CN107182313B - Self-excitation vibration subsoiler and tilling depth measurement and control method - Google Patents
Self-excitation vibration subsoiler and tilling depth measurement and control method Download PDFInfo
- Publication number
- CN107182313B CN107182313B CN201710548495.5A CN201710548495A CN107182313B CN 107182313 B CN107182313 B CN 107182313B CN 201710548495 A CN201710548495 A CN 201710548495A CN 107182313 B CN107182313 B CN 107182313B
- Authority
- CN
- China
- Prior art keywords
- variation
- tillage depth
- self
- subsoiling
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000005259 measurement Methods 0.000 title claims abstract description 13
- 239000002689 soil Substances 0.000 claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 238000003971 tillage Methods 0.000 claims description 104
- 238000003825 pressing Methods 0.000 claims description 25
- 239000003921 oil Substances 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 16
- 230000006870 function Effects 0.000 claims description 15
- 230000005284 excitation Effects 0.000 claims description 12
- 238000013139 quantization Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 8
- 238000005070 sampling Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 6
- 230000006837 decompression Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 230000005484 gravity Effects 0.000 claims description 3
- 239000010720 hydraulic oil Substances 0.000 claims description 3
- 238000012360 testing method Methods 0.000 claims description 3
- 244000089409 Erythrina poeppigiana Species 0.000 claims 1
- 235000009776 Rathbunia alamosensis Nutrition 0.000 claims 1
- 239000000178 monomer Substances 0.000 abstract description 7
- 230000035515 penetration Effects 0.000 abstract description 4
- 230000001629 suppression Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 9
- 230000001276 controlling effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000008602 contraction Effects 0.000 description 4
- 238000009313 farming Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000012271 agricultural production Methods 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000012272 crop production Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 239000002688 soil aggregate Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B49/00—Combined machines
- A01B49/02—Combined machines with two or more soil-working tools of different kind
- A01B49/022—Combined machines with two or more soil-working tools of different kind at least one tool being actively driven
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/20—Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Environmental Sciences (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mechanical Engineering (AREA)
- Soil Sciences (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Lifting Devices For Agricultural Implements (AREA)
- Soil Working Implements (AREA)
Abstract
Description
技术领域technical field
本发明属于农业机械技术领域,涉及一种自激振动深松机及耕深测控方法,其主要应用于土壤深松耕作领域。The invention belongs to the technical field of agricultural machinery, and relates to a self-excited vibration subsoiler and a tillage depth measurement and control method, which are mainly used in the field of soil subsoiler farming.
背景技术Background technique
土壤耕作是农业生产的重要环节。由于长期采用浅旋、翻耕等不合理耕作方式,导致我国耕地质量逐年下降,作物减产严重。深松整地技术是在不翻动土壤的前提下疏松土壤,可有效打破犁底层、改善土壤团粒结构,在土壤改良效果上优势显著,近年来得到大力推广。自激振动深松技术具有明显减阻效果,现阶段自激振动深松机均采用弹簧为激振源,使深松铲上端与机架通过弹簧连接,土壤阻力变化时,深松铲在土壤阻力和弹簧弹力共同作用下摆动,从而达到减阻效果。但由于弹簧刚度一定、预紧力调节范围有限,以弹簧为激振源的自激振动深松机在土壤比阻差异大、不同区域地块作业时存在适应性差、间断失效的问题,导致耕深稳定性无法保证。Soil cultivation is an important part of agricultural production. Due to the long-term use of unreasonable farming methods such as shallow rotation and plowing, the quality of cultivated land in my country has been declining year by year, and crop production has been seriously reduced. Subsoiling soil preparation technology is to loosen the soil without turning the soil, which can effectively break the plow bottom layer and improve the soil aggregate structure. It has obvious advantages in soil improvement effect and has been vigorously promoted in recent years. Self-excited vibration subsoiling technology has obvious drag reduction effect. At present, self-excited vibration subsoilers use springs as excitation sources, so that the upper end of the subsoiler is connected to the frame through springs. Swing under the joint action of resistance and spring force, so as to achieve the effect of reducing drag. However, due to the fixed spring stiffness and limited preload adjustment range, the self-excited vibratory subsoiler with the spring as the excitation source has a large difference in soil specific resistance, poor adaptability and intermittent failure when operating in different areas, resulting in plowing Deep stability cannot be guaranteed.
现有技术中,在机架与铲柄之前设置水平振动装置,水平振动装置包括弹簧和套在弹簧内部的液压油缸,该设计仍以弹簧为激振源,相比传统弹簧自激深松机在弹簧内部增加了液压缸,通过调节液压缸中的液压油量可控制振动弹簧的伸缩量,对弹簧的最大伸缩位置加以限制,以此保证耕深。In the prior art, a horizontal vibrating device is installed before the frame and the shovel handle. The horizontal vibrating device includes a spring and a hydraulic cylinder set inside the spring. This design still uses the spring as the excitation source. A hydraulic cylinder is added inside the spring. By adjusting the amount of hydraulic oil in the hydraulic cylinder, the expansion and contraction of the vibration spring can be controlled, and the maximum expansion and contraction position of the spring is limited to ensure the plowing depth.
本发明以液压缸为激振源并配套耕深检测装置,耕深检测装置实时监测耕深并以耕深变异为指标调节液压缸工作压力,使土壤阻力与激振源实时匹配,保证耕深的前提下使深松铲达到最优的减阻效果。The invention uses a hydraulic cylinder as the excitation source and is equipped with a tillage depth detection device. The tillage depth detection device monitors the tillage depth in real time and adjusts the working pressure of the hydraulic cylinder with the variation of the tillage depth as an index, so that the soil resistance can be matched with the excitation source in real time to ensure the tillage depth. Under the premise of the subsoiling shovel to achieve the optimal drag reduction effect.
本发明与现有技术相比有存在以下优点;Compared with the prior art, the present invention has the following advantages;
1、以液压缸为激振源,可实现液压缸液压力实时调节,避免了弹簧为激振源时刚度不足造成的间断失效,因此无需增加伸缩量控制装置,深松单体结构得到简化。1. Using the hydraulic cylinder as the excitation source can realize the real-time adjustment of the hydraulic pressure of the hydraulic cylinder, avoiding the intermittent failure caused by insufficient rigidity when the spring is the excitation source, so there is no need to increase the expansion and contraction control device, and the subsoiling single structure is simplified.
2、实时检测耕深,以耕深变异作为液压缸工作压力调控依据,增加反馈环节,能够更加准确、有依据地保证耕深一致性。2. Real-time detection of tillage depth, taking the variation of tillage depth as the basis for regulating the working pressure of hydraulic cylinders, and adding feedback links can ensure the consistency of tillage depth more accurately and with evidence.
发明内容Contents of the invention
为实现本发明之目的,采用以下技术方案予以实现:For realizing the purpose of the present invention, adopt following technical scheme to realize:
一种自激振动深松机,包括机架、检测装置、液压装置、多个自激振动深松单体,其特征在于:检测装置安装在机架上,多个自激振动深松单体和液压装置安装在机架上;自激振动深松单体用于松土,液压装置做为自激振动深松单体的激振源,检测装置用于检测自激振动深松单体的入土深度,并根据入土深度控制液压装置,进而控制耕深。A self-excited vibration subsoiling machine, including a frame, a detection device, a hydraulic device, and a plurality of self-excited vibration subsoiling units, characterized in that: the detection device is installed on the frame, and the plurality of self-excited vibrations subsoiling units And the hydraulic device is installed on the frame; the self-excited vibration subsoiling unit is used for loosening the soil, the hydraulic device is used as the excitation source of the self-excited vibration subsoiling unit, and the detection device is used to detect the self-excited vibration subsoiling unit The depth of entry into the soil, and control the hydraulic device according to the depth of entry into the soil, and then control the tillage depth.
所述的自激振动深松机,其中:自激振动深松单体包括单体固定架、深松铲连接板、深松铲、液压缸、镇压装置;所述镇压装置包括镇压轮、镇压轮连接臂。The self-excited vibration subsoiler, wherein: the self-excited vibration subsoiler includes a monomer fixing frame, a subsoiler connecting plate, a subsoiler, a hydraulic cylinder, and a suppression device; the suppression device includes a suppression wheel, a suppression Wheel connection arm.
所述的自激振动深松机,其中:自激振动深松单体通过单体固定架固定在机架上;液压缸前端耳环通过销轴与单体固定架上端铰接,液压缸另一端耳环通过第二销轴与深松铲连接板铰接;深松铲连接板前端通过第一销轴与单体固定架下端铰接,深松铲连接板第一可绕销轴转动,深松铲连接板后端固定连接深松铲的上端。The self-excited vibration subsoiling machine, wherein: the self-excited vibration subsoiling unit is fixed on the frame through the unit fixing frame; the earring at the front end of the hydraulic cylinder is hinged with the upper end of the unit fixing bracket through a pin shaft, and the earring at the other end of the hydraulic cylinder The connecting plate of the subsoiling shovel is hinged with the second pin shaft; the front end of the connecting plate of the subsoiling shovel is hinged with the lower end of the single fixing frame through the first pin shaft. The first connecting plate of the subsoiling shovel can rotate around the pin shaft. The rear end is fixedly connected to the upper end of the subsoiling shovel.
所述的自激振动深松机,其中:镇压装置上端通过第三销轴与深松铲连接板末端连接,镇压装置可绕销轴转动,镇压装置包括连接臂,连接臂上端通过第三销轴与深松铲连接板的末端连接,连接臂下端与镇压轮的旋转轴连接,镇压轮可绕连接臂的下端旋转滚动。The self-excited vibration subsoiler, wherein: the upper end of the suppression device is connected to the end of the subsoiler connecting plate through the third pin shaft, the suppression device can rotate around the pin shaft, the suppression device includes a connecting arm, and the upper end of the connection arm passes through the third pin The shaft is connected with the end of the connecting plate of the subsoiling shovel, the lower end of the connecting arm is connected with the rotating shaft of the pressing wheel, and the pressing wheel can rotate and roll around the lower end of the connecting arm.
所述的自激振动深松机,其中:液压装置包括蓄能器、过滤器、阀组、连接管件;所述阀组包括多个相同的比例减压阀,分别通过连接管件与多个液压缸连接,每个比例减压阀独立控制一个液压缸,通过控制比例减压阀出油口压力来调节液压缸工作压力。The self-excited vibrating subsoiler, wherein: the hydraulic device includes an accumulator, a filter, a valve group, and connecting pipes; Cylinder connection, each proportional pressure reducing valve independently controls a hydraulic cylinder, and the working pressure of the hydraulic cylinder is adjusted by controlling the pressure of the oil outlet of the proportional pressure reducing valve.
所述的自激振动深松机,其中:液压装置的进油口与拖拉机液压输出口连接,经过滤器、蓄能器连接至阀组的进油口,液压装置的回油口与拖拉机液压回油口连接,并与阀组回油口直接连接,阀组的出油口连至各液压缸无杆腔。The self-excited vibrating subsoiler, wherein: the oil inlet of the hydraulic device is connected to the hydraulic output port of the tractor, and is connected to the oil inlet of the valve group through a filter and an accumulator, and the oil return port of the hydraulic device is connected to the hydraulic return port of the tractor. The oil port is connected and directly connected with the oil return port of the valve group, and the oil outlet of the valve group is connected to the rodless cavity of each hydraulic cylinder.
所述的自激振动深松机,其特征在于:检测装置包括主控制器、连接电路、单体控制器组合、传感器组合;所述单体控制器组合包括多个单体控制器,传感器组合包括第一角度传感器和第二角度传感器。The self-excited vibration subsoiler is characterized in that: the detection device includes a main controller, a connecting circuit, a single controller combination, and a sensor combination; the single controller combination includes a plurality of single controllers, and the sensor combination Including a first angle sensor and a second angle sensor.
所述的自激振动深松机,其中:主控制器通过连接电路与触摸屏、单体控制器组合连接,触摸屏安装拖拉机驾驶室;每个单体控制器都与一个传感器组合连接;每个传感器组合中的第一角度传感器水平固定在深松铲连接板上方,第二角度传感器竖直固定在镇压轮连接臂上方。The self-excited vibrating subsoiler, wherein: the main controller is combined with a touch screen and a single controller through a connection circuit, and the touch screen is installed with a tractor cab; each single controller is combined with a sensor; each sensor The first angle sensor in the combination is horizontally fixed above the connecting plate of the subsoiling shovel, and the second angle sensor is vertically fixed above the connecting arm of the pressing wheel.
所述的自激振动深松机,其中:单体控制器通过安装在自激振动深松单体上的传感器组合检测耕深、耕深变异系数、平均耕深并发送给主控制器;单体控制器还通过控制比例减压阀调节液压缸工作压力,稳定耕深。The self-excited vibrating subsoiler, wherein: the unit controller detects the tillage depth, coefficient of variation of tillage depth, and average tillage depth through a combination of sensors installed on the self-excited vibrating subsoiler unit and sends them to the main controller; The body controller also adjusts the working pressure of the hydraulic cylinder by controlling the proportional pressure reducing valve to stabilize the plowing depth.
一种如上之一所述的自激振动深松机的自激振动深松机测控方法,其中:A self-excited vibration subsoiler measurement and control method for a self-excited vibratory subsoiler as described in one of the above, wherein:
该方法包括如下步骤:The method comprises the steps of:
a.通过触摸屏输入自激振动深松单体工作参数;a. Input the working parameters of the self-excited vibration subsoiling unit through the touch screen;
b.主控制器根据触摸屏输入的数据确定自激振动深松单体尺寸参数并控制单体控制器工作;b. The main controller determines the size parameters of the self-excited vibration subsoiling unit according to the data input by the touch screen and controls the work of the unit controller;
c.单体控制器计算深松铲工作参数;c. The single controller calculates the working parameters of the subsoiler;
d.单体控制器根据计算得工作参数控制液压缸的工作压力;d. The single controller controls the working pressure of the hydraulic cylinder according to the calculated working parameters;
e.单体控制器将计算出的工作参数发送给主控制器;e. The single controller sends the calculated working parameters to the main controller;
f.主控制器将接收的多个单体工作参数发送给触摸屏显示。f. The main controller sends the received multiple monomer working parameters to the touch screen for display.
所述的自激振动深松机测控方法,其中:所述方法具体按如下步骤进行:The self-excited vibration subsoiler measurement and control method, wherein: the method is specifically carried out as follows:
a.在触摸屏中输入自激振动深松单体尺寸参数H、h、L、L1、L2、R,设定耕深变异下限VL、耕深变异上限VU、比例减压阀初始调定压力Ps;通过触摸屏启动自激振动深松耕深控制;a. Input the self-excited vibration subsoiling unit size parameters H, h, L, L1, L2, R on the touch screen, set the lower limit of tillage depth variation V L , the upper limit of tillage depth variation V U , and the initial setting of the proportional pressure reducing valve Pressure P s ; start self-excited vibration subsoiling depth control through the touch screen;
b.主控制器根据触摸屏输入的数据确定自激振动深松单体尺寸参数H、h、L、L1、L2、R,设定耕深变异下限VL、耕深变异上限VU、比例减压阀初始调定压力Ps,并发送给单体控制器组合;单体控制器接收数据后,开始读取角度传感器组合的数据,计算出深松单体当前耕深Dn、耕深变异系数VD、平均耕深Dm,其中:H为第一销轴到深松铲铲尖的垂直距离;h为第一销轴到第三销轴的垂直距离;L为第一销轴到深松铲中心线的水平距离;L1为第三销轴到镇压轮的旋转轴之间的垂直距离;L2为深松铲中心线到连接臂中心线之间的距离;R为镇压轮半径;b. The main controller determines the size parameters H, h, L, L1, L2 and R of the self-excited vibration subsoiling unit according to the data input by the touch screen, and sets the lower limit of tillage depth variation V L , the upper limit of tillage depth variation V U , and the proportional reduction The pressure valve initially sets the pressure P s and sends it to the unit controller combination; after the unit controller receives the data, it starts to read the data of the angle sensor combination, and calculates the current tillage depth D n and variation of the tillage depth of the subsoiling unit Coefficient V D , average tillage depth D m , where: H is the vertical distance from the first pin axis to the tip of the subsoiling shovel; h is the vertical distance from the first pin axis to the third pin axis; L is the vertical distance from the first pin axis to the The horizontal distance of the centerline of the subsoiler shovel; L1 is the vertical distance between the third pin axis and the rotation axis of the pressing wheel; L2 is the distance between the centerline of the subsoiling shovel and the centerline of the connecting arm; R is the radius of the pressing wheel;
c.步骤b中,计算深松铲当前耕深Dn的方法为:c. In step b, the method for calculating the current tillage depth D n of the subsoiler is:
c1)随着深松铲入土,第一角度传感器检测的镇压轮连接臂与水平方向的夹角为α,此时根据以下公式计算出深松铲111当前耕深Dn;c1) As the subsoiler shovel enters the soil, the angle between the connecting arm of the pressing wheel detected by the first angle sensor and the horizontal direction is α, and at this time, the current plowing depth D n of the subsoiler shovel 111 is calculated according to the following formula;
Dn=H-h-(L1×sin α)-RD n =Hh-(L1×sin α)-R
c2)深松铲振动时,第二角度传感器检测出深松铲安装板与水平方向的夹角α1、第二角度传感器检测出镇压轮安装板与水平方向的夹角α,此时根据以下公式计算出深松铲当前耕深Dn;c2) When the subsoiling shovel vibrates, the second angle sensor detects the angle α 1 between the subsoiling shovel mounting plate and the horizontal direction, and the second angle sensor detects the angle α between the pressing wheel mounting plate and the horizontal direction. At this time, according to the following The formula calculates the current tillage depth D n of the subsoiler;
Dn=Hcos a1-L1sin a+L2sin a1-h cos a1-RD n =Hcos a 1 -L1sin a+L2sin a 1 -h cos a 1 -R
耕深平均值计算根据以下公式:The average value of tillage depth is calculated according to the following formula:
式中:n—采样点个数;In the formula: n—the number of sampling points;
耕深变异系数计算根据以下公式:The coefficient of variation of tillage depth is calculated according to the following formula:
式中:S—耕深标准差;In the formula: S—Standard deviation of plowing depth;
d.单体控制器将计算出的当前耕深Dn、耕深变异系数VD、平均耕深Dm发送给主控制器,主控制器接收后发送给触摸屏显示;d. The single controller sends the calculated current tillage depth D n , tillage depth variation coefficient V D , and average tillage depth D m to the main controller, and the main controller sends them to the touch screen for display after receiving them;
e.单体控制器耕深采样间隔为0.5s,累计采样预定个数样本点后,计算出该预定个数的样本点的耕深变异系数VD,单体控制器根据所述耕深变异系数VD调整液压缸工作压力,从而稳定耕深。e. The tillage depth sampling interval of the single controller is 0.5s. After accumulatively sampling a predetermined number of sample points, the coefficient of variation V D of the predetermined number of sample points is calculated. The single controller varies according to the tillage depth. The coefficient V D adjusts the working pressure of the hydraulic cylinder to stabilize the plowing depth.
所述的自激振动深松机测控方法,其中单体控制器采用模糊控制算法实现对液压缸压力的控制:依据模糊控制理论建立模糊控制器,模糊控制器的输入变量为变异系数误差e、变异系数误差变化率ec,输出量为比例减压阀控制电压调定量u。The self-excited vibration subsoiling machine measurement and control method, wherein the single controller adopts a fuzzy control algorithm to control the pressure of the hydraulic cylinder: a fuzzy controller is established according to the fuzzy control theory, and the input variables of the fuzzy controller are the variation coefficient error e, Variation coefficient error rate of change ec, the output is the proportional pressure reducing valve control voltage adjustment value u.
所述的自激振动深松机测控方法,其中模糊控制器输入变量的确定方法为:The self-excited vibration subsoiler measurement and control method, wherein the method for determining the input variables of the fuzzy controller is:
(1)若VL<VD<VU,单体控制器认为当前耕深变异在设定范围内,液压缸工作压力不作调整,则变异系数误差e=0;(1) If V L < V D < V U , the single controller considers that the variation of the current tillage depth is within the set range, and the working pressure of the hydraulic cylinder is not adjusted, then the variation coefficient error e=0;
(2)若VD>VU,单体控制器认为当前耕深变异偏离目标耕深变异且超过设定耕深变异上限,耕深稳定性差,需增大液压缸工作压力,则变异系数误差e=VD-VU;(2) If V D > V U , the single controller thinks that the current tillage depth variation deviates from the target tillage depth variation and exceeds the set tillage depth variation upper limit, and the tillage depth stability is poor, and it is necessary to increase the working pressure of the hydraulic cylinder, then the variation coefficient error e=V D -V U ;
(3)若VD<VL,单体控制器认为当前耕深变异偏离目标耕深变异且低于设定耕深变异下限,减阻效果差,需减小液压缸工作压力,则变异系数误差e=VD-VL;(3) If V D < V L , the single controller thinks that the current tillage depth variation deviates from the target tillage depth variation and is lower than the set tillage depth variation lower limit, and the drag reduction effect is poor, so the working pressure of the hydraulic cylinder needs to be reduced, then the variation coefficient Error e=V D -V L ;
其中:变异系数误差变化率ec为本周期变异系数误差与本周期对应时间T的比值。Among them: the rate of change of the coefficient of variation error ec is the ratio of the error of the coefficient of variation in this period to the corresponding time T in this period.
所述的自激振动深松机测控方法,其中所述的模糊控制器建立分为以下步骤:The self-excited vibration subsoiler measurement and control method, wherein the establishment of the fuzzy controller is divided into the following steps:
a根据前期试验确定模糊控制器的输入变量e取值范围e=[-10,10]、ec取值范围ec=[-20,20],输出变量u取值范围u=[-3,3];aAccording to the preliminary test, the value range of the input variable e of the fuzzy controller is e=[-10,10], the value range of ec=[-20,20], and the value range of the output variable u=[-3,3 ];
b针对输入变量e、ec定义语言变量E、EC,语言值E′、EC′,并定义语言变量E、EC离散论域为{-6,-4,-2,0,2,4,6}、语言值E′、EC′值域为{负大(NB),负中(NM),负小(NS),零(Z),正小(PS),正中(PM),正大(PB)};针对输出变量u定义语言变量U、语言值U′,并定义语言变量U离散论域为{-6,-4,-2,0,2,4,6},语言值U′值域为{负大(NB),负中(NM),负小(NS),零(Z),正小(PS),正中(PM),正大(PB)};b Define language variables E, EC, language values E', EC' for input variables e, ec, and define language variables E, EC discrete domain as {-6, -4, -2, 0, 2, 4, 6 }, language value E', EC' value range is {negative big (NB), negative middle (NM), negative small (NS), zero (Z), positive small (PS), positive middle (PM), positive big (PB )}; define linguistic variable U and linguistic value U′ for the output variable u, and define the discrete domain of linguistic variable U as {-6, -4, -2, 0, 2, 4, 6}, linguistic value U′ The domain is {Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (Z), Positive Small (PS), Positive Medium (PM), Positive Big (PB)};
c根据输入变量e、ec的取值范围和语言变量E、EC的离散论域,计算得输入变量e、ec的量化因子ke=0.6、kec=0.3;根据输出变量u的取值范围和语言变量U的离散论域,计算得输出变量u的量化因子ku=0.5;c According to the value range of input variables e and ec and the discrete domain of linguistic variables E and EC, the quantization factors k e =0.6 and k ec =0.3 of input variables e and ec are calculated; according to the value range of output variable u and the discrete universe of language variable U, the quantization factor k u of the output variable u is calculated to be 0.5;
d选择三角函数作为语言值E、EC、U的隶属函数,分别以语言变量论域中的元素为中心值建立隶属函数;d Select trigonometric functions as the membership functions of the linguistic values E, EC, and U, and establish the membership functions with the elements in the domain of linguistic variables as the central values;
e建立模糊控制规则库,如下表:e establish a fuzzy control rule library, as shown in the following table:
所述的自激振动深松机测控方法,其中所述的模糊控制器的工作过程按如下步骤:The self-excited vibration subsoiler measurement and control method, wherein the working process of the fuzzy controller is as follows:
a模糊控制器实时计算变异系数误差e、变异系数误差变化率ec;a The fuzzy controller calculates the variation coefficient error e and the variation coefficient error change rate ec in real time;
b对变异系数误差e、变异系数误差变化率ec进行模糊化处理,通过量化因子ke、kec将变异系数误差e、变异系数变化率ec量化为语言变量E、EC;b Perform fuzzy processing on the variation coefficient error e and the variation coefficient error change rate ec, and quantify the variation coefficient error e and the variation coefficient change rate ec into language variables E and EC through quantization factors k e and k ec ;
c模糊控制器按照隶属函数并依据隶属度最大原则求得语言变量E、EC所属的语言值A、B,A、B∈U′;c The fuzzy controller obtains the linguistic values A, B, A, B ∈ U′ of the linguistic variables E and EC according to the membership function and the principle of the maximum degree of membership;
d模糊控制器按照模糊控制规则库进行模糊推理,由语言值A、B确定语言变量U所属的语言值C,C∈U′;d The fuzzy controller performs fuzzy reasoning according to the fuzzy control rule base, and the linguistic value C to which the linguistic variable U belongs is determined by the linguistic values A and B, C∈U′;
e对语言值C进行去模糊化处理,按照重心法对语言值U′集合中的各元素及其隶属度求加权平均值,并进行四舍五入取整,得到语言变量U;e. Perform defuzzification processing on the language value C, calculate the weighted average value of each element in the language value U′ set and its degree of membership according to the center of gravity method, and perform rounding to obtain the language variable U;
f模糊控制器经过量化因子ku将语言变量U转化为比例减压阀控制电压调定量u。The f fuzzy controller converts the language variable U into the proportional decompression valve control voltage adjustment value u through the quantization factor k u .
附图说明Description of drawings
图1为本发明自激振动深松机的总体结构示意图Fig. 1 is the overall structure schematic diagram of self-excited vibration subsoiler of the present invention
图2为本发明自激振动深松单体的正视图Fig. 2 is the front view of the self-excited vibration subsoiling unit of the present invention
图3为本发明镇压装置的结构示意图Fig. 3 is the structural representation of the suppression device of the present invention
图4为本发明自激振动深松机液压装置的结构示意图Fig. 4 is a structural schematic diagram of the hydraulic device of the self-excited vibration subsoiler of the present invention
图5为本发明自激振动深松机检测装置的结构示意图Fig. 5 is a structural schematic diagram of the self-excited vibration subsoiler detection device of the present invention
图6为本发明自激振动深松单体尺寸参数示意图Figure 6 is a schematic diagram of the size parameters of the self-excited vibration subsoiling monomer of the present invention
图7为本发明自激振动深松单体结构简图Fig. 7 is a schematic diagram of the self-excited vibration subsoiling monomer structure of the present invention
图8为本发明自激振动深松单体入土非振动状态示意简图Fig. 8 is a schematic diagram of the non-vibration state of the self-excited vibration subsoiling unit in the soil of the present invention
图9为本发明自激振动深松单体入土振动状态示意简图Fig. 9 is a schematic diagram of the vibration state of the self-excited vibration subsoiling unit in the present invention
图10为本发明自激振动深松机单体控制器耕深控制流程图Fig. 10 is a flowchart of plowing depth control of the single controller of the self-excited vibrating subsoiler of the present invention
图11为本发明自激振动深松机单体控制器模糊控制器结构图Fig. 11 is a structural diagram of the fuzzy controller of the single controller of the self-excited vibration subsoiler of the present invention
图12为本发明自激振动深松机单体控制器模糊控制算法所采用隶属函数的形状及分布图Fig. 12 is the shape and distribution diagram of the membership function adopted by the fuzzy control algorithm of the self-excited vibration subsoiling machine monomer controller of the present invention
附图标记reference sign
1自激振动深松单体 101液压缸 102销轴1 self-excited
103销轴 104单体固定架 105销轴103 pin shaft 104 single body fixing frame 105 pin shaft
106深松铲连接板 107螺栓 108螺栓106 subsoiling
109镇压装置 1091镇压轮连接臂 1092镇压轮109
110销轴 111深松铲 2地轮110 pin shaft 111
3检测装置 301主控制器 302连接电路3
303单体控制器组合 3031单体控制器 304传感器组合303
3041角度传感器 3042角度传感器 4触摸屏3041
5液压装置 501阀组 5011比例减压阀5
502连接管件 503蓄能器 504过滤器502 connecting
6机架 7三点悬挂6
具体实施方式Detailed ways
如图1所示,本发明提供一种自激振动深松机,包括三点悬挂7、机架6、地轮2、检测装置3、触摸屏4、液压装置5、自激振动深松单体1。其中地轮2安装在机架6两侧,三点悬挂7安装在机架前部中间的位置,用于与耕作用拖拉机连接,检测装置3安装在机架6上,多个自激振动深松单体1和液压装置5安装在机架6上,自激振动深松单体1用于松土,液压装置5做为自激振动深松单体1的激振源,通过与土壤共同作用使深松单体产生振动。检测装置3用于检测自激振动深松单体1的入土深度,并根据入土深度控制液压装置,进而控制耕深变异在允许范围内。As shown in Figure 1, the present invention provides a self-excited vibration subsoiler, including a three-
如图2所示,自激振动深松单体1包括单体固定架104、深松铲连接板106、深松铲111、液压缸101、镇压装置109,镇压装置包括镇压轮1092、镇压轮连接臂1091。自激振动深松单体1通过单体固定架104固定在深松机机架6上。液压缸101前端耳环通过销轴102与单体固定架104上端铰接,液压缸101另一端耳环通过销轴103与深松铲连接板106铰接;深松铲连接板106前端通过销轴105与单体固定架104下端铰接,深松铲连接板106可绕销轴105转动,深松铲连接板106后端通过螺栓107、螺栓108固定连接深松铲111的上端,深松铲111从上端部向下整体成钩状,用于松土。如图2、3所示,镇压装置109上端通过销轴110与深松铲连接板106末端连接,镇压装置109可绕销轴110转动,具体的镇压装置109包括连接臂1091,连接臂1091上端通过销轴110与深松铲连接板106的末端连接,连接臂1091下端与镇压轮1092的旋转轴连接,镇压轮1092可绕连接臂1091的下端旋转滚动。As shown in Figure 2, the self-excited
工作过程中,镇压轮1092始终与地面接触,液压缸101内保持一定工作压力,自激振动深松单体1因土壤阻力变化产生振动。土壤阻力增大时,深松铲111翘起,耕深变浅,深松铲111带动深松铲连接板106绕销轴105转动,液压缸101被压缩,深松铲连接板106与水平方向夹角α1增大,镇压轮连接臂1091与水平方向的倾角α也增大;土壤阻力减小时,深松铲111下行,耕深增加,深松铲111带动深松铲连接板106绕销轴105转动,液压缸101伸长,深松铲连接板106与水平方向夹角α1减小,镇压轮连接臂1091与水平方向的夹角α也减小。During the working process, the
本发明提供的自激振动深松机,包括液压装置5和检测装置3。The self-excited vibration subsoiler provided by the present invention includes a
如图4,液压装置5包括蓄能器503、过滤器504、阀组501、连接管件502;阀组501具有5个相同的比例减压阀5011,分别通过连接管件502与5个液压缸101连接;每个比例减压阀5011独立控制一个液压缸101,互不干涉,通过控制比例减压阀5011出油口A压力可调节液压缸101工作压力。As shown in Figure 4, the
液压装置5的进油口P与拖拉机液压输出口连接,经过滤器504、蓄能器503连接至阀组501的进油口P,液压装置5的回油口T与拖拉机液压回油口连接,并与阀组501回油口T直接连接,蓄能器503具有吸收液压脉动、稳定压力的作用;阀组501的出油口A分别连至各液压缸101无杆腔。The oil inlet P of the
如图5,检测装置3包括主控制器301、连接电路302、单体控制器组合303、传感器组合304,单体控制器组合303具有5个地址分别为01、02、03、04、05的单体控制器3031,传感器组合304包括角度传感器3041、角度传感器3042。主控制器301通过连接电路302与触摸屏4、单体控制器组合303连接,触摸屏4放置在拖拉机驾驶室,方便工作人员设置初始参数和读取当前工作参数;每个单体控制器3031都与一个传感器组合304连接,传感器组合304包括角度传感器3041、角度传感器3042;角度传感器3042水平固定在深松铲连接板106上方,角度传感器3041竖直固定在镇压轮连接臂1091上方。本发明中检测装置3具有1个主控制器301和若干个具有不同通讯地址的单体控制器3031,每个自激振动深松单体1上安装一个单体控制器3031。主控制器301采用轮询的方式读取每个单体控制器的数据,并发送给触摸屏4显示;单体控制器3031一方面通过安装在自激振动深松单体上1的传感器组合304检测耕深、耕深变异系数、平均耕深等工作参数发送给主控制器301,另一方面单体控制器3031通过控制比例减压阀5011调节液压缸101工作压力,稳定耕深。为保证自激振动深松机耕深测控系统良好的拓展性,主控制器301与单体控制器3031采用RS485通信协议,单体控制器3031可根据深松单体1数量拓展。As shown in Figure 5, the
本发明提供一种自激振动深松机耕深测控方法,结合自激振动深松单体1尺寸参数和深松铲连接板106、镇压轮连接臂1091角度变化计算出当前耕深。The present invention provides a method for measuring and controlling the tillage depth of a self-excited vibration subsoiler, which calculates the current tillage depth by combining the size parameters of the self-excited
为方便说明自激振动深松单体1尺寸参数,做出辅助直线AB、BC、CD。如图6所示,销轴105处设置A点,直线AB为销轴105与深松铲连接板106所在水平线,直线BC为深松铲111所在竖直线,直线AB与直线BC相交于B点;销轴110处设置D点,直线CD为销轴110与深松铲连接板106所在水平线,直线BC与直线CD相交处设置为C点。图6中,H为销轴105到铲尖距离、L为A、B两点距离、h为B、C两点距离、L2为C、D两点距离、L1为镇压轮连接臂长度,R为镇压轮半径。In order to facilitate the description of the size parameters of the self-excited
为方便分析自激振动深松单体1振动时深松铲连接板106、镇压轮连接板1091角度变化,绘制自激振动深松单体简化模型,如图7。振动过程中,镇压轮1092始终与地面接触,土壤阻力增大时,深松铲111翘起,深松铲连接板106与水平方向夹角α1增大,镇压轮连接臂1091与水平方向的倾角α也增大;土壤阻力减小时,深松铲111下行,深松铲连接板106与水平方向夹角α1减小,镇压轮连接臂1091与水平方向的夹角α也减小。In order to facilitate the analysis of the angle change of the subsoiling shovel connecting plate 106 and the pressing
一种自激振动深松机耕深测控方法,该方法包括如下步骤:A self-excited vibration subsoiler plowing depth measurement and control method, the method includes the following steps:
a、将液压装置5的进油口P、回油口T与拖拉机液压输出口、回油口连接,在触摸屏4中输入自激振动深松单体1尺寸参数H、h、L、L1、L2、R,设定耕深变异下限VL、耕深变异上限VU(可综合考虑农艺整地质量要求和减阻程度设置耕深变异下限VL、耕深变异上限VU)、比例减压阀5011初始调定压力Ps,点击触摸屏上“开始”按钮,启动自激振动深松耕深测控机;a. Connect the oil inlet P and oil return port T of the
b、主控制器301向触摸屏4读取自激振动深松单体1尺寸参数H、h、L、L1、L2、R,设定耕深变异下限VL、耕深变异上限VU、比例减压阀5011初始调定压力Ps,并发送给单体控制器组合303;以地址为01的单体控制器3031为例,单体控制器3031接收数据后,开始读取角度传感器3041、角度传感器3042的数据,计算出深松铲111当前耕深Dn、耕深变异系数VD、平均耕深Dm;b. The
c、步骤b中,计算深松铲111当前耕深Dn、耕深变异系数VD、平均耕深Dm的方法为:c. In step b, the method of calculating the current tillage depth D n , coefficient of variation of tillage depth V D , and average tillage depth D m of the subsoiler shovel 111 is:
c1)随着深松铲111入土,角度传感器3041检测的镇压轮连接臂与水平方向的夹角为α,如图8,此时根据以下公式计算出深松铲111当前耕深Dn;c1) As the subsoiler shovel 111 enters the soil, the
Dn=H-h-(L1×sin a)-RD n =Hh-(L1×sin a)-R
c2)深松铲111振动时,角度传感器3042检测出深松铲安装板106与水平方向的夹角α1、角度传感器3041检测出镇压轮安装板与水平方向的夹角α,如图9,此时根据以下公式计算出深松铲当前耕深Dn;c2) When the subsoiling shovel 111 vibrates, the
Dn=Hcosa1-L1sin a+L2sin a1-h cos a1-RD n =Hcosa 1 -L1sin a+L2sin a 1 -h cos a 1 -R
c3)耕深平均值计算根据以下公式:c3) Calculate the average value of tillage depth according to the following formula:
式中:In the formula:
n—采样点个数;n—the number of sampling points;
c4)耕深平均值计算根据以下公式:c4) Calculate the average value of tillage depth according to the following formula:
式中:In the formula:
S—耕深标准差,单位cmS—Standard deviation of tillage depth, unit cm
d、单体控制器3031将计算出的当前耕深Dn、耕深变异系数VD、平均耕深Dm发送给主控制器301,主控制器301接收后发送给触摸屏4显示;d. The
e、设置单体控制器3031采样间隔为0.5s,单体控制器3031将实时计算出的耕深变异系数VD与设定的耕深变异下限VL、耕深变异上限VU进行比对,根据比对结果作为控制液压缸工作压力。e. Set the sampling interval of the
单体控制器3031控制液压缸工作压力的算法如图10所示。单体控制器3031根据耕深变异系数VD设定的耕深变异下限VL、耕深变异上限VU计算出变异系数误差e以及变异系数误差变化率ec作为模糊控制器的输入,模糊控制器输出比例减压阀控制电压调定量u,进而调节液压缸工作压力。The algorithm of the
模糊控制器输入变量(变异系数误差e)的确定方法为:The method of determining the input variable (variation coefficient error e) of the fuzzy controller is:
(1)若VL<VD<VU,单体控制器认为当前耕深变异在设定范围内,液压缸工作压力不作调整,则变异系数误差e=0;(1) If V L < V D < V U , the single controller considers that the variation of the current tillage depth is within the set range, and the working pressure of the hydraulic cylinder is not adjusted, then the variation coefficient error e=0;
(2)若VD>VU,单体控制器认为当前耕深变异偏离目标耕深变异且超过设定耕深变异上限,耕深稳定性差,需增大液压缸工作压力,此时变异系数误差e=vD-vU;(2) If V D > V U , the single controller thinks that the current tillage depth variation deviates from the target tillage depth variation and exceeds the set tillage depth variation upper limit, and the tillage depth stability is poor, so it is necessary to increase the working pressure of the hydraulic cylinder. At this time, the variation coefficient Error e=v D -v U ;
(3)若vD<vL,单体控制器认为当前耕深变异偏离目标耕深变异且低于设定耕深变异下限,减阻效果差,需减小液压缸工作压力,则变异系数误差e=VD-VL;(3) If v D < v L , the single controller believes that the current tillage depth variation deviates from the target tillage depth variation and is lower than the set tillage depth variation lower limit, and the drag reduction effect is poor, so the working pressure of the hydraulic cylinder needs to be reduced, then the variation coefficient Error e=V D -V L ;
(4)变异系数误差变化率ec为本周期变异系数误差与本周期对应时间T的比值。(4) The rate of change of the coefficient of variation error ec is the ratio of the error of the coefficient of variation in the current period to the corresponding time T in the current period.
模糊控制器结构如图11所示,建立模糊控制器分为以下步骤:The structure of the fuzzy controller is shown in Figure 11. The establishment of the fuzzy controller is divided into the following steps:
a根据前期试验确定模糊控制器的输入变量e取值范围e=[-10,10]、ec取值范围ec=[-20,20],输出变量u取值范围u=[-3,3];aAccording to the preliminary test, the value range of the input variable e of the fuzzy controller is e=[-10,10], the value range of ec=[-20,20], and the value range of the output variable u=[-3,3 ];
b针对输入变量e、ec定义语言变量E、EC,语言值E′、EC′,并定义语言变量E、EC离散论域为{-6,-4,-2,0,2,4,6}、语言值E′、EC′值域为{负大(NB),负中(NM),负小(NS),零(Z),正小(PS),正中(PM),正大(PB)};针对输出变量定义语言变量U、语言值U′,并定义语言变量U离散论域为{-6,-4,-2,0,2,4,6},语言值U′值域为{负大(NB),负中(NM),负小(NS),零(Z),正小(PS),正中(PM),正大(PB)};b Define language variables E, EC, language values E', EC' for input variables e, ec, and define language variables E, EC discrete domain as {-6, -4, -2, 0, 2, 4, 6 }, language value E', EC' value range is {negative big (NB), negative middle (NM), negative small (NS), zero (Z), positive small (PS), positive middle (PM), positive big (PB )}; define linguistic variable U and linguistic value U′ for the output variable, and define the discrete domain of linguistic variable U as {-6, -4, -2, 0, 2, 4, 6}, and the value domain of linguistic value U′ It is {Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (Z), Positive Small (PS), Positive Medium (PM), Positive Big (PB)};
c根据输入变量e、ec的取值范围和语言变量E、EC的离散论域,计算得输入变量e、ec的量化因子ke=0.6、kec=0.3;根据输出变量u的取值范围和语言变量U的离散论域,计算得输出变量u的量化因子ku=0.5;c According to the value range of input variables e and ec and the discrete domain of linguistic variables E and EC, the quantization factors k e =0.6 and k ec =0.3 of input variables e and ec are calculated; according to the value range of output variable u and the discrete universe of language variable U, the quantization factor k u of the output variable u is calculated to be 0.5;
d选择三角函数作为语言值E、EC、U的隶属函数,分别以语言变量论域中的元素为中心值建立隶属函数,隶属函数分布如图12所示。d Select trigonometric functions as the membership functions of the linguistic values E, EC, and U, and establish the membership functions with the elements in the domain of linguistic variables as the center values respectively. The distribution of the membership functions is shown in Figure 12.
e建立模糊控制规则库,如下表:e establish a fuzzy control rule library, as shown in the following table:
模糊控制器的工作过程按如下步骤:The working process of the fuzzy controller is as follows:
a模糊控制器实时计算变异系数误差e、变异系数误差变化率ec;a The fuzzy controller calculates the variation coefficient error e and the variation coefficient error change rate ec in real time;
b对变异系数误差e、变异系数误差变化率ec进行模糊化处理,通过量化因子ke、kec将变异系数误差e、变异系数变化率ec量化为语言变量E、EC;b Perform fuzzy processing on the variation coefficient error e and the variation coefficient error change rate ec, and quantify the variation coefficient error e and the variation coefficient change rate ec into language variables E and EC through quantization factors k e and k ec ;
c模糊控制器按照隶属函数并依据隶属度最大原则求得语言变量E、EC所属的语言值A、B,A、B∈U′;c The fuzzy controller obtains the linguistic values A, B, A, B ∈ U′ of the linguistic variables E and EC according to the membership function and the principle of the maximum degree of membership;
d模糊控制器按照模糊控制规则库进行模糊推理,由语言值A、B确定语言变量U所属的语言值C,C∈U′;d The fuzzy controller performs fuzzy reasoning according to the fuzzy control rule base, and the linguistic value C to which the linguistic variable U belongs is determined by the linguistic values A and B, C∈U′;
e对语言值C进行去模糊化处理,按照重心法对语言值U′集合中的各元素及其隶属度求加权平均值,并进行四舍五入取整,得到语言变量U;e. Perform defuzzification processing on the language value C, calculate the weighted average value of each element in the language value U′ set and its degree of membership according to the center of gravity method, and perform rounding to obtain the language variable U;
f模糊控制器经过量化因子ku将语言变量U转化为比例减压阀控制电压调定量u,u>0表示增大液压缸工作压力,u<0表示减小液压缸工作压力。The f fuzzy controller converts the language variable U into the proportional pressure reducing valve control voltage adjustment value u through the quantization factor k u, u>0 means to increase the working pressure of the hydraulic cylinder, and u<0 means to reduce the working pressure of the hydraulic cylinder.
本发明以液压缸为激振源,可实现液压缸液压力实时调节,避免了弹簧为激振源时刚度不足造成的间断失效,因此无需增加伸缩量控制装置,深松单体结构得到简化。本发明能够实时检测耕深,以耕深变异作为液压缸工作压力调控依据,增加反馈环节,能够更加准确、有依据地保证耕深一致性。The invention uses the hydraulic cylinder as the excitation source, which can realize the real-time adjustment of the hydraulic pressure of the hydraulic cylinder, and avoids intermittent failure caused by insufficient rigidity when the spring is the excitation source. Therefore, there is no need to increase the expansion and contraction control device, and the single structure of the deep loosening is simplified. The present invention can detect the tillage depth in real time, takes the variation of the tillage depth as the basis for regulating the working pressure of the hydraulic cylinder, adds a feedback link, and can ensure the consistency of the tillage depth more accurately and with a basis.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710548495.5A CN107182313B (en) | 2017-07-07 | 2017-07-07 | Self-excitation vibration subsoiler and tilling depth measurement and control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710548495.5A CN107182313B (en) | 2017-07-07 | 2017-07-07 | Self-excitation vibration subsoiler and tilling depth measurement and control method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107182313A CN107182313A (en) | 2017-09-22 |
CN107182313B true CN107182313B (en) | 2023-04-25 |
Family
ID=59882924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710548495.5A Active CN107182313B (en) | 2017-07-07 | 2017-07-07 | Self-excitation vibration subsoiler and tilling depth measurement and control method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107182313B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108377686B (en) * | 2018-05-29 | 2020-04-07 | 中国农业大学 | Automatic tilling depth control and adjustment device and control and adjustment method thereof |
CN108901201A (en) * | 2018-08-08 | 2018-11-30 | 新疆农垦科学院 | A kind of fluid pressure type self-excitation vibration drag reduction avoidance loosening device |
CN109813271B (en) * | 2019-02-14 | 2020-08-28 | 河北信翔电子有限公司 | Method for calculating operation depth of agricultural implement |
CN110073753B (en) * | 2019-04-23 | 2022-03-01 | 北京农业智能装备技术研究中心 | On-line monitoring device and method for field intertillage and topdressing operation quality |
CN112326166B (en) * | 2020-09-30 | 2022-12-27 | 北京航天光华电子技术有限公司 | Adjustable random vibration magnitude amplification device and test method |
CN113179715B (en) * | 2021-05-25 | 2022-12-13 | 中国农业大学 | Active seeding depth and suppression force adjusting system of no-tillage seeder |
CN114747309B (en) * | 2022-05-13 | 2022-12-27 | 河南科技大学 | Double-frequency self-excited vibration type double-wing break shovel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0779606A (en) * | 1993-09-16 | 1995-03-28 | Kubota Corp | Rolling control mechanism for ground work equipment |
CN104699041A (en) * | 2015-02-04 | 2015-06-10 | 青岛农业大学 | Monitor method of operation states of vibrating type deep scarification machine |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09224409A (en) * | 1996-02-27 | 1997-09-02 | Komatsu Ltd | Device for controlling deep cultivation of working machine for earth-moving vehicle |
GB201114454D0 (en) * | 2011-08-23 | 2011-10-05 | Agco Sa | Agricultural tractor linkage control system |
CN204482225U (en) * | 2015-01-29 | 2015-07-22 | 石河子大学 | Fluid power self-excited vibration subsoiler |
CN105191528A (en) * | 2015-09-22 | 2015-12-30 | 成都巨智汇科技有限公司 | Combined type farming loosener |
CN105359649B (en) * | 2015-12-10 | 2017-09-15 | 中国农业大学 | Initial tension of spring regulatable vibration subsoiler |
CN106508153A (en) * | 2016-11-29 | 2017-03-22 | 湖南春燕机械制造有限公司 | Automatic tilling depth control device applied to tillage machine tool |
CN106489327A (en) * | 2016-11-30 | 2017-03-15 | 山东省农业机械科学研究院 | A kind of corn no-tillage subsoiling combined seed and fertilizer drill monitoring system and method |
-
2017
- 2017-07-07 CN CN201710548495.5A patent/CN107182313B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0779606A (en) * | 1993-09-16 | 1995-03-28 | Kubota Corp | Rolling control mechanism for ground work equipment |
CN104699041A (en) * | 2015-02-04 | 2015-06-10 | 青岛农业大学 | Monitor method of operation states of vibrating type deep scarification machine |
Also Published As
Publication number | Publication date |
---|---|
CN107182313A (en) | 2017-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107182313B (en) | Self-excitation vibration subsoiler and tilling depth measurement and control method | |
CN206977942U (en) | Self-excited vibration subsoiler | |
CN106427451B (en) | Agricultural power chassis leveling system and leveling method | |
CN118749245B (en) | Rear suspension leveling system and method based on self-adaptive tilling depth adjustment | |
CN108363404B (en) | High-precision agricultural vehicle platform pre-detection active leveling system and leveling method | |
CN107493703A (en) | Operation quality measurement and control system and method for deep scarification and soil preparation combined machine | |
US20210040705A1 (en) | Construction machine | |
CN112913470B (en) | Sugarcane harvester and its front mounted header root cutting depth control method | |
CN107295834A (en) | Ditching depth adjusting means for rear ditching no-tillage seeding machine | |
CN111279819A (en) | Subsoiling mechanism, subsoiling device, subsoiling system and method of use | |
CN115413450B (en) | Grain drill and its sowing depth control device and method | |
CN110637801A (en) | Electro-hydraulic active suspension system and control method for rolling motion control of large boom | |
CN211721136U (en) | Sugarcane harvester and its control device for undercut depth of front suspension header | |
CN109854554A (en) | A kind of tractor rear linkage and its control method | |
CN113607079B (en) | A general-purpose trenching depth detection device | |
CN108377682A (en) | Automatic leveling plough rotation all-in-one machine and its working method | |
US11980181B2 (en) | Agricultural sprayer active boom center frame positioning system | |
CN207099627U (en) | Ditching depth adjusting means for rear ditching no-tillage seeding machine | |
CN109270967B (en) | A semi-active control method for wind-induced vibration of fan tower | |
Xiao et al. | Design and experiment of fuzzy-PID based tillage depth control system for a self-propelled electric tiller | |
CN114165502B (en) | Automatic control method and system for double-bud sugarcane section transverse planter tillage depth | |
CN105874954A (en) | Mechanized farming process | |
CN207305306U (en) | Dark pine soil preparation combined operation machine operation quality measurement and control system | |
CN118418637A (en) | Vehicle suspension control method, device, system, electronic device and storage medium thereof | |
CN108684234B (en) | Air pressure self-excitation type vibration subsoiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |