CN107193073A - 一种基于纳米结构的消光去偏振器 - Google Patents
一种基于纳米结构的消光去偏振器 Download PDFInfo
- Publication number
- CN107193073A CN107193073A CN201710336999.0A CN201710336999A CN107193073A CN 107193073 A CN107193073 A CN 107193073A CN 201710336999 A CN201710336999 A CN 201710336999A CN 107193073 A CN107193073 A CN 107193073A
- Authority
- CN
- China
- Prior art keywords
- particle
- noble metal
- nanostructured
- delustring
- depolarizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/003—Light absorbing elements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种可对背景光进行消光去偏振的纳米结构,属于纳米技术领域。该结构为一对或多对粒子的彼此线性排列,利用两个贵金属纳米粒子的表面等离子体共振耦合所产生的增强吸收和对入射光偏振态的依赖关系,降低入射光的强度并对其进行去偏振。本发明的效果和益处是该纳米结构可用于抑制干涉光路中背景光的干扰。
Description
技术领域
本发明属于纳米技术领域,涉及到纳米结构对光的作用,特别涉及到可同时对光产生增强吸收和去偏振的一种纳米结构。
背景技术
光与物质相遇后,其波前发生变化,体现在振幅、相位以及其电场矢量的振动方向(即偏振态)。通过测量这些参数,待测物质的形貌或光学特性参数可以得到测量。为了获得高灵敏度和分辨率,采用干涉的方法将该路信号与参考光路进行相干,从而获得作用参数。但是由于光学器件自身性能的不完善,会将背景的干扰光引入测量造成信噪比的降低,背景光的干扰是干涉计量光学中的一个普遍问题。为了降低该影响,本发明提供一种基于纳米结构的消光去偏振器,通过吸收减小背景光的能量并对透射光进行去偏振(即改变原来的偏振态),减小其与参考光干涉的发生。
发明内容
本发明利用两个贵金属纳米粒子间的表面等离子共振耦合对于入射光偏振方向的依赖关系,提供一种可同时进行光强衰减与偏振态改变的纳米结构,基于该结构易于实现器件的小型化。
本发明的技术方案:
一种基于纳米结构的消光去偏振器,由一对或多对贵金属纳米粒子沿着其轴线连接排列为线性结构组成,入射光在平行于线性结构的轴线的偏振方向上产生增强吸收和去偏振;所述的线性结构对散射光的去偏振强度正比于Ksin(2θ),K为由表面等离子体共振耦合产生的散射增强率,θ为入射光的偏振方向与粒子对的夹角。
所述的贵金属纳米粒子对A应该符合下述特征:(1)由两个贵金属纳米粒子组成,两个贵金属纳米粒子的粒径相同或不同;(2)两个贵金属纳米粒子的间距B与贵金属纳米粒径的比值小于1;两个贵金属纳米粒子的粒径不同时,采用大的贵金属纳米粒子粒径;(3)所述的贵金属纳米粒子为具有表面等离子体共振效应的贵金属实心粒子或贵金属外壳包裹的粒子。
重复粒子对A生成多个粒子对A;两对或多对A连接排列为线性结构,两个相邻粒子对的间距等于B或大于最大粒子的粒径。
所述的线性结构由一个线性结构扩展到多个线性结构的平行排列,且两个相邻的不在同一线性结构上的平行结构间的最短粒子距离不小于最大粒子的粒径。
所述的入射光的波长为该纳米结构的表面等离子体共振波长。
本发明的消光去偏振器为一对或多对粒子的彼此线性排列,利用两个贵金属纳米粒子的表面等离子体共振耦合所产生的增强吸收和对入射光偏振态的依赖关系,降低入射光的强度并对其进行去偏振。所述的纳米结构可用于抑制干涉光路中背景光的干扰。
附图说明
图1a是粒子对A的示意图,两个粒子的间距为B。
图1b是多个粒子对A彼此连接排列的示意图。
图2是粒径为60nm、中心距离为65nm的两个实心金粒子构成的粒子对,其相对于单个粒子的归一化的吸收截面和散射截面随入射波长的分布,入射光与粒子对轴线的夹角分别为0°、30°、60°、90°。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例
一种基于纳米结构的消光去偏振器,其特征在于,由一对或多对贵金属纳米粒子沿着其轴线连接排列为线性结构,入射光在平行于线性结构的轴线的偏振方向上产生增强吸收和去偏振;所述的线性结构对散射光的去偏振强度正比于Ksin(2θ),K为由表面等离子体共振耦合产生的散射增强率,θ为入射光的偏振方向与粒子对的夹角。
如上述的一种如上所述的一种基于纳米结构的消光去偏振器,其特征是一个贵金属纳米粒子对由两个粒子组成,粒子对中两个粒子的粒径均为60nm的实心金纳米粒子、粒子间距为5nm;重复粒子对生成多个粒子对;两对或多对可以连接排列为线性结构,两个相邻粒子对的间距等于5nm或者大于最大粒子的直径;该结构由一个线性结构扩展到多个线性结构的平行排列,且两个相邻的不在同一条线上的平行结构间的最短粒子距离大于最大粒子的直径。
一种基于纳米结构的消光去偏振器,入射光的波长为该纳米结构的表面等离子体共振波长532nm;如附图2所示,该结构的的消光作用包括吸收和散射,相对于单个粒子,粒子对对入射光的偏振态平行于粒子对轴线上的吸收强度增强到4;相对于单个粒子,粒子对入射光的偏振态平行于粒子对轴线上的散射增强到12倍;该结构对散射光的去偏振强度正比于由表面等离子体共振耦合产生的散射增强率,和sin(2θ),θ为粒子对轴线与入射的线偏振光夹角。
Claims (6)
1.一种基于纳米结构的消光去偏振器,其特征在于,该消光去偏振器由一对或多对贵金属纳米粒子沿着其轴线连接排列为线性结构组成,入射光在平行于线性结构的轴线的偏振方向上产生增强吸收和去偏振;所述的线性结构对散射光的去偏振强度正比于Ksin(2θ),K为由表面等离子体共振耦合产生的散射增强率,θ为入射光的偏振方向与粒子对的夹角。
2.根据权利要求1所述的一种基于纳米结构的消光去偏振器,其特征在于,所述的贵金属纳米粒子对A应该符合下述特征:(1)由两个贵金属纳米粒子组成,两个贵金属纳米粒子的粒径相同或不同;(2)两个贵金属纳米粒子的间距B与贵金属纳米粒径的比值小于1;两个贵金属纳米粒子的粒径不同时,采用大的贵金属纳米粒子粒径;(3)所述的贵金属纳米粒子为具有表面等离子体共振效应的贵金属实心粒子或贵金属外壳包裹的粒子。
3.根据权利要求2所述的一种基于纳米结构的消光去偏振器,其特征在于,重复粒子对A生成多个粒子对A;两对或多对A连接排列为线性结构,两个相邻粒子对的间距等于B或大于最大粒子的粒径。
4.根据权利要求1或3所述的一种基于纳米结构的消光去偏振器,其特征在于,所述的线性结构由一个线性结构扩展到多个线性结构的平行排列,且两个相邻的不在同一线性结构上的平行结构间的最短粒子距离不小于最大粒子的粒径。
5.根据权利要求1-3任一所述的一种基于纳米结构的消光去偏振器,其特征在于,所述的入射光的波长为该纳米结构的表面等离子体共振波长。
6.根据权利要求4所述的一种基于纳米结构的消光去偏振器,其特征在于,所述的入射光的波长为该纳米结构的表面等离子体共振波长。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710336999.0A CN107193073B (zh) | 2017-05-17 | 2017-05-17 | 一种基于纳米结构的消光去偏振器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710336999.0A CN107193073B (zh) | 2017-05-17 | 2017-05-17 | 一种基于纳米结构的消光去偏振器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107193073A true CN107193073A (zh) | 2017-09-22 |
CN107193073B CN107193073B (zh) | 2019-11-19 |
Family
ID=59873237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710336999.0A Expired - Fee Related CN107193073B (zh) | 2017-05-17 | 2017-05-17 | 一种基于纳米结构的消光去偏振器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107193073B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107101942A (zh) * | 2017-05-17 | 2017-08-29 | 大连理工大学 | 一种基于双金属纳米粒子用于偏振显微成像的探针 |
CN109358037A (zh) * | 2018-10-23 | 2019-02-19 | 大连理工大学 | 对激发光偏振态不敏感的异构双纳米颗粒结构及其应用 |
CN114280714A (zh) * | 2020-09-28 | 2022-04-05 | 京东方科技集团股份有限公司 | 一种偏光片及其制备方法、显示装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150247803A1 (en) * | 2014-02-28 | 2015-09-03 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Tunable Resonances from Conductively Coupled Plasmonic Nanorods |
-
2017
- 2017-05-17 CN CN201710336999.0A patent/CN107193073B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150247803A1 (en) * | 2014-02-28 | 2015-09-03 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Tunable Resonances from Conductively Coupled Plasmonic Nanorods |
Non-Patent Citations (8)
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107101942A (zh) * | 2017-05-17 | 2017-08-29 | 大连理工大学 | 一种基于双金属纳米粒子用于偏振显微成像的探针 |
CN107101942B (zh) * | 2017-05-17 | 2019-04-23 | 大连理工大学 | 一种基于双金属纳米粒子用于偏振显微成像的探针 |
CN109358037A (zh) * | 2018-10-23 | 2019-02-19 | 大连理工大学 | 对激发光偏振态不敏感的异构双纳米颗粒结构及其应用 |
CN109358037B (zh) * | 2018-10-23 | 2020-12-11 | 大连理工大学 | 对激发光偏振态不敏感的异构双纳米颗粒结构及其应用 |
CN114280714A (zh) * | 2020-09-28 | 2022-04-05 | 京东方科技集团股份有限公司 | 一种偏光片及其制备方法、显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107193073B (zh) | 2019-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107193073B (zh) | 一种基于纳米结构的消光去偏振器 | |
McArdle et al. | Near-field infrared nanospectroscopy of surface phonon-polariton resonances | |
Jin et al. | Polarization-controlled unidirectional excitation of surface plasmon polaritons utilizing catenary apertures | |
CN101740722B (zh) | 一种宽波段的近完美吸收结构 | |
Roy et al. | Controlled transportation of mesoscopic particles by enhanced spin-orbit interaction of light in an optical trap | |
Alsawafta et al. | Plasmonic modes and optical properties of gold and silver ellipsoidal nanoparticles by the discrete dipole approximation | |
Liu et al. | Laser-induced periodic annular surface structures on fused silica surface | |
Singh et al. | Transverse spin in the scattering of focused radially and azimuthally polarized vector beams | |
CN107101942B (zh) | 一种基于双金属纳米粒子用于偏振显微成像的探针 | |
CN103576412B (zh) | 一种复合型光限幅器 | |
Yang et al. | Ability to discern the splitting between longitudinal and transverse plasmon resonances in Au compared to Ag nanoparticles in close-packed planar arrays | |
Zhou et al. | Influence of turbulent atmosphere on the far-field coherent combined beam quality | |
CN102323676A (zh) | 轴对称矢量偏振光获取方法及实现该方法的装置 | |
Guo et al. | Characterization of tightly focused partially coherent radially polarized vortex beams | |
Muskens et al. | Angle dependence of the frequency correlation in random photonic media: Diffusive regime and its breakdown near localization | |
Geng et al. | Study of active coated nano-toroid antennas | |
Eremin et al. | Analysis of the influence of the nonlocality effect on the characteristics of plasmon nanolaser resonators via the discrete sources method | |
Zhao et al. | Tunable Localized Cosine-Gauss Beam generation through polarization control | |
Compagnini et al. | Aggregation phenomena and electromagnetic amplification properties in silver nanoparticles joined through highly conjugated carbon chains | |
Stognii et al. | Resonant properties of bright plasmons of a finite linear chain of nanowires of precious metals | |
Lin et al. | Haze and polarization scrambling of nonlinearly scattered light from antiglare Si nanorod surface | |
Burford et al. | Field enhancement due to surface structuring during aluminum induced crystallization of amorphous silicon | |
Lee et al. | Optical memory in non-diffractive speckle fields | |
Jiawei et al. | Gold nanocone array with wide angles and high absorptivity for light absorber | |
Zhu et al. | Propagations of Sin-Gaussian Beam with Astigmatism through Oceanic Turbulence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20191119 |
|
CF01 | Termination of patent right due to non-payment of annual fee |