patent of the present invention. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710359395.8A CN107229690B (en) | 2017-05-19 | 2017-05-19 | High-precision dynamic map data processing system and method based on roadside sensors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710359395.8A CN107229690B (en) | 2017-05-19 | 2017-05-19 | High-precision dynamic map data processing system and method based on roadside sensors |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107229690A CN107229690A (en) | 2017-10-03 |
CN107229690B true CN107229690B (en) | 2019-01-25 |
Family
ID=59933329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710359395.8A Active CN107229690B (en) | 2017-05-19 | 2017-05-19 | High-precision dynamic map data processing system and method based on roadside sensors |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107229690B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11987250B2 (en) | 2018-03-20 | 2024-05-21 | Huawei Technologies Co., Ltd. | Data fusion method and related device |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107958451A (en) * | 2017-12-27 | 2018-04-24 | 深圳普思英察科技有限公司 | Vision high accuracy map production method and device |
CN108010360A (en) * | 2017-12-27 | 2018-05-08 | 中电海康集团有限公司 | A kind of automatic Pilot context aware systems based on bus or train route collaboration |
CN108334078A (en) * | 2018-01-16 | 2018-07-27 | 宁波吉利汽车研究开发有限公司 | A kind of automatic Pilot method and system navigated based on high-precision map |
CN108469815A (en) * | 2018-02-27 | 2018-08-31 | 重庆嵩岳贸易服务有限公司 | A kind of self-navigation of computer deep learning and control loop and its method based on intention |
US10867510B2 (en) * | 2018-04-05 | 2020-12-15 | Toyota Jidosha Kabushiki Kaisha | Real-time traffic monitoring with connected cars |
CN111699679B (en) * | 2018-04-27 | 2023-08-01 | 上海趋视信息科技有限公司 | Traffic system monitoring and method |
CN108846027A (en) | 2018-05-24 | 2018-11-20 | 百度在线网络技术(北京)有限公司 | Map dynamic data acquisition methods, equipment and storage medium |
CN110599762A (en) * | 2018-06-12 | 2019-12-20 | 光宝电子(广州)有限公司 | Road condition sensing system and method |
AU2018278993A1 (en) * | 2018-06-22 | 2020-01-16 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for updating highly automated driving maps |
DE102018211604A1 (en) * | 2018-07-12 | 2020-01-16 | Robert Bosch Gmbh | Mobile device and method for operating the mobile device |
CN109147317B (en) * | 2018-07-27 | 2021-07-27 | 中国科学院深圳先进技术研究院 | Automatic driving navigation system, method and device based on vehicle-road coordination |
CN109215487A (en) * | 2018-08-24 | 2019-01-15 | 宽凳(北京)科技有限公司 | A kind of high-precision cartography method based on deep learning |
CN110940347B (en) * | 2018-09-21 | 2024-04-12 | 斑马智行网络(香港)有限公司 | A method and system for assisting vehicle navigation |
CN110941684B (en) * | 2018-09-21 | 2023-06-13 | 阿里巴巴(中国)有限公司 | Map data production method, related device and system |
CN109189077B (en) * | 2018-10-30 | 2021-09-07 | 深圳市微科信息技术有限公司 | Intelligent driving assistance system and dynamic position navigator with satellite positioning function |
CN109515439B (en) * | 2018-11-13 | 2021-02-02 | 北京四维图新科技股份有限公司 | Automatic driving control method, device, system and storage medium |
CN111223302B (en) * | 2018-11-23 | 2021-12-03 | 明创能源股份有限公司 | External coordinate real-time three-dimensional road condition auxiliary device for mobile carrier and system |
CN109636881A (en) * | 2018-12-19 | 2019-04-16 | 沈阳天择智能交通工程有限公司 | Based on AI identification technology traffic accident situ sketch drafting method |
CN111354206B (en) * | 2018-12-21 | 2021-12-07 | 长沙智能驾驶研究院有限公司 | Road information processing method, road side unit, vehicle-mounted device and storage medium |
CN109657031B (en) * | 2018-12-28 | 2020-08-04 | 国汽(北京)智能网联汽车研究院有限公司 | A high-precision dynamic map generation and application method based on intelligent networked vehicles |
CN109976332A (en) * | 2018-12-29 | 2019-07-05 | 惠州市德赛西威汽车电子股份有限公司 | One kind being used for unpiloted accurately graph model and autonomous navigation system |
CN110208787A (en) * | 2019-05-05 | 2019-09-06 | 北京航空航天大学 | A kind of intelligent network connection autonomous driving vehicle auxiliary perception road lamp system based on V2I |
CN110082123A (en) * | 2019-05-05 | 2019-08-02 | 中国汽车工程研究院股份有限公司 | A kind of automatic Pilot automatization test system |
CN110470311A (en) * | 2019-07-08 | 2019-11-19 | 浙江吉利汽车研究院有限公司 | A kind of ground drawing generating method, device and computer storage medium |
CN110164157A (en) * | 2019-07-16 | 2019-08-23 | 华人运通(上海)新能源驱动技术有限公司 | Roadside device, the method for roadside device and bus or train route cooperative system |
CN110544376B (en) * | 2019-08-19 | 2021-06-22 | 新奇点智能科技集团有限公司 | Automatic driving assistance method and device |
CN110488830B (en) * | 2019-08-26 | 2021-11-19 | 吉林大学 | High-precision map information pre-analysis system and pre-analysis method for intelligent vehicle speed energy-saving planning |
CN110609502A (en) * | 2019-09-26 | 2019-12-24 | 武汉市珞珈俊德地信科技有限公司 | Assembled map data processing system |
CN111859059B (en) * | 2019-09-27 | 2025-02-11 | 北京嘀嘀无限科技发展有限公司 | A method and system for extracting geographic information features |
CN110827578B (en) * | 2019-10-23 | 2022-05-10 | 江苏广宇协同科技发展研究院有限公司 | Vehicle anti-collision prompting method, device and system based on vehicle-road cooperation |
CN111176279B (en) * | 2019-12-31 | 2023-09-26 | 北京四维图新科技股份有限公司 | Determination method, device, equipment and storage medium for vulnerable crowd area |
CN111210622B (en) * | 2020-01-02 | 2021-02-26 | 北京启心明智科技有限公司 | Automatic driving road point data acquisition and maintenance method for non-fixed road |
CN111583630B (en) * | 2020-04-10 | 2022-01-07 | 河北德冠隆电子科技有限公司 | Brand-new road high-precision map rapid generation system and method based on space-time trajectory reconstruction |
CN111540237B (en) * | 2020-05-19 | 2021-09-28 | 河北德冠隆电子科技有限公司 | Method for automatically generating vehicle safety driving guarantee scheme based on multi-data fusion |
CN114088059B (en) * | 2020-07-29 | 2024-06-11 | 珠海星客合创科技有限公司 | Map information acquisition method based on intelligent street lamp and environment map construction method |
CN114079884B (en) * | 2020-08-14 | 2025-02-14 | 中信科智联科技有限公司 | A method, device, equipment and terminal for controlling transmission of map data |
CN112097779A (en) * | 2020-09-15 | 2020-12-18 | 黑龙江省交投千方科技有限公司 | Data service system based on roadside high-precision map |
CN112256811B (en) * | 2020-10-19 | 2022-04-29 | 武汉中海庭数据技术有限公司 | Map information representation method and device based on map structure |
CN112991808B (en) * | 2020-12-29 | 2022-09-30 | 杭州海康威视数字技术股份有限公司 | Parking space display method and device for parking area and electronic equipment |
CN114910086A (en) * | 2021-02-09 | 2022-08-16 | 华为技术有限公司 | Simulation high-precision map generation method and device and computer-readable storage medium |
CN113077632A (en) * | 2021-06-07 | 2021-07-06 | 四川紫荆花开智能网联汽车科技有限公司 | V2X intelligent network connection side system and realizing method |
CN113701770A (en) * | 2021-07-16 | 2021-11-26 | 西安电子科技大学 | High-precision map generation method and system |
CN114120631B (en) * | 2021-10-28 | 2023-03-24 | 新奇点智能科技集团有限公司 | Method and device for constructing dynamic high-precision map and traffic cloud control platform |
CN114419572B (en) * | 2022-03-31 | 2022-06-17 | 国汽智控(北京)科技有限公司 | Multi-radar target detection method and device, electronic equipment and storage medium |
CN114822026A (en) * | 2022-04-22 | 2022-07-29 | 南京泛在地理信息产业研究院有限公司 | Intelligent fusion method for acquiring scene data of holographic map |
CN114937367A (en) * | 2022-05-20 | 2022-08-23 | 苏州天准科技股份有限公司 | Intelligent camera system for cooperative monitoring of vehicle and road and control method |
CN115002196B (en) * | 2022-05-25 | 2024-01-26 | 国汽智图(北京)科技有限公司 | Data processing method and device and vehicle end acquisition equipment |
CN115100631A (en) * | 2022-07-18 | 2022-09-23 | 浙江省交通运输科学研究院 | Road map acquisition system and method for multi-source information composite feature extraction |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104036277A (en) * | 2014-06-03 | 2014-09-10 | 中国科学院电子学研究所 | Method and equipment for extracting road characteristics |
CN104296763A (en) * | 2013-07-17 | 2015-01-21 | 哈曼贝克自动系统股份有限公司 | Method of displaying a map view and navigation device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001142393A (en) * | 1999-11-17 | 2001-05-25 | Asia Air Survey Co Ltd | How to make a green cover map or green vision map |
CN101893443B (en) * | 2010-07-08 | 2012-03-21 | 上海交通大学 | System for manufacturing road digital orthophoto map |
CN103294775B (en) * | 2013-05-10 | 2016-12-28 | 苏州祥益网络科技有限公司 | Police service cloud image recognition vehicle administrating system based on geographic space-time constraint |
CN103700261A (en) * | 2014-01-03 | 2014-04-02 | 河海大学常州校区 | Video-based road traffic flow feature parameter monitoring and traffic comprehensive information service system |
CN104535070B (en) * | 2014-12-26 | 2017-11-14 | 上海交通大学 | Graph data structure, collection and processing system and method in high-precision |
CN106441319B (en) * | 2016-09-23 | 2019-07-16 | 中国科学院合肥物质科学研究院 | A system and method for generating a lane-level navigation map of an unmanned vehicle |
CN106525057A (en) * | 2016-10-26 | 2017-03-22 | 陈曦 | Generation system for high-precision road map |
-
2017
- 2017-05-19 CN CN201710359395.8A patent/CN107229690B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104296763A (en) * | 2013-07-17 | 2015-01-21 | 哈曼贝克自动系统股份有限公司 | Method of displaying a map view and navigation device |
CN104036277A (en) * | 2014-06-03 | 2014-09-10 | 中国科学院电子学研究所 | Method and equipment for extracting road characteristics |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11987250B2 (en) | 2018-03-20 | 2024-05-21 | Huawei Technologies Co., Ltd. | Data fusion method and related device |
Also Published As
Publication number | Publication date |
---|---|
CN107229690A (en) | 2017-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107229690B (en) | High-precision dynamic map data processing system and method based on roadside sensors | |
US10891497B2 (en) | Traffic boundary mapping | |
CN106441319B (en) | A system and method for generating a lane-level navigation map of an unmanned vehicle | |
CN111693056B (en) | Small map for maintaining and updating self-healing high definition maps | |
CN110702132B (en) | Method for acquiring map data of micro-road network based on road marking points and road attributes | |
US11287267B2 (en) | Maplets for maintaining and updating a self-healing high definition map | |
US20120116678A1 (en) | Methods and systems for creating digital transportation networks | |
CN211792049U (en) | Vehicle-road cooperative auxiliary system and vehicle | |
CN108986207A (en) | A kind of road based on true road surface data and emulation modelling method is built along the line | |
CN105628034A (en) | Navigation map updating method and equipment | |
CN113358125B (en) | Navigation method and system based on environment target detection and environment target map | |
US20240221294A1 (en) | Map Data Processing Method and Apparatus | |
US11085791B2 (en) | Method, apparatus, and computer program product for on-street parking localization | |
CN111307167A (en) | Method and system for route generation through an area | |
US11287266B2 (en) | Maplets for maintaining and updating a self-healing high definition map | |
US20200292329A1 (en) | Maplets for maintaining and updating a self-healing high definition map | |
US20200292326A1 (en) | Maplets for maintaining and updating a self-healing high definition map | |
US11280622B2 (en) | Maplets for maintaining and updating a self-healing high definition map | |
US11255680B2 (en) | Maplets for maintaining and updating a self-healing high definition map | |
CN114120631B (en) | Method and device for constructing dynamic high-precision map and traffic cloud control platform | |
US20230125433A1 (en) | Confidence aggregation of score based on custom models by feature importance | |
US20200292330A1 (en) | Maplets for maintaining and updating a self-healing high definition map | |
US20200292324A1 (en) | Maplets for maintaining and updating a self-healing high definition map | |
CN115342779A (en) | Mapping method of urban ground and underground forms based on mapping model map | |
CN112414416A (en) | ADAS map data system based on four-level automatic driving high precision |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |