CN107227323B - Construction and application of high-yield selenomethionine saccharomyces cerevisiae - Google Patents
Construction and application of high-yield selenomethionine saccharomyces cerevisiae Download PDFInfo
- Publication number
- CN107227323B CN107227323B CN201710582722.6A CN201710582722A CN107227323B CN 107227323 B CN107227323 B CN 107227323B CN 201710582722 A CN201710582722 A CN 201710582722A CN 107227323 B CN107227323 B CN 107227323B
- Authority
- CN
- China
- Prior art keywords
- saccharomyces cerevisiae
- met6
- selenium
- selenomethionine
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 240000004808 Saccharomyces cerevisiae Species 0.000 title claims abstract description 56
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 title claims abstract description 56
- RJFAYQIBOAGBLC-BYPYZUCNSA-N Selenium-L-methionine Chemical compound C[Se]CC[C@H](N)C(O)=O RJFAYQIBOAGBLC-BYPYZUCNSA-N 0.000 title claims abstract description 27
- RJFAYQIBOAGBLC-UHFFFAOYSA-N Selenomethionine Natural products C[Se]CCC(N)C(O)=O RJFAYQIBOAGBLC-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229960002718 selenomethionine Drugs 0.000 title claims abstract description 23
- 238000010276 construction Methods 0.000 title abstract description 8
- 101150002012 met6 gene Proteins 0.000 claims description 34
- 230000015572 biosynthetic process Effects 0.000 claims description 9
- 238000003786 synthesis reaction Methods 0.000 claims description 9
- 238000003208 gene overexpression Methods 0.000 claims description 6
- 239000011669 selenium Substances 0.000 abstract description 29
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 abstract description 28
- 229910052711 selenium Inorganic materials 0.000 abstract description 28
- 230000002018 overexpression Effects 0.000 abstract description 20
- 210000004027 cell Anatomy 0.000 abstract description 9
- 239000012634 fragment Substances 0.000 abstract description 8
- 238000002744 homologous recombination Methods 0.000 abstract description 5
- 108090000623 proteins and genes Proteins 0.000 abstract description 5
- 210000005253 yeast cell Anatomy 0.000 abstract description 4
- 229930182830 galactose Natural products 0.000 abstract description 3
- 238000012216 screening Methods 0.000 abstract description 3
- 108700039691 Genetic Promoter Regions Proteins 0.000 abstract description 2
- 241000235070 Saccharomyces Species 0.000 abstract 1
- 229910018143 SeO3 Inorganic materials 0.000 abstract 1
- 238000012239 gene modification Methods 0.000 abstract 1
- 230000006698 induction Effects 0.000 abstract 1
- 229940091258 selenium supplement Drugs 0.000 description 25
- 238000000034 method Methods 0.000 description 12
- 230000003834 intracellular effect Effects 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 238000012408 PCR amplification Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000006801 homologous recombination Effects 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 101150094690 GAL1 gene Proteins 0.000 description 2
- 102100028501 Galanin peptides Human genes 0.000 description 2
- 101100121078 Homo sapiens GAL gene Proteins 0.000 description 2
- 229910009891 LiAc Inorganic materials 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- 239000012505 Superdex™ Substances 0.000 description 2
- 108700005078 Synthetic Genes Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 101150063416 add gene Proteins 0.000 description 2
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000013375 chromatographic separation Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 238000003209 gene knockout Methods 0.000 description 2
- 238000007429 general method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 238000001542 size-exclusion chromatography Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 238000000825 ultraviolet detection Methods 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 102000011848 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase Human genes 0.000 description 1
- 108010075604 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase Proteins 0.000 description 1
- 208000019926 Keshan disease Diseases 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000012533 medium component Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229940065287 selenium compound Drugs 0.000 description 1
- 150000003343 selenium compounds Chemical class 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/12—Methionine; Cysteine; Cystine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1003—Transferases (2.) transferring one-carbon groups (2.1)
- C12N9/1007—Methyltransferases (general) (2.1.1.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y201/00—Transferases transferring one-carbon groups (2.1)
- C12Y201/01—Methyltransferases (2.1.1)
- C12Y201/01013—Methionine synthase (2.1.1.13)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于酿酒酵母工程技术领域,具体涉及一种酿酒酵母的MET6过表达突变株的构建方法,还涉及MET6过表达酿酒酵母突变株的应用。The invention belongs to the technical field of Saccharomyces cerevisiae engineering, in particular to a method for constructing a MET6 overexpression mutant strain of Saccharomyces cerevisiae, and also relates to the application of the MET6 overexpression mutant strain of Saccharomyces cerevisiae.
背景技术Background technique
硒是人体的必需元素之一,具有抗氧化,增强免疫,解毒,促进基础代谢等功能。硒摄入不足会导致克山病,癌症,心血管等一系列疾病。因此,硒的足够摄入量对于人维持健康具有重要作用。中国营养学会制定了中国居民膳食硒的参考摄入量,提出成人膳食硒平均需要量为41 μg/d,推荐摄入量为50 μg/d。硒代甲硫氨酸是一种低毒性的有机硒化物,可以在人体和动物体内被代谢和保留,在营养方面优于其它硒化合物,是一种理想的硒补充剂。Selenium is one of the essential elements of the human body, with functions such as anti-oxidation, enhancing immunity, detoxification, and promoting basal metabolism. Insufficient intake of selenium can lead to Keshan disease, cancer, cardiovascular and other diseases. Therefore, adequate intake of selenium plays an important role in maintaining health. The Chinese Nutrition Society has formulated the reference intake of dietary selenium for Chinese residents, and proposed that the average dietary selenium requirement for adults is 41 μg/d, and the recommended intake is 50 μg/d. Selenomethionine is a low toxicity organoselenide, which can be metabolized and retained in human and animal body, and is superior to other selenium compounds in nutrition, and is an ideal selenium supplement.
作为发酵工业的主要菌种,酿酒酵母同时也具有强大的硒耐受性和富集能力。富硒能力高达3000 μg/g,可将无机硒转化为有机硒,其中90%以上的硒存在形式以硒代甲硫氨酸。富硒酵母由于食用安全性强、 生物利用率高等优点而成为首选的补硒添加剂,被广泛地应用于动物,家禽的饲养,以及人体的硒元素补充。As the main strain in the fermentation industry, Saccharomyces cerevisiae also has strong selenium tolerance and enrichment ability. The selenium enrichment capacity is as high as 3000 μg/g, which can convert inorganic selenium into organic selenium, of which more than 90% of the selenium exists in the form of selenomethionine. Selenium-enriched yeast has become the preferred selenium supplement due to its strong food safety and high bioavailability.
提升酵母富硒能力是一个重要课题,而传统的解决方法一般从培养基成分的优化,培养条件的优化(温度,转速,通气量,pH等)方面入手。本技术利用强大的酵母遗传学操作系统,对胞内硒代甲硫氨酸合成进行进一步的调控,对细胞硒代谢进行了改造,从而提高了胞内硒代甲硫氨酸的合成能力。Improving the selenium-enriching ability of yeast is an important topic, and traditional solutions generally start from the optimization of medium components and the optimization of culture conditions (temperature, rotation speed, ventilation, pH, etc.). The technology utilizes the powerful yeast genetics operating system to further regulate the synthesis of intracellular selenomethionine, and transform the cellular selenium metabolism, thereby improving the synthesis capacity of intracellular selenomethionine.
MET6基因编码的甲硫氨酸合酶能够催化同型半胱氨酸生成甲硫氨酸,是酿酒酵母胞内甲硫氨酸合成的主要途径之一。目前未见对酿酒酵母MET6基因进行改造提升胞内硒代甲硫氨酸的合成能力的报道。The methionine synthase encoded by the MET6 gene can catalyze the production of methionine from homocysteine, which is one of the main pathways of intracellular methionine synthesis in Saccharomyces cerevisiae. So far, there is no report on the modification of Saccharomyces cerevisiae MET6 gene to improve the synthesis ability of intracellular selenomethionine.
发明内容SUMMARY OF THE INVENTION
本发明目的是构建一种酿酒酵母的MET6过表达突变株,该突变株MET6基因过表达,富硒时合成硒代甲硫氨酸的能力提高。The purpose of the present invention is to construct a MET6 overexpression mutant strain of Saccharomyces cerevisiae, the mutant strain overexpresses the MET6 gene, and the ability to synthesize selenomethionine is improved when enriched with selenium.
本发明的另一个目的在于提供了一种酿酒酵母的MET6过表达突变株的构建方法,利用微生物遗传学方法构建酿酒酵母细胞MET6过表达突变株后,再将突变株用于富硒时高产硒代甲硫氨酸。Another object of the present invention is to provide a method for constructing a MET6 overexpression mutant strain of Saccharomyces cerevisiae. After constructing a MET6 overexpression mutant strain of Saccharomyces cerevisiae by using a microbial genetic method, the mutant strain is used for high selenium production when enriched with selenium. methionine.
为了实现上述的目的,本发明采用以下技术方案:In order to achieve the above-mentioned purpose, the present invention adopts the following technical solutions:
一种酿酒酵母的MET6基因过表达突变株在提高硒代甲硫氨酸合成的应用。Application of a MET6 gene overexpression mutant of Saccharomyces cerevisiae in improving the synthesis of selenomethionine.
一种酿酒酵母MET6基因过表达突变株的构建方法,其步骤如下:通过同源重组将含有强启动子的目的片段与酵母基因组上MET6基因的启动子区域交换,获得MET6过表达菌株。A method for constructing a MET6 gene overexpression mutant strain of Saccharomyces cerevisiae comprises the following steps: exchanging a target fragment containing a strong promoter with the promoter region of the MET6 gene on the yeast genome through homologous recombination to obtain a MET6 overexpression strain.
一种酿酒酵母MET6基因过表达突变株SZ1的构建方法,其步骤如下:A construction method of Saccharomyces cerevisiae MET6 gene overexpression mutant strain SZ1, the steps are as follows:
酿酒酵母MET6过表达突变株SZ1构建:酿酒酵母基因同源重组敲除原理、引物设计、敲除片段转化方法按照文献所描述的方法进行(Yeast, 1998, 14: 953-962),该方法是目前酿酒酵母中基因敲除的通用方法;Construction of Saccharomyces cerevisiae MET6 overexpression mutant SZ1: The principle of homologous recombination knockout of Saccharomyces cerevisiae gene, primer design, and the method of knockout fragment transformation were carried out according to the method described in the literature ( Yeast , 1998, 14: 953-962), the method is Current general methods for gene knockout in Saccharomyces cerevisiae;
1)引物设计:依据酿酒酵母MET6基因序列(GenBank: BK006943.1)设计引物:1) Primer design: Design primers based on the MET6 gene sequence of Saccharomyces cerevisiae (GenBank: BK006943.1):
上游引物MET6-P1:Upstream primer MET6-P1:
TTTTTGTTAAACTCTTCCTTTATCATAAAAAAGCAAGCATCTAAGAGCATAAAGGGAATAAGGGCGACAC;TTTTTGTTAAACTCTTCCTTTATCATAAAAAAGCAAGCATCTAAGAGCATAAAGGGAATAAGGGCGACAC;
下游引物MET6-P2:Downstream primer MET6-P2:
TGATATGTACTTTGAAATTATATTGGTATTTTGTTTCTTAGAGTGTTGTCGGTTTTTTCTCCTTGACGTT;TGATATGTACTTTGAAATTATATTGGTATTTTGTTTCTTAGAGTGTTGTGCGGTTTTTTCTCCTTGACGTT;
2)PCR扩增:利用上游引物MET6-P1和下游引物MET6-P2对质粒 pSP72-ura3-pGAL1(可通过Addgene获得) 进行PCR扩增,获得含酿酒酵母MET6基因的启动子上下游序列的GAL1强启动子片段;2) PCR amplification: PCR amplification was performed on plasmid pSP72-ura3-pGAL1 (available through Addgene) using upstream primer MET6-P1 and downstream primer MET6-P2 to obtain GAL1 containing the upstream and downstream sequences of the promoter of Saccharomyces cerevisiae MET6 gene Strong promoter fragments;
3)MET6基因的过表达:通过LiAc/PEG 的转化方法将PCR扩增得到的敲除片段导入酿酒酵母BY4742菌株细胞(BY4742菌株来源于中国典型培养物保藏中心,可以通过购买获得),并通过Ura标记筛选得到具有Ura合成基因的酿酒酵母的MET6过表达突变株SZ1(Saccharomyces cerevisiae SZ1),此菌株已保藏,保藏单位:中国典型培养物保藏中心,地址:中国. 武汉. 武汉大学,保藏日期:2017 年6 月12日,保藏编号CCTCC No :M2017326,分类命名:酿酒酵母SZ1 (Saccharomyces cerevisiae SZ1)。3) Overexpression of MET6 gene: The knockout fragment amplified by PCR was introduced into Saccharomyces cerevisiae BY4742 strain cells by LiAc/PEG transformation method (BY4742 strain was obtained from the China Type Culture Collection, which can be purchased), and passed The M ET6 overexpression mutant SZ1 ( Saccharomyces cerevisiae SZ1) of Saccharomyces cerevisiae with Ura synthetic gene was obtained by Ura marker screening. This strain has been deposited. Date: June 12, 2017, deposit number CCTCC No: M2017326, taxonomic name: Saccharomyces cerevisiae SZ1.
一种利用酿酒酵母的MET6基因过表达突变株SZ1在提高硒代甲硫氨酸合成的应用,其步骤是:A kind of application of utilizing the MET6 gene overexpression mutant SZ1 of Saccharomyces cerevisiae in improving the synthesis of selenomethionine, the steps are:
1)富硒过程:将MET6过表达突变株SZ1和BY4742菌株分别从平板上接种于2 mLYPGal培养基(酵母提取物:1%,蛋白胨:2%,半乳糖:2%)中,200 rpm/min,30°C振荡培养24h;向培养基中添加终浓度为2.5 mM的Na2SeO3,继续200 rpm/min,30°C振荡培养24 h,完成富硒;1) Selenium enrichment process: MET6 overexpression mutant strain SZ1 and BY4742 were inoculated from the plate in 2 mL YPGal medium (yeast extract: 1%, peptone: 2%, galactose: 2%), 200 rpm/ min, shaking at 30°C for 24 hours; adding Na 2 SeO 3 with a final concentration of 2.5 mM to the medium, continuing at 200 rpm/min, shaking at 30° C for 24 hours, and completing the enrichment of selenium;
2)胞内硒代甲硫氨酸的收集:收集硒化后的酵母细胞(0.5 g,湿重),用PBS溶液洗涤后分装至装好酸洗玻璃珠(Sigma)的冻存管,用Mini-Beadbeater-16 型玻璃珠细胞破碎仪破碎细胞,震荡 1 min,冰上孵育 1 min;离心后收集上清,加入 200 mg 的 Trypsin 和10×TCS Buffer (1 M Tris-Cl pH 7.5, 100 mM CaCl2, 5% SDS)于 37 °C 孵育 18 h;离心后上清用 0.22 μm 滤膜过滤后,加入40 mg 的蛋白酶14于37℃孵育24 h;离心后上清用 0.22 μm 滤膜过滤后,利用尺寸排阻色谱除去未被完全消解的蛋白质(色谱柱为Superdex 200 HR 10/30 Column;仪器为岛津公司色谱分离系统),其流动相组成为 0.05M NaH2PO4-Na2HPO4 (pH 7.2),流动相流速为 0.5 mL/min,柱温30°C,紫外检测波长设定为220 nm 和 280 nm, 收集保留时间为 80-89 min 及 101-104.5 min 的样品;2) Collection of intracellular selenomethionine: Collect the selenized yeast cells (0.5 g, wet weight), wash with PBS solution, and distribute them into cryovials filled with acid-washed glass beads (Sigma). The cells were disrupted with a Mini-Beadbeater-16 glass bead cell disrupter, shaken for 1 min, and incubated on ice for 1 min; after centrifugation, the supernatant was collected, and 200 mg of Trypsin and 10×TCS Buffer (1 M Tris-Cl pH 7.5, 100 mM CaCl 2 , 5% SDS) was incubated at 37 °C for 18 h; after centrifugation, the supernatant was filtered with a 0.22 μm filter, and 40 mg of protease 14 was added and incubated at 37 °C for 24 h; after centrifugation, the supernatant was filtered with a 0.22 μm filter. After membrane filtration, the incompletely digested proteins were removed by size exclusion chromatography (the chromatographic column was Superdex 200 HR 10/30 Column; the instrument was Shimadzu Corporation chromatographic separation system), and the mobile phase composition was 0.05M NaH 2 PO 4 - Na 2 HPO 4 (pH 7.2), mobile phase flow rate of 0.5 mL/min, column temperature of 30°C, UV detection wavelengths set to 220 nm and 280 nm, and collection retention times of 80-89 min and 101-104.5 min. sample;
3)将收集的样品继续注入高效液相色谱-电感耦合等离子体-质谱仪(HPLC-ICP-MS)中进行进一步的确认,其流动相组成为甲酸/甲酸铵(25mM),0.1%(v/v)TFA,pH 3.1,3%(v/v)甲醇;硒代甲硫氨酸标准品购于Sigma公司;得到野生型酿酒酵母细胞BY4742和MET6过表达突变株SZ1富硒后胞内的硒代甲硫氨酸含量分别为7.806 μg/g SeMet和21.15 μg/gSeMet。3) Continue to inject the collected samples into high performance liquid chromatography-inductively coupled plasma-mass spectrometer (HPLC-ICP-MS) for further confirmation, and the mobile phase composition is formic acid/ammonium formate (25mM), 0.1% (v /v) TFA, pH 3.1, 3% (v/v) methanol; selenomethionine standard was purchased from Sigma; wild-type Saccharomyces cerevisiae cells BY4742 and MET6 overexpression mutant SZ1 were obtained after selenium enrichment. The content of selenomethionine was 7.806 μg/g SeMet and 21.15 μg/g SeMet, respectively.
本发明与现有技术相比,具有以下优点和效果:Compared with the prior art, the present invention has the following advantages and effects:
本发明首次将酿酒酵母MET6基因和酿酒酵母富硒相关联。利用强大的酵母遗传学操作系统,构建了MET6过表达突变株SZ1,过表达MET6基因,对胞内硒代甲硫氨酸合成进行进一步的调控,对细胞硒代谢进行了改造,从而提高了胞内硒代甲硫氨酸的合成能力。该菌株富硒后胞内的硒代甲硫氨酸含量相对于野生型酵母细胞提升至少2倍。The present invention associates Saccharomyces cerevisiae MET6 gene with Saccharomyces cerevisiae enrichment for the first time. Using the powerful yeast genetics operating system, a MET6 overexpression mutant SZ1 was constructed, overexpressing the MET6 gene, further regulating the synthesis of intracellular selenomethionine, and modifying the cellular selenium metabolism, thereby improving the cellularity of selenium metabolism. Synthetic capacity of endoselenomethionine. Compared with wild-type yeast cells, the intracellular selenomethionine content of the selenium-enriched strain increased by at least 2 times.
附图说明Description of drawings
图1为一种PCR鉴定MET6基因重组菌株SZ1的电泳示意图。Figure 1 is a schematic diagram of electrophoresis of a PCR identification of the MET6 gene recombinant strain SZ1.
通过MET6基因启动子特异性同源重组验证引物进行PCR,可以发现,在SZ1模板的泳道中出现了大小为2200 bp的特异性扩增条带。PCR was performed with primers specific for homologous recombination verification of the MET6 gene promoter. It was found that a specific amplification band with a size of 2200 bp appeared in the lane of the SZ1 template.
具体实施方式Detailed ways
下面以一种高产硒代甲硫氨酸富硒酿酒酵母的构建及应用为例,参照附图进一步阐述本发明。The present invention is further described below with reference to the accompanying drawings by taking the construction and application of a high-yielding selenomethionine selenium-enriched Saccharomyces cerevisiae as an example.
酿酒酵母BY4742菌株和质粒pSP72-ura3-pGAL1来源于中国典型培养物保藏中心。Saccharomyces cerevisiae BY4742 strain and plasmid pSP72-ura3-pGAL1 were obtained from China Type Culture Collection.
【实施例1】一种酿酒酵母MET6过表达突变株SZ1的构建方法[Example 1] A construction method of S. cerevisiae MET6 overexpression mutant SZ1
酿酒酵母MET6过表达突变株SZ1构建:酿酒酵母基因同源重组敲除原理、引物设计、敲除片段转化方法按照文献所描述的方法进行(Yeast, 1998, 14: 953-962),该方法是目前酿酒酵母中基因敲除的通用方法;Construction of Saccharomyces cerevisiae MET6 overexpression mutant SZ1: The principle of homologous recombination knockout of Saccharomyces cerevisiae gene, primer design, and the method of knockout fragment transformation were carried out according to the method described in the literature ( Yeast , 1998, 14: 953-962), the method is Current general methods for gene knockout in Saccharomyces cerevisiae;
1)引物设计:依据酿酒酵母MET6基因序列(GenBank: BK006943.1)设计引物:1) Primer design: Design primers based on the MET6 gene sequence of Saccharomyces cerevisiae (GenBank: BK006943.1):
上游引物MET6-P1:Upstream primer MET6-P1:
TTTTTGTTAAACTCTTCCTTTATCATAAAAAAGCAAGCATCTAAGAGCATAAAGGGAATAAGGGCGACAC;TTTTTGTTAAACTCTTCCTTTATCATAAAAAAGCAAGCATCTAAGAGCATAAAGGGAATAAGGGCGACAC;
下游引物MET6-P2:Downstream primer MET6-P2:
TGATATGTACTTTGAAATTATATTGGTATTTTGTTTCTTAGAGTGTTGTCGGTTTTTTCTCCTTGACGTT;TGATATGTACTTTGAAATTATATTGGTATTTTGTTTCTTAGAGTGTTGTGCGGTTTTTTCTCCTTGACGTT;
2)PCR扩增:利用上游引物MET6-P1和下游引物MET6-P2对质粒 pSP72-ura3-pGAL1(可通过Addgene获得) 进行PCR扩增,获得含酿酒酵母MET6基因的启动子上下游序列的GAL1强启动子片段;2) PCR amplification: PCR amplification was performed on plasmid pSP72-ura3-pGAL1 (available through Addgene) using upstream primer MET6-P1 and downstream primer MET6-P2 to obtain GAL1 containing the upstream and downstream sequences of the promoter of Saccharomyces cerevisiae MET6 gene Strong promoter fragments;
3)MET6基因的过表达:通过LiAc/PEG 的转化方法将步骤2)PCR扩增得到的敲除片段导入酿酒酵母BY4742菌株细胞(BY4742菌株来源于中国典型培养物保藏中心,可以通过购买获得),并通过Ura标记筛选得到具有Ura合成基因的酿酒酵母的MET6过表达突变株SZ1(Saccharomyces cerevisiae SZ1),保藏于中国典型培养物保藏中心,保藏编号为CCTCCNo: M2017326。3) Overexpression of MET6 gene: The knockout fragment obtained in step 2) PCR amplification was introduced into Saccharomyces cerevisiae BY4742 strain cells by LiAc/PEG transformation method (BY4742 strain is from the China Type Culture Collection, which can be purchased) , and the M ET6 overexpression mutant SZ1 ( Saccharomyces cerevisiae SZ1) of Saccharomyces cerevisiae with Ura synthetic gene was obtained by Ura marker screening, which was deposited in the China Center for Type Culture Collection with the deposit number CCTCCNo: M2017326.
【实施例2】一种利用酿酒酵母的MET6过表达突变株在提高硒代甲硫氨酸合成的应用[Example 2] Application of a M ET6 overexpression mutant of Saccharomyces cerevisiae in improving the synthesis of selenomethionine
将MET6过表达突变株SZ1和BY4742菌株分别从平板上接种于2 mL YPGal培养基(酵母提取物:1%,蛋白胨:2%,半乳糖:2%)中,200 rpm/min,30°C振荡培养24 h;向培养基中添加终浓度为2.5 mM的Na2SeO3,继续200 rpm/min,30°C振荡培养24 h,完成富硒。收集硒化后的酵母细胞(0.5 g,湿重),用PBS溶液洗涤后分装至装好酸洗玻璃珠(Sigma)的冻存管,用Mini-Beadbeater-16 型玻璃珠细胞破碎仪破碎细胞,震荡 1 min,冰上孵育 1 min;离心后收集上清,加入 200 mg 的 Trypsin 和 10×TCS Buffer (1 M Tris-Cl pH 7.5,100 mM CaCl2, 5% SDS)于 37 °C 孵育 18 h。离心后上清用 0.22 μm 滤膜过滤后,加入40 mg 的蛋白酶14于37℃孵育24 h。离心后上清用 0.22 μm 滤膜过滤后,利用尺寸排阻色谱除去未被完全消解的蛋白质(色谱柱为 Superdex 200 HR 10/30 Column;仪器为岛津公司色谱分离系统),其流动相组成为 0.05 M NaH2PO4-Na2HPO4 (pH 7.2),流动相流速为0.5 mL/min,柱温30°C, 紫外检测波长设定为 220 nm 和 280 nm, 收集保留时间为 80-89 min 及 101-104.5 min 的样品。The MET6 overexpression mutant SZ1 and BY4742 strains were inoculated from the plate in 2 mL of YPGal medium (yeast extract: 1%, peptone: 2%, galactose: 2%), 200 rpm/min, 30°C Shake culture for 24 h; add Na 2 SeO 3 with a final concentration of 2.5 mM to the medium, continue to 200 rpm/min, shake at 30 °C for 24 h, and complete the selenium enrichment. The selenized yeast cells (0.5 g, wet weight) were collected, washed with PBS solution, and then aliquoted into cryovials filled with acid-washed glass beads (Sigma), and disrupted with a Mini-Beadbeater-16 glass bead cell disrupter The cells were shaken for 1 min and incubated on ice for 1 min; after centrifugation, the supernatant was collected, and 200 mg of Trypsin and 10×TCS Buffer (1 M Tris-Cl pH 7.5, 100 mM CaCl 2 , 5% SDS) were added at 37 °C Incubate for 18 h. After centrifugation, the supernatant was filtered through a 0.22 μm filter, and then 40 mg of protease 14 was added and incubated at 37 °C for 24 h. After centrifugation, the supernatant was filtered with a 0.22 μm filter membrane, and the incompletely digested proteins were removed by size exclusion chromatography (the chromatographic column was Superdex 200 HR 10/30 Column; the instrument was Shimadzu Corporation’s chromatographic separation system), and its mobile phase composition is 0.05 M NaH 2 PO 4 -Na 2 HPO 4 (pH 7.2), the mobile phase flow rate is 0.5 mL/min, the column temperature is 30°C, the UV detection wavelengths are set to 220 nm and 280 nm, and the collection retention time is 80- 89 min and 101-104.5 min samples.
将收集的样品继续注入高效液相色谱-电感耦合等离子体-质谱仪(HPLC-ICP-MS)中进行进一步的确认,其流动相组成为甲酸/甲酸铵(25mM),0.1%(v/v)TFA,pH 3.1,3%(v/v)甲醇。硒代甲硫氨酸标准品购于Sigma公司。得到野生型酿酒酵母细胞BY4742和MET6过表达突变株SZ1富硒后胞内的硒代甲硫氨酸含量分别为7.806 μg/g SeMet和21.15 μg/gSeMet。The collected samples were injected into high performance liquid chromatography-inductively coupled plasma-mass spectrometer (HPLC-ICP-MS) for further confirmation, and the mobile phase composition was formic acid/ammonium formate (25mM), 0.1% (v/v) ) TFA, pH 3.1, 3% (v/v) methanol. Selenomethionine standard was purchased from Sigma Company. The content of selenomethionine in wild-type Saccharomyces cerevisiae cells BY4742 and MET6 overexpression mutant SZ1 after Se enrichment was 7.806 μg/g SeMet and 21.15 μg/g SeMet, respectively.
以上描述是对本发明的解释,不是对本发明的限定,本发明所限定的范围参见权利要求,在不违背本发明的精神的情况下,本发明可以做任何形式的修改。The above description is an explanation of the present invention, not a limitation of the present invention. For the limited scope of the present invention, refer to the claims. The present invention can be modified in any form without departing from the spirit of the present invention.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 武汉大学<110> Wuhan University
<120> 一种高产硒代甲硫氨酸酿酒酵母的构建及应用<120> Construction and application of a high-yielding selenomethionine Saccharomyces cerevisiae
<160> 2<160> 2
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 70<211> 70
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 1<400> 1
tttttgttaa actcttcctt tatcataaaa aagcaagcat ctaagagcat aaagggaata 60ttttttgttaa actcttcctt tatcataaaa aagcaagcat ctaagagcat aaagggaata 60
agggcgacac 70agggcgacac 70
<210> 2<210> 2
<211> 70<211> 70
<212> DNA<212> DNA
<213> 人工序列<213> Artificial sequences
<400> 2<400> 2
tgatatgtac tttgaaatta tattggtatt ttgtttctta gagtgttgtc ggttttttct 60tgatatgtac tttgaaatta tattggtatt ttgtttctta gagtgttgtc ggttttttct 60
ccttgacgtt 70ccttgacgtt 70
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710582722.6A CN107227323B (en) | 2017-07-17 | 2017-07-17 | Construction and application of high-yield selenomethionine saccharomyces cerevisiae |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710582722.6A CN107227323B (en) | 2017-07-17 | 2017-07-17 | Construction and application of high-yield selenomethionine saccharomyces cerevisiae |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107227323A CN107227323A (en) | 2017-10-03 |
CN107227323B true CN107227323B (en) | 2020-07-10 |
Family
ID=59956460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710582722.6A Active CN107227323B (en) | 2017-07-17 | 2017-07-17 | Construction and application of high-yield selenomethionine saccharomyces cerevisiae |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107227323B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118638660B (en) * | 2024-05-20 | 2025-01-10 | 安徽科楹生物技术有限责任公司 | A brewer's yeast engineering strain and its construction method and application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102296033A (en) * | 2011-04-26 | 2011-12-28 | 武汉大学 | Construction method and application of Saccharomyces cerevisiae gsh1 deleted mutant strain |
US8318474B1 (en) * | 2005-05-23 | 2012-11-27 | California Institute Of Technology | Engineered yeast cells and uses thereof |
-
2017
- 2017-07-17 CN CN201710582722.6A patent/CN107227323B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8318474B1 (en) * | 2005-05-23 | 2012-11-27 | California Institute Of Technology | Engineered yeast cells and uses thereof |
CN102296033A (en) * | 2011-04-26 | 2011-12-28 | 武汉大学 | Construction method and application of Saccharomyces cerevisiae gsh1 deleted mutant strain |
Non-Patent Citations (2)
Title |
---|
"Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism inSaccharomyces cerevisiae";Per O. Ljungdahl 等;《Genetics》;20120331;第190卷(第3期);第899页图9及其图注 * |
"富硒酵母的研究进展";贾洪锋 等;《四川食品与发酵》;20050930;第41卷(第126期);第10页左栏第1、2段、表1,第10-12页正文第3、4节 * |
Also Published As
Publication number | Publication date |
---|---|
CN107227323A (en) | 2017-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106701606B (en) | Genetic engineering candida utilis capable of degrading and utilizing kitchen waste and construction method thereof | |
WO2021184809A1 (en) | Preparation and application of l-amino acid deaminase mutant | |
CN104805027B (en) | One kind restructuring Ye Shi solution fat yeast strains and its construction method and application | |
CN111549073A (en) | Application of gene SNG1 deletion in improving vanillin resistance of Saccharomyces cerevisiae | |
CN107227323B (en) | Construction and application of high-yield selenomethionine saccharomyces cerevisiae | |
CN109055417B (en) | Recombinant microorganism, preparation method thereof and application thereof in production of coenzyme Q10 | |
CN103865814B (en) | A kind of ganoderan high-yielding engineering bacterial strain Rmust and construction process thereof | |
JP7665668B6 (en) | Cordyceps gracilis strain that does not produce thyroxine and method for producing same | |
CN117229934A (en) | Genetically engineered bacterium for synthesizing carotenoid, construction method and application thereof | |
CN102321556B (en) | Aeromonas and its Application in Biotransformation of (R)-α-Hydroxyphenylacetic Acid | |
CN116622784B (en) | Application of cannabidiolic acid synthase | |
CN106754448A (en) | A kind of restructuring yeast strains and its application | |
JP4854418B2 (en) | Method for producing dodecahydro-3a, 6,6,9a-tetramethylnaphtho [2,1-b] furan raw material | |
CN105296564B (en) | A kind of method that bioconversion prepares 3- succinyl pyridines | |
CN118685338B (en) | A recombinant Clostridium aerovorum and its construction method and application | |
CN105087631A (en) | Method for improving absorption and utilization capacities of brewer's yeast xylose | |
CN110591933A (en) | Engineering strain for efficiently producing ethanol and xylitol by fermenting xylose | |
CN104004727B (en) | A kind of preparation method with the protein of sialic acid hydrolytic enzyme activities | |
CN115820517B (en) | A method for increasing the yield of biosynthetic methylselenocysteine | |
CN104762280B (en) | A kind of glycoside hydrolase that recombinates is used for the technique that bioconversion prepares panoxadiol type saponin(e | |
CN114456964B (en) | Recombinant yarrowia lipolytica for high yield of stigmasterol, construction method thereof, fermentation medium for producing stigmasterol and application | |
CN118638838B (en) | Aspergillus niger gene editing strain for oxalic acid production and construction method and application thereof | |
CN101230374A (en) | Preparation process of coenzyme A | |
WO2024124527A1 (en) | Genetically engineered bacterium capable of improving secretion of endogenous enzyme, construction method therefor, and use thereof | |
CN109913381B (en) | A method for improving fermentative ethanol yield by regulating cell cycle transcription factors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |