CN107185411A - It is a kind of in method of the metal cation crosslinking-oxidization graphene nanometer sheet to ultrafiltration membrane modifying - Google Patents
It is a kind of in method of the metal cation crosslinking-oxidization graphene nanometer sheet to ultrafiltration membrane modifying Download PDFInfo
- Publication number
- CN107185411A CN107185411A CN201710355225.2A CN201710355225A CN107185411A CN 107185411 A CN107185411 A CN 107185411A CN 201710355225 A CN201710355225 A CN 201710355225A CN 107185411 A CN107185411 A CN 107185411A
- Authority
- CN
- China
- Prior art keywords
- graphene oxide
- oxide nanosheets
- modifying
- ultrafiltration membrane
- metal cation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 61
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 58
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 58
- 238000000108 ultra-filtration Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 15
- 239000002184 metal Substances 0.000 title claims abstract description 15
- 150000001768 cations Chemical class 0.000 title claims abstract description 14
- 238000007254 oxidation reaction Methods 0.000 title abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 13
- 239000002904 solvent Substances 0.000 claims abstract description 5
- 239000002135 nanosheet Substances 0.000 claims description 53
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 239000010410 layer Substances 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000004132 cross linking Methods 0.000 claims description 6
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 5
- 239000011790 ferrous sulphate Substances 0.000 claims description 5
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 5
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims description 5
- OQVYMXCRDHDTTH-UHFFFAOYSA-N 4-(diethoxyphosphorylmethyl)-2-[4-(diethoxyphosphorylmethyl)pyridin-2-yl]pyridine Chemical compound CCOP(=O)(OCC)CC1=CC=NC(C=2N=CC=C(CP(=O)(OCC)OCC)C=2)=C1 OQVYMXCRDHDTTH-UHFFFAOYSA-N 0.000 claims description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 4
- 229960002089 ferrous chloride Drugs 0.000 claims description 4
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims description 4
- 239000012286 potassium permanganate Substances 0.000 claims description 4
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 claims description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical group [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 2
- 239000002356 single layer Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 239000003344 environmental pollutant Substances 0.000 abstract description 4
- 231100000719 pollutant Toxicity 0.000 abstract description 4
- 125000002091 cationic group Chemical group 0.000 abstract description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 abstract 6
- 230000000694 effects Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 16
- 230000004907 flux Effects 0.000 description 14
- 239000002033 PVDF binder Substances 0.000 description 12
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 12
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 8
- 239000000661 sodium alginate Substances 0.000 description 8
- 235000010413 sodium alginate Nutrition 0.000 description 8
- 229940005550 sodium alginate Drugs 0.000 description 8
- -1 aluminum ions Chemical class 0.000 description 7
- 238000009285 membrane fouling Methods 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000009297 electrocoagulation Methods 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- JGDITNMASUZKPW-UHFFFAOYSA-K aluminium trichloride hexahydrate Chemical compound O.O.O.O.O.O.Cl[Al](Cl)Cl JGDITNMASUZKPW-UHFFFAOYSA-K 0.000 description 2
- 229940009861 aluminum chloride hexahydrate Drugs 0.000 description 2
- 238000011001 backwashing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229940044631 ferric chloride hexahydrate Drugs 0.000 description 2
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- AMVQGJHFDJVOOB-UHFFFAOYSA-H aluminium sulfate octadecahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O AMVQGJHFDJVOOB-UHFFFAOYSA-H 0.000 description 1
- 229940063656 aluminum chloride Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229940032296 ferric chloride Drugs 0.000 description 1
- 229940032950 ferric sulfate Drugs 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002090 nanochannel Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002525 ultrasonication Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0088—Physical treatment with compounds, e.g. swelling, coating or impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/145—Ultrafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种以金属阳离子交联氧化石墨烯纳米片对超滤膜改性的方法,属于环保水处理领域。The invention relates to a method for modifying ultrafiltration membranes by crosslinking graphene oxide nanosheets with metal cations, and belongs to the field of environmental protection water treatment.
背景技术Background technique
膜技术是一种简便高效的水处理技术,在环保水处理领域的应用越来越广泛并逐步成为世界可持续发展战略的基础之一。膜技术以其广泛的适用性被广泛应用于各个领域的水处理,然而,膜污染依旧是阻碍膜技术推广应用的主要障碍。早期降低膜污染的主要方法是是对污水进行一个预处理过程以减少膜污染,最主要也最传统的预处理过程是化学混凝。此外,还有对膜进行超声、反洗,对污水进行电絮凝、电混凝等预处理的方法。但超声只能将膜表面吸附的一些物质去掉,而无法将膜孔中吸附的污染物颗粒去除;反洗有着比超声更好的去除效率,可以去除膜孔中吸附的颗粒,而化学絮凝、电絮凝和电混凝这些方法虽然可以在一定程度上降低膜污染,但是加入的化学试剂都会引起膜污染。氧化石墨烯纳米片作为纳米材料被运用于膜改性展现出良好的性能,但传统的利用氧化石墨烯纳米片进行膜改性,其制备工艺往往非常复杂、制备周期长且成本高,严重限制了氧化石墨烯纳米片在膜改性方面的应用。Membrane technology is a simple and efficient water treatment technology. It is widely used in the field of environmental protection water treatment and has gradually become one of the foundations of the world's sustainable development strategy. Membrane technology has been widely used in water treatment in various fields due to its wide applicability. However, membrane fouling is still the main obstacle hindering the popularization and application of membrane technology. The main method to reduce membrane fouling in the early stage is to carry out a pretreatment process on sewage to reduce membrane fouling. The most important and traditional pretreatment process is chemical coagulation. In addition, there are also pretreatment methods such as ultrasonication and backwashing of membranes, and electrocoagulation and electrocoagulation of sewage. However, ultrasound can only remove some substances adsorbed on the membrane surface, but cannot remove the pollutant particles adsorbed in the membrane pores; backwashing has a better removal efficiency than ultrasound, and can remove the adsorbed particles in the membrane pores, while chemical flocculation, Although electrocoagulation and electrocoagulation can reduce membrane fouling to a certain extent, the chemical reagents added will cause membrane fouling. Graphene oxide nanosheets are used as nanomaterials for membrane modification to show good performance, but the traditional use of graphene oxide nanosheets for membrane modification is often very complicated, with long preparation period and high cost, which severely limits The application of graphene oxide nanosheets in membrane modification.
发明内容Contents of the invention
本发明的目的是为了解决现有超滤膜改性的过程比较复杂的问题,提供一种以金属阳离子交联氧化石墨烯纳米片对超滤膜改性的方法。该方法以金属阳离子作为交联剂在超滤膜表面预沉积一层氧化石墨烯纳米片作为预处理,用于截留和吸附水中的污染物,以最大限度的减少膜的污染。The purpose of the present invention is to solve the problem that the modification process of the existing ultrafiltration membrane is relatively complicated, and to provide a method for modifying the ultrafiltration membrane by cross-linking graphene oxide nanosheets with metal cations. In this method, metal cations are used as cross-linking agents to pre-deposit a layer of graphene oxide nanosheets on the surface of ultrafiltration membranes as pretreatment, which is used to intercept and adsorb pollutants in water to minimize membrane pollution.
本发明的目的是通过下述技术方案实现的。The purpose of the present invention is achieved through the following technical solutions.
一种以金属阳离子交联氧化石墨烯纳米片对超滤膜改性的方法,将氧化石墨烯纳米片溶解于溶剂中,然后再加入交联剂,混合均匀后,得到溶液;在恒压条件下,将溶液中的氧化石墨烯纳米片负载到超滤膜表面;交联剂中溶质添加质量与氧化石墨烯纳米片的添加质量的比值为10-13500。A method for modifying ultrafiltration membranes by crosslinking graphene oxide nanosheets with metal cations, dissolving graphene oxide nanosheets in a solvent, then adding a crosslinking agent, and mixing uniformly to obtain a solution; under constant pressure conditions Next, the graphene oxide nanosheets in the solution are loaded on the surface of the ultrafiltration membrane; the ratio of the added mass of the solute in the crosslinking agent to the added mass of the graphene oxide nanosheets is 10-13500.
所述氧化石墨烯纳米片包括:单层氧化石墨烯纳米片、多层氧化石墨烯纳米片中的一种或多种。The graphene oxide nanosheets include: one or more of single-layer graphene oxide nanosheets and multilayer graphene oxide nanosheets.
所述交联剂为硫酸铝、氯化铝、硝酸铝、硫酸铁、三氯化铁、氯化亚铁/锰酸钾、硫酸亚铁/锰酸钾、氯化亚铁/高锰酸钾或硫酸亚铁/高锰酸钾,以及上述所有物质的任意组合。The cross-linking agent is aluminum sulfate, aluminum chloride, aluminum nitrate, ferric sulfate, ferric chloride, ferrous chloride/potassium manganate, ferrous sulfate/potassium manganate, ferrous chloride/potassium permanganate Or ferrous sulfate/potassium permanganate, and any combination of all of the above.
所述溶剂包括去离子水和乙醇。The solvents include deionized water and ethanol.
优选地,所述氧化石墨烯纳米片的负载量为20mg/m2-7000mg/m2。Preferably, the loading amount of the graphene oxide nanosheets is 20 mg/m 2 -7000 mg/m 2 .
优选地,所述的交联剂的浓度为0.0001-0.1M(摩尔/升);Preferably, the concentration of the crosslinking agent is 0.0001-0.1M (mol/liter);
优选地,所述的氧化石墨烯纳米片为1-100层Preferably, the graphene oxide nanosheets are 1-100 layers
优选地,所述的恒压为0.05-0.4MPa。Preferably, the constant pressure is 0.05-0.4MPa.
有益效果Beneficial effect
1)、在保证改性后的超滤膜的处理效率以及抗污染性能的前提下,大大简化了制备过程,降低了原料制作的成本。1) On the premise of ensuring the processing efficiency and anti-pollution performance of the modified ultrafiltration membrane, the preparation process is greatly simplified and the cost of raw material production is reduced.
2)、超滤膜表面预沉积的氧化石墨烯纳米片形成纳米通道,通过尺寸排除拦截污染物减少膜污染。提高膜的使用寿命,提高水处理效率。2) Graphene oxide nanosheets pre-deposited on the surface of the ultrafiltration membrane form nanochannels, which intercept pollutants by size exclusion to reduce membrane fouling. Improve the service life of the membrane and improve the efficiency of water treatment.
3)、金属阳离子交联剂通过静电力作用增强氧化石墨烯纳米片间的结合力,提高了氧化石墨烯纳米片在水中的稳定性,不易被溶解。3) The metal cationic cross-linking agent enhances the binding force between the graphene oxide nanosheets through the electrostatic force, improves the stability of the graphene oxide nanosheets in water, and is not easy to be dissolved.
4)、本发明方法简单易操作且易于规模化使用,利于推广。4), the method of the present invention is simple and easy to operate and easy to use on a large scale, which is beneficial to popularization.
附图说明Description of drawings
图1、在聚偏二氟乙烯膜表面以铝离子为交联剂预沉积0.1mg氧化石墨烯纳米片的扫描电子显微镜图(SEM),上层为负载的氧化石墨烯纳米片,下层为聚偏二氟乙烯膜;Figure 1. Scanning electron microscope (SEM) image of 0.1 mg graphene oxide nanosheets pre-deposited on the surface of polyvinylidene fluoride membrane with aluminum ions as crosslinking agent, the upper layer is loaded graphene oxide nanosheets, and the lower layer is polyvinylidene oxide Vinyl difluoride film;
图2、实施案例一中在聚偏二氟乙烯膜表面经预沉积以0.0001mol/L铝离子为交联剂预沉积0.1mg氧化石墨烯纳米片后对有机物牛血清蛋白(BSA)溶液的吸附通量衰减图;Figure 2. Adsorption of organic bovine serum albumin (BSA) solution on the surface of polyvinylidene fluoride membrane after pre-deposition of 0.0001 mol/L aluminum ion as a cross-linking agent and pre-deposition of 0.1 mg graphene oxide nanosheets in Example 1 Flux decay graph;
图3、实施案例二中在聚偏二氟乙烯膜表面经预沉积以0.001mol/L铁离子为交联剂预沉积1mg氧化石墨烯纳米片后对有机物腐植酸钠(HS)溶液的吸附通量衰减图;Fig. 3, in the implementation case 2, after pre-depositing 0.001mol/L iron ion on the surface of the polyvinylidene fluoride film as a cross-linking agent, 1 mg graphene oxide nanosheets are pre-deposited on the organic substance sodium humate (HS) solution. volume attenuation diagram;
图4、实施案例三中在聚偏二氟乙烯膜表面经预沉积以0.05mol/L铝离子和0.05mol/L铁离子为交联剂预沉积15mg氧化石墨烯纳米片后后对有机物海藻酸钠(SA)溶液的吸附通量衰减图;Figure 4. In Example 3, after pre-deposition of 0.05 mol/L aluminum ion and 0.05 mol/L iron ion on the surface of the polyvinylidene fluoride membrane, 15 mg of graphene oxide nanosheets were pre-deposited on the surface of the polyvinylidene fluoride membrane, and then the organic matter alginic acid was pre-deposited. Adsorption flux decay diagram of sodium (SA) solution;
图5、实施案例四中在聚偏二氟乙烯膜表面经预沉积以0.05mol/L铝离子和0.05mol/L铁离子为交联剂预沉积30mg氧化石墨烯纳米片后后对有机物海藻酸钠(SA)溶液的吸附通量衰减图。Figure 5. In Example 4, after pre-deposition of 0.05 mol/L aluminum ion and 0.05 mol/L iron ion on the surface of polyvinylidene fluoride film, 30 mg of graphene oxide nanosheets were pre-deposited on the surface of the polyvinylidene fluoride membrane, and then the organic matter alginic acid was pre-deposited. Adsorption flux decay plot for sodium (SA) solution.
具体实施方式detailed description
下面结合附图与实施案例对本发明方法做进一步说明。应理解,这些案例仅限于说明本发明方法,而不用于限制本发明的使用范围。The method of the present invention will be further described below in conjunction with the accompanying drawings and examples of implementation. It should be understood that these cases are only used to illustrate the methods of the present invention, and are not intended to limit the application scope of the present invention.
实施例1Example 1
1)、将0.1毫克1层的氧化石墨烯纳米片加入到100毫升去离子水中,然后将2.415mg的六水合氯化铝加入到另外100毫升去离子水中,将两种溶液混合均匀。之后在超滤杯中放置好膜,再将混合后的溶液倒进超滤杯,在恒压0.05MPa条件下过滤2-5分钟即成功将氧化石墨烯纳米片成功负载到聚偏二氟乙烯超滤膜表面,负载后的膜如图1所示。1) Add 0.1 mg of 1-layer graphene oxide nanosheets to 100 ml of deionized water, then add 2.415 mg of aluminum chloride hexahydrate to another 100 ml of deionized water, and mix the two solutions evenly. After that, place the membrane in the ultrafiltration cup, pour the mixed solution into the ultrafiltration cup, and filter for 2-5 minutes at a constant pressure of 0.05MPa to successfully load graphene oxide nanosheets on polyvinylidene fluoride The surface of the ultrafiltration membrane, the loaded membrane is shown in Figure 1.
2)、将1毫升1g/L的牛血清蛋白(BSA)储备液加入到100毫升去离子水中,将该BSA溶液用上述步骤1)中预沉积了0.1mg氧化石墨烯纳米片的聚偏二氟乙烯超滤膜超滤,用电子天平连接数据显示器采集数据,探讨膜通量的变化。如图2所示,膜通量的衰减速度显著减小,经过如图一段时间后仍可以保持75%左右的通量。2), 1 milliliter of 1g/L bovine serum albumin (BSA) stock solution was added to 100 milliliters of deionized water, and the BSA solution was pre-deposited with 0.1 mg of graphene oxide nanosheets in the above step 1). For ultrafiltration of vinyl fluoride ultrafiltration membrane, use an electronic balance to connect to a data display to collect data and explore the change of membrane flux. As shown in Figure 2, the decay rate of the membrane flux is significantly reduced, and after a period of time as shown in the figure, it can still maintain about 75% of the flux.
实施例2Example 2
1)、将1毫克60层的氧化石墨烯纳米片加入到100毫升乙醇中,然后将27.05mg的六水合氯化铁加入到另外100毫升去离子水中,将两种溶液混合均匀。之后在超滤杯中放置好膜,再将混合后的溶液倒进超滤杯,在恒压0.2MPa条件下过滤2-5分钟即成功将氧化石墨烯纳米片成功负载到聚偏二氟乙烯超滤膜表面。1) Add 1 mg of 60-layer graphene oxide nanosheets to 100 ml of ethanol, then add 27.05 mg of ferric chloride hexahydrate to another 100 ml of deionized water, and mix the two solutions evenly. After that, place the membrane in the ultrafiltration cup, pour the mixed solution into the ultrafiltration cup, and filter for 2-5 minutes at a constant pressure of 0.2MPa to successfully load graphene oxide nanosheets on polyvinylidene fluoride Ultrafiltration membrane surface.
2)、将1毫升3g/L的腐植酸钠(HS)储备液加入到300毫升去离子水中,将该HS溶液用上述步骤1)中预沉积了1mg氧化石墨烯纳米片的聚偏二氟乙烯超滤膜超滤,用电子天平连接数据显示器采集数据,探讨膜通量的变化。如图3所示。膜通量稳定性大大提高,经过如图一段时间后仍可以保持75%左右的通量。2), 1 milliliter of 3g/L sodium humate (HS) stock solution was added to 300 milliliters of deionized water, and the HS solution was pre-deposited with the polyylidene fluoride of 1 mg graphene oxide nanosheet in the above step 1). For ethylene ultrafiltration membrane ultrafiltration, use an electronic balance to connect to a data display to collect data and explore changes in membrane flux. As shown in Figure 3. The stability of the membrane flux is greatly improved, and after a period of time as shown in the figure, it can still maintain about 75% of the flux.
实施例3Example 3
1)、将15毫克100层的氧化石墨烯纳米片加入到100毫升去离子水中,然后将1666.1mg的十八水合硫酸铝和974.8mg的水合硫酸铁加入到另外100毫升去离子水中,将两种溶液混合均匀。之后在超滤杯中放置好膜,再将混合后的溶液倒进超滤杯,在恒压0.4MPa条件下过滤2-5分钟即成功将氧化石墨烯纳米片成功负载到聚偏二氟乙烯超滤膜表面。1), 15 milligrams of 100 layers of graphene oxide nanosheets were added to 100 milliliters of deionized water, then 1666.1 mg of aluminum sulfate octadecahydrate and 974.8 mg of hydrated ferric sulfate were added to another 100 milliliters of deionized water, and the two The solutions are mixed evenly. After that, place the membrane in the ultrafiltration cup, pour the mixed solution into the ultrafiltration cup, and filter for 2-5 minutes at a constant pressure of 0.4MPa to successfully load graphene oxide nanosheets on polyvinylidene fluoride Ultrafiltration membrane surface.
2)、将1毫升1g/L的海藻酸钠(SA)储备液加入到100毫升去离子水中,将该SA溶液用上述步骤1)中预沉积了15mg氧化石墨烯纳米片的聚偏二氟乙烯超滤膜超滤,用电子天平连接数据显示器采集数据,探讨膜通量的变化。如图4所示。大大降低了膜通量的衰减,经过如图一段时间后仍可以保持75%左右的通量。2), 1 ml of 1g/L sodium alginate (SA) stock solution was added to 100 ml of deionized water, and the SA solution was pre-deposited with 15 mg of graphene oxide nanosheet polyylidene fluoride in the above step 1). For ethylene ultrafiltration membrane ultrafiltration, use an electronic balance to connect to a data display to collect data and explore changes in membrane flux. As shown in Figure 4. The attenuation of the membrane flux is greatly reduced, and after a period of time as shown in the figure, it can still maintain about 75% of the flux.
实施例4Example 4
1)、将30毫克60层的氧化石墨烯纳米片加入到100毫升乙醇中,然后将1352.5mg的六水合氯化铁和1207.5mg的六水合氯化铝加入到另外100毫升去离子水中,将两种溶液混合均匀。之后在超滤杯中放置好膜,再将混合后的溶液倒进超滤杯,在恒压0.4MPa条件下过滤2-5分钟即成功将氧化石墨烯纳米片成功负载到聚偏二氟乙烯超滤膜表面。1), the graphene oxide nanosheet of 30 milligrams 60 layers is added in 100 milliliters of ethanol, then the ferric chloride hexahydrate of 1352.5 mg and the aluminum chloride hexahydrate of 1207.5 mg are added to another 100 milliliters of deionized water, will The two solutions were mixed well. After that, place the membrane in the ultrafiltration cup, pour the mixed solution into the ultrafiltration cup, and filter for 2-5 minutes at a constant pressure of 0.4MPa to successfully load graphene oxide nanosheets on polyvinylidene fluoride Ultrafiltration membrane surface.
2)将1毫升1g/L的海藻酸钠(SA)储备液加入到100毫升去离子水中,将该SA溶液用上述步骤1)中预沉积了30mg氧化石墨烯纳米片的聚偏二氟乙烯超滤膜超滤,用电子天平连接数据显示器采集数据,探讨膜通量的变化。如图4所示。如图5所示。负载了氧化石墨烯纳米片的超滤膜可以大大减小膜污染,提高通量的稳定性。2) Add 1 milliliter of 1g/L sodium alginate (SA) stock solution to 100 milliliters of deionized water, and use the polyvinylidene fluoride pre-deposited with 30 mg of graphene oxide nanosheets in the SA solution in the above step 1) For ultrafiltration membrane ultrafiltration, use an electronic balance to connect to a data display to collect data and explore changes in membrane flux. As shown in Figure 4. As shown in Figure 5. The ultrafiltration membrane loaded with graphene oxide nanosheets can greatly reduce membrane fouling and improve flux stability.
以上所述的具体描述,对发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例,用于解释本发明,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific description above further elaborates the purpose, technical solutions and beneficial effects of the invention. It should be understood that the above description is only a specific embodiment of the present invention, which is used to explain the present invention and is not used to To limit the protection scope of the present invention, any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710355225.2A CN107185411A (en) | 2017-05-19 | 2017-05-19 | It is a kind of in method of the metal cation crosslinking-oxidization graphene nanometer sheet to ultrafiltration membrane modifying |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710355225.2A CN107185411A (en) | 2017-05-19 | 2017-05-19 | It is a kind of in method of the metal cation crosslinking-oxidization graphene nanometer sheet to ultrafiltration membrane modifying |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107185411A true CN107185411A (en) | 2017-09-22 |
Family
ID=59874218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710355225.2A Pending CN107185411A (en) | 2017-05-19 | 2017-05-19 | It is a kind of in method of the metal cation crosslinking-oxidization graphene nanometer sheet to ultrafiltration membrane modifying |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107185411A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109731482A (en) * | 2019-03-11 | 2019-05-10 | 南京工业大学 | Separation membrane based on graphene oxide and preparation method thereof |
CN110292864A (en) * | 2019-06-12 | 2019-10-01 | 时代沃顿科技有限公司 | A kind of preparation method of composite nano materials hybridized film and the hybridized film thus prepared |
CN110449032A (en) * | 2019-07-08 | 2019-11-15 | 西安建筑科技大学 | A kind of swelling resistance two dimension SA-MXene stratiform nanofiltration membrane, preparation and application |
CN111346517A (en) * | 2020-03-17 | 2020-06-30 | 北京理工大学 | A kind of composite cross-linked graphene oxide film, preparation method and application thereof |
CN111533117A (en) * | 2020-05-13 | 2020-08-14 | 四川大学 | Metal ion crosslinked high-strength stable graphene oxide membrane and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105084355A (en) * | 2015-09-11 | 2015-11-25 | 四川大学 | Controllable-interlamellar-spacing stable graphene oxide film and preparation method thereof |
US20160038885A1 (en) * | 2014-08-08 | 2016-02-11 | University Of Southern California | High performance membranes for water reclamation using polymeric and nanomaterials |
CN105413500A (en) * | 2015-11-26 | 2016-03-23 | 中国科学院生态环境研究中心 | Preparation method for polyisophthaloyl metaphenylene diamine nanofiltration membrane |
CN105561810A (en) * | 2015-12-22 | 2016-05-11 | 北京理工大学 | Method of using carbon nanofiber layer to modify ultrafiltration membrane |
CN106621831A (en) * | 2016-12-06 | 2017-05-10 | 中国科学院生态环境研究中心 | Method for performing fast in-situ conversion on microfiltration or ultrafiltration membrane into nanofiltration membrane |
-
2017
- 2017-05-19 CN CN201710355225.2A patent/CN107185411A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160038885A1 (en) * | 2014-08-08 | 2016-02-11 | University Of Southern California | High performance membranes for water reclamation using polymeric and nanomaterials |
CN105084355A (en) * | 2015-09-11 | 2015-11-25 | 四川大学 | Controllable-interlamellar-spacing stable graphene oxide film and preparation method thereof |
CN105413500A (en) * | 2015-11-26 | 2016-03-23 | 中国科学院生态环境研究中心 | Preparation method for polyisophthaloyl metaphenylene diamine nanofiltration membrane |
CN105561810A (en) * | 2015-12-22 | 2016-05-11 | 北京理工大学 | Method of using carbon nanofiber layer to modify ultrafiltration membrane |
CN106621831A (en) * | 2016-12-06 | 2017-05-10 | 中国科学院生态环境研究中心 | Method for performing fast in-situ conversion on microfiltration or ultrafiltration membrane into nanofiltration membrane |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109731482A (en) * | 2019-03-11 | 2019-05-10 | 南京工业大学 | Separation membrane based on graphene oxide and preparation method thereof |
CN110292864A (en) * | 2019-06-12 | 2019-10-01 | 时代沃顿科技有限公司 | A kind of preparation method of composite nano materials hybridized film and the hybridized film thus prepared |
CN110292864B (en) * | 2019-06-12 | 2021-05-28 | 时代沃顿科技有限公司 | Preparation method of composite nano-material hybrid membrane and hybrid membrane prepared by same |
CN110449032A (en) * | 2019-07-08 | 2019-11-15 | 西安建筑科技大学 | A kind of swelling resistance two dimension SA-MXene stratiform nanofiltration membrane, preparation and application |
CN110449032B (en) * | 2019-07-08 | 2021-10-08 | 西安建筑科技大学 | A swelling-resistant two-dimensional SA-MXene layered nanofiltration membrane, preparation and application |
CN111346517A (en) * | 2020-03-17 | 2020-06-30 | 北京理工大学 | A kind of composite cross-linked graphene oxide film, preparation method and application thereof |
CN111346517B (en) * | 2020-03-17 | 2021-06-11 | 北京理工大学 | Composite crosslinked graphene oxide membrane, preparation method and application thereof |
CN111533117A (en) * | 2020-05-13 | 2020-08-14 | 四川大学 | Metal ion crosslinked high-strength stable graphene oxide membrane and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107185411A (en) | It is a kind of in method of the metal cation crosslinking-oxidization graphene nanometer sheet to ultrafiltration membrane modifying | |
Yang et al. | Fluorine‐rich supramolecular nano‐container crosslinked hydrogel for lithium extraction with super‐high capacity and extreme selectivity | |
Lu et al. | Multilayered ion-imprinted membranes with high selectivity towards Li+ based on the synergistic effect of 12-crown-4 and polyether sulfone | |
CN107442082B (en) | A kind of magnetism polyacrylamide/alginic acid zirconium gel ball and its preparation method and application | |
Chen et al. | Poly (vinyl alcohol-co-ethylene)(EVOH) modified polymer inclusion membrane in heavy rare earths separation with advanced hydrophilicity and separation property | |
Ren et al. | Porous poly (ionic liquid) membranes as efficient and recyclable absorbents for heavy metal ions | |
CN106310957A (en) | Nanometer fiber-reinforced hydrogel filter membrane and preparation method thereof | |
CN104987474A (en) | Preparation method of magnetic desalting agent for reducing degree of mineralization of oilfield sewage | |
CN114515567B (en) | Biological magnetic nanocomposite material, and preparation method and application thereof | |
CN110882631A (en) | Polyamide composite nanofiltration membrane and preparation method thereof | |
CN110314665A (en) | A kind of temperature-sensitive hydrogel adsorbent and its preparation method and application | |
Chen et al. | Separation performance of Hg2+ in desulfurization wastewater by the graphene oxide polyethersulfone membrane | |
Wang et al. | Constructing (reduced) graphene oxide enhanced polypyrrole/ceramic composite membranes for water remediation | |
Wang et al. | Effective electrosorption and recovery of phosphorus by capacitive deionization with a covalent organic framework-membrane coating electrode | |
Ren et al. | l-Glutamic acid crosslinked cellulose ester films for heavy metal ions adsorption | |
Wang et al. | A mini review: Application progress of magnetic graphene three-dimensional materials for water purification | |
Huang et al. | Thin film composite polyamide nanofiltration membranes with interlayer constructed with core-shell structured polystyrene-polyacrylamide nanospheres for antibiotics separation | |
He et al. | Mechanism for regulation of a forward osmosis membrane by the SA/UiO-66-NH2 composite interlayer and the resulting lithium ion concentration performance | |
CN111573769A (en) | A method for separating and recovering acid and metal ions in iron and steel pickling waste liquor | |
Dong et al. | Selective removal of tungstate anions from aqueous solutions by surface anion‐imprinted ceramic membranes | |
CN110075718A (en) | A kind of preparation method and application of polyaniline-modified carbon nanotube filter membrane | |
CN108707248A (en) | A kind of preparation method of fire-retardant super-hydrophobic melamine sponge | |
CN108722202A (en) | The preparation method of fibre reinforced sodium tripolyphosphate cross-linked chitosan/carbon nanotube composite filter membrane | |
Zhang et al. | Enhanced and efficient removal of heavy metals by amino-decorated membranes in coordination with multi-function | |
CN116899416A (en) | Geopolymer-metal net composite film and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170922 |
|
RJ01 | Rejection of invention patent application after publication |