[go: up one dir, main page]

CN107216229B - A kind of method of chromium salt/methyl magnesium bromide selective catalytic hydrogenation of polycyclic aromatic hydrocarbons - Google Patents

A kind of method of chromium salt/methyl magnesium bromide selective catalytic hydrogenation of polycyclic aromatic hydrocarbons Download PDF

Info

Publication number
CN107216229B
CN107216229B CN201710396279.3A CN201710396279A CN107216229B CN 107216229 B CN107216229 B CN 107216229B CN 201710396279 A CN201710396279 A CN 201710396279A CN 107216229 B CN107216229 B CN 107216229B
Authority
CN
China
Prior art keywords
polycyclic aromatic
aromatic hydrocarbon
methyl
compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710396279.3A
Other languages
Chinese (zh)
Other versions
CN107216229A (en
Inventor
曾小明
韩波
罗美明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Yanan University
Original Assignee
Sichuan University
Yanan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University, Yanan University filed Critical Sichuan University
Priority to CN201710396279.3A priority Critical patent/CN107216229B/en
Publication of CN107216229A publication Critical patent/CN107216229A/en
Application granted granted Critical
Publication of CN107216229B publication Critical patent/CN107216229B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • C07C17/354Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction by hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/20Preparation of ethers by reactions not forming ether-oxygen bonds by hydrogenation of carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of chromium, molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention discloses a kind of chromic salts/methyl-magnesium-bromide selective catalytic hydrogenation polycyclic aromatic hydrocarbon method, this method is using chromic salts and methyl-magnesium-bromide as catalyst, diimine class compound is ligand, tetrahydrofuran is solvent, by polycyclic aromatic hydrocarbon in H2In atmosphere, hydrogenated products are can be obtained in stirring at normal temperature reaction.The present invention is based on the regulations of diimine class ligand, chromic salts and methyl-magnesium-bromide concerted catalysis, the highly selective hydrogenation of polycyclic aromatic hydrocarbon is realized at room temperature, have many advantages, such as that at low cost, reaction condition is mild, highly selective, avoids the use of the noble metal catalyst of high temperature harsh conditions and higher cost.The method of the present invention is suitable for the hydrogenation of 2,9,10 different anthracene derivants and other polycyclic aromatic hydrocarbon substrates replaced.

Description

一种铬盐/甲基溴化镁选择性催化氢化多环芳烃的方法A kind of method of chromium salt/methyl magnesium bromide selective catalytic hydrogenation of polycyclic aromatic hydrocarbons

技术领域technical field

本发明属于多环芳烃类化合物技术领域,具体涉及一类多环芳烃类化合物的高选择性氢化方法。The invention belongs to the technical field of polycyclic aromatic hydrocarbon compounds, and in particular relates to a highly selective hydrogenation method of a class of polycyclic aromatic hydrocarbon compounds.

背景技术Background technique

多环芳烃产生于煤焦油、石油及未充分燃烧的有机化合物。由于多环芳烃具有很强的致癌、致突变及致崎性,以及多环芳烃自身的疏水性及低水溶性能使其很快沉积到环境中,被公认为是威胁生态环境的主要污染物。相反,通过还原方法得到的部分饱和的多环芳烃,不仅可以大幅度的降低毒性,而且在高分子、医药以及燃料等领域都有着广泛的应用,从而大大提高了多环芳烃的附加值。目前,针对多环芳烃的还原方法主要有:Birch还原法、氢化铝锂还原法以及基于过渡金属的催化加氢法。其中过渡金属催化剂包括铑、钌、钯、铂等贵金属。PAHs are produced from coal tar, petroleum, and underburned organic compounds. Because PAHs have strong carcinogenic, mutagenic and saccharogenic properties, and their hydrophobicity and low water solubility can make them quickly deposited into the environment, they are recognized as major pollutants threatening the ecological environment. On the contrary, the partially saturated PAHs obtained by the reduction method can not only greatly reduce the toxicity, but also have a wide range of applications in the fields of polymers, medicines and fuels, thus greatly improving the added value of PAHs. At present, the reduction methods for PAHs mainly include: Birch reduction method, lithium aluminum hydride reduction method and catalytic hydrogenation method based on transition metals. The transition metal catalyst includes precious metals such as rhodium, ruthenium, palladium, platinum and the like.

当稠环芳烃含有三个芳环时,其加氢过程较含有两个环时复杂。在加氢过程中,多种中间体会彼此转化,使整个反应的选择性控制难度加大。2007年Jaiwook Park通过简便的方法合成了可循环利用的铑和铱催化剂,该催化剂在氢化芳环和芳酮类衍生物方面具有较高的活性,在常压氢气氛围下,能够以较高的收率氢化双环和三环的多环芳烃类化合物(Adv.Synth.Catal.2007,349,2039-2047)。When the condensed aromatic hydrocarbon contains three aromatic rings, the hydrogenation process is more complicated than when it contains two rings. During the hydrogenation process, various intermediates are converted into each other, which makes the selectivity control of the whole reaction more difficult. In 2007, Jaiwook Park synthesized a recyclable rhodium and iridium catalyst by a simple method. The catalyst has high activity in the hydrogenation of aromatic rings and aromatic ketone derivatives. Yield hydrogenation of bicyclic and tricyclic polycyclic aromatic hydrocarbons (Adv. Synth. Catal. 2007, 349, 2039-2047).

2007年Suwon小组通过金属有机的策略,成功的合成出一种四面体形貌的铑纳米管,在芳烃的氢化方面,相比较传统的铑纳米管和铑碳,具有较高的催化活性,不仅可以氢化共振能较低的蒽,还可以高选择性的氢化共振能较高的苯环及其衍生物(Angew.Chem.Int.Ed.2007,46,1152-1155)。In 2007, Suwon's group successfully synthesized rhodium nanotubes with a tetrahedral morphology through a metal-organic strategy. Compared with traditional rhodium nanotubes and rhodium carbon, it has higher catalytic activity in the hydrogenation of aromatic hydrocarbons. Anthracene with lower resonance energy can be hydrogenated, and benzene ring and its derivatives with higher resonance energy can also be hydrogenated with high selectivity (Angew.Chem.Int.Ed.2007,46,1152-1155).

2012年Andrzej F.Borowski小组报道了钌络合物[RuH22-H2)2{P(C6H11)3}2]作为催化剂前体,在80℃条件下,能够氢化一系列蒽和吖啶衍生物。该反应体系对于蒽骨架上取代基的要求较高,氢化蒽一边时的选择性较好,但是氢化两边时则要差很多(DaltonTrans.,2012,41,14117-14125)。In 2012, the group of Andrzej F. Borowski reported that the ruthenium complex [RuH 22 -H 2 ) 2 {P(C 6 H 11 ) 3 } 2 ] was used as a catalyst precursor to hydrogenate a Series of anthracene and acridine derivatives. The reaction system has higher requirements for the substituents on the anthracene skeleton, and the selectivity of hydrogenating one side of anthracene is better, but it is much worse when hydrogenating both sides (Dalton Trans., 2012, 41, 14117-14125).

2015年Bruno Chaudret等用催化剂用量的贵金属钌纳米管,以三苯基膦为稳定剂,在温和条件下能够有效的氢化含有两到三个苯环的多环芳烃。尝试的底物有萘、蒽、菲、苯并菲及芘。通过调控反应条件,来控制最终的氢化产物,比如,蒽的氢化,通过调节氢气的压力,得到一边氢化的产物1,2,3,4-四氢蒽和两边氢化的产物1,2,3,4,5,6,7,8-八氢蒽(Catal.Sci.Technol.,2015,5,2741-2751)。In 2015, Bruno Chaudret et al. used the catalyst dosage of precious metal ruthenium nanotubes, using triphenylphosphine as a stabilizer, to effectively hydrogenate polycyclic aromatic hydrocarbons containing two to three benzene rings under mild conditions. The substrates tried were naphthalene, anthracene, phenanthrene, triphenylene and pyrene. By adjusting the reaction conditions, the final hydrogenation product is controlled, for example, the hydrogenation of anthracene, by adjusting the pressure of hydrogen, the hydrogenated product 1,2,3,4-tetrahydroanthracene on one side and the product 1,2,3 hydrogenated on both sides are obtained. , 4,5,6,7,8-octahydroanthracene (Catal. Sci. Technol., 2015, 5, 2741-2751).

发明内容SUMMARY OF THE INVENTION

本发明所要解决的技术问题在于提供一种以H2为氢源、三氯化铬和甲基溴化镁为催化剂、双亚胺类化合物为配体,能够高效的选择性催化氢化多环芳烃类化合物的方法。The technical problem to be solved by the present invention is to provide a kind of high-efficiency selective catalytic hydrogenation of polycyclic aromatic hydrocarbons with H as hydrogen source, chromium trichloride and methylmagnesium bromide as catalysts, and bisimine compounds as ligands. compound method.

解决上述技术问题所采用的技术方案是:以铬盐和甲基溴化镁为催化剂、双亚胺类化合物为配体、四氢呋喃为溶剂,将多环芳烃在H2压力为3~6MPa下,常温搅拌反应,反应完后分离纯化产物,得到氢化产物。The technical scheme adopted to solve the above-mentioned technical problems is as follows: using chromium salt and methylmagnesium bromide as catalysts, bis-imine compounds as ligands, and tetrahydrofuran as solvent, the polycyclic aromatic hydrocarbons are subjected to H under pressure of 3 ~6MPa, The reaction was stirred at room temperature, and after the reaction was completed, the product was separated and purified to obtain a hydrogenated product.

上述的多环芳烃为式I化合物时,氢化产物为式I′化合物;When the above-mentioned polycyclic aromatic hydrocarbon is the compound of formula I, the hydrogenation product is the compound of formula I';

式I和I′中,R1、R2、R3各自独立的代表H、C1~C4烷基、苯基、C1~C3烷基取代苯基、C1~C3烷氧基取代苯基、卤代苯基、三氟甲基苯基、萘基中的任意一种,优选R1代表H、甲基、苯基、邻甲基苯基、邻甲氧基苯基、邻氟苯基、间甲基苯基、间甲氧基苯基、间氟苯基、间三氟甲基苯基、间氯苯基、对氟苯基、对三氟甲基苯基、2-萘基、3,5-二氟苯基中的任意一种,R2代表H,R3代表H或甲基,或者R1和R3代表H,R2代表甲基、乙基、苯基、对甲基苯基中的任意一种。In formula I and I', R 1 , R 2 and R 3 each independently represent H, C 1 -C 4 alkyl, phenyl, C 1 -C 3 alkyl substituted phenyl, C 1 -C 3 alkoxy any one of substituted phenyl, halogenated phenyl, trifluoromethylphenyl, and naphthyl, preferably R 1 represents H, methyl, phenyl, o-methylphenyl, o-methoxyphenyl, o-fluorophenyl, m-methylphenyl, m-methoxyphenyl, m-fluorophenyl, m-trifluoromethylphenyl, m-chlorophenyl, p-fluorophenyl, p-trifluoromethylphenyl, 2 -Any one of naphthyl and 3,5-difluorophenyl, R 2 represents H, R 3 represents H or methyl, or R 1 and R 3 represent H, R 2 represents methyl, ethyl, benzene any one of the group, p-methylphenyl group.

上述的多环芳烃为式II化合物时,氢化产物为式II′化合物;When the above-mentioned polycyclic aromatic hydrocarbon is the compound of formula II, the hydrogenation product is the compound of formula II';

上述的多环芳烃为式III化合物时,氢化产物为式III′化合物;When the above-mentioned polycyclic aromatic hydrocarbon is the compound of formula III, the hydrogenation product is the compound of formula III';

上述的多环芳烃为式IV化合物时,氢化产物为式IV′化合物;When the above-mentioned polycyclic aromatic hydrocarbon is the compound of formula IV, the hydrogenation product is the compound of formula IV';

上述的多环芳烃为式V化合物时,氢化产物为式V′化合物;When the above-mentioned polycyclic aromatic hydrocarbon is a compound of formula V, the hydrogenation product is a compound of formula V';

上述双亚胺类化合物为下式所示的L1或L2化合物:The above-mentioned bisimine compounds are L 1 or L 2 compounds represented by the following formula:

上述的铬盐为三氯化铬、二氯化铬、三(乙酰丙酮)铬中的任意一种。The above-mentioned chromium salt is any one of chromium trichloride, chromium dichloride and tris(acetylacetonate) chromium.

上述方法中,优选多环芳烃和铬盐、甲基溴化镁、双亚胺类化合物的摩尔比为1:0.2~0.3:1.1~2.0:0.2~0.3。In the above method, the molar ratio of polycyclic aromatic hydrocarbons to chromium salts, methylmagnesium bromide and bisimine compounds is preferably 1:0.2-0.3:1.1-2.0:0.2-0.3.

上述方法中,进一步优选H2压力为5MPa,常温搅拌反应的时间为24小时。In the above method, it is more preferable that the H 2 pressure is 5 MPa, and the stirring reaction time at room temperature is 24 hours.

本发明首次将第一过渡系惰性金属铬应用到芳环的氢化反应中,基于双亚胺类配体调控,铬盐和甲基溴化镁协同催化,在室温条件下实现了基于蒽骨架的多环芳烃类物质的高选择性氢化,避免了高温苛刻条件和成本较高的贵金属催化剂的使用,具有成本低、反应条件温和、选择性高等优点。本发明方法适用于2、9、10位不同取代的蒽衍生物及其他多环芳烃底物的氢化。The invention applies the first transition system inert metal chromium to the hydrogenation reaction of aromatic rings for the first time. Based on the regulation of bis-imine ligands and the synergistic catalysis of chromium salts and methylmagnesium bromide, the anthracene skeleton-based catalyst is realized at room temperature. The highly selective hydrogenation of polycyclic aromatic hydrocarbons avoids the use of high-temperature harsh conditions and high-cost noble metal catalysts, and has the advantages of low cost, mild reaction conditions, and high selectivity. The method of the invention is suitable for hydrogenation of anthracene derivatives and other polycyclic aromatic hydrocarbon substrates with different substitutions at positions 2, 9 and 10.

具体实施方式Detailed ways

下面结合实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。The present invention is further described in detail below with reference to the examples, but the protection scope of the present invention is not limited to these examples.

实施例1Example 1

合成结构式如下的1,2,3,4-四氢蒽Synthesis of 1,2,3,4-tetrahydroanthracene with the following structural formula

将0.0356g(0.02mmol)蒽、0.0070g(0.044mmol)三氯化铬、0.0165g(0.044mmol)L1所示配体加入到2mL四氢呋喃中,在冰水冷却下缓慢滴加0.3mL 1mol/L甲基溴化镁的四氢呋喃溶液,然后在5MPa的氢气气氛中,常温搅拌反应24小时,加入3mL饱和氯化铵水溶液猝灭反应,用乙酸乙酯萃取(每次10mL,3次),合并萃取液,加入无水硫酸钠干燥,以石油醚为展开剂用柱层析法分离产物,得到白色固体1,2,3,4-四氢蒽,其产率为92%,熔点为93.1-93.9℃。0.0356g (0.02mmol) of anthracene, 0.0070g (0.044mmol) of chromium trichloride, 0.0165g (0.044mmol) of the ligand shown in L 1 were added to 2mL of tetrahydrofuran, and 0.3mL of 1mol/ L methylmagnesium bromide solution in tetrahydrofuran, then in a hydrogen atmosphere of 5MPa, the reaction was stirred at room temperature for 24 hours, 3 mL of saturated aqueous ammonium chloride solution was added to quench the reaction, extracted with ethyl acetate (10 mL each, 3 times), and the combined The extract was dried by adding anhydrous sodium sulfate, and the product was separated by column chromatography using petroleum ether as the developing solvent to obtain a white solid 1,2,3,4-tetrahydroanthracene, the yield was 92%, and the melting point was 93.1- 93.9°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.74(dd,J=6.1,3.3Hz,2H),7.56(s,2H),7.38(dd,J=6.2,3.2Hz,2H),3.00(s,4H),1.90-1.88(m,4H);13C NMR(100MHz,CDCl3):δ=136.2,132.1,127.0,126.7,124.9,29.8,23.4;IR ν(cm-1):3054,2928,2833,1581,1512,1407,1234,907,860,728;HRMS(TOF,EI):理论值C14H14[M+]182.1096,实测值182.1095。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.74 (dd, J=6.1, 3.3 Hz, 2H), 7.56 (s, 2H), 7.38 (dd, J=6.2, 3.2 Hz) , 2H), 3.00 (s, 4H), 1.90-1.88 (m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ=136.2, 132.1, 127.0, 126.7, 124.9, 29.8, 23.4; IR ν (cm -1 ): 3054, 2928, 2833, 1581, 1512, 1407, 1234, 907, 860, 728; HRMS (TOF, EI): theoretical value C 14 H 14 [M + ] 182.1096, measured value 182.1095.

实施例2Example 2

合成结构式如下的9-甲基-1,2,3,4-四氢蒽Synthesis of 9-methyl-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-甲基蒽替换实施例1中的蒽,用等摩尔的二氯化铬替换实施例1中的三氯化铬,其他步骤与实施例1相同,得到无色液体9-甲基-1,2,3,4-四氢蒽,其产率为93.6%。In this example, the anthracene in Example 1 was replaced with equimolar 9-methylanthracene, and the chromium trichloride in Example 1 was replaced with equimolar chromium dichloride, and other steps were the same as in Example 1 to obtain no The color liquid 9-methyl-1,2,3,4-tetrahydroanthracene was obtained in a yield of 93.6%.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=8.08(d,J=7.3Hz,1H),7.79(d,J=6.5Hz,1H),7.57-7.38(m,3H),3.09-2.92(m,4H),2.63(s,3H),1.99-1.89(m,4H);13CNMR(100MHz,CDCl3):δ=136.0,133.7,132.0,131.4,131.2,127.8,125.3,124.8,124.6,123.7,31.1,27.9,23.9,23.0,14.0;IR ν(cm-1):3054,2918,2854,1581,1497,1412,1360,1228,865,776,739;HRMS(TOF,EI):理论值C15H16[M+]196.1252,实测值196.1251。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=8.08 (d, J=7.3 Hz, 1H), 7.79 (d, J=6.5 Hz, 1H), 7.57-7.38 (m, 3H) ), 3.09-2.92 (m, 4H), 2.63 (s, 3H), 1.99-1.89 (m, 4H); 13 CNMR (100MHz, CDCl 3 ): δ=136.0, 133.7, 132.0, 131.4, 131.2, 127.8, 125.3, 124.8, 124.6, 123.7, 31.1, 27.9, 23.9, 23.0, 14.0; IR ν (cm -1 ): 3054, 2918, 2854, 1581, 1497, 1412, 1360, 1228, 865, 776, 739; HRMS (TOF, EI) : theoretical value C 15 H 16 [M + ] 196.1252, measured value 196.1251.

实施例3Example 3

合成结构式如下的9-(间甲苯基)-1,2,3,4-四氢蒽Synthesis of 9-(m-tolyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-(间甲苯基)蒽替换实施例1中的蒽,其他步骤与实施例1相同,得到白色固体9-(间甲苯基)-1,2,3,4-四氢蒽,其产率为91%,熔点为91.1-93.4℃。In this example, the anthracene in Example 1 was replaced with equimolar 9-(m-tolyl) anthracene, and other steps were the same as those in Example 1 to obtain a white solid 9-(m-tolyl)-1,2,3,4 - Tetrahydroanthracene with a yield of 91% and a melting point of 91.1-93.4°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.73(d,J=8.2Hz,1H),7.58(s,1H),7.39-7.28(m,3H),7.25-7.19(m,2H),7.07-7.01(m,2H),3.02(t,J=6.3Hz,2H),2.57(t,J=6.5Hz,2H),2.40(s,3H),1.86-1.70(m,4H);13C NMR(100MHz,CDCl3):δ=139.9,138.3,138.0,136.1,133.7,131.9,131.6,130.8,128.4,127.7,127.2,127.1,126.5,126.1,124.8,124.8,30.6,28.7,23.6,23.1,21.6;IRν(cm-1):3044,2918,2839,1602,1470,1423,865,739,697,612;HRMS(TOF,EI):理论值C21H20[M+]272.1565,实测值272.1564。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.73 (d, J=8.2 Hz, 1H), 7.58 (s, 1H), 7.39-7.28 (m, 3H), 7.25-7.19 (m,2H),7.07-7.01(m,2H),3.02(t,J=6.3Hz,2H),2.57(t,J=6.5Hz,2H),2.40(s,3H),1.86-1.70( m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ=139.9, 138.3, 138.0, 136.1, 133.7, 131.9, 131.6, 130.8, 128.4, 127.7, 127.2, 127.1, 126.5, 126.1, 124.8, 124.8, 30. , 28.7, 23.6, 23.1, 21.6; IRν (cm -1 ): 3044, 2918, 2839, 1602, 1470, 1423, 865, 739, 697, 612; HRMS (TOF, EI): theoretical value C 21 H 20 [M + ]272.1565, measured The value is 272.1564.

实施例4Example 4

合成结构式如下的9-(邻甲苯基)-1,2,3,4-四氢蒽Synthesis of 9-(o-tolyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-(邻甲苯基)蒽替换实施例1中的蒽,用配体L2替换实施例1中的配体L1,其他步骤与实施例1相同,得到白色固体9-(邻甲苯基)-1,2,3,4-四氢蒽,其产率为95%,熔点为81.7-83.4℃。In this example, the anthracene in Example 1 is replaced with equimolar 9-(o-tolyl)anthracene, and the ligand L 1 in Example 1 is replaced with the ligand L 2 , and other steps are the same as those in Example 1 to obtain a white Solid 9-(o-tolyl)-1,2,3,4-tetrahydroanthracene in 95% yield, mp 81.7-83.4°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.74(d,J=8.2Hz,1H),7.58(s,1H),7.37-7.26(m,4H),7.22-7.18(m,1H),7.15(d,J=8.4Hz,1H),7.09(d,J=6.8Hz,1H),3.02(t,J=6.2Hz,2H),2.54(m,1H),2.34(m,1H),1.89(s,3H),1.83-1.69(m,4H);13CNMR(100MHz,CDCl3):δ=139.4,137.4,136.8,136.2,133.7,132.0,131.1,130.1,130.0,127.4,127.2,126.4,126.1,125.5,125.0,124.9,30.6,28.3,23.5,23.1,19.6;IR ν(cm-1):3044,2912,2828,1497,1428,1418,918,839,734;HRMS(TOF,EI):理论值C21H20[M+]272.1565,实测值272.1565The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.74 (d, J=8.2 Hz, 1H), 7.58 (s, 1H), 7.37-7.26 (m, 4H), 7.22-7.18 (m, 1H), 7.15 (d, J=8.4Hz, 1H), 7.09 (d, J=6.8Hz, 1H), 3.02 (t, J=6.2Hz, 2H), 2.54 (m, 1H), 2.34 (m, 1H), 1.89 (s, 3H), 1.83-1.69 (m, 4H); 13 CNMR (100 MHz, CDCl 3 ): δ=139.4, 137.4, 136.8, 136.2, 133.7, 132.0, 131.1, 130.1, 130.0 , 127.4, 127.2, 126.4, 126.1 , 125.5, 125.0, 124.9, 30.6, 28.3, 23.5, 23.1, 19.6; , EI): theoretical value C 21 H 20 [M + ] 272.1565, measured value 272.1565

实施例5Example 5

合成结构式如下的9-(邻甲氧基苯基)-1,2,3,4-四氢蒽Synthesis of 9-(o-methoxyphenyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-(邻甲苯基)蒽替换实施例1中的蒽,用配体L2替换实施例1中的配体L1,其他步骤与实施例1相同,得到白色固体9-(邻甲苯基)-1,2,3,4-四氢蒽,其产率为91%,熔点为101.3-102.4℃。In this example, the anthracene in Example 1 is replaced with equimolar 9-(o-tolyl)anthracene, and the ligand L 1 in Example 1 is replaced with the ligand L 2 , and other steps are the same as those in Example 1 to obtain a white Solid 9-(o-tolyl)-1,2,3,4-tetrahydroanthracene in 91% yield, mp 101.3-102.4°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.74(d,J=8.2Hz,1H),7.60(s,1H),7.45-7.39(m,1H),7.33(t,J=6.9Hz,1H),7.29-7.18(m,3H),7.11-7.04(m,3H),3.67(s,3H),3.03(t,J=6.1Hz,2H),2.54(t,J=5.5Hz,2H),1.88-1.72(m,4H);13CNMR(100MHz,CDCl3):δ=157.3,135.9,134.6,134.5,131.9,131.8,131.4,128.7,128.4,127.1,126.6,125.7,124.8,124.7,120.7,111.2,55.6,30.5,28.0,23.4,23.0;IRν(cm-1):2965,2918,2839,1486,1428 1244,1112,1012,807,728;HRMS(TOF,EI):理论值C21H20O[M+]288.1514,实测值288.1513。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.74 (d, J=8.2 Hz, 1H), 7.60 (s, 1H), 7.45-7.39 (m, 1H), 7.33 (t , J=6.9Hz, 1H), 7.29-7.18(m, 3H), 7.11-7.04(m, 3H), 3.67(s, 3H), 3.03(t, J=6.1Hz, 2H), 2.54(t, J=5.5Hz, 2H), 1.88-1.72 (m, 4H); 13 CNMR (100MHz, CDCl 3 ): δ=157.3, 135.9, 134.6, 134.5, 131.9, 131.8, 131.4, 128.7, 128.4, 127.1, 126.6, 125.7, 124.8, 124.7, 120.7, 111.2, 55.6, 30.5, 28.0, 23.4, 23.0; IRν (cm -1 ): 2965, 2918, 2839, 1486, 1428 1244, 1112, 1012, 807, 728; HRMS (TOF, EI) : theoretical value C 21 H 20 O[M + ] 288.1514, measured value 288.1513.

实施例6Example 6

合成结构式如下的9-(间甲氧基苯基)-1234-四氢蒽Synthesis of 9-(m-methoxyphenyl)-1234-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-(间甲氧基苯基)蒽替换实施例1中的蒽,其他步骤与实施例1相同,得到白色固体9-(间甲氧基苯基)-1,2,3,4-四氢蒽,其产率为84%,熔点为90.8-100.5℃。In this example, the anthracene in Example 1 was replaced with equimolar 9-(m-methoxyphenyl)anthracene, and other steps were the same as those in Example 1 to obtain a white solid 9-(m-methoxyphenyl)-1 , 2,3,4-tetrahydroanthracene, with a yield of 84% and a melting point of 90.8-100.5 °C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.74(d,J=8.1Hz,1H),7.60(s,1H),7.44-7.30(m,3H),7.27-7.21(m,1H),6.97(dd,J=8.2,2.3Hz,1H),6.84-6.80(m,2H),3.82(s,3H),3.03(t,J=6.3Hz,2H),2.59(t,J=6.4Hz,2H),1.87-1.73(m,4H);13C NMR(100MHz,CDCl3):δ=159.9,141.5,138.1,136.2,133.8,131.9,131.5,129.6,127.1,126.7,126.1,125.0,124.9,122.7,115.6,112.7,55.4,30.7,28.7,23.6,23.1;IRν(cm-1):2928,2838,1602,1449,1255,1039,844,792,734,681;HRMS(TOF,EI):理论值C21H2O[M+]288.1514,实测值288.1514。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.74 (d, J=8.1 Hz, 1H), 7.60 (s, 1H), 7.44-7.30 (m, 3H), 7.27-7.21 (m,1H),6.97(dd,J=8.2,2.3Hz,1H),6.84-6.80(m,2H),3.82(s,3H),3.03(t,J=6.3Hz,2H),2.59( t, J=6.4Hz, 2H), 1.87-1.73 (m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ=159.9, 141.5, 138.1, 136.2, 133.8, 131.9, 131.5, 129.6, 127.1, 126.7 , 126.1, 125.0, 124.9, 122.7, 115.6, 112.7, 55.4, 30.7, 28.7, 23.6, 23.1; IRν (cm -1 ): 2928, 2838, 1602, 1449, 1255, 1039, 844, 792, 734, 681; HRMS (TOF, EI) : theoretical value C 21 H 2 O[M + ] 288.1514, measured value 288.1514.

实施例7Example 7

合成结构式如下的9-(2-萘基)-1,2,3,4-四氢蒽Synthesis of 9-(2-naphthyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-(2-萘基)蒽替换实施例1中的蒽,其他步骤与实施例1相同,得到白色固体9-(2-萘基)-1,2,3,4-四氢蒽,其产率为96.7%,熔点为66.1-67.8℃。In this example, the anthracene in Example 1 was replaced with equimolar 9-(2-naphthyl)anthracene, and other steps were the same as those in Example 1 to obtain a white solid 9-(2-naphthyl)-1,2,3 , 4-tetrahydroanthracene, its yield is 96.7%, and the melting point is 66.1-67.8 ℃.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.95(dd,J=12.3,6.9Hz,2H),7.88-7.81(m,1H),7.79-7.71(m,2H),7.64(s,1H),7.58-7.48(m,2H),7.40-7.26(m,3H),7.25-7.14(m,1H),3.09-2.96(m,2H),2.66-2.51(m,2H),1.86-1.69(m,4H);13CNMR(100MHz,CDCl3):δ=137.9,137.5,136.1,134.1,133.6,132.5,131.9,131.6,128.8,128.6,128.0,128.0,127.8,127.1,126.7,126.2,126.0,125.9,124.9,124.9,30.6,28.8,23.5,23.0;IR ν(cm-1):2965,2918,2839,1486,1428 1244,1112,1012,807,728;HRMS(TOF,EI):理论值C24H20[M+]308.1565,实测值308.1568。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.95 (dd, J=12.3, 6.9 Hz, 2H), 7.88-7.81 (m, 1H), 7.79-7.71 (m, 2H) ,7.64(s,1H),7.58-7.48(m,2H),7.40-7.26(m,3H),7.25-7.14(m,1H),3.09-2.96(m,2H),2.66-2.51(m, 2H), 1.86-1.69 (m, 4H); 13 CNMR (100 MHz, CDCl 3 ): δ=137.9, 137.5, 136.1, 134.1, 133.6, 132.5, 131.9, 131.6, 128.8, 128.6, 128.0, 128.0, 127.8, 127.1 , 126.7, 126.2, 126.0, 125.9, 124.9, 124.9, 30.6, 28.8, 23.5, 23.0; IR ν(cm -1 ): 2965, 2918, 2839, 1486, 1428 EI): theoretical value C 24 H 20 [M + ] 308.1565, measured value 308.1568.

实施例8Example 8

合成结构式如下的9-(邻氟苯基)-1,2,3,4-四氢蒽Synthesis of 9-(o-fluorophenyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-(邻氟苯基)蒽替换实施例1中的蒽,用等摩尔的二氯化铬替换实施例1中的三氯化铬,其他步骤与实施例1相同,得到白色固体9-(邻氟苯基)-1,2,3,4-四氢蒽,其产率为86%,熔点为108.4-110.2℃。In this example, the anthracene in Example 1 is replaced with equimolar 9-(o-fluorophenyl)anthracene, and the chromium trichloride in Example 1 is replaced with equimolar chromium dichloride, and other steps are the same as those in Example 1. In the same way, 9-(o-fluorophenyl)-1,2,3,4-tetrahydroanthracene was obtained as a white solid with a yield of 86% and a melting point of 108.4-110.2°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.76(d,J=8.2Hz,1H),7.64(s,1H),7.47-7.34(m,2H),7.31-7.19(m,5H),3.03(t,J=6.1Hz,2H),2.58(t,J=5.6Hz,2H),1.86-1.75(m,4H);13C NMR(100MHz,CDCl3):δ=160.2(d,J=243.0Hz),136.0,134.9,132.4(d,J=4.0Hz),131.9,131.5,131.3,129.3(d,J=8.0Hz),127.4,127.3,126.9(d,J=18.0Hz),125.3,125.2,125.0,124.3(d,J=4.0Hz),115.9(d,J=22.0Hz),30.5,28.3,23.4,23.0;19F NMR(377MHz,CDCl3):δ=-114.3;IRν(cm-1):2933,2854,1491,1439,1213,1081,823,802,744;HRMS(TOF,EI):理论值C20H17F[M+]276.1314,实测值276.1313。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.76 (d, J=8.2 Hz, 1H), 7.64 (s, 1H), 7.47-7.34 (m, 2H), 7.31-7.19 (m, 5H), 3.03 (t, J=6.1 Hz, 2H), 2.58 (t, J=5.6 Hz, 2H), 1.86-1.75 (m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ =160.2(d,J=243.0Hz),136.0,134.9,132.4(d,J=4.0Hz),131.9,131.5,131.3,129.3(d,J=8.0Hz),127.4,127.3,126.9(d,J=8.0Hz) = 18.0 Hz), 125.3, 125.2, 125.0, 124.3 (d, J=4.0 Hz), 115.9 (d, J=22.0 Hz), 30.5, 28.3, 23.4, 23.0; 19 F NMR (377 MHz, CDCl 3 ): δ =-114.3; IRν (cm -1 ): 2933, 2854, 1491, 1439, 1213, 1081, 823, 802,744; HRMS (TOF, EI): theoretical value C 20 H 17 F[M + ] 276.1314, found value 276.1313.

实施例9Example 9

合成结构式如下的9-(间氟苯基)-1,2,3,4-四氢蒽Synthesis of 9-(m-fluorophenyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔的9-(间氟苯基)蒽替换实施例1中的蒽,用配体L2替换实施例1中的配体L1,其他步骤与实施例1相同,得到白色固体9-(间氟苯基)-1,2,3,4-四氢蒽,其产率为94%,熔点为94.9-96.3℃。In this example, the anthracene in Example 1 was replaced with equimolar 9-(m-fluorophenyl)anthracene, and the ligand L 1 in Example 1 was replaced with ligand L 2 , and other steps were the same as those in Example 1, 9-(m-fluorophenyl)-1,2,3,4-tetrahydroanthracene was obtained as a white solid in 94% yield and mp 94.9-96.3°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.76(d,J=8.2Hz,1H),7.62(s,1H),7.48-7.43(m,1H),7.39-7.35(m,1H),7.29-7.24(m,2H),7.16-7.09(m,1H),7.06-6.94(m,2H),3.03(t,J=6.3Hz,2H),2.56(t,J=6.0Hz,2H),1.89-1.71(m,4H);13CNMR(100MHz,CDCl3):δ=163.0(d,J=245.0Hz),142.3(d,J=8.0Hz),136.7(d,J=1.0Hz),136.0,133.8,131.8,131.2,130.0(d,J=8.0Hz),127.1,127.90,125.9(d,J=3.0Hz),125.6,125.0,124.9,117.2(d,J=21.0Hz),113.9(d,J=21.0Hz),30.5,28.6,23.4,22.9;19FNMR(377MHz,CDCl3):δ=-113.2;IR ν(cm-1):2918,2828,1612,1554,1423,1213,860,792,744,691;HRMS(TOF,EI):理论值C20H17F[M+]276.1314,实测值276.1317。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.76 (d, J=8.2 Hz, 1H), 7.62 (s, 1H), 7.48-7.43 (m, 1H), 7.39-7.35 (m,1H),7.29-7.24(m,2H),7.16-7.09(m,1H),7.06-6.94(m,2H),3.03(t,J=6.3Hz,2H),2.56(t,J =6.0Hz, 2H), 1.89-1.71(m, 4H); 13 CNMR(100MHz, CDCl 3 ): δ=163.0(d, J=245.0Hz), 142.3(d, J=8.0Hz), 136.7(d ,J=1.0Hz),136.0,133.8,131.8,131.2,130.0(d,J=8.0Hz),127.1,127.90,125.9(d,J=3.0Hz),125.6,125.0,124.9,117.2(d,J = 21.0 Hz), 113.9 (d, J=21.0 Hz), 30.5, 28.6, 23.4, 22.9; 19 FNMR (377 MHz, CDCl 3 ): δ=-113.2; IR ν (cm -1 ): 2918, 2828, 1612 , 1554, 1423, 1213, 860, 792, 744, 691; HRMS (TOF, EI): theoretical value C 20 H 17 F[M + ] 276.1314, observed value 276.1317.

实施例10Example 10

合成结构式如下的9-(对氟苯基)-1,2,3,4-四氢蒽Synthesis of 9-(p-fluorophenyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-(对氟苯基)蒽替换实施例1中的蒽,其他步骤与实施例1相同,得到白色固体9-(对氟苯基)-1,2,3,4-四氢蒽,其产率为90%,熔点为95.6-97.1℃。In this example, equimolar 9-(p-fluorophenyl)anthracene was used to replace the anthracene in Example 1, and other steps were the same as in Example 1 to obtain a white solid 9-(p-fluorophenyl)-1,2,3 , 4-tetrahydroanthracene, its yield is 90%, and the melting point is 95.6-97.1 ℃.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.75(d,J=8.2Hz,1H),7.61(s,1H),7.38-7.34(m,1H),7.28-7.16(m,6H),3.03(t,J=6.3Hz,2H),2.54(t,J=6.4Hz,2H),1.88-1.71(m,4H);13C NMR(100MHz,CDCl3):δ=162.0(d,J=244.0Hz),137.0,136.01,135.7(d,J=4.0Hz),134.1,131.9,131.7,131.6,131.6,127.1,126.8,125.7,124.9(d,J=2.0Hz),115.5(d,J=21.0Hz),30.5,28.7,23.5,22.9;19F NMR(377MHz,CDCl3):δ=-115.9;IRν(cm-1):2918,2828,1612,1554,1423,1213,860,792,744,691;HRMS(TOF,EI):理论值C20H17F[M+]276.1314,实测值276.1313。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.75 (d, J=8.2 Hz, 1H), 7.61 (s, 1H), 7.38-7.34 (m, 1H), 7.28-7.16 (m, 6H), 3.03 (t, J=6.3 Hz, 2H), 2.54 (t, J=6.4 Hz, 2H), 1.88-1.71 (m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ =162.0(d,J=244.0Hz),137.0,136.01,135.7(d,J=4.0Hz),134.1,131.9,131.7,131.6,131.6,127.1,126.8,125.7,124.9(d,J=2.0Hz) , 115.5 (d, J=21.0 Hz), 30.5, 28.7, 23.5, 22.9; 19 F NMR (377 MHz, CDCl 3 ): δ=-115.9; IRν (cm -1 ): 2918, 2828, 1612, 1554, 1423 , 1213,860,792,744,691; HRMS (TOF, EI): theoretical value C 20 H 17 F[M + ] 276.1314, found value 276.1313.

实施例11Example 11

合成结构式如下的9-(3,5-二氟苯基)-1,2,3,4-四氢蒽Synthesis of 9-(3,5-difluorophenyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-(3,5-二氟苯基)蒽替换实施例1中的蒽,用配体L2替换实施例1中的配体L1,其他步骤与实施例1相同,得到白色固体9-(3,5-二氟苯基)-1,2,3,4-四氢蒽,其产率为91%,熔点为90.5-92.3℃。In this example, the anthracene in Example 1 is replaced with equimolar 9-(3,5-difluorophenyl)anthracene, and the ligand L 1 in Example 1 is replaced with the ligand L 2 , and other steps and examples The same as 1, 9-(3,5-difluorophenyl)-1,2,3,4-tetrahydroanthracene was obtained as a white solid with a yield of 91% and a melting point of 90.5-92.3°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.75(d,J=8.2Hz,1H),7.62(s,1H),7.41-7.35(m,1H),7.31-7.22(m,3H),6.91-6.84(m,1H),6.81-6.78(m,2H),3.02(t,J=6.2Hz,2H),2.56(t,J=6.3Hz,2H),1.88-1.73(m,4H);13C NMR(100MHz,CDCl3):δ=163.3(d,J=248.0Hz),143.5(t,J=10.0Hz),136.0,135.7,133.7,131.8,130.8,127.2(d,J=7.0Hz),125.23(d,J=2.0Hz),125.1,113.2(d,J=25.0Hz,11Hz),102.6(t,J=22.0Hz),30.4,28.5,23.3,22.9;19F NMR(377MHz,CDCl3):δ=-110.0;IRν(cm-1):2928,2849,1607,1576,1423,1107,975,844,739,686;HRMS(TOF,EI):理论值C20H16F2[M+]294.1220,实测值294.1220。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.75 (d, J=8.2 Hz, 1H), 7.62 (s, 1H), 7.41-7.35 (m, 1H), 7.31-7.22 (m,3H),6.91-6.84(m,1H),6.81-6.78(m,2H),3.02(t,J=6.2Hz,2H),2.56(t,J=6.3Hz,2H),1.88- 1.73 (m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ=163.3 (d, J=248.0 Hz), 143.5 (t, J=10.0 Hz), 136.0, 135.7, 133.7, 131.8, 130.8, 127.2 (d, J=7.0Hz), 125.23 (d, J=2.0Hz), 125.1, 113.2 (d, J=25.0Hz, 11Hz), 102.6 (t, J=22.0Hz), 30.4, 28.5, 23.3, 22.9 ; 19 F NMR (377MHz, CDCl 3 ): δ=-110.0; IRν (cm -1 ): 2928, 2849, 1607, 1576, 1423, 1107, 975, 844, 739, 686; HRMS (TOF, EI): theoretical value C 20 H 16 F 2 [M + ] 294.1220, found 294.1220.

实施例12Example 12

合成结构式如下的9-(间三氟甲基苯基)-1,2,3,4-四氢蒽Synthesis of 9-(m-trifluoromethylphenyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-(间三氟甲基苯基)蒽替换实施例1中的蒽,用配体L2替换实施例1中的配体L1,其他步骤与实施例1相同,得到白色固体9-(间三氟甲基苯基)-1,2,3,4-四氢蒽,其产率为92%,熔点为69.5-70.6℃。In this example, the anthracene in Example 1 is replaced with equimolar 9-(m-trifluoromethylphenyl)anthracene, the ligand L 1 in Example 1 is replaced with ligand L 2 , and other steps are the same as those in Example 1. In the same way, 9-(m-trifluoromethylphenyl)-1,2,3,4-tetrahydroanthracene was obtained as a white solid with a yield of 92% and a melting point of 69.5-70.6°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.76(d,J=8.2Hz,1H),7.69(d,J=7.8Hz,1H),7.65-7.59(m,2H),7.54(s,1H),7.45(d,J=7.5Hz,1H),7.37(t,J=7.4Hz,1H),7.28-7.23(m,1H),7.19(d,J=8.5Hz,1H),3.04(t,J=6.3Hz,2H),2.52(t,J=5.8Hz,2H),1.88-1.73(m,4H);13C NMR(100MHz,CDCl3):δ=140.8,136.4,136.1,133.9,133.6,131.9,131.2,131.0(q,J=32.0Hz),129.0,127.2,127.2,126.9(q,J=4.0Hz),125.4,125.2,125.1,124.3(q,J=270.0Hz),123.9(q,J=4.0Hz),30.5,28.8,23.4,22.9;19F NMR(377MHz,CDCl3):δ=-62.4;IR ν(cm-1):2928,2849,1428,1307,1155,1102,1065,786,739,681;HRMS(TOF,EI):理论值C21H17F3[M+]326.1282,实测值326.1281。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.76 (d, J=8.2 Hz, 1H), 7.69 (d, J=7.8 Hz, 1H), 7.65-7.59 (m, 2H) ), 7.54(s, 1H), 7.45(d, J=7.5Hz, 1H), 7.37(t, J=7.4Hz, 1H), 7.28-7.23(m, 1H), 7.19(d, J=8.5Hz) , 1H), 3.04 (t, J=6.3 Hz, 2H), 2.52 (t, J=5.8 Hz, 2H), 1.88-1.73 (m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ=140.8 ,136.4,136.1,133.9,133.6,131.9,131.2,131.0(q,J=32.0Hz),129.0,127.2,127.2,126.9(q,J=4.0Hz),125.4,125.2,125.1,124.3(q,J = 270.0 Hz), 123.9 (q, J=4.0 Hz), 30.5, 28.8, 23.4, 22.9; 19 F NMR (377 MHz, CDCl 3 ): δ=-62.4; IR ν (cm -1 ): 2928, 2849, 1428, 1307, 1155, 1102, 1065, 786, 739, 681; HRMS (TOF, EI): theoretical value C 21 H 17 F 3 [M + ] 326.1282, observed value 326.1281.

实施例13Example 13

合成结构式如下的9-(对三氟甲基苯基)-1,2,3,4-四氢蒽Synthesis of 9-(p-trifluoromethylphenyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9-(对三氟甲基苯基)蒽替换实施例1中的蒽,用配体L2替换实施例1中的配体L1,其他步骤与实施例1相同,得到白色固体9-(对三氟甲基苯基)-1,2,3,4-四氢蒽,其产率为89%,熔点为114.3-115.9℃。In this example, the anthracene in Example 1 is replaced with equimolar 9-(p-trifluoromethylphenyl)anthracene, the ligand L 1 in Example 1 is replaced with ligand L 2 , and other steps are the same as those in Example 1. In the same way, 9-(p-trifluoromethylphenyl)-1,2,3,4-tetrahydroanthracene was obtained as a white solid with a yield of 89% and a melting point of 114.3-115.9°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.76(d,J=7.7Hz,3H),7.64(s,1H),7.38(t,J=6.7Hz,3H),7.27-7.20(m,2H),3.04(t,J=6.3Hz,2H),2.52(t,J=6.4Hz,2H),1.86-1.75(m,4H);13C NMR(100MHz,CDCl3):δ=143.9,136.5,136.1,133.7,131.8,131.0,130.6,129.3(q,J=32.0Hz),127.2,127.1,125.5(q,J=3.0Hz),125.2,125.1,124.4(q,J=270.0Hz),30.4,28.8,23.3,22.7;19F NMR(377MHz,CDCl3):δ=-62.3;IR ν(cm-1):2918,2849,1607,1307,1149,1054,1065,839,734;HRMS(TOF,EI):理论值C21H17F3[M+]326.1282,实测值276.1280。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.76 (d, J=7.7 Hz, 3H), 7.64 (s, 1H), 7.38 (t, J=6.7 Hz, 3H), 7.27-7.20 (m, 2H), 3.04 (t, J=6.3Hz, 2H), 2.52 (t, J=6.4Hz, 2H), 1.86-1.75 (m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ=143.9, 136.5, 136.1, 133.7, 131.8, 131.0, 130.6, 129.3(q, J=32.0Hz), 127.2, 127.1, 125.5(q, J=3.0Hz), 125.2, 125.1, 124.4(q, J=270.0 Hz), 30.4, 28.8, 23.3, 22.7; 19 F NMR (377 MHz, CDCl 3 ): δ=-62.3; IR ν (cm -1 ): 2918, 2849, 1607, 1307, 1149, 1054, 1065 , 839,734; HRMS (TOF, EI): theoretical value C 21 H 17 F 3 [M + ] 326.1282, found value 276.1280.

实施例14Example 14

合成结构式如下的9-(间氯基苯基)-1,2,3,4-四氢蒽Synthesis of 9-(m-chlorophenyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔的9-(间氯基苯基)蒽替换实施例1中的蒽,用配体L2替换实施例1中的配体L1,其他步骤与实施例1相同,得到白色固体9-(间氯基苯基)-1,2,3,4-四氢蒽,其产率为68%,熔点为80.8-81.9℃。In this example, the anthracene in Example 1 is replaced with equimolar 9-(m-chlorophenyl)anthracene, the ligand L 1 in Example 1 is replaced with ligand L 2 , and other steps are the same as those in Example 1. , 9-(m-chlorophenyl)-1,2,3,4-tetrahydroanthracene was obtained as a white solid with a yield of 68% and a melting point of 80.8-81.9°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.75(d,J=8.2Hz,1H),7.62(s,1H),7.42-7.36(m,3H),7.28-7.22(m,3H),7.16-7.10(m,1H),3.03(t,J=6.3Hz,2H),2.57-2.53(m,2H),1.87-1.74(m,4H);13C NMR(100MHz,CDCl3):δ=141.9,136.5,136.0,134.4,133.8,131.8,131.2,130.2,129.8,128.4,127.2,127.1,127.0,125.6,125.1,125.0,30.5,28.7,23.4,22.9;IR ν(cm-1):2923,2844,1586 1554,1465,875,770,739,681;HRMS(TOF,EI):理论值C20H17Cl[M+]292.1019,实测值292.1022。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.75 (d, J=8.2 Hz, 1H), 7.62 (s, 1H), 7.42-7.36 (m, 3H), 7.28-7.22 (m, 3H), 7.16-7.10 (m, 1H), 3.03 (t, J=6.3Hz, 2H), 2.57-2.53 (m, 2H), 1.87-1.74 (m, 4H); 13 C NMR (100MHz) , CDCl 3 ): δ=141.9, 136.5, 136.0, 134.4, 133.8, 131.8, 131.2, 130.2, 129.8, 128.4, 127.2, 127.1, 127.0, 125.6, 125.1, 125.0, 30.5, 28.7, 23.4, 22.9; cm -1 ): 2923, 2844, 1586 1554, 1465, 875, 770, 739, 681; HRMS (TOF, EI): theoretical value C 20 H 17 Cl[M + ] 292.1019, found value 292.1022.

实施例15Example 15

合成结构式如下的9,10-二甲基-1,2,3,4-四氢蒽Synthesis of 9,10-dimethyl-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔9,10-二甲基蒽替换实施例1中的蒽,用配体L2替换实施例1中的配体L1,其他步骤与实施例1相同,得到白色固体9,10-二甲基-1,2,3,4-四氢蒽,其产率为95%,熔点为106.4-107.3℃。In this example, the anthracene in Example 1 is replaced with equimolar 9,10-dimethylanthracene, the ligand L 1 in Example 1 is replaced with ligand L 2 , and other steps are the same as those in Example 1 to obtain a white Solid 9,10-dimethyl-1,2,3,4-tetrahydroanthracene in 95% yield, mp 106.4-107.3°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=8.06(dd,J=6.5,3.4Hz,2H),7.44(dd,J=6.6,3.3Hz,2H),2.94(s,4H),2.58(s,6H),1.80-1.86(m,4H);13C NMR(100MHz,CDCl3):δ=133.6,131.0,128.9,124.4,124.1,28.9,23.3,14.0;IR ν(cm-1):3076,2918,2849,1512,1444,1365,907,734,639;HRMS(TOF,EI):理论值C16H18[M+]210.1409,实测值210.1407。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=8.06 (dd, J=6.5, 3.4 Hz, 2H), 7.44 (dd, J=6.6, 3.3 Hz, 2H), 2.94 (s , 4H), 2.58(s, 6H), 1.80-1.86(m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ=133.6, 131.0, 128.9, 124.4, 124.1, 28.9, 23.3, 14.0; IR ν (cm -1 ): 3076, 2918, 2849, 1512, 1444, 1365, 907, 734, 639; HRMS (TOF, EI): theoretical value C 16 H 18 [M + ] 210.1409, found value 210.1407.

实施例16Example 16

合成结构式如下的6-甲基-1,2,3,4-四氢蒽Synthesis of 6-methyl-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔2-甲基蒽替换实施例1中的蒽,其他步骤与实施例1相同,得到白色固体6-甲基-1,2,3,4-四氢蒽,其产率为85%,熔点为70.7-72.1℃。In this example, the anthracene in Example 1 was replaced with equimolar 2-methylanthracene, and other steps were the same as those in Example 1 to obtain a white solid 6-methyl-1,2,3,4-tetrahydroanthracene, which was Yield 85%, melting point 70.7-72.1°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.60(d,J=8.3Hz,1H),7.49-7.42(m,3H),7.19(d,J=8.3Hz,1H),2.94(s,4H),2.47(s,3H),1.90-1.81(m,4H);13C NMR(100MHz,CDCl3):δ=136.2,135.2,134.3,132.4,130.4,127.2,126.8,126.4,126.0,125.9,29.8,29.7,23.5,21.7;IRν(cm-1):2923,2849,1597,1497,1428,907,870,792;HRMS(TOF,EI):理论值C15H16[M+]196.1252,实测值196.1254。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.60 (d, J=8.3 Hz, 1H), 7.49-7.42 (m, 3H), 7.19 (d, J=8.3 Hz, 1H) ), 2.94(s, 4H), 2.47(s, 3H), 1.90-1.81(m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ=136.2, 135.2, 134.3, 132.4, 130.4, 127.2, 126.8 , 126.4, 126.0, 125.9, 29.8, 29.7, 23.5, 21.7; IRν (cm -1 ): 2923, 2849, 1597, 1497, 1428, 907, 870, 792; HRMS (TOF, EI): theoretical value C 15 H 16 [M + ] 196.1252, measured value 196.1254.

实施例17Example 17

合成结构式如下的6-乙基-1,2,3,4-四氢蒽Synthesis of 6-ethyl-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔2-乙基蒽替换实施例1中的蒽,用等摩尔的三(乙酰丙酮)铬替换实施例1中的三氯化铬,其他步骤与实施例1相同,得到白色固体6-乙基-1,2,3,4-四氢蒽,其产率为89%,熔点为41.1-42.3℃℃。In this embodiment, replace the anthracene in embodiment 1 with equimolar 2-ethylanthracene, replace the chromium trichloride in embodiment 1 with equimolar tris(acetylacetonate) chromium, other steps are the same as embodiment 1, 6-ethyl-1,2,3,4-tetrahydroanthracene was obtained as a white solid with a yield of 89% and a melting point of 41.1-42.3°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.61(dd,J=8.3,2.1Hz,1H),7.45(d,J=7.9Hz,3H),7.21(d,J=9.1Hz,1H),2.93(s,4H),2.78-2.72(m,2H),1.87-1.79(m,4H),131-1.26(m,3H);13C NMR(100MHz,CDCl3):δ=140.7,136.2,135.3,132.4,130.7,126.9,126.4,126.2,124.6,29.9,29.8,29.1,23.5,15.6;IR ν(cm-1):2975,2839,1581,1502,1460,1223,912,860,802;HRMS(TOF,EI):理论值C16H18[M+]210.1409,实测值210.1411。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.61 (dd, J=8.3, 2.1 Hz, 1H), 7.45 (d, J=7.9 Hz, 3H), 7.21 (d, J = 9.1 Hz, 1H), 2.93 (s, 4H), 2.78-2.72 (m, 2H), 1.87-1.79 (m, 4H), 131-1.26 (m, 3H); 13 C NMR (100 MHz, CDCl 3 ) : δ=140.7, 136.2, 135.3, 132.4, 130.7, 126.9, 126.4, 126.2, 124.6, 29.9, 29.8, 29.1, 23.5, 15.6; IR ν(cm -1 ): 2975, 2839, 1581, 1502, 1460, 1223 , 912,860,802; HRMS (TOF, EI): theoretical value C 16 H 18 [M + ] 210.1409, found value 210.1411.

实施例18Example 18

合成结构式如下的6-苯基-1,2,3,4-四氢蒽Synthesis of 6-phenyl-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔2-苯基蒽替换实施例1中的蒽,用等摩尔的三(乙酰丙酮)铬替换实施例1中的三氯化铬,其他步骤与实施例1相同,得到白色固体6-乙基-1,2,3,4-四氢蒽,其产率为86%,熔点为105.1-106.4℃。In this embodiment, replace the anthracene in embodiment 1 with equimolar 2-phenylanthracene, replace the chromium trichloride in embodiment 1 with equimolar tris(acetylacetonate) chromium, other steps are the same as embodiment 1, 6-ethyl-1,2,3,4-tetrahydroanthracene was obtained as a white solid in 86% yield and mp 105.1-106.4°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.91(s,1H),7.78(d,J=8.5Hz,1H),7.71(d,J=7.4Hz,2H),7.63(d,J=8.5Hz,1H),7.59(s,1H),7.55(s,1H),7.47(t,J=7.6Hz,2H),7.36(t,J=7.4Hz,1H),2.98(s,4H),1.88(t,J=3.1Hz,4H);13CNMR(100MHz,CDCl3):δ=141.6,137.7,136.9,136.6,132.5,131.4,128.9,127.6,127.4,127.2,127.1,126.5,125.1,124.8,30.0,23.5;IR ν(cm-1):3049,2912,2833,1586,1475,1255,1007,902,802,749,676;HRMS(TOF,EI):理论值C20H18[M+]258.1409,实测值258.1410。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.91 (s, 1H), 7.78 (d, J=8.5 Hz, 1H), 7.71 (d, J=7.4 Hz, 2H), 7.63(d,J=8.5Hz,1H),7.59(s,1H),7.55(s,1H),7.47(t,J=7.6Hz,2H),7.36(t,J=7.4Hz,1H), 2.98 (s, 4H), 1.88 (t, J=3.1 Hz, 4H); 13 CNMR (100 MHz, CDCl 3 ): δ=141.6, 137.7, 136.9, 136.6, 132.5, 131.4, 128.9, 127.6, 127.4, 127.2, 127.1, 126.5, 125.1, 124.8, 30.0, 23.5; IR ν (cm -1 ): 3049, 2912, 2833, 1586, 1475, 1255, 1007, 902, 802, 749, 676; HRMS (TOF, EI): theoretical value C 20 H 18 [ M + ] 258.1409, found 258.1410.

实施例19Example 19

合成结构式如下的6-(对甲基苯基)-1,2,3,4-四氢蒽Synthesis of 6-(p-methylphenyl)-1,2,3,4-tetrahydroanthracene with the following structural formula

本实施例中,用等摩尔2-(对甲基苯基)蒽替换实施例1中的蒽,其他步骤与实施例1相同,得到白色固体6-(对甲基苯基)-1,2,3,4-四氢蒽,其产率为90%,熔点为113.9-115.2℃。In this example, the anthracene in Example 1 was replaced with equimolar 2-(p-methylphenyl)anthracene, and other steps were the same as those in Example 1 to obtain a white solid 6-(p-methylphenyl)-1,2 , 3,4-tetrahydroanthracene with a yield of 90% and a melting point of 113.9-115.2 °C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.90(s,1H),7.77(d,J=8.4Hz,1H),7.66-7.53(m,5H),7.29(d,J=7.1Hz,2H),2.99(s,4H),2.42(s,3H),1.89(d,J=1.9Hz,4H);13C NMR(100MHz,CDCl3):δ=138.6,137.5,136.9,136.7,136.3,132.4,131.2,129.5,127.5,127.1,126.9,126.4,124.7,124.6,29.8,23.4,21.1;IRν(cm-1):2923,2849,1481,912,870,839,781;HRMS(TOF,EI):理论值C21H20[M+]272.1565,实测值272.1565。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.90 (s, 1H), 7.77 (d, J=8.4 Hz, 1H), 7.66-7.53 (m, 5H), 7.29 (d , J=7.1 Hz, 2H), 2.99 (s, 4H), 2.42 (s, 3H), 1.89 (d, J=1.9 Hz, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ=138.6, 137.5 ,136.9,136.7,136.3,132.4,131.2,129.5,127.5,127.1,126.9,126.4,124.7,124.6,29.8,23.4,21.1;IRν(cm -1 ):2923,2849,1481,912,870,839,7 EI): theoretical value C 21 H 20 [M + ] 272.1565, measured value 272.1565.

实施例20Example 20

合成结构式如下的1,2,3,10,11,12-六氢苝Synthesis of 1,2,3,10,11,12-hexahydroperylene with the following structural formula

本实施例中,用等摩尔苝替换实施例1中的蒽,用等摩尔的三(乙酰丙酮)铬替换实施例1中的三氯化铬,其他步骤与实施例1相同,得到黄色固体1,2,3,10,11,12-六氢苝,其产率为56%,熔点为183.6-184.9℃。In this example, replace the anthracene in Example 1 with equimolar perylene, replace the chromium trichloride in Example 1 with equimolar tris(acetylacetonate) chromium, and other steps are the same as in Example 1 to obtain yellow solid 1 , 2,3,10,11,12-hexahydroperylene with a yield of 56% and a melting point of 183.6-184.9°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=8.53(d,J=8.3Hz,2H),7.50-7.41(m,2H),7.33(d,J=7.0Hz,2H),3.13-3.06(m,8H),2.15-2.04(m,4H);13CNMR(100MHz,CDCl3):δ=136.5,129.6,128.9,128.7,125.6,124.9,120.9,31.6,28.2,23.1;IR ν(cm-1):3007,2923,2854,1597,1460,1423,1249,807,776,734;HRMS(TOF,EI):理论值C20H18[M+]258.1409,实测值258.1410.The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=8.53 (d, J=8.3 Hz, 2H), 7.50-7.41 (m, 2H), 7.33 (d, J=7.0 Hz, 2H) ), 3.13-3.06 (m, 8H), 2.15-2.04 (m, 4H); 13 CNMR (100MHz, CDCl 3 ): δ=136.5, 129.6, 128.9, 128.7, 125.6, 124.9, 120.9, 31.6, 28.2, 23.1 ; IR ν (cm -1 ): 3007, 2923, 2854, 1597, 1460, 1423, 1249, 807, 776, 734; HRMS (TOF, EI): theoretical value C 20 H 18 [M + ] 258.1409, observed value 258.1410.

实施例21Example 21

合成结构式如下的1,2,3,4,7,8,9,10-十氢并四苯Synthesis of 1,2,3,4,7,8,9,10-decahydrotetracene with the following structural formula

本实施例中,用等摩尔并四苯替换实施例1中的蒽,其他步骤与实施例1相同,得到白色固体1,2,3,4,7,8,9,10-十氢并四苯,其产率为70%,熔点为173.6-174.5℃。In this example, the anthracene in Example 1 was replaced with equimolar naphthacene, and the other steps were the same as those in Example 1, to obtain a white solid 1,2,3,4,7,8,9,10-decahydrotetracene Benzene, 70% yield, mp 173.6-174.5°C.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.40(s,4H),2.94(s,8H),1.87-1.84(m,8H);13C NMR(100MHz,CDCl3):δ=135.1,130.9,125.6,29.8,23.5;IRν(cm-1):3018,2912,2833,2639,1586,1491,1439,1234,923,860,813;HRMS(TOF,EI):理论值C18H20[M+]236.1565,实测值236.1566。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.40 (s, 4H), 2.94 (s, 8H), 1.87-1.84 (m, 8H); 13 C NMR (100 MHz, CDCl 3 ) ): δ=135.1, 130.9, 125.6, 29.8, 23.5; IRν (cm -1 ): 3018, 2912, 2833, 2639, 1586, 1491, 1439, 1234, 923, 860, 813; HRMS (TOF, EI): theoretical value C 18 H 20 [M + ] 236.1565, found 236.1566.

实施例22Example 22

合成结构式如下的6,13-二氢并五苯Synthesis of 6,13-dihydropentacene with the following structural formula

本实施例中,用等摩尔并五苯替换实施例1中的蒽,其他步骤与实施例1相同,得到白色固体6,13-二氢并五苯,其产率为55%,熔点为178.5-180.1℃。In this example, equimolar pentacene was used to replace the anthracene in Example 1, and other steps were the same as in Example 1 to obtain a white solid 6,13-dihydropentacene with a yield of 55% and a melting point of 178.5 -180.1℃.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=7.82-7.81(m,8H),7.44-7.42(m,4H),4.25(s,4H);13C NMR(100MHz,CDCl3):δ=136.0,132.6,127.4,125.5,125.3,37.5;IRν(cm-1):3019,2912,2835,2639,1586,1491,1439,1234,923,860,810;HRMS(TOF,EI):理论值C22H16[M+H]+280.1252,实测值280.1254。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=7.82-7.81 (m, 8H), 7.44-7.42 (m, 4H), 4.25 (s, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ=136.0, 132.6, 127.4, 125.5, 125.3, 37.5; IRν (cm -1 ): 3019, 2912, 2835, 2639, 1586, 1491, 1439, 1234, 923, 860, 810; HRMS (TOF, EI): Theoretical C 22 H 16 [M+H] + 280.1252, found 280.1254.

实施例23Example 23

合成结构式如下的8,9,10,11-四氢苯并[a]蒽Synthesis of 8,9,10,11-tetrahydrobenzo[a]anthracene with the following structural formula

本实施例中,用等摩尔苯并[a]蒽替换实施例1中的蒽,用配体L2替换实施例1中的配体L1,其他步骤与实施例1相同,得到白色固体8,9,10,11-四氢苯并[a]蒽,其产率为89%,熔点为85.0-86.4℃。In this example, the anthracene in Example 1 was replaced with equimolar benzo[a]anthracene, the ligand L 1 in Example 1 was replaced with ligand L 2 , and other steps were the same as those in Example 1 to obtain a white solid 8 , 9,10,11-tetrahydrobenzo[a]anthracene in 89% yield and 85.0-86.4°C melting point.

所得产物的波谱数据为:1H NMR(400MHz,CDCl3):δ=8.64(d,J=8.2Hz,1H),8.38(s,1H),7.84(d,J=7.8Hz,1H),7.65-7.51(m,5H),3.07(d,J=5.8Hz,2H),3.01(d,J=5.8Hz,2H),1.94-1.90(m,4H);13C NMR(100MHz,CDCl3):δ=136.6,136.5,131.8,130.4,130.2,128.5,128.4,127.9,126.5,126.3,126.0,125.9,122.5,122.4,30.2,29.5,23.5,23.4;IR ν(cm-1):3039,2918,2839,1491,1449,1412,912,860,802,739;HRMS(TOF,EI):理论值C18H16[M+]232.1252,实测值232.1251。The spectral data of the obtained product are: 1 H NMR (400 MHz, CDCl 3 ): δ=8.64 (d, J=8.2 Hz, 1H), 8.38 (s, 1H), 7.84 (d, J=7.8 Hz, 1H), 7.65-7.51 (m, 5H), 3.07 (d, J=5.8Hz, 2H), 3.01 (d, J=5.8Hz, 2H), 1.94-1.90 (m, 4H); 13 C NMR (100 MHz, CDCl 3 ): δ = 136.6, 136.5, 131.8, 130.4, 130.2, 128.5, 128.4, 127.9, 126.5, 126.3, 126.0, 125.9, 122.5, 122.4, 30.2, 29.5, 23.5, 23.4; IR ν (cm -1 ): 3039, 2918, 2839, 1491, 1449, 1412, 912, 860, 802, 739; HRMS (TOF, EI): theoretical value C 18 H 16 [M + ] 232.1252, found value 232.1251.

Claims (6)

1. a kind of chromic salts/methyl-magnesium-bromide selective catalytic hydrogenation polycyclic aromatic hydrocarbon method, it is characterised in that: with chromic salts and methyl Magnesium bromide is catalyst, diimine class compound is ligand, tetrahydrofuran is solvent, by polycyclic aromatic hydrocarbon in H2Pressure be 3~ Under 6MPa, stirring at normal temperature reaction isolates and purifies product after having reacted, obtains hydrogenated products;
Above-mentioned polycyclic aromatic hydrocarbon is any one in Formulas I~Formula V compound:
When above-mentioned polycyclic aromatic hydrocarbon is compound of formula I, hydrogenated products are Formulas I ' compound;
In Formulas I and I ', R1、R2、R3It is independent to represent H, C1~C4Alkyl, phenyl, C1~C3Alkyl-substituted phenyl, C1~C3 Alkoxy substituted phenyl, halogenophenyl, trifluoromethyl, any one in naphthalene;
When above-mentioned polycyclic aromatic hydrocarbon is Formula II compound, hydrogenated products are Formula II ' compound;
When above-mentioned polycyclic aromatic hydrocarbon is formula III compound, hydrogenated products are formula III ' compound;
When above-mentioned polycyclic aromatic hydrocarbon is formula IV compound, hydrogenated products are formula IV ' compound;
When above-mentioned polycyclic aromatic hydrocarbon is Formula V compound, hydrogenated products are Formula V ' compound;
Above-mentioned diimine class compound is L shown in following formula1Or L2Compound:
Above-mentioned chromic salts is chromium trichloride, chromium dichloride, any one in tri acetylacetonato chromium.
2. chromic salts according to claim 1/methyl-magnesium-bromide selective catalytic hydrogenation polycyclic aromatic hydrocarbon method, feature exist In: the R1Represent H, methyl, phenyl, o-methyl-phenyl, o-methoxyphenyl, o-fluorophenyl, aminomethyl phenyl, methoxy Base phenyl, fluorophenyl, m-trifluoromethylphenyl, chlorphenyl, p-fluorophenyl, p-trifluoromethyl phenyl, 2- naphthalene, 3,5- bis- Any one in fluorophenyl, R2Represent H, R3Represent H or methyl.
3. chromic salts according to claim 1/methyl-magnesium-bromide selective catalytic hydrogenation polycyclic aromatic hydrocarbon method, feature exist In: the R1And R3Represent H, R2Represent methyl, ethyl, phenyl, any one in p-methylphenyl.
4. chromic salts according to any one of claims 1 to 3/methyl-magnesium-bromide selective catalytic hydrogenation polycyclic aromatic hydrocarbon side Method, it is characterised in that: the polycyclic aromatic hydrocarbon and chromic salts, methyl-magnesium-bromide, diimine class compound molar ratio be 1:0.2~ 0.3:1.1~2.0:0.2~0.3.
5. chromic salts according to claim 4/methyl-magnesium-bromide selective catalytic hydrogenation polycyclic aromatic hydrocarbon method, feature exist In: the H2Pressure is 5MPa.
6. chromic salts according to claim 4/methyl-magnesium-bromide selective catalytic hydrogenation polycyclic aromatic hydrocarbon method, feature exist In: the time of the stirring at normal temperature reaction is 24 hours.
CN201710396279.3A 2017-05-31 2017-05-31 A kind of method of chromium salt/methyl magnesium bromide selective catalytic hydrogenation of polycyclic aromatic hydrocarbons Expired - Fee Related CN107216229B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710396279.3A CN107216229B (en) 2017-05-31 2017-05-31 A kind of method of chromium salt/methyl magnesium bromide selective catalytic hydrogenation of polycyclic aromatic hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710396279.3A CN107216229B (en) 2017-05-31 2017-05-31 A kind of method of chromium salt/methyl magnesium bromide selective catalytic hydrogenation of polycyclic aromatic hydrocarbons

Publications (2)

Publication Number Publication Date
CN107216229A CN107216229A (en) 2017-09-29
CN107216229B true CN107216229B (en) 2019-07-09

Family

ID=59948022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710396279.3A Expired - Fee Related CN107216229B (en) 2017-05-31 2017-05-31 A kind of method of chromium salt/methyl magnesium bromide selective catalytic hydrogenation of polycyclic aromatic hydrocarbons

Country Status (1)

Country Link
CN (1) CN107216229B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116947580B (en) * 2022-04-19 2024-12-10 中国科学院大连化学物理研究所 A method for constructing axial chiral compounds by rhodium-catalyzed hydrogenation and desymmetrization of anthracene
CN116082111B (en) * 2023-01-18 2024-04-26 四川大学 A method for synthesizing 1,1,2-triarylethane

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《Catalyzed hydrogenation of condensed three-ring arenes and their N-heteroaromatic analogues by a bis(dihydrogen) ruthenium complex》;Andrzej F. Borowski et al.;《Dalton Trans.》;20121002;第41卷;第14117-14125页
《Near-Monodisperse Tetrahedral Rhodium Nanoparticles on Charcoal: The Shape-Dependent Catalytic Hydrogenation of Arenes》;Kang Hyun Park et al.;《Angew. Chem. Int. Ed.》;20071231;第46卷;第1152-1155页
《Rhodium and Iridium Nanoparticles Entrapped in Aluminum Oxyhydroxide Nanofibers: Catalysts for Hydrogenations of Arenes and Ketones at Room Temperature with Hydrogen Balloon》;In Soo Park et al.;《Adv. Synth. Catal.》;20071231;第349卷;第2039-2047页
《Selective catalytic hydrogenation of polycyclic aromatic hydrocarbons promoted by ruthenium nanoparticles》;Emma Bresó-Femenia et al.;《Catal. Sci. Technol.》;20150305;第5卷;第2741-2751页

Also Published As

Publication number Publication date
CN107216229A (en) 2017-09-29

Similar Documents

Publication Publication Date Title
CN106892935A (en) A kind of immobilized copper catalysis of shitosan prepare method and the application of organoboron compound
CN109651225B (en) Preparation method of 1-methyl-3-morphinyl-4-arylmercapto maleimide compound
CN109705013B (en) A kind of 1-(4-methylbenzyl)-3-amino-4-methylselenomaleimide compound and preparation method thereof
CN103319313B (en) Method for preparing o-phenyl phenol by ring opening of dibenzofuran
WO2020057274A1 (en) Method for preparing substituted primary amine
CN107216229B (en) A kind of method of chromium salt/methyl magnesium bromide selective catalytic hydrogenation of polycyclic aromatic hydrocarbons
CN103304393B (en) A kind of synthetic method of benzil analog derivative
CN109942364A (en) A kind of olefin synthesis method using water as hydrogen source
CN101597286A (en) A kind of organic catalyst containing primary amine, tertiary amine and urea or thiourea and its preparation
CN105085208B (en) A kind of preparation method using palladium as catalyst benzfluorene ketone compounds
CN108976243A (en) Spiral shell-chroman -4,3 '-Oxoindole synthetic method is synthesized with the hydroxy-benzyl alcohol of neighbour containing Oxoindole by dimethyl furan
CN114591277B (en) 5/6/7/6 tetracyclic compound fused with benzene ring and synthetic method thereof
CN106883206B (en) Method for synthesizing coumarin by catalyzing (E) -o-hydroxycinnamaldehyde derivative with aza-carbene
CN104311376A (en) New method for directly preparing aryl aldehyde from aryl nitrile
CN111808106A (en) Method for preparing pyrrolo[1,2-a]indole compounds based on in situ generation of alkynyl-substituted p-methylenebenzoquinone
CN102887808B (en) Preparation method of multi-substituted indanol derivatives
CN103275027A (en) Synthesis method of alpha-keto amide compound
CN107235818B (en) Method for the selective catalytic hydrogenation of polycyclic aromatic hydrocarbons based on cobalt salts
CN107382640B (en) The synthetic method of β-aryl propiophenone compounds
CN106810430B (en) A kind of 2- Trifluoromethyl-1, the preparation method of 4- naphthoquinone derivatives
CN107382700B (en) Conjugated addition method of aromatic carboxylic acid and alpha, beta-unsaturated ketone
CN106083690A (en) A kind of preparation method of polysubstituted 3 methylene indolones
CN113262816B (en) Catalytic system and method for synthesizing benzo [1,2-b:4,5-b' ] dibenzofuran by using same
JP2021134141A (en) Method for producing aromatic compound using heterogeneous noble metal catalyst
CN105315193B (en) A kind of synthetic method of azepine five and tricyclic drug molecule intermediate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190709

Termination date: 20200531