[go: up one dir, main page]

CN107220945A - The restored method of the pole blurred picture of multiple degeneration - Google Patents

The restored method of the pole blurred picture of multiple degeneration Download PDF

Info

Publication number
CN107220945A
CN107220945A CN201710234684.5A CN201710234684A CN107220945A CN 107220945 A CN107220945 A CN 107220945A CN 201710234684 A CN201710234684 A CN 201710234684A CN 107220945 A CN107220945 A CN 107220945A
Authority
CN
China
Prior art keywords
sub
function
degeneration
degradation
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710234684.5A
Other languages
Chinese (zh)
Other versions
CN107220945B (en
Inventor
刘丹平
何小敏
毛菀丁
王贤秋
胡小波
谭晓衡
印勇
胡学斌
蒋阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201710234684.5A priority Critical patent/CN107220945B/en
Publication of CN107220945A publication Critical patent/CN107220945A/en
Application granted granted Critical
Publication of CN107220945B publication Critical patent/CN107220945B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/77Retouching; Inpainting; Scratch removal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种多重退化的极模糊图像的复原方法,用于解决现有的刑侦软件不能有效复原模糊图像的问题。该方法主要将光学衍射、量化、散焦以及相对运动引起的多重模糊因素考虑在内,根据实测的物理参数初始化各子退化函数,利用变分贝叶斯算法采用交替迭代的方式求解出各子退化函数的最优分布,并利用子退化函数与系统退化函数的关系,将各子退化函数合成为系统的点扩散函数。最后,利用L‑R算法对图像进行复原。

The invention discloses a method for restoring a multi-degraded extremely blurred image, which is used to solve the problem that the existing criminal investigation software cannot effectively restore the blurred image. This method mainly takes into account multiple blur factors caused by optical diffraction, quantization, defocus and relative motion, initializes each sub-degeneration function according to the measured physical parameters, and uses the variational Bayesian algorithm to solve each sub-degradation function in an alternate iterative manner. The optimal distribution of the degeneracy function is used, and the relationship between the degeneracy sub-functions and the degeneracy function of the system is used to synthesize the degeneracy sub-functions into the point spread function of the system. Finally, the image is restored using the L-R algorithm.

Description

多重退化的极模糊图像的复原方法Restoration method of extremely blurry image with multiple degradations

技术领域technical field

本发明属于图像复原领域,涉及多重退化的极模糊图像的复原方法,特别适用于极模糊的刑侦图像的复原。The invention belongs to the field of image restoration, relates to a method for restoring multiple degraded extremely blurred images, and is particularly suitable for restoring extremely blurred criminal investigation images.

背景技术Background technique

随着使用范围逐步扩大,视频监控技术已成为各类案件侦破过程中搜集犯罪证据、提取犯罪线索的重要手段[1-4]。当遇到图像模糊不清时,侦查人员常用Photoshop、警视通影像分析平台、Video Investigator、“影博士”、“VCS”、vReveal Premium和“索贝”等软件来处理[1]。一般这些软件对单一退化原因的模糊图像有效,但对于多重退化引起的极模糊图像,难以取得理想效果。With the gradual expansion of the scope of use, video surveillance technology has become an important means of collecting criminal evidence and extracting criminal clues in the process of investigating various cases [1-4]. When encountering blurry images, investigators often use software such as Photoshop, Jingshitong image analysis platform, Video Investigator, "Doctor Shadow", "VCS", vReveal Premium, and "Sobey" to deal with it [1]. Generally, these softwares are effective for blurred images caused by a single degradation, but it is difficult to achieve ideal results for extremely blurred images caused by multiple degradations.

早期的方法典型地假定PSF具有简单参数形式。实际上,PSF复杂得多,应该用复杂的参数模型来描述。Dilip G.Warrier和Uday B.Desai将PSF看作是一个矩阵,称为模糊矩阵,该矩阵的元素采用随机模型,使用平均场近似得到一个封闭形式模糊元素平均值表达式。因而采用非函数模型的PSF估计算法得到快速发展:早期的基于图像复倒谱的估计方法,基于二维ARMA模型的估计方法,利用多帧图像序列维纳滤波方法和近期出现的基于奇异值分解的估计方法等。Early methods typically assumed that the PSF has a simple parametric form. In reality, PSF is much more complex and should be described by a complex parametric model. Dilip G.Warrier and Uday B.Desai regarded the PSF as a matrix, called the fuzzy matrix. The elements of the matrix adopt a random model, and use the mean field approximation to obtain a closed-form fuzzy element mean value expression. Therefore, the PSF estimation algorithm using the non-functional model has been developed rapidly: the early estimation method based on image complex cepstrum, the estimation method based on two-dimensional ARMA model, the Wiener filtering method using multi-frame image sequence and the recent emergence based on singular value decomposition estimation method, etc.

近来,基于自然图像的统计特性,有不少估计PSF的好算法被提出。Fergus等人对于自然图像的灰度梯度采用混合高斯模型,结合变分贝叶斯估计PSF,然后使用L-R算法来解卷。这种方法对PSF较小的情况,结果比较好。后来,Krishan和Fergus将自然图像的灰度梯度的重尾分布采用超拉普拉斯先验模型,应用交叉迭代的方案,该方案利用查找表的算法,能进行快速优化,然而复原出来的图像还是有明显的阶梯效应。Levin等人对这些方法进行了归纳,提出了基于最大后验概率的边缘似然的优化方法,该种后验概率证明比通常的后验概率具有更好的鲁棒性。尽管这些方法效果不错,但计算量太大。因为需要对潜图像进行边缘化处理,而优化能量函数通常要求相当复杂的迭代数值算法,比如在优化方案中要求在PSF估计和图像复原交替迭代进行。然而如果初始模糊核没有一种匹配的方式或者适当的大小进行很好的设置,通常会不能收敛到真实的全局最小。Recently, based on the statistical properties of natural images, many good algorithms for estimating PSF have been proposed. Fergus et al. used a mixed Gaussian model for the gray gradient of natural images, combined with variational Bayesian estimation PSF, and then used the L-R algorithm to deconvolute. This method works well for smaller PSFs. Later, Krishan and Fergus used the super-Laplace prior model for the heavy-tailed distribution of the gray gradient of natural images, and applied a cross-iteration scheme. This scheme uses a look-up table algorithm and can be quickly optimized. However, the restored image There is still an obvious step effect. Levin et al. summarized these methods and proposed an optimization method based on the marginal likelihood based on the maximum posterior probability, which proved to be more robust than the usual posterior probability. While these methods work well, they are computationally expensive. Because the latent image needs to be marginalized, the optimization of the energy function usually requires a rather complex iterative numerical algorithm. For example, in the optimization scheme, alternate iterations of PSF estimation and image restoration are required. However, if the initial blur kernel is not set well in a matching way or with an appropriate size, it will usually fail to converge to the true global minimum.

发明内容Contents of the invention

本专利以现场场景的测试值作为初始值,提出一种多重退化的极模糊图像的复原方法,应用变分贝叶斯理论来精确估计各子退化函数,从而精确地估计出成像系统的PSF,实现了极模糊刑侦图像的复原。由于仔细处理了多重退化因素,使得图像的复原效果好。This patent uses the test value of the field scene as the initial value, and proposes a restoration method for a multi-degraded extremely blurred image, and uses the variational Bayesian theory to accurately estimate each sub-degeneration function, thereby accurately estimating the PSF of the imaging system. The recovery of extremely blurred criminal investigation images is realized. Due to the careful handling of multiple degradation factors, the restoration effect of the image is good.

一种多重退化的极模糊图像的复原方法,S1,获取数据;A restoration method for multiple degraded extremely blurred images, S1, acquires data;

S01,获取外界参数:S01, get external parameters:

S02,获取模糊图像矩阵g(x,y)并求其梯度倒谱 S02, obtain the blurred image matrix g(x,y) and find its gradient cepstrum

S2,建立系统退化函数h(x,y)和各子退化函数;S2, establishing the system degradation function h(x, y) and each sub-degeneration function;

S3,初始化各子退化函数,求解各子退化函数的初始梯度倒谱;S3, initialize each sub-degradation function, and solve the initial gradient cepstrum of each sub-degeneration function;

S4,将各子退化函数的初始梯度倒谱以及模糊图像的梯度倒谱作为变分贝叶斯的输入,求解出各子退化函数的最优分布;S4, using the initial gradient cepstrum of each sub-degradation function and the gradient cepstrum of the blurred image as the input of the variational Bayesian, and solving the optimal distribution of each sub-degeneration function;

S5,利用各子退化函数与系统点扩散函数的关系,求解系统的点扩散函数h(x,y)。S5, using the relationship between each sub-degenerate function and the system point spread function, to solve the system point spread function h(x, y).

S6,将h(x,y)和g(x,y)作为L-R算法的输入,获得清晰图像矩阵f(x,y)。S6, using h(x, y) and g(x, y) as input of the L-R algorithm to obtain a clear image matrix f(x, y).

进一步限定,所述S01中获取外界参数具体包括:Further defined, the acquisition of external parameters in S01 specifically includes:

S01,获取外界参数:获取摄像头工作参数焦距f、透镜的直径D、光圈系数F,CCD成像像元大小wx、wy以及物距z,像距v,像素点数目K、P,感光元件每个像素点长度l,物体在曝光时间τ内的运动距离d,目标运动的方向θ。S01, obtain external parameters: obtain camera working parameters focal length f, lens diameter D, aperture coefficient F, CCD imaging pixel size w x , w y and object distance z, image distance v, number of pixels K, P, photosensitive element The length l of each pixel point, the moving distance d of the object within the exposure time τ, and the direction θ of the target moving.

进一步限定,所述S2的各自退化函数具体包括:Further defined, the respective degradation functions of the S2 specifically include:

光学衍射引起的艾里斑模式的子退化函数为h1(x,y);The sub-degeneration function of the Airy disk mode caused by optical diffraction is h1(x,y);

量化时图像传感器的子退化函数为h2(x,y);The sub-degeneration function of the image sensor during quantization is h2(x,y);

摄像头散焦的子退化函数为h3(x,y);The sub-degeneration function of camera defocus is h3(x,y);

摄像头与目标相对匀速直线运动的子退化函数为h4(x,y)。The sub-degradation function of the relative uniform linear motion between the camera and the target is h4(x,y).

进一步限定,光学衍射引起的艾里斑模式的子退化函数h1(x,y)具体为:Further defined, the sub-degeneration function h1(x,y) of the Airy disk mode caused by optical diffraction is specifically:

量化时图像传感器的子退化函数为h2(x,y)具体为:The sub-degradation function of the image sensor during quantization is h2(x, y), specifically:

摄像头散焦的子退化函数为h3(x,y)具体为:The sub-degradation function of camera defocus is h3(x,y) specifically:

摄像头与目标相对匀速直线运动的子退化函数为h4(x,y)具体为:The sub-degradation function of the relative uniform linear motion between the camera and the target is h4(x, y), specifically:

进一步限定,所述S3具体包括:Further defined, the S3 specifically includes:

将所述S01中获取得的参数值代入所述S2中所对应的子退化函数中以初始化各子退化函数,得到各子退化函数的初值h10、h20、h30、h40;Substituting the parameter values obtained in S01 into the corresponding sub-degeneration functions in S2 to initialize each sub-degeneration function, and obtain initial values h10, h20, h30, and h40 of each sub-degeneration function;

求解各子退化函数的初始梯度倒谱Ch10、Ch20、Ch30、Ch40,并设系统退化函数h(x,y)的梯度倒谱为ChSolve the initial gradient cepstrum C h10 , C h20 , C h30 , C h40 of each sub-degradation function, and set the gradient cepstrum of the system degradation function h(x,y) as C h .

进一步限定,所述S4具体包括:Further defined, the S4 specifically includes:

将各子退化函数的初始梯度倒谱Ch10、Ch20、Ch30、Ch40Ch40作为变分贝叶斯的输入得到Ch1、Ch2、Ch3、Ch4The initial gradient cepstrum C h10 , C h20 , C h30 , C h40 C h40 , Get C h1 , C h2 , C h3 , C h4 as input to Variational Bayesian;

它们满足线性关系关系:They satisfy the linear relationship:

Ch=k1Ch1+k2Ch2+k3Ch3+k4Ch4,其中k1、k2、k3、k4是常数,且k1、k2、k3、k4至少有一个不为0。C h =k1C h1 +k2C h2 +k3C h3 +k4C h4 , wherein k 1 , k 2 , k 3 , and k 4 are constants, and at least one of k 1 , k 2 , k 3 , and k 4 is not 0.

进一步限定,所述k参数k1、k2、k3、k4典型值为1,针对某种成像系统的退化情况,k参数的取值在1附近变化,具体值由实验确定。本专利不限于四种退化因素,如果有四种以上退化因素,k参数的个数应增加。It is further defined that the typical value of the k parameters k1, k2, k3, and k4 is 1, and the value of the k parameter varies around 1 in view of the degradation of a certain imaging system, and the specific value is determined by experiments. This patent is not limited to four degradation factors, if there are more than four degradation factors, the number of k parameters should be increased.

本发明的有益效果为:通过考虑图像模糊的多重退化因素,且通过变分贝叶斯理论来精确估计各子退化函数,从而精确地估计出成像系统的PSF,实现了极模糊图像的复原。The beneficial effects of the present invention are: by considering multiple degradation factors of image blur and accurately estimating each sub-degeneration function through variational Bayesian theory, thereby accurately estimating the PSF of the imaging system and realizing the restoration of extremely blurred images.

具体实施方式detailed description

附图说明:Description of drawings:

图1为本发明的流程示意图。Fig. 1 is a schematic flow chart of the present invention.

图2摄像头的成像光路图。Figure 2 The imaging optical path diagram of the camera.

图3为摄像头的清晰摄像时的摄像图片。Fig. 3 is a camera picture when the camera is clearly shooting.

图4为摄像头的一段模糊视频的一帧图。Figure 4 is a frame of a blurred video from the camera.

图5为经本发明的方法处理后的清晰图片Fig. 5 is the clear picture processed by the method of the present invention

如图1所示,一种多重退化因素的极模糊图像的复原方法,包括如下步骤:As shown in Figure 1, a restoration method for an extremely blurred image with multiple degradation factors includes the following steps:

S1,获取数据;S1, get data;

S01,获取外界参数:获取摄像头工作参数焦距f,透镜的直径D,光圈系数F,CCD成像像元大小ωx、ωy以及物距z,像距v,像素点数目K、P,感光元件每个像素点长度l,物体在曝光时间τ内的运动距离d,目标运动的方向θ;S01, obtain external parameters: obtain camera working parameters focal length f, lens diameter D, aperture coefficient F, CCD imaging pixel size ω x , ω y and object distance z, image distance v, number of pixels K, P, photosensitive element The length of each pixel point l, the moving distance d of the object within the exposure time τ, and the direction of the target moving θ;

S02,获取模糊图像矩阵g(x,y);S02, obtain the fuzzy image matrix g(x,y);

S2,建立退化函数,S2, establish the degradation function,

系统退化函数为h(x,y);The system degradation function is h(x,y);

光学衍射引起的艾里斑模式的子退化函数为h1(x,y);The sub-degeneration function of the Airy disk mode caused by optical diffraction is h1(x,y);

量化时图像传感器的子退化函数为h2(x,y);The sub-degeneration function of the image sensor during quantization is h2(x,y);

摄像头散焦的子退化函数为h3(x,y);The sub-degeneration function of camera defocus is h3(x,y);

摄像头与目标相对匀速直线运动的子退化函数为h4(x,y);The sub-degradation function of the relative uniform linear motion between the camera and the target is h4(x,y);

光学衍射引起的艾里斑模式的子退化函数h1(x,y)具体为:The sub-degeneration function h1(x,y) of the Airy disk mode caused by optical diffraction is specifically:

量化时图像传感器的子退化函数为h2(x,y)具体为:The sub-degradation function of the image sensor during quantization is h2(x, y), specifically:

摄像头散焦的子退化函数为h3(x,y)具体为:The sub-degradation function of camera defocus is h3(x,y) specifically:

摄像头与目标相对匀速直线运动的子退化函数为h4(x,y)具体为:The sub-degradation function of the relative uniform linear motion between the camera and the target is h4(x, y), specifically:

S3,将所述S01中获取得的参数值代入所述S2中所对应的子退化函数中以初始化各子退化函数,得到各子退化函数的初值h10、h20、h30、h40;S3. Substituting the parameter values obtained in S01 into the corresponding sub-degradation functions in S2 to initialize each sub-degeneration function, and obtain initial values h10, h20, h30, and h40 of each sub-degeneration function;

求解各子退化函数的初始梯度倒谱Ch10、Ch20、Ch30、Ch40,系统退化函数为h(x,y)的梯度倒谱为ChSolve the initial gradient cepstrum C h10 , C h20 , C h30 , C h40 of each sub-degradation function, and the gradient cepstrum of the system degradation function h(x, y) is C h ;

将各子退化函数的初始梯度倒谱Ch10、Ch20、Ch30、Ch40、Cg作为变分贝叶斯的输入得到Ch1、Ch2、Ch3、Ch4The initial gradient cepstrum C h10 , C h20 , C h30 , C h40 , and C g of each sub-degradation function are used as the input of the variational Bayesian to obtain C h1 , C h2 , C h3 , and C h4 ;

它们满足线性关系关系:They satisfy the linear relationship:

Ch=k1Ch1+k2Ch2+k3Ch3+k4Ch4,其中k1、k2、k3、k4是常数,且所述k1、k2、k3、k4至少有两个不为0,其取值由实验获得。C h =k1C h1 +k2C h2 +k3C h3 +k4C h4 , wherein k 1 , k 2 , k 3 , and k 4 are constants, and at least two of k 1 , k 2 , k 3 , and k 4 are not 0, its value is obtained by experiment.

S4,将h(x,y)和g(x,y)作为L-R算法的输入,获得清晰图像矩阵f(x,y)。S4, using h(x, y) and g(x, y) as input of the L-R algorithm to obtain a clear image matrix f(x, y).

具体原理如下:The specific principles are as follows:

清晰图像f(x,y)的退化图像g(x,y)可表示为:The degraded image g(x,y) of the clear image f(x,y) can be expressed as:

其中表示卷积操作,h(x,y)为系统点扩散函数(Point Spread Function,PSF)υ(x,y)为系统噪声。自然图像f(x,y)的梯度服从重尾分布,采用混合高斯分布来表示其分布:in Indicates the convolution operation, h(x, y) is the system point spread function (Point Spread Function, PSF) υ(x, y) is the system noise. The gradient of a natural image f(x,y) obeys a heavy-tailed distribution, and a mixed Gaussian distribution is used to represent its distribution:

其中,C表示为混合高斯分布的个数,πc表示第c个分布的权重,vc为第c个分布的方差。为了后面的计算方面,对图像进行梯度倒谱处理,根据倒谱的定义,模糊图像g(x,y)的倒谱为:Among them, C represents the number of mixed Gaussian distributions, π c represents the weight of the c-th distribution, and v c is the variance of the c-th distribution. For the following calculations, the image is subjected to gradient cepstrum processing. According to the definition of cepstrum, the cepstrum of the fuzzy image g(x, y) is:

Cg(p,q)=FFT-1{log[1+|G(u,v)|]} (3)C g (p,q)=FFT -1 {log[1+|G(u,v)|]} (3)

对式(3)在x方向和y方向分别进行梯度处理,即可得到模糊图像的梯度倒谱。Gradient processing is performed on the formula (3) in the x direction and y direction respectively, and the gradient cepstrum of the blurred image can be obtained.

本系统将光学衍射、量化、散焦以及相对运动等因素引起的图像退化考虑在内,构建了多重退化因素引起的点扩散函数的模型。假定成像过程各子退化函数表示为h1、h2、h3、h4,在多重退化和噪声v(x,y)共同作用下的退化图像g(x,y)为:The system takes the image degradation caused by optical diffraction, quantization, defocus and relative motion into consideration, and constructs the model of point spread function caused by multiple degradation factors. Assuming that each sub-degradation function in the imaging process is expressed as h1, h2, h3, h4, the degraded image g(x,y) under the joint action of multiple degradation and noise v(x,y) is:

这里,v(x,y)为零均值高斯白噪声,h1(x,y)表示光学衍射引起的艾里斑模式的子退化函数:Here, v(x,y) is zero-mean Gaussian white noise, and h1(x,y) represents the sub-degeneration function of the Airy disk mode caused by optical diffraction:

其中,J1()为一阶第一类Bessel函数;r0为艾里斑中心到主瓣的距离;B=πf/F(f为镜头焦距,F为光圈系数)。in, J1() is the first-order Bessel function of the first kind; r 0 is the distance from the center of the Airy disk to the main lobe; B=πf/F (f is the focal length of the lens, F is the aperture coefficient).

h2(x,y)表示量化时矩形传感单元的子退化函数:h2(x,y) represents the sub-degradation function of the rectangular sensing unit during quantization:

其中,ωx、ωy分别表示为矩形像元的长和宽。Among them, ωx and ωy represent the length and width of a rectangular pixel, respectively.

h3(x,y)表示散焦时的子退化函数:h3(x,y) represents the sub-degradation function when defocusing:

其中,R为散焦斑半径,表示为:Among them, R is the radius of the defocus spot, expressed as:

R=(1/f-1/v-1/z)Dv/2 (8)R=(1/f-1/v-1/z)Dv/2 (8)

式中,f为镜头焦距,z为物距,D为凸透镜半径,v为像距。In the formula, f is the focal length of the lens, z is the object distance, D is the radius of the convex lens, and v is the image distance.

h4(x,y)表示成像系统与目标相对匀速直线运动时的子退化函数:h4(x,y) represents the sub-degradation function when the imaging system and the target move in a straight line at a constant speed:

其中,θ为模糊角度,L为退化函数的长度。θ通过分析视频帧的目标运动情况进行估计,L可在现场按照成像比例关系进行实测。where θ is the blur angle and L is the length of the degradation function. θ is estimated by analyzing the target motion of the video frame, and L can be measured on the spot according to the imaging ratio.

在单帧图像中,运动模糊长度是车辆在曝光时的运动距离,而运动时间就是曝光时间。依照成像比例关系的方法来计算运动模糊长度在感光元件上对应的长度,其原理如下:In a single frame image, the motion blur length is the moving distance of the vehicle during exposure, and the moving time is the exposure time. Calculate the corresponding length of the motion blur length on the photosensitive element according to the method of imaging proportional relationship, the principle is as follows:

如图2的成像光路图所示,d是车辆在被拍摄时运动的距离——运动模糊的长度,与焦平面夹角为α,k是运动模糊长度d在感光元件上对应的长度,在感光元件上,运动模糊边缘与法线的距离为p,焦距为f,物距为z。根据相似三角形比例关系,可得:As shown in the imaging optical path diagram in Figure 2, d is the distance of the vehicle moving when it is photographed—the length of the motion blur, and the angle between it and the focal plane is α; k is the corresponding length of the motion blur length d on the photosensitive element. On the photosensitive element, the distance between the motion blur edge and the normal is p, the focal length is f, and the object distance is z. According to the proportional relationship of similar triangles, we can get:

由于k,p是长度单位,但是实际我们是通过计数像素点数目来求长度,故设实际像素点数目K、P,感光元件每个像素点长度为l,因此k=kl,p=Pl。Since k and p are length units, but actually we calculate the length by counting the number of pixels, so the actual number of pixels is K, P, and the length of each pixel of the photosensitive element is l, so k=kl, p=Pl.

假设h、h1、h2、h3、h4的倒谱Ch、Ch1、Ch2、Ch3、Ch4,那么存在以下关系:Assuming the cepstrum C h , C h1 , C h2 , C h3 , C h4 of h, h1, h2, h3, h4, then the following relationship exists:

Ch=k1Ch1+k2Ch2+k3Ch3+k4Ch4 (11)C h =k1C h1 +k2C h2 +k3C h3 +k4C h4 (11)

其中k1、k2、k3、k4是常数。对于四种退化因素引起的模糊图像,所述k参数k1、k2、k3、k4典型值为1,针对某种成像系统的退化情况,k参数的取值在1附近变化,具体值由实验确定。本专利不限于四种退化因素,如果有四种以上退化因素,k参数的个数应增加,估计方法仍然有效。Among them, k1, k2, k3, and k4 are constants. For blurred images caused by the four degradation factors, the typical values of the k parameters k1, k2, k3, and k4 are 1. For the degradation of a certain imaging system, the value of the k parameter changes around 1, and the specific value is determined by the experiment. . This patent is not limited to four degradation factors, if there are more than four degradation factors, the number of k parameters should be increased, and the estimation method is still valid.

由式(1)可知,系统点扩散函数未知时恢复清晰图像的过程为盲解卷积。因此,采用两步来进行图像复原。首先,估计出系统的点扩散函数。其次,利用L-R算法来对图像进行复原。采用变分贝叶斯理论来估计出精度较高的模糊核。It can be seen from formula (1) that the process of recovering a clear image when the point spread function of the system is unknown is blind deconvolution. Therefore, image restoration is performed in two steps. First, the point spread function of the system is estimated. Secondly, the L-R algorithm is used to restore the image. The variational Bayesian theory is used to estimate the fuzzy kernel with high precision.

变分贝叶斯估计系统点扩散函数的解释:Interpretation of the point spread function of the variational Bayesian estimation system:

给定模糊图像g(x,y),通过在给定f(x,y)的先验信息的情况下寻找最大后验概率来估计PSF(系统点扩散函数)和清晰图像f(x,y)。Given a blurred image g(x,y), estimate the PSF (systematic point spread function) and the sharp image f(x,y) by finding the maximum posterior probability given the prior information of f(x,y) ).

对于式(4),假设隐变量Θ={f,h1,h2,h3,h4},直接计算后验分布p(Θ|g)很麻烦,VB采用较简单的分布q(Θ|g)来近似后验分布p(Θ|g),它们的KL散度为:For formula (4), assuming hidden variables Θ = {f, h1, h2, h3, h4}, it is troublesome to directly calculate the posterior distribution p(Θ|g), VB uses a simpler distribution q(Θ|g) to Approximate posterior distributions p(Θ|g), their KL divergence is:

使(12)式最小来求解q(Θ|g)。由于积分变量为Θ,p(g)为常数,因此,式(12)可表示为:Make formula (12) minimum to solve q(Θ|g). Since the integral variable is Θ and p(g) is a constant, formula (12) can be expressed as:

定义CKL为代价函数,可表示为:Define C KL as the cost function, which can be expressed as:

假设q(Θ)、q(g)相互独立q(Θ,g)=q(Θ)q(g),即(14)式可改写成为:Assuming that q(Θ) and q(g) are independent of each other q(Θ, g)=q(Θ)q(g), that is, formula (14) can be rewritten as:

现将Θ={f,h1,h2,h3,h4}带入(15)式,可得:Now put Θ={f, h1, h2, h3, h4} into (15) formula, can get:

假设各子退化函数间相互独立,则Assuming that each sub-degenerate function is independent of each other, then

q(f,h1.h2,h3,h4)=q(f)q(h1)q(h2)q(h3)q(h4) (17)q(f,h1.h2,h3,h4)=q(f)q(h1)q(h2)q(h3)q(h4) (17)

将(17)带入(16)可得:Substitute (17) into (16) to get:

对(18)式进一步推导,得到:Further derivation of formula (18), we get:

CKL=∫q(f)q(h1)q(h2)q(h3)q(h4)[lnq(f)+lnq(h1)+lnq(h2)+lnq(h3)+lnq(h4)C KL =∫q(f)q(h1)q(h2)q(h3)q(h4)[lnq(f)+lnq(h1)+lnq(h2)+lnq(h3)+lnq(h4)

-lnp(f)-lnp(h1)-lnp(h2)-lnp(h3)-lnp(h4)-lnp(g|f,h1.h2,h3,h4)]dΘ (19) -lnp(f)-lnp(h1)-lnp(h2)-lnp(h3)-lnp(h4)-lnp(g|f,h1.h2,h3,h4)]dΘ (19)

使代价函数(19)式最小时,采用交替迭代的办法来求解,在求解某一变量时,假定余下的变量都为常量。When the cost function (19) is minimized, alternate iterations are used to solve it. When solving a certain variable, it is assumed that the remaining variables are constant.

在求解q(h1)时,假设q(f),q(h2),q(h3),q(h4)为已知常量,令:假定退化模型中噪声是强度为σ2的高斯白噪声,那么有:When solving q(h1), assuming q(f), q(h2), q(h3), q(h4) are known constants, let: Assuming that the noise in the degradation model is Gaussian white noise with intensity σ2, then:

其中,N()表示高斯分布,可得:Among them, N() represents a Gaussian distribution, which can be obtained:

则(19)式只对h1进行积分,可改写代价函数如下:Then formula (19) only integrates h1, and the cost function can be rewritten as follows:

根据约束条件∫h1dh1=1,对(22)加入拉格朗日乘子λh1,求代价函数的极值,可求得q(h1):According to the constraint condition ∫h1dh1=1, add the Lagrangian multiplier λ h1 to (22), find the extremum of the cost function, and obtain q(h1):

由此可见,q(h1)是关于f,h2,h3,h4的函数,因此需要交替更新来迭代。同理可得:It can be seen that q(h1) is a function of f, h2, h3, and h4, so it needs to be updated alternately to iterate. In the same way:

其中, in,

其中, in,

其中, in,

因此,通过现场测试得到的各子退化函数值作为初值,利用式(23)-(26)采用交替迭代的办法,即可获得各子退化函数的最优分布,从而通过计算数学期望得到各子退化函数的精确值。Therefore, the values of each sub-degeneration function obtained through the field test are used as initial values, and the optimal distribution of each sub-degeneration function can be obtained by using formulas (23)-(26) by using alternate iterations, so that each sub-degeneration function can be obtained by calculating the mathematical expectation. The exact value of the subdegenerate function.

正是因为上述关系,变分贝叶斯子退化函数估计方法须在梯度倒谱域进行,该方法先估计出各子退化函数Ch1、Ch2、Ch3、Ch4,然后利用(11)式合成系统的点扩散函数Ch,从而得到系统点扩散函数h。最后利用L-R算法,即可获得清晰图像f(x,y)。It is precisely because of the above relationship that the variational Bayesian sub-degradation function estimation method must be performed in the gradient cepstrum domain. This method first estimates the sub-degeneration functions C h1 , C h2 , C h3 , and C h4 , and then uses (11) Synthesize the point spread function C h of the system with the formula, so as to obtain the system point spread function h. Finally, the clear image f(x,y) can be obtained by using the LR algorithm.

具体实施步骤:Specific implementation steps:

第一步,获取参数焦距f、透镜的直径D、光圈系数F,CCD成像像元大小wx、wy以及物距z,像距v,像素点数目K、P,感光元件每个像素点长度l,物体在曝光时间τ内的运动距离d,目标运动的方向θ。The first step is to obtain the parameters focal length f, lens diameter D, aperture factor F, CCD imaging pixel size w x , w y and object distance z, image distance v, number of pixels K, P, and each pixel of the photosensitive element The length l, the moving distance d of the object within the exposure time τ, and the moving direction θ of the target.

第二步,利用公式(5)-(10)的函数模式,得到各子退化函数的初值h10、h20、h30、h40。In the second step, the initial values h10, h20, h30, and h40 of each sub-degeneration function are obtained by using the function mode of formulas (5)-(10).

第三步,求解各子退化函数的初始梯度倒谱Ch10、Ch20、Ch30、Ch40以及模糊图像的梯度倒谱 The third step is to solve the initial gradient cepstrum C h10 , C h20 , C h30 , C h40 of each sub-degradation function and the gradient cepstrum of the blurred image

第四步,以Ch10、Ch20、Ch30、Ch40为初值并利用自然图像灰度梯度的超拉普拉斯分布,通过变分贝叶斯可得到Ch1、Ch2、Ch3、Ch4In the fourth step, C h10 , C h20 , C h30 , C h40 , C h1 , C h2 , C h3 , and C h4 can be obtained by variational Bayesian using the super-Laplace distribution of the natural image gray gradient as the initial value.

第五步,利用公式(11)获得系统的点扩散函数。The fifth step is to use formula (11) to obtain the point spread function of the system.

第六步,求解系统点扩散函数在时域的分布,并对其求期望获得系统的点扩散函数。The sixth step is to solve the distribution of the point spread function of the system in the time domain, and calculate the expected point spread function of the system.

第七步,利用L-R算法进行复原,获得清晰图像f(x,y)。In the seventh step, the L-R algorithm is used for restoration to obtain a clear image f(x,y).

对于侦查人员来说,不需要理解变分贝叶斯估计点扩散函数和L-R复原算法原理,只需要采用以下步骤就可使用极模糊图像复原系统:For investigators, it is not necessary to understand the principle of variational Bayesian estimation point spread function and L-R restoration algorithm, and only need to use the following steps to use the extremely blurred image restoration system:

(1)对于由监控获取的一张极模糊的图像,输入参数焦距f、透镜的直径D、光圈系数F,CCD成像像元大小ωx、ωy以及物距z,像距v,像素点数目K、P,感光元件每个像素点长度l,物体在曝光时间τ内的运动距离d,目标运动的方向θ。(1) For a very blurred image obtained by monitoring, input parameters focal length f, lens diameter D, aperture coefficient F, CCD imaging pixel size ω x , ω y and object distance z, image distance v, number of pixels Mesh K, P, the length l of each pixel of the photosensitive element, the movement distance d of the object within the exposure time τ, and the direction θ of the target movement.

(2)将这些参数和模糊图像输入系统,通过复原系统得到复原图像。(2) Input these parameters and the blurred image into the system, and obtain the restored image through the restoration system.

这个过程中,测试参数f、D、F、z、v、d的精度要达到0.1mm,τ精度要达到0.001s,θ精度要达到0.1度。参数测试要有严格的步骤。只要遵循该步骤,不同的人来运行软件,都能得到相同的结果。During this process, the accuracy of the test parameters f, D, F, z, v, and d must reach 0.1mm, the accuracy of τ must reach 0.001s, and the accuracy of θ must reach 0.1 degrees. Parametric testing must have strict steps. As long as the steps are followed, different people can run the software and get the same results.

如图4所示,从监控系统硬盘上读出2017年3月15日下午5:46左右有一段模糊视频,其中有一帧图。As shown in Figure 4, a fuzzy video was read from the hard disk of the monitoring system at around 5:46 pm on March 15, 2017, including a frame.

我们从产品说明书中得知,该监控系统镜头焦距F=6mm,光圈系数f=1.4,成像像元大小ωx=ωy=6.4μm,图像传感器的曝光时间τ=0.01s。现场测量这些车辆与镜头的距离约108m。由实验测试的k参数具体为:k1=1.2;k2=0.9;k3=0.8;k4=1.3。We know from the product manual that the focal length of the monitoring system lens is F=6mm, the aperture coefficient is f=1.4, the imaging pixel size ωx=ωy=6.4μm, and the exposure time of the image sensor τ=0.01s. The distance between these vehicles and the lens was measured on site to be about 108m. The k parameters tested by experiments are specifically: k1=1.2; k2=0.9; k3=0.8; k4=1.3.

经过专利方法处理得到的结果如图5所示,信噪比提高约9dB。The result obtained by the patented method is shown in Figure 5, and the signal-to-noise ratio is increased by about 9dB.

Claims (7)

1.一种多重退化的极模糊图像的复原方法,其特征在于:1. A restoration method of the extremely blurred image of multiple degradations, characterized in that: S1,获取数据;S1, get data; S01,获取外界参数:S01, get external parameters: S02,获取模糊图像矩阵g(x,y),并求解其梯度倒谱;S02, obtain the blurred image matrix g(x, y), and solve its gradient cepstrum; S2,建立系统退化函数h(x,y)和各子退化函数;S2, establishing the system degradation function h(x, y) and each sub-degeneration function; S3,初始化各子退化函数,并得到各子退化函数的初值;并求解各子退化函数的初始梯度倒谱;S3, initialize each sub-degradation function, and obtain the initial value of each sub-degeneration function; and solve the initial gradient cepstrum of each sub-degeneration function; S4,将各子退化函数的初始梯度倒谱和模糊图像的梯度倒谱作为变分贝叶斯的输入,求解出各子退化函数的最优分布;S4, using the initial gradient cepstrum of each sub-degradation function and the gradient cepstrum of the blurred image as the input of the variational Bayesian, and solving the optimal distribution of each sub-degeneration function; S5,利用各子退化函数与系统点扩散函数的关系,求解系统的点扩散函数h(x,y)。S5, using the relationship between each sub-degenerate function and the system point spread function, to solve the system point spread function h(x, y). S6,将h(x,y)和g(x,y)作为L-R算法的输入,获得清晰图像矩阵f(x,y)。S6, using h(x, y) and g(x, y) as input of the L-R algorithm to obtain a clear image matrix f(x, y). 2.根据权利要求1所述的一种多重退化的极模糊图像的复原方法,其特征在于:2. the restoration method of a kind of extremely blurry image of multiple degeneration according to claim 1, is characterized in that: 所述S01中获取外界参数具体包括:The acquisition of external parameters in S01 specifically includes: S01,获取外界参数:获取摄像头工作参数焦距f、透镜的直径D、光圈系数F,CCD成像像元大小wx、wy以及物距z,像距v,像素点数目K、P,感光元件每个像素点长度l,物体在曝光时间τ内的运动距离d,目标运动的方向θ。S01, obtain external parameters: obtain camera working parameters focal length f, lens diameter D, aperture coefficient F, CCD imaging pixel size w x , w y and object distance z, image distance v, number of pixels K, P, photosensitive element The length l of each pixel point, the moving distance d of the object within the exposure time τ, and the direction θ of the target moving. 3.根据权利要求2所述的一种多重退化的极模糊图像的复原方法,其特征在于:3. the restoration method of a kind of extremely blurry image of multiple degeneration according to claim 2, is characterized in that: 所述S2的各自退化函数具体包括:The respective degradation functions of the S2 specifically include: 光学衍射引起的艾里斑模式的子退化函数为h1(x,y);The sub-degeneration function of the Airy disk mode caused by optical diffraction is h1(x,y); 量化时图像传感器的子退化函数为h2(x,y);The sub-degeneration function of the image sensor during quantization is h2(x,y); 摄像头散焦的子退化函数为h3(x,y);The sub-degeneration function of camera defocus is h3(x,y); 摄像头与目标相对匀速直线运动的子退化函数为h4(x,y)。The sub-degradation function of the relative uniform linear motion between the camera and the target is h4(x,y). 4.根据权利要求3所述的一种多重退化的极模糊图像的复原方法,其特征在于:4. the restoration method of a kind of extremely blurry image of multiple degeneration according to claim 3, is characterized in that: 光学衍射引起的艾里斑模式的子退化函数h1(x,y)具体为:The sub-degeneration function h1(x,y) of the Airy disk mode caused by optical diffraction is specifically: 量化时图像传感器的子退化函数为h2(x,y)具体为:The sub-degradation function of the image sensor during quantization is h2(x, y), specifically: 摄像头散焦的子退化函数为h3(x,y)具体为:The sub-degradation function of camera defocus is h3(x,y) specifically: 摄像头与目标相对匀速直线运动的子退化函数为h4(x,y)具体为:The sub-degradation function of the relative uniform linear motion between the camera and the target is h4(x, y), specifically: 5.根据权利要求4所述的一种多重退化的极模糊图像的复原方法,其特征在于:5. the restoration method of a kind of extremely blurry image of multiple degeneration according to claim 4, is characterized in that: 所述S3具体包括:The S3 specifically includes: 将所述S01中获取得的参数值带入所述S2中所对应的子退化函数中以初始化各子退化函数,得到各子退化函数的初值h10、h20、h30、h40;Bringing the parameter values obtained in S01 into the corresponding sub-degeneration functions in S2 to initialize each sub-degeneration function, and obtain initial values h10, h20, h30, and h40 of each sub-degeneration function; 求解各子退化函数的初始梯度倒谱Ch10、Ch20、Ch30、Ch40,并设系统退化函数为h(x,y)的梯度倒谱为ChSolve the initial gradient cepstrum C h10 , C h20 , C h30 , C h40 of each sub-degradation function, and set the gradient cepstrum of the system degradation function h(x,y) as C h . 6.根据权利要求5所述的一种多重退化的极模糊图像的复原方法,其特征在于:6. a kind of restoration method of the extremely blurred image of multiple degeneration according to claim 5, is characterized in that: 所述S4具体包括:The S4 specifically includes: 将各子退化函数的初始梯度倒谱Ch10、Ch20、Ch30、Ch40、C▽g作为变分贝叶斯的输入得到Ch1、Ch2、Ch3、Ch4The initial gradient cepstrum C h10 , C h20 , C h30 , C h40 , C ▽g of each sub-degradation function are used as the input of the variational Bayesian to obtain C h1 , C h2 , C h3 , C h4 ; 它们满足线性关系关系:They satisfy the linear relationship: Ch=k1Ch1+k2Ch2+k3Ch3+k4Ch4,其中k1、k2、k3、k4是常数,且k1、k2、k3、k4至少有一个不为0。C h =k1C h1 +k2C h2 +k3C h3 +k4C h4 , wherein k 1 , k 2 , k 3 , and k 4 are constants, and at least one of k 1 , k 2 , k 3 , and k 4 is not 0. 7.根据权利要求5所述的一种多重退化的极模糊图像的复原方法,其特征在于:7. a kind of restoration method of the extremely blurred image of multiple degeneration according to claim 5, is characterized in that: 对于四种退化因素引起的模糊图像,所述k参数k1、k2、k3、k4典型值为1,针对某种成像系统的退化情况,k参数的取值在1附近变化,具体值由实验确定。本专利不限于四种退化因素,如果有四种以上退化因素,k参数的个数应增加。For blurred images caused by the four degradation factors, the typical values of the k parameters k1, k2, k3, and k4 are 1. For the degradation of a certain imaging system, the value of the k parameter changes around 1, and the specific value is determined by the experiment. . This patent is not limited to four degradation factors, if there are more than four degradation factors, the number of k parameters should be increased.
CN201710234684.5A 2017-04-12 2017-04-12 Restoration method of multiple degraded extremely blurred image Expired - Fee Related CN107220945B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710234684.5A CN107220945B (en) 2017-04-12 2017-04-12 Restoration method of multiple degraded extremely blurred image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710234684.5A CN107220945B (en) 2017-04-12 2017-04-12 Restoration method of multiple degraded extremely blurred image

Publications (2)

Publication Number Publication Date
CN107220945A true CN107220945A (en) 2017-09-29
CN107220945B CN107220945B (en) 2020-09-22

Family

ID=59927558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710234684.5A Expired - Fee Related CN107220945B (en) 2017-04-12 2017-04-12 Restoration method of multiple degraded extremely blurred image

Country Status (1)

Country Link
CN (1) CN107220945B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111179158A (en) * 2019-12-30 2020-05-19 深圳市商汤科技有限公司 Image processing method, image processing apparatus, electronic device, and medium
CN113313655A (en) * 2021-06-28 2021-08-27 合肥工业大学 Blind image deblurring method based on saliency mapping and gradient cepstrum technology
CN117058038A (en) * 2023-08-28 2023-11-14 北京航空航天大学 Diffraction blurred image restoration method based on even convolution deep learning
CN117058118A (en) * 2023-08-28 2023-11-14 北京航空航天大学 Method for evaluating image deterioration effect caused by plane shielding glass silk screen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968881A (en) * 2010-10-27 2011-02-09 东南大学 Motion blurring and defocusing composite blurring image restoration method
CN102708550A (en) * 2012-05-17 2012-10-03 浙江大学 Blind deblurring algorithm based on natural image statistic property
US20140219050A1 (en) * 2013-02-06 2014-08-07 Samsung Electronics Co., Ltd. Imaging apparatus, ultrasonic imaging apparatus, method of processing an image, and method of processing an ultrasonic image

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968881A (en) * 2010-10-27 2011-02-09 东南大学 Motion blurring and defocusing composite blurring image restoration method
CN102708550A (en) * 2012-05-17 2012-10-03 浙江大学 Blind deblurring algorithm based on natural image statistic property
US20140219050A1 (en) * 2013-02-06 2014-08-07 Samsung Electronics Co., Ltd. Imaging apparatus, ultrasonic imaging apparatus, method of processing an image, and method of processing an ultrasonic image

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘世平: "《实验外弹道学》", 31 May 2016, 北京理工大学出版社 *
国克喜: "《实验光学》", 28 February 2005, 山东大学出版社 *
石明珠等: ""运动成像混合模糊的全变分图像复原"", 《光学 精密工程》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111179158A (en) * 2019-12-30 2020-05-19 深圳市商汤科技有限公司 Image processing method, image processing apparatus, electronic device, and medium
CN111179158B (en) * 2019-12-30 2023-07-18 深圳市商汤科技有限公司 Image processing method, device, electronic equipment and medium
CN113313655A (en) * 2021-06-28 2021-08-27 合肥工业大学 Blind image deblurring method based on saliency mapping and gradient cepstrum technology
CN113313655B (en) * 2021-06-28 2022-09-23 合肥工业大学 Blind image deblurring method based on saliency mapping and gradient cepstrum technology
CN117058038A (en) * 2023-08-28 2023-11-14 北京航空航天大学 Diffraction blurred image restoration method based on even convolution deep learning
CN117058118A (en) * 2023-08-28 2023-11-14 北京航空航天大学 Method for evaluating image deterioration effect caused by plane shielding glass silk screen
CN117058118B (en) * 2023-08-28 2024-04-05 北京航空航天大学 A method for evaluating the image degradation effect caused by flat shielding glass screens
CN117058038B (en) * 2023-08-28 2024-04-30 北京航空航天大学 A diffraction blurred image restoration method based on even convolution deep learning

Also Published As

Publication number Publication date
CN107220945B (en) 2020-09-22

Similar Documents

Publication Publication Date Title
Wang et al. Recent progress in image deblurring
Kee et al. Modeling and removing spatially-varying optical blur
CN110097509B (en) A Restoration Method of Local Motion Blur Image
Hee Park et al. Gyro-based multi-image deconvolution for removing handshake blur
US8385630B2 (en) System and method of processing stereo images
JP4999680B2 (en) Image data processing method by reducing image noise and camera built-in means for executing the method
JP5243477B2 (en) Blur correction apparatus and blur correction method
CN103049906B (en) A kind of image depth extracting method
Korobeynikov et al. Calculation of regularization parameter in the problem of blur removal in digital image
CN107220945B (en) Restoration method of multiple degraded extremely blurred image
JP2013531268A (en) Measuring distance using coded aperture
JP2017010095A (en) Image processing apparatus, imaging device, image processing method, image processing program, and recording medium
Darmon et al. Robust gaussian splatting
Xu et al. Hdrflow: Real-time hdr video reconstruction with large motions
JP5765893B2 (en) Image processing apparatus, imaging apparatus, and image processing program
US9008453B2 (en) Blur-kernel estimation from spectral irregularities
Kim et al. Dynamic scene deblurring using a locally adaptive linear blur model
JP6541454B2 (en) Image processing apparatus, imaging apparatus, image processing method, image processing program, and storage medium
CN113219650A (en) Design method of high-resolution large-view-field space optical remote sensor
Li et al. Imaging simulation and learning-based image restoration for remote sensing time delay and integration cameras
CN114037636B (en) Multi-frame blind restoration method for correcting image by self-adaptive optical system
Lao et al. Diffeomorphic template registration for atmospheric turbulence mitigation
JP2016119532A (en) Image processing apparatus, imaging apparatus, image processing method, image processing program, and storage medium
CN119907989A (en) Image enhancement based on removing image degradation by learning from multiple machine learning models
Nasonov et al. Image sharpening with blur map estimation using convolutional neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200922

Termination date: 20210412

CF01 Termination of patent right due to non-payment of annual fee