CN107180439A - A kind of colour cast feature extraction and colour cast detection method based on Lab chrominance spaces - Google Patents
A kind of colour cast feature extraction and colour cast detection method based on Lab chrominance spaces Download PDFInfo
- Publication number
- CN107180439A CN107180439A CN201610559667.4A CN201610559667A CN107180439A CN 107180439 A CN107180439 A CN 107180439A CN 201610559667 A CN201610559667 A CN 201610559667A CN 107180439 A CN107180439 A CN 107180439A
- Authority
- CN
- China
- Prior art keywords
- histogram
- color shift
- image
- color
- feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Facsimile Image Signal Circuits (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于Lab色度空间的色偏特征提取和色偏检测方法,色偏特征提取方法包括:一)定义在高度方向上的色偏特征h、定义NNO区域色偏特征变化率、定义亮度通道的色偏特征,二)提取色偏特征h和亮度通道的色偏特征;色偏检测方法包括:1)根据公式计算色度直方图在ab平面上的等价圆特征u和σ;2)执行“初步色偏检测”流程;3)执行“无色偏图像再检测”流程等。本发明更加全面地考虑了色图直方图在高度方向上的峰值分布特性,并进一步考虑到色偏特征在原图像和NNO区域中的变化规律以及色偏特征在亮度通道的聚集分布特性,弥补了现有方法在色偏特征的定义和提取方面的不足,提高了色偏检测精度。
The invention discloses a color shift feature extraction and color shift detection method based on Lab chromaticity space. The color shift feature extraction method includes: 1) defining the color shift feature h in the height direction and defining the change rate of the color shift feature in the NNO region , define the color shift feature of the brightness channel, 2) extract the color shift feature h of the color shift feature h and the color shift feature of the brightness channel; the color shift detection method includes: 1) calculate the equivalent circle feature u and σ; 2) Execute the "preliminary color shift detection"process; 3) execute the "no color shift image re-detection" process, etc. The present invention more comprehensively considers the peak distribution characteristics of the color map histogram in the height direction, and further considers the change rule of the color shift feature in the original image and the NNO area and the aggregation and distribution characteristics of the color shift feature in the brightness channel, making up for the The deficiencies of existing methods in the definition and extraction of color shift features improve the accuracy of color shift detection.
Description
技术领域technical field
本发明涉及彩色图像的色偏检测技术领域,特别涉及一种色偏特征提取和色偏检测的方法。The invention relates to the technical field of color shift detection of color images, in particular to a color shift feature extraction and color shift detection method.
背景技术Background technique
人类观察世界时,视觉神经对颜色、形状、表面质感及细节特征的反映逐渐减弱。并且,与文字和声音相比,彩色图像具有更加丰富的内涵和更强大的表现能力。因此,颜色是获取客观世界信息最为重要的特征线索,也是直接衡量设备成像质量的关键因素。然而,当场景环境光源、物体本身的反射特性或采集设备的感光系数发生改变时,成像设备所记录下的图像中物体的颜色值相对其本身颜色发生偏离,整幅图像产生色偏现象。这不仅影响图像的视觉效果,同时会对图像分割、目标识别等后续处理产生影响,因此色偏检测和色偏校正往往是彩色图像处理及机器视觉领域不可缺少的一个环节。When humans observe the world, the visual nerve's response to color, shape, surface texture and detailed features gradually weakens. Moreover, compared with text and sound, color images have richer connotations and stronger expressive capabilities. Therefore, color is the most important characteristic clue to obtain objective world information, and it is also a key factor to directly measure the imaging quality of equipment. However, when the ambient light source of the scene, the reflection characteristics of the object itself, or the light sensitivity coefficient of the acquisition device change, the color value of the object in the image recorded by the imaging device deviates from its own color, and the entire image produces a color shift phenomenon. This not only affects the visual effect of the image, but also affects subsequent processing such as image segmentation and target recognition. Therefore, color shift detection and color shift correction are often an indispensable link in the field of color image processing and machine vision.
最为经典的色偏检测是基于颜色恒常性的一类方法。此类方法的一般过程是首先估计场景的光照,然后通过von Kries模型把未知光照下拍摄的输入图像转换到标准光照下,从而达到色偏检测及校正的目的。其中,White Patch算法假设场景中永远存在一个白色表面,采用图像中RGB颜色通道的最大值作为估计光源。Grey World算法假设场景中颜色信息足够丰富且所有物理表面的反射是无色差(即灰色)的,通过对图像中RGB颜色通道求平均值得到估计光源。Shades of Grey算法假设在经过非线性的可逆变换后整个场景仍然无色差,利用Minkowski-norm距离代替简单求平均值,忽略了像素间的局部相关性。基于贝叶斯推理的颜色恒常性算法通过建立表面反射率和图像光照之间的模型,从图像颜色分布的后验概率中估计出图像的光照。基于神经网络或SVM的颜色 恒常性算法,则分别利用多层神经网络或SVR建立场景光照分布与图像颜色分布之间的映射模型,并根据该模型预测新的输入图像的光照。但是,此类基于颜色恒常性的色偏检测方法,通常只适应于满足特定场景假设的应用环境,如果假设条件无法满足,则算法适应性难以达到预期的效果。The most classic color shift detection is a class of methods based on color constancy. The general process of this type of method is to first estimate the illumination of the scene, and then convert the input image taken under unknown illumination to standard illumination through the von Kries model, so as to achieve the purpose of color cast detection and correction. Among them, the White Patch algorithm assumes that there is always a white surface in the scene, and uses the maximum value of the RGB color channel in the image as the estimated light source. The Gray World algorithm assumes that the color information in the scene is rich enough and the reflection of all physical surfaces is color-free (ie gray), and the estimated light source is obtained by averaging the RGB color channels in the image. The Shades of Gray algorithm assumes that the entire scene is still color-free after a nonlinear reversible transformation, and uses the Minkowski-norm distance instead of simple averaging, ignoring the local correlation between pixels. The color constancy algorithm based on Bayesian inference estimates the image illumination from the posterior probability of the image color distribution by establishing a model between surface reflectance and image illumination. The color constancy algorithm based on neural network or SVM uses multi-layer neural network or SVR to establish a mapping model between scene illumination distribution and image color distribution, and predicts the illumination of a new input image according to the model. However, such color cast detection methods based on color constancy are usually only suitable for application environments that satisfy specific scene assumptions. If the assumption conditions cannot be met, the algorithm adaptability is difficult to achieve the desired effect.
近年来,考虑到彩色图像的RGB颜色通道之间具有一定的矢量相关性,一类基于Lab色度直方图的色偏检测算法得到了广泛应用。F.Gasparini等对此类算法进行了完整的描述。首先,通过RGB到Lab颜色空间的转换,得到L通道的亮度分量和ab通道的色度分量。然后,采用基于等价圆和NNO区域的方法,对色度直方图的分布特性进行统计,实现色偏特征定量计算和色偏检测。类似地,李峰和Chen等运用Lab颜色空间的二维色度分布特征判断色偏和非色偏图像,并提出一种高斯混合聚类模型对本质色偏和真实色偏进行区分。相对于基于颜色恒常性的色偏检测方法,此类方法无需场景假设,具有更好的场景适应能力,且能对本质色偏和真实色偏进行区分。In recent years, considering that there is a certain vector correlation between the RGB color channels of color images, a class of color shift detection algorithms based on Lab chromaticity histograms has been widely used. A complete description of such algorithms is given by F. Gasparini et al. First, the brightness component of the L channel and the chrominance component of the ab channel are obtained through the conversion of RGB to Lab color space. Then, using the method based on the equivalent circle and NNO area, the distribution characteristics of the chromaticity histogram are counted, and the quantitative calculation of the color shift feature and the detection of the color shift are realized. Similarly, Li Feng and Chen et al. used the two-dimensional chromaticity distribution characteristics of the Lab color space to judge color shift and non-color shift images, and proposed a Gaussian mixture clustering model to distinguish essential color shift from real color shift. Compared with the color shift detection method based on color constancy, this method does not require scene assumptions, has better scene adaptability, and can distinguish between essential color shift and real color shift.
但是,在基于等价圆的色偏特征提取中,实质上只考虑了色度直方图在ab平面上的整体投影位置信息,这使得此类方法在色偏特征的定义和提取方面仍然显得粗糙和不足,从而直接导致了现有的Lab色偏检测算法仍然具有较低的色偏检测精度。However, in the extraction of color shift features based on equivalent circles, only the overall projection position information of the chromaticity histogram on the ab plane is considered, which makes such methods still rough in the definition and extraction of color shift features And insufficient, thus directly lead to the existing Lab color shift detection algorithm still has low color shift detection accuracy.
发明内容Contents of the invention
有鉴于此,本发明的目的是提供一种基于Lab色度空间的色偏特征提取和色偏检测方法,其更加全面地考虑了色图直方图在高度方向上的峰值分布特性,并进一步考虑到色偏特征在原图像和NNO区域中的变化规律以及色偏特征在亮度通道的聚集分布特性,以解决现有基于Lab色度直方图的色偏检测算法在色偏特征的定义和提取方面仍然存在不足,从而直接导致色偏检测精度较低的技术问题。In view of this, the purpose of the present invention is to provide a color shift feature extraction and color shift detection method based on Lab chromaticity space, which more comprehensively considers the peak distribution characteristics of the color map histogram in the height direction, and further considers To solve the problem that the existing color shift detection algorithm based on the Lab chromaticity histogram is still in the definition and extraction of color shift features. There are deficiencies, which directly lead to the technical problem of low accuracy of color shift detection.
本发明基于Lab色度空间的色偏特征提取方法,包括以下步骤:The present invention is based on the color shift feature extraction method of Lab chromaticity space, comprises the following steps:
一)定义色偏特征1) Define the color cast feature
1)定义a、b通道的二维色度直方图分布函数为:1) Define the two-dimensional chromaticity histogram distribution function of channel a and b as:
H=F(a,b)H=F(a,b)
其中,a,b∈[-128,127]分别为a、b颜色通道的色度值,H为图像中对应于色度值(a,b)的像素点个数,该分布函数F(·)是一个三维空间分布函数;Among them, a, b ∈ [-128, 127] are the chromaticity values of a and b color channels respectively, H is the number of pixels corresponding to the chromaticity value (a, b) in the image, and the distribution function F( ) is A three-dimensional spatial distribution function;
2)定义色度直方图在高度方向上的色偏特征h为:2) Define the color shift feature h of the chromaticity histogram in the height direction as:
其中,和hσ分别表示色度直方图在高度方向上的均值和方差;in, and h σ represent the mean and variance of the chromaticity histogram in the height direction, respectively;
3)定义NNO区域色偏特征变化率:3) Define the change rate of the color shift feature in the NNO area:
其中,uNNO和σNNO为NNO区域色度直方图在ab平面上的等价圆特征,hNNO为NNO区域色度直方图在高度方向上的色偏特征,则ucr、σcr和hcr分别表示色度直方图的等价圆特征和高度特征在原图像和NNO区域图像之间的相对变化率;Among them, u NNO and σ NNO are the equivalent circle features of the chromaticity histogram of the NNO area on the ab plane, h NNO is the color shift feature of the chromaticity histogram of the NNO area in the height direction, then u cr , σ cr and h cr represents the relative change rate of the equivalent circle feature and height feature of the chromaticity histogram between the original image and the NNO area image;
4)基于高斯分布函数的亮度直方图包络拟合算法,定义拟合曲线与包络曲线的拟合程度R、以及拟合函数的半宽度c作为亮度通道的色偏特征,4) The brightness histogram envelope fitting algorithm based on the Gaussian distribution function, defining the fitting degree R between the fitting curve and the envelope curve, and the half-width c of the fitting function as the color shift feature of the brightness channel,
所述高斯分布函数为:The Gaussian distribution function is:
其中,a、b和c分别表示高斯分布的峰值大小、峰值中心位置和半宽度信息,x和y分别表示自变量和函数值;Among them, a, b, and c represent the peak size, peak center position, and half-width information of the Gaussian distribution, respectively, and x and y represent independent variables and function values, respectively;
二)提取色偏特征2) Extracting color shift features
1)提取色偏特征h,包括以下步骤:1) Extracting the color shift feature h, comprising the following steps:
a)将大小不同的彩色图像规格化为大小相同的待测原始图像I1(i,j);a) Normalize color images of different sizes into original images I 1 (i,j) of the same size to be tested;
b)计算规格化图像的色度直方图高度矩阵H0:b) Calculate the chromaticity histogram height matrix H 0 of the normalized image:
其中,n=256表示a、b通道的色度等级,hij=F(i-129,j-129)表示二维色度直方图分布函数中对应于色度分量a=i-129,b=j-129的像素点个数;Among them, n=256 represents the chromaticity level of a, b channel, h ij =F(i-129, j-129) represents that in the two-dimensional chromaticity histogram distribution function corresponds to the chromaticity component a=i-129, b = the number of pixels of j-129;
c)对H0进行滤波操作,以消除色度直方图中图像噪声及峰值较小元素的影响:c ) Filter H0 to eliminate the influence of image noise and elements with smaller peaks in the chroma histogram:
H1=H0,if hij<T1M1then hij=0H 1 =H 0 ,if h ij <T 1 M 1 then h ij =0
其中,H1为滤波后的色度直方图高度矩阵,T1为滤波阈值,M1为高度矩阵H0的均值:Among them, H 1 is the height matrix of the filtered chroma histogram, T 1 is the filtering threshold, and M 1 is the mean value of the height matrix H 0 :
d)计算色度直方图在高度方向上的均值和方差hσ:d) Calculate the mean value of the chromaticity histogram in the height direction and variance h σ :
其中,p为H1中8邻域连通区域的个数,Ωc,c=1,…,p表示第c个局部连通域,Sc为该区域的连通面积,为该区域的局部高度均值;Among them, p is the number of 8-neighborhood connected regions in H 1 , Ω c , c=1,...,p represents the cth local connected region, S c is the connected area of this region, is the local height mean of the area;
2)提取亮度通道的色偏特征,包括以下步骤:2) Extracting the color shift feature of the brightness channel, comprising the following steps:
a)计算规格化图像的L通道直方图矩阵N0,a) Calculate the L-channel histogram matrix N 0 of the normalized image,
N0=[n0 n1 … n100]N 0 =[n 0 n 1 ... n 100 ]
其中,ni=f(i),i=0~100表示对应于亮度L=i的像素点个数,f(·)为亮度直方图函数;Among them, n i =f(i), i=0~100 represents the number of pixels corresponding to the brightness L=i, f(·) is the brightness histogram function;
b)对亮度直方图N0进行滤波操作,以消除亮度直方图中图像噪声及峰值 较小元素的影响,得到滤波后的L分量直方图矩阵N1:b) Perform filtering operation on the brightness histogram N 0 to eliminate the influence of image noise and elements with smaller peak values in the brightness histogram, and obtain the filtered L component histogram matrix N 1 :
N1=N0,if ni<T2S2then ni=0N 1 =N 0 ,if n i <T 2 S 2 then n i =0
其中,S2=max(ni)为亮度直方图矩阵N0中的最大元素,T2为滤波阈值;Wherein, S 2 =max(n i ) is the maximum element in the brightness histogram matrix N 0 , and T 2 is the filtering threshold;
c)采用步骤四)中高斯分布函数,基于最小二乘算法,对滤波后亮度直方图N1的包络数据(x=i,y=ni),i=0~100进行曲线拟合,得到拟合后的L分量直方图矩阵N2:c) Using the Gaussian distribution function in step 4), based on the least squares algorithm, perform curve fitting on the envelope data (x=i, y=n i ) of the filtered brightness histogram N 1 , i=0~100, Get the fitted L component histogram matrix N 2 :
其中,表示对应于亮度L=i的拟合结果,g(·)即为步骤四)中描述的高斯分布函数,其参数a、b和c此时均已通过拟合算法求得;in, Indicates the fitting result corresponding to the brightness L=i, g ( ) is the Gaussian distribution function described in step 4), and its parameters a, b and c have all been obtained by the fitting algorithm at this moment;
d)根据滤波后和拟合后的L分量直方图矩阵N1和N2,采用决定系数计算两者的拟合程度R:d) According to the filtered and fitted L component histogram matrices N 1 and N 2 , use the coefficient of determination to calculate the fitting degree R of the two:
其中,i=0~100表示L通道亮度等级,ni表示滤波后直方图矩阵N1中对应于亮度L=i的样本值,表示拟合后直方图矩阵N2中对应于亮度L=i的拟合值,为N1中所有元素的均值,R∈[0,1]表示了拟合值对样本值的联合逼近程度,R越接近1拟合精度越高。Wherein, i=0~100 represents the brightness level of the L channel, and n represents the sample value corresponding to the brightness L = i in the histogram matrix N after filtering, Indicates the fitting value corresponding to the brightness L=i in the histogram matrix N2 after fitting, is the mean value of all elements in N 1 , R∈[0,1] represents the joint approximation degree of the fitting value to the sample value, and the closer R is to 1, the higher the fitting accuracy is.
本发明还公开了一种基于Lab色度空间的色偏检测方法,包括以下步骤:The present invention also discloses a color shift detection method based on Lab chromaticity space, comprising the following steps:
步骤1):step 1):
根据公式(1):公式(2):C=(ua,ub),和公式(3):计算色度直方图在ab平面上的等价圆特征u和σ; 公式(1)中F(a,b)是色度直方图分布函数,k=a,b表示在a轴或b轴上进行积分,uk和σk分别为色度直方图在k轴上的均值和方差;公式(2)中C为等价圆的圆心,σ为等价圆的半径;According to formula (1): Formula (2): C=(u a ,u b ), and formula (3): Calculate the equivalent circle features u and σ of the chromaticity histogram on the ab plane; F(a, b) in the formula (1) is the chromaticity histogram distribution function, k=a, b represents on the a axis or the b axis Integrate, u k and σ k are the mean and variance of the chromaticity histogram on the k-axis respectively; C in formula (2) is the center of the equivalent circle, and σ is the radius of the equivalent circle;
步骤2):Step 2):
执行“初步色偏检测”流程:若满足公式(4):(D>10and Dσ>0.6)or(Dσ>1.5)的条件,图像归为“色偏”,转步骤5);否则,图像归为“无色偏”,转步骤3);Execute the "preliminary color shift detection" process: if the conditions of formula (4): (D>10and D σ >0.6)or(D σ >1.5) are met, the image is classified as "color shift" and go to step 5); otherwise, The image is classified as "no color cast", go to step 3);
步骤3):Step 3):
执行“无色偏图像再检测”流程:根据公式(6):判据,图像分为“色偏”、“无色偏”和“无法识别”三类;对于“无法识别”图像,转步骤4);对于“色偏”图像,转步骤5)。Execute the process of "image re-detection without color shift": according to the formula (6): Criterion, images are divided into three categories: "color shift", "no color shift" and "unrecognizable"; for "unrecognizable" images, go to step 4); for "color shift" images, go to step 5).
步骤4):Step 4):
执行“无法识别图像再检测”流程:Execute the "unrecognizable image re-detection" process:
1)根据权利要求1中所述的特征提取算法,计算色度直方图在高度方向上的色偏特征h;1) according to the feature extraction algorithm described in claim 1, calculate the color shift feature h of the chromaticity histogram in the height direction;
2)根据权利要求1中所述的特征提取算法,计算色度通道在NNO区域的特征变化率ucr、σcr和hcr;2) according to the feature extraction algorithm described in claim 1, calculate the characteristic rate of change u cr , σ cr and h cr of the chroma channel in the NNO region;
3)采用以下判据,对无法识别图像进行再检测:3) Use the following criteria to retest the unrecognizable image:
步骤5):Step 5):
执行“色偏图像再检测”流程:Execute the "color shift image re-detection" process:
1)根据权利要求1所述的特征提取算法,计算亮度通道的色偏特征R和c;1) according to the feature extraction algorithm described in claim 1, calculate the color cast feature R and c of brightness channel;
2)采用以下判据,对色偏图像进行再检测:2) Use the following criteria to retest the color cast image:
本发明的有益效果:Beneficial effects of the present invention:
本发明基于Lab色度空间的色偏特征提取和色偏检测方法,在经典的Lab色偏检测算法基础上,更加全面地考虑了色图直方图在高度方向上的峰值分布特性,并进一步考虑到色偏特征在原图像和NNO区域中的变化规律以及色偏特征在亮度通道的聚集分布特性,弥补了现有方法在色偏特征的定义和提取方面的不足,提高了色偏检测精度。The present invention is based on the color shift feature extraction and color shift detection method in Lab chromaticity space, and on the basis of the classic Lab color shift detection algorithm, more comprehensively considers the peak distribution characteristics of the color map histogram in the height direction, and further considers The change law of color shift features in the original image and NNO area and the aggregation and distribution characteristics of color shift features in the brightness channel make up for the deficiencies of existing methods in the definition and extraction of color shift features, and improve the accuracy of color shift detection.
附图说明Description of drawings
图1为实施例中基于Lab色度空间的色偏检测方法流程图。FIG. 1 is a flowchart of a color shift detection method based on Lab chromaticity space in an embodiment.
具体实施方式detailed description
下面对本发明作进一步描述。The present invention will be further described below.
基于Lab色度直方图的色偏检测算法,其核心思想是从图像颜色信息的分布特性出发,考察颜色之间的矢量相关性。为了定量分析色度直方图的分布特性,经典Lab色偏检测算法通过引入等价圆和NNO区域,实现色偏特征提取和色偏检测。经典Lab色偏检测算法流程如下:The core idea of the color shift detection algorithm based on the Lab chromaticity histogram is to examine the vector correlation between colors from the distribution characteristics of image color information. In order to quantitatively analyze the distribution characteristics of the chromaticity histogram, the classic Lab color shift detection algorithm realizes color shift feature extraction and color shift detection by introducing equivalent circles and NNO regions. The classic Lab color shift detection algorithm flow is as follows:
步骤1:对待检测的彩色图像,进行RGB到Lab颜色空间转换,得到图像亮度分量L和色度分量a、b。Step 1: Convert the color image to be detected from RGB to Lab color space to obtain image brightness component L and chrominance components a, b.
步骤2:对色度分量的直方图进行统计,根据其分布特性可以发现以下理论依据:无色偏图像的色度直方图应表现为多个离散的峰值,且大多数峰值应分布在中性点(a=0,b=0)周围;而有色偏图像的色度直方图表现为包含零个或一个集中的峰值,且该峰值偏离中性点。Step 2: Perform statistics on the histogram of the chroma component, and the following theoretical basis can be found according to its distribution characteristics: the chroma histogram of an image without color shift should appear as multiple discrete peaks, and most of the peaks should be distributed in the neutral Around the point (a=0, b=0); while the chromaticity histogram of the image with color shift appears to contain zero or one concentrated peak, and the peak deviates from the neutral point.
步骤3:为了定量描述色度直方图的集中程度、及其峰值分布与中性点的距离关系,引入等价圆对色度直方图特征进行计算。Step 3: In order to quantitatively describe the degree of concentration of the chromaticity histogram and the distance relationship between the peak distribution and the neutral point, an equivalent circle is introduced to calculate the characteristics of the chromaticity histogram.
其中,F(a,b)是色度直方图分布函数,k=a,b表示在a轴或b轴上进行积分,uk和σk分别为色度直方图在k轴上的均值和方差。然后根据式(1),计算等价圆的圆心C和半径σ:Among them, F(a, b) is the chromaticity histogram distribution function, k=a, b means to integrate on the a-axis or b-axis, u k and σ k are the mean value and variance. Then according to formula (1), calculate the center C and radius σ of the equivalent circle:
C=(ua,ub), C=(u a , u b ),
在此基础上,定义如下等价圆色偏特征:On this basis, the following equivalent circular color shift features are defined:
其中,u为圆心到中性点(a=0,b=0)的距离,D为等价圆外侧到中性点的距离,Dσ表示该等价圆偏离中性点的程度。Dσ值越大,表明该图像的色度直方图偏离中性点越严重或其峰值聚集性越强,即色偏程度越严重。Among them, u is the distance from the center of the circle to the neutral point (a=0, b=0), D is the distance from the outside of the equivalent circle to the neutral point, and D σ indicates the degree to which the equivalent circle deviates from the neutral point. The larger the D σ value, the more serious the chromaticity histogram of the image deviates from the neutral point or the stronger the peak aggregation, that is, the more serious the color shift.
步骤4:对色度直方图的等价圆特征进行分析,当满足如下条件时,Step 4: Analyze the equivalent circle feature of the chromaticity histogram, when the following conditions are met,
(D>10and Dσ>0.6)or(Dσ>1.5) (4)(D>10and Dσ >0.6)or( Dσ >1.5) (4)
认为色度直方图是偏离中性点且峰值聚集的,初步归为“色偏图像”;否则,初步归为“无色偏图像”。It is considered that the chromaticity histogram deviates from the neutral point and the peaks are gathered, and it is initially classified as a "color cast image"; otherwise, it is initially classified as a "no color cast image".
步骤5:进一步考虑以下理论依据:图像场景中的无色差表面(标准白光下的灰色表面,即彩色图像的中性灰区域)能够完全反映场景中入射光照的颜色,因此通过对场景中NNO区域的分析,就能精确的估计出图像的光照偏移情况。求取图像NNO区域的方法如下:Step 5: Further consider the following theoretical basis: the colorless surface in the image scene (the gray surface under standard white light, that is, the neutral gray area of the color image) can completely reflect the color of the incident light in the scene, so by analyzing the NNO area in the scene The analysis can accurately estimate the illumination offset of the image. The method of obtaining the NNO area of the image is as follows:
且d非孤立 (5) and d is not isolated (5)
其中,L,a,b分别为图像在Lab颜色空间的三个分量,d为色度半径最大值,为了防止噪声干扰,限制d所在像素点以及每个NNO区域像素点INNO(i,j)为非孤立点。Among them, L, a, b are the three components of the image in the Lab color space, and d is the maximum value of the chromaticity radius. In order to prevent noise interference, the pixel point where d is located and the pixel point I NNO (i, j ) is a non-isolated point.
步骤6:对于步骤4中初步归为“无色偏”的图像,提取其NNO区域图像进行再次检测,采用式(1)-式(3)相同的方法求解其NNO区域图像的色偏特征DσNNO,并执行以下判断:Step 6: For the image initially classified as "no color shift" in step 4, extract its NNO region image for re-detection, and use the same method as formula (1) - formula (3) to solve the color shift feature D of its NNO region image σNNO , and perform the following judgments:
步骤7:对于步骤4和步骤6中归为“色偏”的图像,采用聚类学习算法进行分类识别:若图像场景中包含海洋、蓝天、草地等主色调颜色的区域面积达到图像总面积的40%以上,归为“本质色偏”;否则,认为是“真实色偏”。Step 7: For the images classified as "color cast" in Step 4 and Step 6, use cluster learning algorithm to classify and identify: if the area of the image scene containing the main color of the ocean, blue sky, grass, etc. reaches the total area of the image More than 40%, it is classified as "essential color cast"; otherwise, it is considered as "true color cast".
显然,Lab色偏检测算法的准确性,依赖于对Lab颜色空间分布特性的矢量相关性分析和定量计算。因此,本发明主要针对基于Lab色度直方图的色偏特征及其特征提取算法进行改进,在新的色偏特征和经典Lab色偏检测算法基础上,再提出完整的色偏检测改进算法。Obviously, the accuracy of the Lab color shift detection algorithm depends on the vector correlation analysis and quantitative calculation of the distribution characteristics of the Lab color space. Therefore, the present invention mainly improves the color shift feature based on the Lab chromaticity histogram and its feature extraction algorithm, and proposes a complete improved color shift detection algorithm based on the new color shift feature and the classic Lab color shift detection algorithm.
本实施例基于Lab色度空间的色偏特征提取方法包括以下步骤:In this embodiment, the color shift feature extraction method based on Lab chromaticity space includes the following steps:
一)定义a、b通道的二维色度直方图分布函数为:1) Define the distribution function of the two-dimensional chromaticity histogram of channels a and b as:
H=F(a,b) (7)H=F(a,b) (7)
其中,a,b∈[-128,127]分别为a、b颜色通道的色度值,H为图像中对应于色度值(a,b)的像素点个数,该分布函数F(·)是一个三维空间分布函数。在经典的Lab色偏检测算法中,等价圆是从色度直方图分布中提取色偏特征的唯一依据,虽然等价圆能够较好的描述色度直方图的整体位置(圆心到中性点的距离u)和 整体聚集(半径σ)等分布特性,但是,在将色图直方图的三维空间分布投影映射到等价圆所在的二维ab平面这一过程中,显然丢失了直方图高度信息这一重要的特征线索。Among them, a, b ∈ [-128, 127] are the chromaticity values of a and b color channels respectively, H is the number of pixels corresponding to the chromaticity value (a, b) in the image, and the distribution function F( ) is A three-dimensional spatial distribution function. In the classic Lab color shift detection algorithm, the equivalent circle is the only basis for extracting color shift features from the chromaticity histogram distribution, although the equivalent circle can better describe the overall position of the chromaticity histogram (center to neutral). However, in the process of mapping the three-dimensional spatial distribution projection of the color map histogram to the two-dimensional ab plane where the equivalent circle is located, the histogram is obviously lost Height information is an important feature clue.
在研究中发现,色度直方图在高度方向上的信息,也能很好的反映色偏图像和非色偏图像的差异程度。其理论依据在于:对于无色偏图像,由于图像中各种色度分量较为丰富,呈现较为明显的分散性,因此其主色调和其它次要色调在高度方向上的分布相差较小;而对于色偏图像,由于色度分量呈现明显的聚集性,因此其主色调和其它次要色调在高度方向上的分布差异较大。In the research, it is found that the information in the height direction of the chromaticity histogram can also well reflect the degree of difference between the color shift image and the non-color shift image. The theoretical basis is: for an image without color shift, because the various chroma components in the image are relatively rich and present a more obvious dispersion, so the distribution of the main hue and other secondary hues in the height direction has a small difference; while for In the color cast image, because the chroma components show obvious aggregation, the distribution of the main hue and other secondary hues in the height direction is quite different.
二)为了定量描述和计算色度直方图在高度方向上的大小分布以及差异程度,本实施例定义色度直方图在高度方向上的色偏特征h为:2) In order to quantitatively describe and calculate the size distribution and degree of difference of the chromaticity histogram in the height direction, this embodiment defines the color shift feature h of the chromaticity histogram in the height direction as:
其中,和hσ分别表示色度直方图在高度方向上的均值和方差。in, and h σ denote the mean and variance of the chromaticity histogram in the height direction, respectively.
提取色偏特征h的具体算法描述如下:The specific algorithm for extracting the color shift feature h is described as follows:
步骤1:将大小不同的彩色图像规格化为大小相同的待测原始图像I1(i,j),这样处理后的图像虽然从视觉效果上看可能产生畸变,但其颜色分布的统计特性并未发生变化。Step 1: Normalize the color images of different sizes into the original image I 1 (i,j) of the same size to be tested. Although the processed image may be distorted visually, the statistical characteristics of its color distribution are not No change.
步骤2:计算规格化图像的色度直方图高度矩阵H0:Step 2: Calculate the chromaticity histogram height matrix H 0 of the normalized image:
其中,n=256表示a、b通道的色度等级,hij=F(i-129,j-129)表示二维色度直方图分布函数中对应于色度分量a=i-129,b=j-129的像素点个数。Among them, n=256 represents the chromaticity level of a, b channel, h ij =F(i-129, j-129) represents that in the two-dimensional chromaticity histogram distribution function corresponds to the chromaticity component a=i-129, b =The number of pixels of j-129.
步骤3:对H0进行滤波操作,以消除色度直方图中图像噪声及峰值较小元素的影响:Step 3: Perform filtering operation on H 0 to eliminate the influence of image noise and elements with smaller peaks in the chroma histogram:
H1=H0,if hij<T1M1then hij=0 (10)H 1 =H 0 ,if h ij <T 1 M 1 then h ij =0 (10)
其中,H1为滤波后的色度直方图高度矩阵,T1为滤波阈值,M1为高度矩阵H0的 均值:Among them, H 1 is the height matrix of the filtered chroma histogram, T 1 is the filtering threshold, and M 1 is the mean value of the height matrix H 0 :
步骤4:计算色度直方图在高度方向上的均值和方差hσ:Step 4: Calculate the mean value of the chromaticity histogram in the height direction and variance h σ :
其中,p为H1中8邻域连通区域的个数,Ωc,c=1,…,p表示第c个局部连通域,Sc为该区域的连通面积,为该区域的局部高度均值。Among them, p is the number of 8-neighborhood connected regions in H 1 , Ω c , c=1,...,p represents the cth local connected region, S c is the connected area of this region, is the local mean height of the region.
三)在经典Lab色偏检测算法中,仅考虑了NNO区域图像的二维色度直方图等价圆的参数特性,并没有结合原图像的相关参数进行特征变化前后的定量分析。因此,在对初步判定为“无色偏图像”的NNO区域进行再检测的过程中,很容易发生误判现象。3) In the classic Lab color shift detection algorithm, only the parameter characteristics of the equivalent circle of the two-dimensional chromaticity histogram of the NNO region image are considered, and the quantitative analysis before and after the feature change is not combined with the relevant parameters of the original image. Therefore, in the process of re-detecting the NNO area initially judged as "no color shift image", misjudgment is easy to occur.
在我们的研究中发现,色度直方图在等价圆平面和高度方向上的色偏特征,如果结合原图像与NNO区域图像对特征变化规律进行定量分析,能更好地反映色偏图像和非色偏图像的差异程度。其理论依据在于:对于无色偏图像,其NNO区域的等价圆半径减小幅度较大且更加靠近中性点,其NNO区域的色度直方图在高度方向上的特征变化幅度较小;而对于色偏图像,其NNO区域的等价圆半径减小幅度较小且更加远离中性点,其NNO区域的色度直方图在高度方向上的特征变化幅度较大。为了定量描述和计算色偏特征在原图像和NNO区域图像之间的变化规律,本实施例进一步定义如下的NNO区域色偏特征变化率:In our research, we found that the color shift characteristics of the chromaticity histogram in the equivalent circular plane and height direction can better reflect the color shift image and The degree of variance in non-color cast images. The theoretical basis is: for an image without color shift, the radius of the equivalent circle in the NNO area decreases greatly and is closer to the neutral point, and the characteristic change range of the chromaticity histogram in the NNO area in the height direction is small; For the color cast image, the radius of the equivalent circle in the NNO area decreases less and is farther away from the neutral point, and the characteristic change of the chromaticity histogram in the NNO area in the height direction is larger. In order to quantitatively describe and calculate the change rule of the color shift feature between the original image and the NNO area image, this embodiment further defines the following change rate of the color shift feature in the NNO area:
其中,uNNO和σNNO为NNO区域色度直方图在ab平面上的等价圆特征,hNNO为 NNO区域色度直方图在高度方向上的色偏特征,则ucr、σcr和hcr分别表示色度直方图的等价圆特征和高度特征在原图像和NNO区域图像之间的相对变化率。Among them, u NNO and σ NNO are the equivalent circle features of the chromaticity histogram of the NNO area on the ab plane, h NNO is the color shift feature of the chromaticity histogram of the NNO area in the height direction, then u cr , σ cr and h cr represents the relative rate of change between the original image and the NNO region image of the equivalent circle feature and height feature of the chromaticity histogram, respectively.
四)在经典Lab色偏检测算法中,只考虑了二维色度分量a、b的分布特性,并未考虑亮度分量L的通道特性。在我们的研究中发现,Lab色度空间中的L分量能较好的反映本质色偏和真实色偏之间的差异程度:对于本质色偏图像,其L通道直方图呈现出区域性的单峰聚集分布;对于真实色偏图像,其L通道直方图呈现出较为均匀的离散分布。4) In the classic Lab color shift detection algorithm, only the distribution characteristics of the two-dimensional chroma components a and b are considered, and the channel characteristics of the luminance component L are not considered. In our research, we found that the L component in the Lab chromaticity space can better reflect the degree of difference between the essential color cast and the real color cast: for the essential color cast image, its L channel histogram presents a regional monotonous Peak aggregation distribution; for the real color cast image, its L channel histogram presents a relatively uniform discrete distribution.
考虑如下高斯分布函数:Consider the following Gaussian distribution function:
其中,a、b和c分别表示高斯分布的峰值大小、峰值中心位置和半宽度信息,x和y分别表示自变量和函数值。这一高斯分布函数也呈现出区域性的单峰聚集分布特性,且半宽度c越小,表示该高斯分布越聚集。Among them, a, b, and c represent the peak size, peak center position, and half-width information of the Gaussian distribution, respectively, and x and y represent independent variables and function values, respectively. This Gaussian distribution function also exhibits regional unimodal aggregation distribution characteristics, and the smaller the half-width c, the more aggregated the Gaussian distribution is.
为了定量描述和计算L通道直方图的分布特性,本实施例提出一种基于高斯分布的亮度直方图包络拟合算法,并定义拟合曲线与包络曲线的拟合程度R、以及拟合函数的半宽度c作为亮度通道的色偏特征。显然,拟合程度越高(R越大)且区域聚集性越好(c越小),表示L通道直方图的单峰聚集性越明显,所对应的彩色图像越可能属于本质色偏。In order to quantitatively describe and calculate the distribution characteristics of the L channel histogram, this embodiment proposes a Gaussian distribution-based brightness histogram envelope fitting algorithm, and defines the fitting degree R between the fitting curve and the envelope curve, and the fitting The half-width c of the function is used as the color shift characteristic of the luma channel. Obviously, the higher the fitting degree (the larger R) and the better the regional aggregation (the smaller c), the more obvious the unimodal aggregation of the L channel histogram, and the more likely the corresponding color image belongs to the essential color cast.
提取亮度通道的色偏特征的具体算法描述如下:The specific algorithm for extracting the color cast feature of the brightness channel is described as follows:
步骤1:计算规格化图像的L通道直方图矩阵N0,Step 1: Calculate the L-channel histogram matrix N 0 of the normalized image,
N0=[n0 n1 … n100] (15)N 0 =[n 0 n 1 ... n 100 ] (15)
其中,ni=f(i),i=0~100表示对应于亮度L=i的像素点个数,f(·)为亮度直方图函数。Wherein, n i =f(i), i=0-100 represents the number of pixels corresponding to the brightness L=i, and f(·) is a brightness histogram function.
步骤2:对亮度直方图N0进行滤波操作,以消除亮度直方图中图像噪声及峰值较小元素的影响,得到滤波后的L分量直方图矩阵N1:Step 2: Perform filtering operation on the brightness histogram N 0 to eliminate the influence of image noise and elements with smaller peaks in the brightness histogram, and obtain the filtered L component histogram matrix N 1 :
N1=N0,if ni<T2S2then ni=0 (16)N 1 =N 0 ,if n i <T 2 S 2 then n i =0 (16)
其中,S2=max(ni)为亮度直方图矩阵N0中的最大元素,T2为滤波阈值,本实施例取T2=0.2。Wherein, S 2 =max(n i ) is the maximum element in the luminance histogram matrix N 0 , and T 2 is the filtering threshold, and T 2 =0.2 in this embodiment.
步骤3:采用式(14)描述的高斯分布函数,基于最小二乘算法,对滤波后亮度直方图N1的包络数据(x=i,y=ni),i=0~100进行曲线拟合,得到拟合后的L分量直方图矩阵N2:Step 3: Using the Gaussian distribution function described in formula (14), based on the least squares algorithm, curve the envelope data (x=i, y=n i ) of the filtered brightness histogram N 1 , i=0~100 Fitting to get the fitted L component histogram matrix N 2 :
其中,表示对应于亮度L=i的拟合结果,g(·)即为式(14)描述的高斯分布函数,其参数a、b和c此时均已通过拟合算法求得。in, Indicates the fitting result corresponding to the brightness L=i, g(·) is the Gaussian distribution function described by formula (14), and its parameters a, b and c have been obtained by the fitting algorithm at this time.
步骤4:根据滤波后和拟合后的L分量直方图矩阵N1和N2,采用决定系数计算两者的拟合程度R:Step 4: According to the filtered and fitted L component histogram matrices N 1 and N 2 , use the coefficient of determination to calculate the fitting degree R of the two:
其中,i=0~100表示L通道亮度等级,ni表示滤波后直方图矩阵N1中对应于亮度L=i的样本值,表示拟合后直方图矩阵N2中对应于亮度L=i的拟合值,为N1中所有元素的均值,R∈[0,1]表示了拟合值对样本值的联合逼近程度,R越接近1拟合精度越高。Wherein, i=0~100 represents the brightness level of the L channel, and n represents the sample value corresponding to the brightness L = i in the histogram matrix N after filtering, Indicates the fitting value corresponding to the brightness L=i in the histogram matrix N2 after fitting, is the mean value of all elements in N 1 , R∈[0,1] represents the joint approximation degree of the fitting value to the sample value, and the closer R is to 1, the higher the fitting accuracy is.
本实施例基于Lab色度空间的色偏检测方法包括以下步骤:The color shift detection method based on the Lab chromaticity space in this embodiment includes the following steps:
步骤1:根据式(1)-(3),计算色度直方图在ab平面上的等价圆特征u和σ。Step 1: Calculate the equivalent circle features u and σ of the chromaticity histogram on the ab plane according to formulas (1)-(3).
步骤2:执行“初步色偏检测”流程:若满足式(4)条件,图像归为“色偏”,转步骤5;否则,图像归为“无色偏”,转步骤3。Step 2: Execute the "preliminary color shift detection" process: if the condition of formula (4) is met, the image is classified as "color shift" and go to step 5; otherwise, the image is classified as "no color shift" and go to step 3.
步骤3:执行“无色偏图像再检测”流程:根据式(6)判据,图像分为“色偏”、“无色偏”和“无法识别”三类;对于“无法识别”图像,转步骤4;对于“色偏”图像,转步骤5。Step 3: Execute the process of "re-detection of images without color shift": according to the criterion of formula (6), images are divided into three categories: "color shift", "no color shift" and "unrecognizable"; for "unrecognizable" images, Go to step 4; for the "color cast" image, go to step 5.
步骤4:执行“无法识别图像再检测”流程:Step 4: Execute the "unrecognizable image re-detection" process:
1)根据前述色偏特征h的提取算法,计算色度直方图在高度方向上的色偏 特征h;1) According to the extraction algorithm of the aforementioned color shift feature h, calculate the color shift feature h of the chromaticity histogram in the height direction;
2)根据前述亮度通道的色偏特征的特征提取算法,计算色度通道在NNO区域的特征变化率ucr、σcr和hcr;2) According to the feature extraction algorithm of the color shift feature of the aforementioned luma channel, calculate the feature change rates u cr , σ cr and h cr of the chroma channel in the NNO region;
3)采用以下判据,对无法识别图像进行再检测:3) Use the following criteria to retest the unrecognizable image:
步骤5:执行“色偏图像再检测”流程:Step 5: Execute the "color shift image re-detection" process:
1)根据前述亮度通道的色偏特征的特征提取算法,计算亮度通道的色偏特征R和c;1) According to the feature extraction algorithm of the color shift feature of the aforementioned brightness channel, calculate the color shift features R and c of the brightness channel;
2)采用以下判据,对色偏图像进行再检测:2) Use the following criteria to retest the color cast image:
本实施例中为了验证本发明所提出的色偏特征的有效性,构建了由480个彩色图像组成的测试数据集。其中,色偏和非色偏图像的数字分别为191和289。在这项实验中,首先使用本实施例中基于Lab色度空间的色偏特征提取方法来获得改进的色偏特征。然后,使用本实施例中基于Lab色度空间的色偏检测方法进行色偏检测。对于经典Lab色偏检测算法步骤6)中未被识别的图像,做如下处理从而获得更高的精确度:In this embodiment, in order to verify the effectiveness of the color shift feature proposed by the present invention, a test data set consisting of 480 color images is constructed. Among them, the numbers of color cast and non-color cast images are 191 and 289, respectively. In this experiment, the color shift feature extraction method based on the Lab chromaticity space in this embodiment is firstly used to obtain improved color shift features. Then, use the color shift detection method based on the Lab chromaticity space in this embodiment to detect the color shift. For the unrecognized images in step 6) of the classic Lab color shift detection algorithm, do the following processing to obtain higher accuracy:
从表一所列的检测结果可知,本发明所提出的色偏特征和特征提取方法都是可行的;此外,与经典的基于Lab的色偏检测算法相比,本发明提出的特征和检测方法具有更高的精确度。As can be seen from the detection results listed in Table 1, the color shift feature and feature extraction method proposed by the present invention are all feasible; in addition, compared with the classic color shift detection algorithm based on Lab, the feature and detection method proposed by the present invention with higher precision.
表一所有测试图像的检测结果Table 1. Detection results of all test images
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it is noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements without departing from the spirit and scope of the technical solution of the present invention shall be covered by the claims of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610559667.4A CN107180439B (en) | 2016-07-15 | 2016-07-15 | Color cast characteristic extraction and color cast detection method based on Lab chromaticity space |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610559667.4A CN107180439B (en) | 2016-07-15 | 2016-07-15 | Color cast characteristic extraction and color cast detection method based on Lab chromaticity space |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107180439A true CN107180439A (en) | 2017-09-19 |
CN107180439B CN107180439B (en) | 2020-02-04 |
Family
ID=59830522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610559667.4A Active CN107180439B (en) | 2016-07-15 | 2016-07-15 | Color cast characteristic extraction and color cast detection method based on Lab chromaticity space |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107180439B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110807739A (en) * | 2019-09-17 | 2020-02-18 | 中国科学院自动化研究所 | Image color feature processing method, system and device for target detection and storage medium |
CN111091532A (en) * | 2019-10-30 | 2020-05-01 | 中国资源卫星应用中心 | Remote sensing image color evaluation method and system based on multilayer perceptron |
CN111724396A (en) * | 2020-06-17 | 2020-09-29 | 泰康保险集团股份有限公司 | Image segmentation method and device, computer-readable storage medium and electronic device |
CN112184838A (en) * | 2020-10-09 | 2021-01-05 | 哈尔滨工程大学 | Multi-background camouflage pattern dominant color extraction method based on color correlation |
CN114136959A (en) * | 2021-11-27 | 2022-03-04 | 北京中医药大学 | A kind of urine color quantification method and classification standard |
CN114283210A (en) * | 2021-12-16 | 2022-04-05 | 珠海格力电器股份有限公司 | Image color cast detection method, system, device and storage medium |
CN114322833A (en) * | 2021-12-31 | 2022-04-12 | 中国科学院长春光学精密机械与物理研究所 | 3D reconstruction method of white light scanning interference based on pseudo-Wigner-Ville distribution |
CN114494842A (en) * | 2020-11-13 | 2022-05-13 | 苏州科瓴精密机械科技有限公司 | Method and system for identifying working area based on image and robot |
CN117524090A (en) * | 2023-12-08 | 2024-02-06 | 广州卓奥科技有限公司 | LED display color self-calibration method and system based on artificial intelligence |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110135200A1 (en) * | 2009-12-04 | 2011-06-09 | Chao-Ho Chen | Method for determining if an input image is a foggy image, method for determining a foggy level of an input image and cleaning method for foggy images |
CN103402117A (en) * | 2013-08-06 | 2013-11-20 | 夏东 | Method for detecting color cast of video image based on Lab chrominance space |
CN103500457A (en) * | 2013-10-23 | 2014-01-08 | 武汉东智科技有限公司 | Method of color cast detection of video image |
CN104168478A (en) * | 2014-07-29 | 2014-11-26 | 银江股份有限公司 | Video image off-color detection method based on Lab space and correlation function |
CN104202596A (en) * | 2014-09-17 | 2014-12-10 | 西安电子科技大学 | Image color-cast detection method and system applied to intelligent terminal |
-
2016
- 2016-07-15 CN CN201610559667.4A patent/CN107180439B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110135200A1 (en) * | 2009-12-04 | 2011-06-09 | Chao-Ho Chen | Method for determining if an input image is a foggy image, method for determining a foggy level of an input image and cleaning method for foggy images |
CN103402117A (en) * | 2013-08-06 | 2013-11-20 | 夏东 | Method for detecting color cast of video image based on Lab chrominance space |
CN103500457A (en) * | 2013-10-23 | 2014-01-08 | 武汉东智科技有限公司 | Method of color cast detection of video image |
CN104168478A (en) * | 2014-07-29 | 2014-11-26 | 银江股份有限公司 | Video image off-color detection method based on Lab space and correlation function |
CN104202596A (en) * | 2014-09-17 | 2014-12-10 | 西安电子科技大学 | Image color-cast detection method and system applied to intelligent terminal |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110807739A (en) * | 2019-09-17 | 2020-02-18 | 中国科学院自动化研究所 | Image color feature processing method, system and device for target detection and storage medium |
CN111091532A (en) * | 2019-10-30 | 2020-05-01 | 中国资源卫星应用中心 | Remote sensing image color evaluation method and system based on multilayer perceptron |
CN111724396A (en) * | 2020-06-17 | 2020-09-29 | 泰康保险集团股份有限公司 | Image segmentation method and device, computer-readable storage medium and electronic device |
CN112184838A (en) * | 2020-10-09 | 2021-01-05 | 哈尔滨工程大学 | Multi-background camouflage pattern dominant color extraction method based on color correlation |
CN114494842A (en) * | 2020-11-13 | 2022-05-13 | 苏州科瓴精密机械科技有限公司 | Method and system for identifying working area based on image and robot |
CN114136959A (en) * | 2021-11-27 | 2022-03-04 | 北京中医药大学 | A kind of urine color quantification method and classification standard |
CN114283210A (en) * | 2021-12-16 | 2022-04-05 | 珠海格力电器股份有限公司 | Image color cast detection method, system, device and storage medium |
CN114322833A (en) * | 2021-12-31 | 2022-04-12 | 中国科学院长春光学精密机械与物理研究所 | 3D reconstruction method of white light scanning interference based on pseudo-Wigner-Ville distribution |
CN114322833B (en) * | 2021-12-31 | 2022-09-06 | 中国科学院长春光学精密机械与物理研究所 | White light scanning interference three-dimensional reconstruction method based on pseudo Wigner-Ville distribution |
CN117524090A (en) * | 2023-12-08 | 2024-02-06 | 广州卓奥科技有限公司 | LED display color self-calibration method and system based on artificial intelligence |
CN117524090B (en) * | 2023-12-08 | 2024-06-21 | 广州卓奥科技有限公司 | LED display color self-calibration method and system based on artificial intelligence |
Also Published As
Publication number | Publication date |
---|---|
CN107180439B (en) | 2020-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107180439B (en) | Color cast characteristic extraction and color cast detection method based on Lab chromaticity space | |
CN108038456B (en) | Anti-deception method in face recognition system | |
CN111666834A (en) | Forest fire automatic monitoring and recognizing system and method based on image recognition technology | |
CN104599271B (en) | CIE Lab color space based gray threshold segmentation method | |
Yang et al. | Research on a skin color detection algorithm based on self-adaptive skin color model | |
Marcial-Basilio et al. | Detection of pornographic digital images | |
CN105893925A (en) | Human hand detection method based on complexion and device | |
CN108921857A (en) | A kind of video image focus area dividing method towards monitoring scene | |
CN118172608B (en) | Method and system for analyzing bacterial culture image of helicobacter pylori | |
Ding et al. | FCM image segmentation algorithm based on color space and spatial information | |
CN101364304A (en) | Shadow detection method based on color invariance and Gaussian model | |
CN112699760B (en) | Face target area detection method, device and equipment | |
Lionnie et al. | A comparison of human skin color detection for biometrie identification | |
CN113744326A (en) | Fire detection method based on seed region growth rule in YCRCB color space | |
SE538435C2 (en) | Method, device and computer program product for determining colour transforms between images comprising a plurality of image elements | |
CN108711160A (en) | A kind of Target Segmentation method based on HSI enhancement models | |
Zakir et al. | Road sign segmentation based on colour spaces: A Comparative Study | |
Naccari et al. | Natural scenes classification for color enhancement | |
Wang et al. | Crop disease leaf image segmentation method based on color features | |
Berbar | Novel colors correction approaches for natural scenes and skin detection techniques | |
CN111611940A (en) | Rapid video face recognition method based on big data processing | |
Wong et al. | Single image realism assessment and recoloring by color compatibility | |
Hu et al. | No reference quality assessment for Thangka color image based on superpixel | |
Dong et al. | Vehicle color recognition based on license plate color | |
CN111832392A (en) | Flame smoke detection method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |