[go: up one dir, main page]

CN107216155B - 一种用于激光3d打印/冷等静压复合成型的pf/pva双覆膜陶瓷粉末及其制备方法 - Google Patents

一种用于激光3d打印/冷等静压复合成型的pf/pva双覆膜陶瓷粉末及其制备方法 Download PDF

Info

Publication number
CN107216155B
CN107216155B CN201710398456.1A CN201710398456A CN107216155B CN 107216155 B CN107216155 B CN 107216155B CN 201710398456 A CN201710398456 A CN 201710398456A CN 107216155 B CN107216155 B CN 107216155B
Authority
CN
China
Prior art keywords
ceramic powder
pva
coated
coated ceramic
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710398456.1A
Other languages
English (en)
Other versions
CN107216155A (zh
Inventor
刘凯
陈方杰
孙华君
马成飞
刘悦
王江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710398456.1A priority Critical patent/CN107216155B/zh
Publication of CN107216155A publication Critical patent/CN107216155A/zh
Application granted granted Critical
Publication of CN107216155B publication Critical patent/CN107216155B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供一种用于激光3D打印/冷等静压复合成型的酚醛树脂/聚乙烯醇双覆膜陶瓷粉末及其制备方法,该方法第一步将陶瓷粉末、柔软剂PEG、分散剂与水按一定比例混合得陶瓷浆料,接着向其中加入1wt%的PVA,烘干研磨过筛得PVA覆膜陶瓷粉末;第二步将PVA覆膜陶瓷粉末、酚醛树脂2123与甲醇混合均匀后,烘干粉碎研磨过筛,得酚醛树脂2123/PVA双覆膜陶瓷粉末。本发明制备的酚醛树脂2123/PVA双覆膜陶瓷粉末,有利于SLS技术成型陶瓷材料,促进CIP过程的致密化处理,从而提高初始形坯的强度和形状,并且具有工艺简单、设备要求低、不会对环境造成污染等诸多优点。

Description

一种用于激光3D打印/冷等静压复合成型的PF/PVA双覆膜陶 瓷粉末及其制备方法
技术领域
本发明涉及3D打印快速成型技术领域,具体涉及一种用于激光3D打印/冷等静压复合成型的酚醛树脂/聚乙烯醇双覆膜陶瓷粉末及其制备方法。
背景技术
随着电子计算机技术的发展,利用计算机直接制造各种复杂形状零件的技术取得了长足进步,90年代初H.Marcus等人提出了固体无模成型制造思路。选择性激光烧结技术(Selective Laser Sintering,简称SLS)是无模成型中使用比较广泛的方法,其工作原理是:在可升降的台面上铺上一层固体材料粉末,用激光对粉末进行扫描照射,激光扫过的部位粉末被烧结未扫描的部位粉末不烧结仍留在原处,成为新的一层粉末的支撑部分;烧结好一层后台面下降,进行第二层铺粉、烧结;如此反复进行直到零件坯体被制造出来。SLS成型工艺简单,能成型结构复杂的零件,对零件结构的复杂性没有任何限制,并且能够根据需要随时轻松更改零件结构。如今,SLS成型方法普遍用于金属材料、高分子材料的成型,在陶瓷材料成型方面有很大的缺陷,主要存在陶瓷材料成型复杂零件比较困难、成型零件密度低、机械性能差等问题。
为了提高陶瓷材料SLS技术成型零件的机械强度,华中科技大学史玉升教授等人提出采用冷等静压技术(Cold Isostatic P ressing,简称CIP)对SLS陶瓷材料成型坯体进行补强处理[史玉升,刘凯,贺文婷等.选择性激光烧结/冷等静压复合制造高密度Al2O3异形陶瓷件的研究[J].应用激光,2013,33(1):1-6]。CIP技术是指在常温下采用液体均匀传压的特性,对橡胶包套中的粉末施加各向均匀压力使粉末成型的一种成型技术。该技术使得坯体中粒子位移变形,坯体致密化程度更高,从而增强陶瓷零件的机械强度。
陶瓷材料分子结构稳定熔点高,在激光烧结时不易成型为固定结构。陶瓷材料SLS成形时需添加成型粘接剂,在进行激光烧结时,粘接剂融化将陶瓷粉末粘接成型。陶瓷粉末中添加粘接剂的方法一般有两种:一种是机械混合法,即将陶瓷粉末和粘接剂粉末进行简单的机械混合,使得粘接剂大致均匀的分布在陶瓷粉末中;另一种是覆膜法,即陶瓷粉末作为晶核被紧紧的包覆在有机粘接剂内部,参见CN100432019C以及CN103601502A。采用覆膜法时,粘接剂会相对均匀的分布在陶瓷粉末中,成型的形坯强度比较高;且覆膜法粘接剂加入量少,在脱脂处理后,坯体中的孔隙少,最终烧结体的密度和强度也较高。然而,目前用于SLS/CIP成型的覆膜陶瓷粉末仍存在粘接剂种类少、粘接性能差、制备成本高、SLS成型坯体在CIP阶段易变形等缺陷。
发明内容
本发明的目的在于克服现有用于SLS/CIP成型的陶瓷粉末存在的上述种种缺陷,提供一种用于激光3D打印/冷等静压复合成型的酚醛树脂/聚乙烯醇双覆膜陶瓷粉末及其制备方法。该方法利用酚醛树脂2123软化点低、粘接性强、成型收缩率小等优点,将其作为SLS陶瓷粉末成型时的粘接剂,利用聚乙烯醇(PVA)的润滑作用促进坯体在CIP阶段的致密化,最终制备出了性能优异的酚醛树脂2123-聚乙烯醇双覆膜陶瓷粉末。
本发明的目的之一在于提供一种用于激光3D打印/冷等静压复合成型的PF/PVA双覆膜陶瓷粉末,该双覆膜陶瓷粉末包括陶瓷粉末基体和包覆在基体上的内层、外层,其中陶瓷粉末基体为氧化铝、碳化硅、氧化锆、高白土、氮化硅中的一种,内层为聚乙烯醇(PVA)层,外层为酚醛树脂(PF)层。陶瓷粉末表面覆上PVA层,用于CIP致密化处理过程;最外面再覆上酚醛树脂2123层,用于SLS成型过程,在SLS成型过程中PVA层不被烧结。
本发明的另一目的在于提供一种用于激光3D打印/冷等静压复合成型的PF/PVA双覆膜陶瓷粉末的制备方法,包括以下步骤:(a)首先将陶瓷粉末、柔软剂、分散剂与去离子水混合搅拌均匀,得到陶瓷浆料;(b)向步骤(a)所得陶瓷浆料中加入聚乙烯醇(PVA)并搅拌均匀,加热保温反应,反应完成后经干燥、粉碎得到PVA覆膜陶瓷粉末;(c)将步骤(b)所得PVA覆膜陶瓷粉末与酚醛树脂、有机溶剂混合均匀,搅拌加热反应,反应完成后经干燥、粉碎得到PF/PVA双覆膜陶瓷粉末。
按照上述方案,所述陶瓷粉末为纳米级或亚微米级的氧化铝、碳化硅、氧化锆、高白土、氮化硅中的一种。采用纳米或亚微米级陶瓷粉末是因为其表面自由能高,烧结活性好。
按照上述方案,所述柔软剂为聚乙二醇(PEG),所述分散剂为四甲基氢氧化铵(TMAH)或柠檬酸铵(TAC)。
按照上述方案,所述有机溶剂为甲醇,所述酚醛树脂型号为2123。
按照上述方案,步骤(a)柔软剂的加入量为陶瓷粉末的0.3-0.6wt%,分散剂的加入量为陶瓷粉末的0.1-0.5wt%。
按照上述方案,步骤(b)中聚乙烯醇的加入量占陶瓷浆料的1wt%。
按照上述方案,步骤(c)中按照4-15:1的质量比将PVA覆膜陶瓷粉末、酚醛树脂混合,再加入足量有机溶剂。
按照上述方案,向陶瓷浆料中加入聚乙烯醇时,搅拌并升温至75℃保温反应1-2h。
按照上述方案,将PVA覆膜陶瓷粉末、酚醛树脂以及有机溶剂混合均匀后,在0.5-1h升温至45℃,保温反应2-3h。
本发明采用PVA、酚醛树脂2123对陶瓷粉末进行双覆膜处理,利用酚醛树脂2123软化点低、粘接性强、成型精度高、机械强度高等优点,将其作为SLS陶瓷粉末成型时的粘接剂;由于SLS坯体强度较低,在CIP阶段易发生变形、破碎等缺陷,所以本发明采用PVA对陶瓷粉末进行第一层覆膜,利用PVA材料的润滑作用促进粉末在CIP阶段的致密化处理。在SLS陶瓷粉末成型阶段,激光扫描粉末,仅烧熔外层的酚醛树脂2123,在酚醛树脂2123结晶固化的同时将陶瓷粉末粘接成型。在CIP致密化处理过程中,陶瓷粉粒在PVA膜层的润光滑作用下易于位移、变形,减小粉末间距,形成较高密度的压坯,同时能保证坯体形状的完整。
与现有技术相比,本发明的有益效果为:(1)利用覆膜法对陶瓷粉末进行覆膜,粘接剂加入量少,成型的形坯强度比较高,在脱脂处理后,坯体中的孔隙少,最终烧结体的密度和强度较高;(2)利用双覆膜法,粘接剂和PVA分层分布,且分布均匀,材料稳定,不易发生偏聚现象造成后续处理过程中零件变形和破裂现象发生;(3)利用PVA的润滑作用,促进SLS形坯在CIP技术下的致密化,得到密度、强度更高的坯体;(4)利用PVA溶于水不溶于甲醇,酚醛树脂2123溶于甲醇的性质,采用普通的搅拌器、反应釜就可制得双覆膜粉体,工艺简单;(5)解决了传统的喷雾干燥法工艺复杂、成本较高、对材料和设备要求较高等难题。
附图说明
图1为本发明PF/PVA双覆膜陶瓷粉末结构及SLS/CIP成型原理示意图。
具体实施方式
为使本领域普通技术人员充分理解本发明的技术方案和有益效果,以下结合具体实施例进行进一步说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种用于激光3D打印/冷等静压复合成型的PF/PVA双覆膜陶瓷粉末的制备方法,具体包括以下步骤:
1)将陶瓷粉末(纳米级或亚微米级的氧化铝、碳化硅、氧化锆、高白土、氮化硅中的一种)、PEG(柔软剂)、分散剂(TMAH或TAC),按一定比例加入反应釜中,再加入一定量去离子水,搅拌0.5~1h,制得陶瓷浆料。其中,分散剂的加入量为陶瓷粉末的0.1~0.5wt%,PEG的加入量为陶瓷粉末的0.3%~0.6wt%,去离子水的加入量要使得搅拌釜的搅拌头处于液面以下。
2)向陶瓷浆料中加入1wt%的PVA(聚乙烯醇)并搅拌1h左右,同时逐步加热至75℃左右,使PVA完全溶于离子水中,保温1~2h,自然冷却后将粉末聚集体烘干,再取出粉碎研磨过筛,得到PVA覆膜陶瓷粉末。
3)将PVA覆膜陶瓷粉末、酚醛树脂2123按照4-15:1的质量比加入反应釜中,加入足量的甲醇溶剂。一般需保证溶剂将混合粉末淹没,溶剂液面略高于粉末。由于甲醇有毒性,应将PVA覆膜陶瓷粉末、酚醛树脂2123加入到盛有甲醇的密闭环境中,通入保护气氦气,并将甲醇收集装置与密闭环境相连,甲醇挥发后通过收集装置收集。
4)在0.5~1h内将反应釜温度升至45℃,升温的同时进行机械搅拌,使得酚醛树脂2123完全溶于甲醇中,然后保温2~3h;再冷却至室温,取出覆膜粉末聚集体,将其烘干后粉碎研磨过筛,即得到酚醛树脂2123/PVA双覆膜陶瓷粉末。
实施例1
制备酚醛树脂2123/PVA碳化硅双覆膜粉末
(1)将SiC粉末(市售,平均粒径为0.74μm,纯度大于96%)、相当于SiC粉末0.5wt%的PEG(柔软剂)和0.5wt%分散剂TMAH加入反应釜中,再加入一定量去离子水,搅拌0.5~1h,制得碳化硅浆料。
(2)向浆料中加入1wt%的PVA(聚乙烯醇)搅拌1h左右,同时逐步加热至75℃左右,使PVA完全溶于去离子水中,然后保温1~2h。自然冷却后,将粉末聚集体烘干,再粉碎研磨过筛,得到PVA覆膜碳化硅粉末。
(3)将PVA覆膜碳化硅粉末、酚醛树脂2123按4:1的质量比加入反应釜中,加入足量的甲醇溶剂,一般使得溶剂将混合粉末淹没,溶剂液面略高于粉末。将反应釜和与之相连的甲醇挥发收集装置整体密封,通氦气保护。
(4)在0.5~1h内将反应釜温度升至45℃,升温的同时进行机械搅拌,使得酚醛树脂2123完全溶于甲醇中,然后保温2~3h。接着冷却至室温,取出覆膜粉末聚集体,将其烘干后粉碎研磨过筛,即得到酚醛树脂2123/PVA双覆膜碳化硅粉末。
实施例2
制备酚醛树脂2123/PVA氧化铝双覆膜粉末
(1)将氧化铝粉末(市售,平均粒径为0.74μm,纯度大于96%)、相当于氧化铝粉末0.5wt%的PEG(柔软剂)和0.5wt%分散剂TAC加入反应釜中,再加入一定量去离子水,搅拌0.5~1h,制得氧化铝浆料。
(2)向浆料中加入1wt%的PVA(聚乙烯醇)搅拌1h左右,同时逐步加热至75℃左右,使PVA完全溶于去离子水中,然后保温1~2h。自然冷却后,将粉末聚集体烘干,再粉碎研磨过筛,得到PVA覆膜氧化铝粉末。
(3)将PVA覆膜氧化铝粉末、酚醛树脂2123按15:1的质量比加入反应釜中,加入足量的甲醇溶剂,一般使得溶剂将混合粉末淹没,溶剂液面略高于粉末。将反应釜和与之相连的甲醇挥发收集装置整体密封,通氦气保护。
(4)在0.5~1h内将反应釜温度升至45℃,升温的同时进行机械搅拌,使得酚醛树脂2123完全溶于甲醇中,然后保温2~3h。接着冷却至室温,取出覆膜粉末聚集体,将其烘干后粉碎研磨过筛,即得到酚醛树脂2123/PVA双覆膜氧化铝粉末。
实施例3
制备酚醛树脂2123/PVA氧化锆双覆膜粉末
(1)将氧化锆粉末(市售,平均粒径为0.85μm,纯度大于98%)、相当于氧化锆粉末0.5wt%的PEG(柔软剂)和0.5wt%分散剂TAC加入反应釜中,再加入一定量去离子水,搅拌0.5~1h,制得氧化锆浆料。
(2)向浆料中加入1wt%的PVA(聚乙烯醇)搅拌1h左右,同时逐步加热至75℃左右,使PVA完全溶于去离子水中,然后保温1~2h。自然冷却后,将粉末聚集体烘干,再粉碎研磨过筛,得到PVA覆膜氧化锆粉末。
(3)将PVA覆膜氧化锆粉末、酚醛树脂2123按10:1的质量比加入反应釜中,加入足量的甲醇溶剂,一般使得溶剂将混合粉末淹没,溶剂液面略高于粉末。将反应釜和与之相连的甲醇挥发收集装置整体密封,通氦气保护。
(4)在0.5~1h内将反应釜温度升至45℃,升温的同时进行机械搅拌,使得酚醛树脂2123完全溶于甲醇中,然后保温2~3h。接着冷却至室温,取出覆膜粉末聚集体,将其烘干后粉碎研磨过筛,即得到酚醛树脂2123/PVA双覆膜氧化锆粉末。

Claims (9)

1.一种用于激光3D打印/冷等静压复合成型的PF/PVA双覆膜陶瓷粉末,其特征在于:该双覆膜陶瓷粉末包括陶瓷粉末基体和包覆在基体上的内层、外层,其中陶瓷粉末基体为氧化铝、碳化硅、氧化锆、高白土、氮化硅中的一种,内层为聚乙烯醇层,外层为酚醛树脂层。
2.一种用于激光3D打印/冷等静压复合成型的PF/PVA双覆膜陶瓷粉末的制备方法,其特征在于,包括以下步骤:
(a)首先将陶瓷粉末、柔软剂、分散剂与去离子水混合搅拌均匀,得到陶瓷浆料;
(b)向步骤(a)所得陶瓷浆料中加入聚乙烯醇并搅拌均匀,加热保温反应,反应完成后经干燥、粉碎得到PVA覆膜陶瓷粉末;
(c)将步骤(b)所得PVA覆膜陶瓷粉末与酚醛树脂、有机溶剂混合均匀,搅拌加热反应,反应完成后经干燥、粉碎得到PF/PVA双覆膜陶瓷粉末;
所述陶瓷粉末为纳米级或亚微米级的氧化铝、碳化硅、氧化锆、高白土、氮化硅中的一种。
3.根据权利要求2所述的PF/PVA双覆膜陶瓷粉末的制备方法,其特征在于:所述柔软剂为聚乙二醇,所述分散剂为四甲基氢氧化铵或柠檬酸铵。
4.根据权利要求2所述的PF/PVA双覆膜陶瓷粉末的制备方法,其特征在于:所述有机溶剂为甲醇,所述酚醛树脂型号为2123。
5.根据权利要求2所述的PF/PVA双覆膜陶瓷粉末的制备方法,其特征在于:步骤(a)中柔软剂的加入量为陶瓷粉末的0.3-0.6wt%,分散剂的加入量为陶瓷粉末的0.1-0.5wt%。
6.根据权利要求2所述的PF/PVA双覆膜陶瓷粉末的制备方法,其特征在于:步骤(b)中聚乙烯醇的加入量占陶瓷浆料的1wt%。
7.根据权利要求2所述的PF/PVA双覆膜陶瓷粉末的制备方法,其特征在于:
步骤(c)中按照4-15:1的质量比将PVA覆膜陶瓷粉末、酚醛树脂混合,再加入足量有机溶剂。
8.根据权利要求2所述的PF/PVA双覆膜陶瓷粉末的制备方法,其特征在于:
向陶瓷浆料中加入聚乙烯醇时,搅拌并升温至75℃保温反应1-2h。
9.根据权利要求2所述的PF/PVA双覆膜陶瓷粉末的制备方法,其特征在于:
将PVA覆膜陶瓷粉末、酚醛树脂以及有机溶剂混合均匀后,在0.5-1h升温至45℃,保温反应2-3h。
CN201710398456.1A 2017-05-31 2017-05-31 一种用于激光3d打印/冷等静压复合成型的pf/pva双覆膜陶瓷粉末及其制备方法 Active CN107216155B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710398456.1A CN107216155B (zh) 2017-05-31 2017-05-31 一种用于激光3d打印/冷等静压复合成型的pf/pva双覆膜陶瓷粉末及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710398456.1A CN107216155B (zh) 2017-05-31 2017-05-31 一种用于激光3d打印/冷等静压复合成型的pf/pva双覆膜陶瓷粉末及其制备方法

Publications (2)

Publication Number Publication Date
CN107216155A CN107216155A (zh) 2017-09-29
CN107216155B true CN107216155B (zh) 2020-01-14

Family

ID=59948354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710398456.1A Active CN107216155B (zh) 2017-05-31 2017-05-31 一种用于激光3d打印/冷等静压复合成型的pf/pva双覆膜陶瓷粉末及其制备方法

Country Status (1)

Country Link
CN (1) CN107216155B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107778019B (zh) * 2017-10-12 2021-01-15 华中科技大学 一种制备碳化硅晶须补强增韧陶瓷基复合材料的方法
CN108947537B (zh) * 2018-08-02 2021-06-15 西安增材制造国家研究院有限公司 一种SiC陶瓷结构件及其制备方法
CN113770375B (zh) * 2021-07-28 2022-10-28 北京科技大学 一种复杂形状陶瓷基复合材料零件及其制备方法
CN113695589A (zh) * 2021-07-28 2021-11-26 湘潭大学 一种制备复杂形状镍基高温合金零件的方法
CN116947499B (zh) * 2023-07-28 2024-04-12 嘉庚(江苏)特材有限责任公司 一种碳化硅陶瓷材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104744049A (zh) * 2015-03-23 2015-07-01 济南大学 一种激光烧结3d打印快速成型氮化硅粉末材料的制备
CN105837216A (zh) * 2016-03-22 2016-08-10 西安铂力特激光成形技术有限公司 一种陶瓷零件的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100210444A1 (en) * 2009-02-19 2010-08-19 Rhoads Randy L Large refractory article and method for making
CN105669208A (zh) * 2016-03-07 2016-06-15 武汉理工大学 用于激光3d打印的酚醛树脂覆膜陶瓷粉末及其制备方法
CN106083059A (zh) * 2016-06-15 2016-11-09 武汉理工大学 基于激光3d打印技术的复杂结构碳化硅陶瓷零件制造方法
CN106673662A (zh) * 2016-12-26 2017-05-17 上海工程技术大学 一种碳化硅陶瓷零件及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104744049A (zh) * 2015-03-23 2015-07-01 济南大学 一种激光烧结3d打印快速成型氮化硅粉末材料的制备
CN105837216A (zh) * 2016-03-22 2016-08-10 西安铂力特激光成形技术有限公司 一种陶瓷零件的制备方法

Also Published As

Publication number Publication date
CN107216155A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
CN107216155B (zh) 一种用于激光3d打印/冷等静压复合成型的pf/pva双覆膜陶瓷粉末及其制备方法
CN107500781B (zh) 一种多孔陶瓷的制备方法
CN106187195B (zh) 采用激光选区烧结工艺制备碳化硅陶瓷件的方法
CN102875150B (zh) 一种凝胶注模成型、无压烧结制备碳化硅陶瓷叶轮的方法
CN100449012C (zh) 一种复杂形状高体分比SiCp/Al复合材料的制备方法
CN105669208A (zh) 用于激光3d打印的酚醛树脂覆膜陶瓷粉末及其制备方法
CN106079030B (zh) 一种粉末覆膜氧化钙基陶瓷铸型的快速制造方法
CN106007723A (zh) 一种SiC陶瓷素坯的制造方法
CN114368972B (zh) 可见光3d打印光固化陶瓷浆料、制备方法及打印方法
CN104529412B (zh) 一种纳米级六方氮化硼/二氧化硅复相陶瓷材料的制备方法
WO2016119558A1 (zh) 一种用于直接3d打印金属零件的合金粉及其制备方法
CN112759372B (zh) 一种3d打印高固相含量低温共烧氧化铝陶瓷复杂结构的方法
CN110079708B (zh) 一种纳米石墨片/Al合金基复合材料的粉末冶金制备方法
CN105399428A (zh) 一种陶瓷料浆及陶瓷材料3d打印成型方法
CN106348746A (zh) 一种激光烧结3d打印成型yag透明陶瓷粉体的制备
CN106348745B (zh) 一种3dp工艺快速成型yag透明陶瓷粉体材料的制备
CN100560536C (zh) 水溶性环氧树脂原位固化制备陶瓷坯体的方法
CN110451986A (zh) 光固化3D打印SiCN陶瓷先驱体材料及其应用
CN103691956A (zh) 环形薄壁Al-NpO2弥散芯块的制备工艺
CN103601502B (zh) 一种环氧树脂覆膜陶瓷粉末的制备方法
CN1944482B (zh) 一种凝胶注模成型用凝胶聚合物及其制备方法
CN113351827A (zh) 一种基于间接增材制造的金属基超材料制备方法
CN113681024A (zh) 一种基于喂料打印制备钨金属零件的方法
CN108752013A (zh) 一种改性陶瓷材料及其改性制备方法和陶瓷浆料
CN115925421B (zh) 一种光固化3d打印的力致发光陶瓷及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant