CN107177620B - A kind of method utilizing cheap raw material to produce tetramethylpyrazine - Google Patents
A kind of method utilizing cheap raw material to produce tetramethylpyrazine Download PDFInfo
- Publication number
- CN107177620B CN107177620B CN201710509031.3A CN201710509031A CN107177620B CN 107177620 B CN107177620 B CN 107177620B CN 201710509031 A CN201710509031 A CN 201710509031A CN 107177620 B CN107177620 B CN 107177620B
- Authority
- CN
- China
- Prior art keywords
- acetoin
- tetramethylpyrazine
- gene
- fermentation
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- FINHMKGKINIASC-UHFFFAOYSA-N Tetramethylpyrazine Chemical compound CC1=NC(C)=C(C)N=C1C FINHMKGKINIASC-UHFFFAOYSA-N 0.000 title claims abstract description 102
- 239000002994 raw material Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims description 25
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 claims abstract description 170
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 claims abstract description 85
- 238000000855 fermentation Methods 0.000 claims abstract description 82
- 230000004151 fermentation Effects 0.000 claims abstract description 82
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 claims abstract description 38
- 239000006228 supernatant Substances 0.000 claims abstract description 22
- 108010007843 NADH oxidase Proteins 0.000 claims abstract description 16
- WTLNOANVTIKPEE-UHFFFAOYSA-N 2-acetyloxypropanoic acid Chemical compound OC(=O)C(C)OC(C)=O WTLNOANVTIKPEE-UHFFFAOYSA-N 0.000 claims abstract description 14
- 108010084631 acetolactate decarboxylase Proteins 0.000 claims abstract description 14
- 239000013612 plasmid Substances 0.000 claims abstract description 14
- 108091008053 gene clusters Proteins 0.000 claims abstract description 12
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims abstract description 10
- 235000019838 diammonium phosphate Nutrition 0.000 claims abstract description 10
- 241000588724 Escherichia coli Species 0.000 claims abstract description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 6
- 239000013604 expression vector Substances 0.000 claims abstract description 3
- 240000003183 Manihot esculenta Species 0.000 claims description 37
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 claims description 37
- 239000000843 powder Substances 0.000 claims description 37
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 32
- 229960000723 ampicillin Drugs 0.000 claims description 24
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 claims description 24
- 239000007788 liquid Substances 0.000 claims description 24
- 102000004190 Enzymes Human genes 0.000 claims description 22
- 108090000790 Enzymes Proteins 0.000 claims description 22
- 235000013312 flour Nutrition 0.000 claims description 22
- 241000894006 Bacteria Species 0.000 claims description 20
- 239000006227 byproduct Substances 0.000 claims description 20
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 18
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 17
- 235000019764 Soybean Meal Nutrition 0.000 claims description 17
- 239000008103 glucose Substances 0.000 claims description 17
- 239000004455 soybean meal Substances 0.000 claims description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 14
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 14
- 235000012343 cottonseed oil Nutrition 0.000 claims description 12
- 102000004169 proteins and genes Human genes 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 11
- 108091005804 Peptidases Proteins 0.000 claims description 11
- 239000004365 Protease Substances 0.000 claims description 11
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims description 11
- 239000001110 calcium chloride Substances 0.000 claims description 11
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 11
- 238000005119 centrifugation Methods 0.000 claims description 9
- 239000000047 product Substances 0.000 claims description 9
- 229920001817 Agar Polymers 0.000 claims description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 8
- 239000001888 Peptone Substances 0.000 claims description 8
- 108010080698 Peptones Proteins 0.000 claims description 8
- 239000008272 agar Substances 0.000 claims description 8
- 235000019319 peptone Nutrition 0.000 claims description 8
- 239000011780 sodium chloride Substances 0.000 claims description 8
- 239000002054 inoculum Substances 0.000 claims description 7
- 239000004310 lactic acid Substances 0.000 claims description 7
- 235000014655 lactic acid Nutrition 0.000 claims description 7
- 239000012452 mother liquor Substances 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 6
- 239000002773 nucleotide Substances 0.000 claims description 6
- 125000003729 nucleotide group Chemical group 0.000 claims description 6
- 238000009423 ventilation Methods 0.000 claims description 6
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 5
- -1 frdABCD Proteins 0.000 claims description 5
- 238000012224 gene deletion Methods 0.000 claims description 5
- 101100398785 Streptococcus agalactiae serotype V (strain ATCC BAA-611 / 2603 V/R) ldhD gene Proteins 0.000 claims description 4
- 101100386830 Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) ddh gene Proteins 0.000 claims description 4
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 101150032129 egsA gene Proteins 0.000 claims description 4
- 101150033931 gldA gene Proteins 0.000 claims description 4
- 101150026107 ldh1 gene Proteins 0.000 claims description 4
- 101150041530 ldha gene Proteins 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 108020004705 Codon Proteins 0.000 claims description 3
- 150000003792 acetoin derivatives Chemical class 0.000 claims description 3
- 230000001580 bacterial effect Effects 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 239000012188 paraffin wax Substances 0.000 claims 1
- 239000002243 precursor Substances 0.000 abstract description 19
- 239000000126 substance Substances 0.000 abstract description 17
- 230000015572 biosynthetic process Effects 0.000 abstract description 12
- 238000003786 synthesis reaction Methods 0.000 abstract description 11
- 239000005515 coenzyme Substances 0.000 abstract description 7
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 abstract description 4
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 abstract description 2
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 abstract 1
- 239000002609 medium Substances 0.000 description 37
- 238000010276 construction Methods 0.000 description 12
- 239000008399 tap water Substances 0.000 description 12
- 235000020679 tap water Nutrition 0.000 description 12
- 230000037361 pathway Effects 0.000 description 8
- 244000153158 Ammi visnaga Species 0.000 description 6
- 235000010585 Ammi visnaga Nutrition 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229960005091 chloramphenicol Drugs 0.000 description 5
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 5
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 4
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 235000012054 meals Nutrition 0.000 description 4
- 238000012269 metabolic engineering Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241000194108 Bacillus licheniformis Species 0.000 description 3
- 244000063299 Bacillus subtilis Species 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- BKCIQPUIDHPJSI-UHFFFAOYSA-N 2,3,4,5-tetramethylpyridine Chemical compound CC1=CN=C(C)C(C)=C1C BKCIQPUIDHPJSI-UHFFFAOYSA-N 0.000 description 2
- 241000193457 Anaerocolumna aminovalerica Species 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000588697 Enterobacter cloacae Species 0.000 description 2
- 241001013691 Escherichia coli BW25113 Species 0.000 description 2
- 241000588915 Klebsiella aerogenes Species 0.000 description 2
- 241000588749 Klebsiella oxytoca Species 0.000 description 2
- 241000588747 Klebsiella pneumoniae Species 0.000 description 2
- 240000001929 Lactobacillus brevis Species 0.000 description 2
- 235000013957 Lactobacillus brevis Nutrition 0.000 description 2
- 241000607715 Serratia marcescens Species 0.000 description 2
- 244000057717 Streptococcus lactis Species 0.000 description 2
- 235000014897 Streptococcus lactis Nutrition 0.000 description 2
- 241000193996 Streptococcus pyogenes Species 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 229940092559 enterobacter aerogenes Drugs 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- CAWHJQAVHZEVTJ-UHFFFAOYSA-N methylpyrazine Chemical compound CC1=CN=CC=N1 CAWHJQAVHZEVTJ-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical compound C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 description 1
- ROWKJAVDOGWPAT-GSVOUGTGSA-N (R)-Acetoin Chemical compound C[C@@H](O)C(C)=O ROWKJAVDOGWPAT-GSVOUGTGSA-N 0.000 description 1
- 108020004465 16S ribosomal RNA Proteins 0.000 description 1
- FLJOSWTWYJJQJJ-UHFFFAOYSA-N 2,3,5,6-tetramethylpyrazine Chemical compound CC1=NC(C)=C(C)N=C1C.CC1=NC(C)=C(C)N=C1C FLJOSWTWYJJQJJ-UHFFFAOYSA-N 0.000 description 1
- OZYZMDZCGQDZQN-UHFFFAOYSA-N 2-hydroxy-2,4,4-trimethylpentan-3-one Chemical compound CC(C)(C)C(=O)C(C)(C)O OZYZMDZCGQDZQN-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 240000007154 Coffea arabica Species 0.000 description 1
- 241000723382 Corylus Species 0.000 description 1
- 235000007466 Corylus avellana Nutrition 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 108010046276 FLP recombinase Proteins 0.000 description 1
- 208000022461 Glomerular disease Diseases 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000218588 Lactobacillus rhamnosus Species 0.000 description 1
- 101100459741 Lactococcus lactis subsp. cremoris (strain MG1363) noxE gene Proteins 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000003797 alkaloid derivatives Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 101150077640 budB gene Proteins 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000916 dilatatory effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 238000012262 fermentative production Methods 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 231100000852 glomerular disease Toxicity 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 229940076156 streptococcus pyogenes Drugs 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/10—Nitrogen as only ring hetero atom
- C12P17/12—Nitrogen as only ring hetero atom containing a six-membered hetero ring
Landscapes
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了一种利用廉价原料生产四甲基吡嗪的方法,将α‑乙酰乳酸合成酶基因、α‑乙酰乳酸脱羧酶基因和NADH氧化酶基因的核苷酸序列进行密码子优化;拼接获得包含该三个基因的基因簇;将基因簇插入表达载体中,获得多顺反子重组质粒;再导入宿主菌E.coli,获得生产乙偶姻的基因工程菌株;将活化的菌株接种至含廉价原料的发酵培养基进行发酵培养,获得含有乙偶姻的发酵液;取发酵液进行离心处理,取上清液,再加入磷酸氢二铵,发酵产生的乙偶姻与NH4 +反应合成四甲基吡嗪。本发明提供的菌株能有效利用来源广泛、成本低廉的原料生产高浓度前体物质乙偶姻,氧化型辅酶NAD+能够有效再生,可提高乙偶姻产量和生产效率,从而有效降低四甲基吡嗪的生产成本,缩短生产周期。The invention discloses a method for producing tetramethylpyrazine by using cheap raw materials. The nucleotide sequences of α-acetolactate synthase gene, α-acetolactate decarboxylase gene and NADH oxidase gene are codon-optimized; A gene cluster comprising the three genes was obtained; the gene cluster was inserted into an expression vector to obtain a polycistronic recombinant plasmid; then the host strain E.coli was introduced to obtain a genetically engineered strain producing acetoin; the activated strain was inoculated into The fermentation medium containing cheap raw materials is fermented and cultured to obtain a fermentation broth containing acetoin; the fermentation broth is centrifuged, the supernatant is taken, and diammonium hydrogen phosphate is added, and the acetoin produced by fermentation reacts with NH 4 + Synthesis of tetramethylpyrazine. The strain provided by the invention can effectively use raw materials with wide sources and low cost to produce high-concentration precursor substance acetoin, and the oxidized coenzyme NAD + can be effectively regenerated, and the yield and production efficiency of acetoin can be improved, thereby effectively reducing the tetramethyl value of acetoin. The production cost of pyrazine shortens the production cycle.
Description
技术领域technical field
本发明属于生物化工领域,具体是一种利用廉价原料生产四甲基吡嗪的方法。The invention belongs to the field of biochemical industry, in particular to a method for producing tetramethylpyrazine by utilizing cheap raw materials.
背景技术Background technique
四甲基吡嗪(2,3,5,6-tetramethylpyrazine)又名川芎嗪,是中药川芎根茎的主要活性生物碱成分,具有扩张血管、改善微循环、抑制血小板黏附聚集和血栓形成等良好的药理作用,在治疗心脑血管疾病、呼吸系统疾病和肾小球疾病等方面具有一定疗效,已作为常备药品广泛应用于临床。此外,四甲基吡嗪天然存在于乳制品、豆制品、可可、咖啡、花生、榛子、和白酒中,具有烘烤和坚果的特殊香味。四甲基吡嗪也是是中国白酒中的重要香气化合物,在中国传统白酒中均检测到一定量的四甲基吡嗪,其不仅对中国白酒风味有重要的贡献,而且还赋予了中国白酒有益健康的功能。四甲基吡嗪香味阈值极低,国家标准GB2760-1996规定其为允许使用的食用香料,目前广泛应用于烘烤食品、冷饮、肉类、乳制品、卷烟等香精的调配。Tetramethylpyrazine (2,3,5,6-tetramethylpyrazine), also known as ligustrazine, is the main active alkaloid component of the rhizome of traditional Chinese medicine Chuanxiong. It has good effects such as dilating blood vessels, improving microcirculation, inhibiting platelet adhesion and aggregation and thrombosis. Pharmacological effects have certain curative effects in the treatment of cardiovascular and cerebrovascular diseases, respiratory system diseases and glomerular diseases, and have been widely used in clinical practice as a standing drug. In addition, tetramethylpyrazine occurs naturally in dairy products, soy products, cocoa, coffee, peanuts, hazelnuts, and liquor, and has a characteristic roasted and nutty aroma. Tetramethylpyrazine is also an important aroma compound in Chinese liquor. A certain amount of tetramethylpyrazine has been detected in traditional Chinese liquor. It not only has an important contribution to the flavor of Chinese liquor, but also endows Chinese liquor with beneficial effects. healthy function. The threshold value of tetramethylpyrazine is extremely low, and the national standard GB2760-1996 stipulates that it is an edible flavor that is allowed to be used.
四甲基吡嗪的生产方法可分为植物提取法、化学法和生物合成法。利用萃取的方法可从中药川芎根茎中提取四甲基吡嗪,但是川芎植物来源有限,而且川芎根茎中的四甲基吡嗪含量较低,无法实现大规模的商业化生产。化学法合成四甲基吡嗪的反应条件一般较剧烈,对设备要求较高,普遍存在较严峻的环保问题,且产品不属于“天然”或“生物合成”范畴,安全性和品质问题正在受到不断的质疑。生物化工方法生产的四甲基吡嗪具有产品绿色天然、成本低、反应条件温和、环境污染小等优点,随着人们对绿色产品需求的日益提高,该法受到越来越多的关注。然而,由于利用微生物发酵生产乙偶因并将其转化为四甲基吡嗪的相关研究起步较晚,通过生物技术途径生产四甲基吡嗪的技术远未成熟。The production methods of tetramethylpyrazine can be divided into plant extraction method, chemical method and biosynthesis method. The extraction method can be used to extract tetramethylpyrazine from the rhizome of the traditional Chinese medicine Chuanxiong, but the plant source of Chuanxiong is limited, and the content of tetramethylpyrazine in the rhizome of Chuanxiong is low, so large-scale commercial production cannot be realized. The reaction conditions for the chemical synthesis of tetramethylpyrazine are generally severe, and the equipment requirements are relatively high. There are generally serious environmental problems, and the product does not belong to the category of "natural" or "biosynthesis", and safety and quality issues are being affected. constant questioning. The tetramethylpyrazine produced by the biochemical method has the advantages of green and natural products, low cost, mild reaction conditions, and low environmental pollution. With the increasing demand for green products, this method has received more and more attention. However, due to the relatively late start of the research on the production of acetonitrile by microbial fermentation and its conversion into tetramethylpyrazine, the technology of producing tetramethylpyrazine by biotechnology is far from mature.
中国专利201010238685.5公开了一种生产四甲基吡嗪的方法及其生产菌株,筛选的Bacillus subtilis XZ1124,Bacillus licheniformis BL-L1、MT-6和MT-15,利用葡萄糖为碳源、酵母膏为氮源时,在发酵罐中乙偶因积累量为30-44g/L,但周期长达72h,而且副产物的积累导致葡萄糖的转化率太低。发酵液离心取上清加入2倍相应乙偶姻摩尔浓度的磷酸氢二铵,在55-90℃水浴摇床(转速150rpm)反应20h,四甲基吡嗪的浓度为11-20g/L。该发明工艺较为简单,但所使用的菌种为野生型菌株,发酵过程中会积累各种副产物,降低了原料的转化率,进而影响了四甲基吡嗪的得率。微生物发酵生产乙偶姻时,糖酵解过程会产生的大量还原型辅酶NADH,而乙偶姻及四甲基吡嗪的产生并不能消耗NADH,因此微生物细胞会启动乳酸、乙酸、乙醇、丁二酸等副产物的合成途径来消耗过量的NADH,实现氧化型辅酶NAD+的再生,这些副产物的积累不但降低了原料的转化率和四甲基吡嗪产量,还会抑制微生物的生长和发酵。Chinese patent 201010238685.5 discloses a method for producing tetramethylpyrazine and its production strains. The screened Bacillus subtilis XZ1124, Bacillus licheniformis BL-L1, MT-6 and MT-15 use glucose as carbon source and yeast extract as nitrogen The accumulation of acetylene in the fermenter was 30-44g/L, but the period was as long as 72h, and the accumulation of by-products caused the conversion rate of glucose to be too low. The fermentation broth was centrifuged and the supernatant was added to diammonium hydrogen phosphate with 2 times the molar concentration of acetoin, and the reaction was carried out at 55-90°C in a water bath shaker (rotation speed 150rpm) for 20h, and the concentration of tetramethylpyrazine was 11-20g/L. The process of the invention is relatively simple, but the strains used are wild-type strains, and various by-products will accumulate during the fermentation process, which reduces the conversion rate of the raw materials, thereby affecting the yield of tetramethylpyrazine. During the fermentation of acetoin by microorganisms, a large amount of reduced coenzyme NADH will be produced during the glycolysis process, while the production of acetoin and tetramethylpyrazine cannot consume NADH, so the microbial cells will start lactic acid, acetic acid, ethanol, butyl The synthesis pathway of by-products such as diacids consumes excess NADH and realizes the regeneration of oxidized coenzyme NAD+. The accumulation of these by-products not only reduces the conversion rate of raw materials and the yield of tetramethylpyrazine, but also inhibits the growth and fermentation of microorganisms. .
为了提高乙偶姻及四甲基吡嗪的收率,需要使用辅酶工程策略优化胞内NADH/NAD+的比例,如表达NADH氧化酶直接催化NADH转化为NAD+,并同时使用代谢工程技术手段阻断或削弱主要副产物的合成途径。此外,该发明需要使用高价的酵母膏为氮源,而且碳源葡萄糖为高纯糖,也存在成本较高的问题,进一步降低了该法的经济可行性。微生物发酵的培养基成分对生产成本影响很大,高纯糖(葡萄糖)的使用会增加原料成本。此外,酵母粉/酵母膏由于富含氨基酸、维生素、微量元素等营养成分,常被用作氮源来发酵生产乙偶姻和四甲基吡嗪,但其使用通常会大大增加生产成本,例如某些乳酸发酵中酵母粉成本可占总发酵成本的30%。因此,发酵工艺优化时还需要开发利用廉价氮源(如棉籽粉)来代替酵母粉/酵母膏等高价氮源。综上所述,利用辅酶工程优化胞内氧化还原状态,利用代谢工程来阻断主要副产物的合成途径,以及开发能够高效利用的廉价原料,对于实现四甲基吡嗪的工业化生产极为重要。In order to improve the yield of acetoin and tetramethylpyrazine, it is necessary to optimize the intracellular NADH/NAD+ ratio by using coenzyme engineering strategies, such as expressing NADH oxidase to directly catalyze the conversion of NADH to NAD + , and using metabolic engineering techniques to prevent interrupt or weaken the synthetic pathway of major by-products. In addition, the present invention needs to use high-priced yeast paste as the nitrogen source, and the carbon source glucose is high-purity sugar, which also has the problem of high cost, which further reduces the economic feasibility of the method. The composition of the medium for microbial fermentation has a great impact on the production cost, and the use of high-purity sugar (glucose) will increase the cost of raw materials. In addition, yeast powder/yeast paste is often used as a nitrogen source for fermentative production of acetoin and tetramethylpyrazine because it is rich in amino acids, vitamins, trace elements and other nutrients, but its use usually greatly increases production costs, such as In some lactic fermentations, the cost of yeast powder can account for 30% of the total fermentation cost. Therefore, it is also necessary to develop and utilize cheap nitrogen sources (such as cottonseed meal) to replace high-priced nitrogen sources such as yeast powder/yeast extract when optimizing the fermentation process. In summary, the use of coenzyme engineering to optimize the intracellular redox state, the use of metabolic engineering to block the synthesis pathway of major by-products, and the development of inexpensive raw materials that can be efficiently utilized are extremely important for the industrialized production of tetramethylpyrazine.
发明内容SUMMARY OF THE INVENTION
本发明针对四甲基吡嗪生产存在的副产物积累过多、四甲基吡嗪得率低、生产周期太长或原料成本太高,难以工业化生产的不足,提供一种利用廉价原料生产四甲基吡嗪的方法。本发明利用代谢工程和辅酶调控对关键代谢节点进行合理的遗传改造,削弱主要副产物合成途径来强化乙偶因合成途径,并有效调节胞内氧化还原状态,提高前体物质乙偶因的产量,达到高产四甲基吡嗪的目的。本发明还提供利用非粮木薯粉和廉价氮源作为发酵原料生产四甲基吡嗪,代替高纯糖和高价氮源,可大幅降低原料成本。Aiming at the shortcomings of excessive accumulation of by-products in the production of tetramethylpyrazine, low yield of tetramethylpyrazine, too long production cycle or too high cost of raw materials, and difficulty in industrialized production, the invention provides a method for producing tetramethylpyrazine by utilizing cheap raw materials. The method of methylpyrazine. The invention utilizes metabolic engineering and coenzyme regulation to carry out reasonable genetic modification on key metabolic nodes, weakens the main by-product synthesis pathway to strengthen the acetylene synthesis pathway, effectively regulates the intracellular redox state, and increases the yield of the precursor substance acetylene , to achieve the purpose of high-yield tetramethylpyrazine. The invention also provides the production of tetramethylpyrazine by using non-grain cassava flour and cheap nitrogen sources as fermentation raw materials, instead of high-purity sugar and high-priced nitrogen sources, which can greatly reduce the cost of raw materials.
为了实现以上目的,本发明采用的技术方案如下:In order to achieve the above purpose, the technical scheme adopted in the present invention is as follows:
一种利用廉价原料生产四甲基吡嗪的方法,包括以下步骤:A method of utilizing cheap raw materials to produce tetramethylpyrazine, comprising the following steps:
(1)将α-乙酰乳酸合成酶基因、α-乙酰乳酸脱羧酶基因和NADH氧化酶基因的核苷酸序列进行密码子优化;(1) carrying out codon optimization on the nucleotide sequences of α-acetolactate synthase gene, α-acetolactate decarboxylase gene and NADH oxidase gene;
(2)将经密码子优化的α-乙酰乳酸合成酶基因、α-乙酰乳酸脱羧酶基因和NADH氧化酶基因进行拼接获得包含该三个基因的基因簇;(2) splicing the codon-optimized α-acetolactate synthase gene, α-acetolactate decarboxylase gene and NADH oxidase gene to obtain a gene cluster comprising the three genes;
(3)将基因簇插入表达载体中,获得多顺反子重组质粒;(3) inserting the gene cluster into the expression vector to obtain a polycistronic recombinant plasmid;
(4)将多顺反子重组质粒导入宿主菌E.coli,获得生产乙偶姻的基因工程菌株;(4) importing the polycistronic recombinant plasmid into host bacterium E.coli to obtain a genetically engineered strain producing acetoin;
(5)对木薯粉、氮源原料进行水解,得发酵培养基,将活化的生产乙偶姻的基因工程菌株接种至发酵培养基进行发酵培养,获得含有乙偶姻的发酵液;(5) cassava flour, nitrogen source raw material are hydrolyzed to obtain fermentation medium, the activated genetically engineered strain for producing acetoin is inoculated into fermentation medium and fermented and cultivated to obtain a fermentation broth containing acetoin;
(6)取上述发酵液进行离心处理,取上清液,再加入磷酸氢二铵,乙偶姻与NH4 +反应合成四甲基吡嗪。(6) Take the above fermentation broth for centrifugation, take the supernatant, add diammonium hydrogen phosphate, and react acetoin with NH 4 + to synthesize tetramethylpyrazine.
进一步地,所述α-乙酰乳酸合成酶基因、α-乙酰乳酸脱羧酶基因和NADH氧化酶基因的密码子优化的具体步骤是在每个基因的前面添加含核糖体结合位点和间隔序列的核苷酸序列TAAGGAGGATATACA。Further, the specific steps of the codon optimization of the α-acetolactate synthase gene, the α-acetolactate decarboxylase gene and the NADH oxidase gene are to add a ribosome binding site and a spacer sequence in front of each gene. Nucleotide sequence TAAGGAGGATATACA.
在细胞内,核糖体负责将mRNA翻译成蛋白质,16S rRNA是核糖体的一个亚基,它可与核糖体结合位点通过碱基互补原则精确识别,在基因前面添加TAAGGAGGATATAC序列,可以增强核糖体与mRNA的识别与结合能力,而适当的间隔序列也可以提高翻译效率,在相同的转录水平下,提高了α-乙酰乳酸合成酶、α-乙酰乳酸脱羧酶和NADH氧化酶的活力,酶促反应加快,最终提高乙偶姻的合成能力。In the cell, the ribosome is responsible for translating mRNA into protein. 16S rRNA is a subunit of the ribosome, which can be accurately identified with the ribosome binding site through the principle of base complementarity. Adding the TAAGGAGGATATAC sequence in front of the gene can enhance the ribosome The ability to recognize and bind to mRNA, and the appropriate spacer sequence can also improve the translation efficiency, at the same transcription level, improve the activity of α-acetolactate synthase, α-acetolactate decarboxylase and NADH oxidase, enzymatically The reaction is accelerated, and finally the synthesis capacity of acetoin is improved.
进一步地,所述宿主菌E.coli为多基因缺失的突变菌株,通过叠加敲除菌株中合成副产物的关键基因而获得;所述副产物包括2,3-丁二醇、丁二酸、乳酸和乙酸;所述合成副产物的关键基因包括gldA、frdABCD、ldhA和pta。Further, the host bacterium E.coli is a mutant strain with multiple gene deletions, obtained by superimposing and knocking out the key genes for synthesizing by-products in the strain; the by-products include 2,3-butanediol, succinic acid, Lactic acid and acetate; key genes for the synthetic by-products include gldA, frdABCD, ldhA and pta.
进一步地,所述的α-乙酰乳酸合成酶基因和α-乙酰乳酸脱羧酶基因的来源菌株选自Enterobacter cloacae、Klebsiella pneumoniae、Enterobacter aerogenes、Klebsiella oxytoca、Serratia marcescens和Bacillus licheniformis。Further, the source strains of the α-acetolactate synthase gene and the α-acetolactate decarboxylase gene are selected from Enterobacter cloacae, Klebsiella pneumoniae, Enterobacter aerogenes, Klebsiella oxytoca, Serratia marcescens and Bacillus licheniformis.
进一步地,所述的NADH氧化酶基因的来源菌株选自Lactobacillus brevis、Lactococcus lactis、Streptococcus pyogenes、Clostridium aminovalericum和Bacillus subtilis。Further, the source strain of the NADH oxidase gene is selected from Lactobacillus brevis, Lactococcus lactis, Streptococcus pyogenes, Clostridium aminovalericum and Bacillus subtilis.
进一步地,所述步骤(5)的具体操作步骤为:Further, the concrete operation steps of described step (5) are:
S1:取木薯粉、氮源原料,再加入水、液化酶和氯化钙,在80-100℃下液化0.5-5h,静置冷却;当温度降低至55℃以下时,加入糖化酶和蛋白酶,在50-60℃糖化5-20h,调节pH6.5-7.5,离心或过滤收集上清,稀释上清液后在115℃条件下灭菌15min,即得发酵培养基;按1000mL水计,各组分的用量为:木薯粉100-200g,氮源原料40-80g,液化酶0.5-2mL,氯化钙0.01-0.5g,糖化酶0.2-1mL,蛋白酶0.05~0.5g;所述木薯粉是将木薯去皮晒干后经粉碎过50-200目筛制备而得,所述氮源原料为棉籽蛋白粉、豆粕粉、豆饼粉中的一种或多种组合;S1: Take tapioca flour, nitrogen source raw materials, add water, liquefaction enzyme and calcium chloride, liquefy at 80-100°C for 0.5-5h, let stand for cooling; when the temperature drops below 55°C, add saccharification enzyme and protease , saccharification at 50-60°C for 5-20h, adjust pH to 6.5-7.5, collect supernatant by centrifugation or filtration, dilute the supernatant and sterilize it at 115°C for 15min to obtain fermentation medium; based on 1000mL of water, The dosage of each component is: tapioca flour 100-200g, nitrogen source raw material 40-80g, liquefaction enzyme 0.5-2mL, calcium chloride 0.01-0.5g, saccharification enzyme 0.2-1mL, protease 0.05-0.5g; the tapioca flour It is prepared by peeling the cassava and drying it and then pulverizing it through a 50-200 mesh sieve. The nitrogen source raw material is one or more combinations of cottonseed protein powder, soybean meal powder and soybean meal powder;
S2:在无菌条件下,在发酵培养基中添加50-100μg/mL氨苄青霉素,然后移至发酵罐中,将经活化的生产乙偶姻的工程菌菌液以体积比为1-10%的接种量接种到发酵培养基中,在温度35-42℃、搅拌转速200-800rpm、通气量0.5-1.5vvm条件下发酵培养20-72h,当检测发酵液中乙偶姻的浓度不再增加时,发酵结束,获得含有乙偶姻的发酵液。S2: under aseptic conditions, add 50-100 μg/mL ampicillin to the fermentation medium, then move it to the fermenter, and use the activated acetoin-producing engineering bacteria liquid at a volume ratio of 1-10% The amount of inoculum was inoculated into the fermentation medium, and fermented for 20-72h under the conditions of temperature 35-42°C, stirring speed 200-800rpm, and ventilation rate 0.5-1.5vvm, when the concentration of acetoin in the fermentation broth was detected no longer increased. When the fermentation is completed, the fermentation broth containing acetoin is obtained.
进一步地,所述活化的生产乙偶姻的工程菌菌液的制备方法,包括以下步骤:将生产乙偶姻基因工程菌株划线到含有质量体积比为1.8%琼脂和含有100μg/mL氨苄青霉素的LB平板上,在37℃培养10-15h;在无菌的条件下,挑取LB平板上的一个单菌落,然后接种到含有100μg/mL氨苄青霉素的LB液体种子培养基中,37℃摇床震荡培养10-15h;所述LB培养基的配方为:10g/L蛋白胨,5g/L酵母粉,10g/L氯化钠。Further, the preparation method of the activated acetoin-producing engineering bacteria bacterial liquid comprises the following steps: streaking the production acetoin genetic engineering strain to agar containing 1.8% mass-volume ratio and containing 100 μg/mL ampicillin cultured at 37°C for 10-15h; under sterile conditions, pick a single colony on the LB plate, then inoculate it into LB liquid seed medium containing 100 μg/mL ampicillin, shake at 37°C Bed shaking culture for 10-15h; the formula of the LB medium is: 10g/L peptone, 5g/L yeast powder, 10g/L sodium chloride.
进一步地,在步骤S2的发酵过程中检测发酵液中葡萄糖的浓度,当葡萄糖浓度降至10-30g/L时,补加木薯还原糖母液使发酵液中葡萄糖浓度为40-80g/L;所述木薯还原糖母液的葡萄糖浓度为500-800g/L。Further, in the fermentation process of step S2, detect the concentration of glucose in the fermentation liquid, when the glucose concentration is reduced to 10-30g/L, add tapioca reducing sugar mother liquor so that the glucose concentration in the fermentation liquid is 40-80g/L; The glucose concentration of the cassava reducing sugar mother liquor is 500-800 g/L.
进一步地,所述步骤(6)的具体操作步骤为:将含有乙偶姻的发酵液高速离心,去除沉淀,取上清液测定乙偶姻的含量,然后加入乙偶姻1-2.5倍摩尔浓度的磷酸氢二铵,溶解后,调节pH至7.5,在65-95℃水浴摇床中反应6-20h,即得四甲基吡嗪。Further, the specific operation steps of the step (6) are: the fermentation broth containing acetoin is centrifuged at high speed, the precipitation is removed, the supernatant is taken to measure the content of acetoin, and then 1-2.5 times the mole of acetoin is added. The concentration of diammonium hydrogen phosphate, after dissolving, adjust the pH to 7.5, and react in a water bath shaker at 65-95 ° C for 6-20 hours to obtain tetramethylpyrazine.
进一步地,水浴摇床反应过程中加入乙偶姻0.1-2倍摩尔浓度的过氧化氢。Further, hydrogen peroxide with 0.1-2 times molar concentration of acetoin is added during the water bath shaking reaction process.
与现有技术相比,本发明的优点及有益效果为:Compared with the prior art, the advantages and beneficial effects of the present invention are:
1、本发明提供的菌株能有效利用来源广泛、成本低廉的原料生产前体物质乙偶姻,氧化型辅酶NAD+能够有效再生,可提高乙偶姻产量和生产效率,从而有效降低四甲基吡嗪的生产成本,缩短生产周期,克服了现有技术存在的问题。1, the bacterial strain provided by the invention can effectively utilize the raw material with a wide range of sources and low cost to produce the precursor substance acetoin, and the oxidized coenzyme NAD can be effectively regenerated, and the acetoin output and production efficiency can be improved, thereby effectively reducing the tetramethyl acetoin The production cost of pyrazine is shortened, the production cycle is shortened, and the problems existing in the prior art are overcome.
2、本发明菌株的构建方法具有操作简便、生产效率高、成本低廉等优点,容易实现工业化生产。2. The construction method of the strain of the present invention has the advantages of simple operation, high production efficiency, low cost and the like, and is easy to realize industrial production.
3、本发明利用代谢工程技术敲除宿主菌中合成主要副产物的关键基因,并表达NADH氧化酶有效调节胞内氧化还原状态,提高前体物质乙偶因的产量,最终提高四甲基吡嗪的得率。3. The present invention uses metabolic engineering technology to knock out the key genes for synthesizing main by-products in the host bacteria, and expresses NADH oxidase to effectively regulate the intracellular redox state, improve the yield of the precursor substance acetylene, and finally increase the tetramethylpyridine oxazine yield.
4、本发明利用非粮木薯粉为碳源,棉籽蛋白粉、豆粕粉或豆饼粉为氮源,替代已有报道使用的高纯糖(如葡萄糖)、酵母粉用于发酵生产前体物质乙偶姻及四甲基吡嗪,不仅可以提高这些廉价原料的综合利用价值,还为四甲基吡嗪的生产提供了更加廉价的原料,可大幅降低原料成本。4. The present invention utilizes non-grain cassava flour as carbon source, cottonseed protein powder, soybean meal powder or soybean meal powder as nitrogen source, and replaces the high-purity sugar (such as glucose) and yeast powder that have been reported to be used for fermentation to produce precursor substance B. Atoin and tetramethylpyrazine can not only improve the comprehensive utilization value of these cheap raw materials, but also provide cheaper raw materials for the production of tetramethylpyrazine, which can greatly reduce the cost of raw materials.
具体实施方式Detailed ways
下面将结合实施例对本发明作进一步详细说明,但不限于本发明的保护范围。The present invention will be further described in detail below with reference to the embodiments, but is not limited to the protection scope of the present invention.
下述实施例中所涉及的材料:液化酶、糖化酶、蛋白酶为商业化产品,可购于诺维信(中国)生物技术有限公司等公司;棉籽蛋白粉、豆粕粉、豆饼粉为商业化产品,可购于青岛科瑞培养基有限公司等公司。Materials involved in the following examples: liquefaction enzyme, saccharification enzyme, and protease are commercial products, which can be purchased from companies such as Novozymes (China) Biotechnology Co., Ltd.; cottonseed protein powder, soybean meal powder, and soybean meal powder are commercial products. Products can be purchased from Qingdao Kerui Culture Medium Co., Ltd. and other companies.
下述实施例在生产四甲基吡嗪过程中,采用SBA-40C分析仪检测发酵液中葡萄糖浓度,利用液相色谱测定主要副产物的浓度,利用气相色谱测定乙偶姻、四甲基吡嗪的浓度。In the following embodiment, in the process of producing tetramethylpyrazine, adopt SBA-40C analyzer to detect glucose concentration in the fermentation broth, utilize liquid chromatography to measure the concentration of main by-products, utilize gas chromatography to measure acetoin, tetramethylpyridine azine concentration.
一、生产乙偶姻基因工程菌株的构建1. Construction of genetically engineered strains producing acetoin
实施例1Example 1
生产前体物质乙偶姻基因工程菌株ECTMP1的构建:Construction of the genetically engineered strain ECTMP1 to produce the precursor substance acetoin:
将来源于Enterobacter cloacae的α-乙酰乳酸合成酶基因budB、α-乙酰乳酸脱羧酶基因budA和来源于Lactobacillus brevis的NADH氧化酶基因noxE的核苷酸序列进行密码子优化,在每个基因前面添加含核糖体结合位点的核苷酸序列TAAGGAGGATATACA,然后利用人工合成的方法获得基因簇budB-budA-noxE,其核苷酸序列长度为3849个碱基,核苷酸序列如SEQ ID NO.1所述。利用双酶切与连接的方法,将基因簇budB-budA-noxE插入质粒pTrc99A的启动子后面,获得多顺反子重组质粒pTrc99A-budB-budA-noxE,再将重组质粒pTrc99A-budB-budA-noxE导入宿主菌E.coli MG1655,获得产乙偶姻的基因工程菌株ECTMP1。The nucleotide sequences of the α-acetolactate synthase gene budB from Enterobacter cloacae, the α-acetolactate decarboxylase gene budA and the NADH oxidase gene noxE from Lactobacillus brevis were codon-optimized and added in front of each gene The nucleotide sequence TAAGGAGGATATACA containing the ribosome binding site was obtained, and then the gene cluster budB-budA-noxE was obtained by artificial synthesis, and the nucleotide sequence length was 3849 bases, and the nucleotide sequence was as shown in SEQ ID NO.1 said. Using the method of double enzyme digestion and ligation, the gene cluster budB-budA-noxE was inserted behind the promoter of the plasmid pTrc99A to obtain a polycistronic recombinant plasmid pTrc99A-budB-budA-noxE, and then the recombinant plasmid pTrc99A-budB-budA- NoxE was introduced into the host strain E.coli MG1655 to obtain an acetoin-producing genetically engineered strain ECTMP1.
实施例2Example 2
生产前体物质乙偶姻基因工程菌株ECTMP2的构建:Construction of the genetically engineered strain ECTMP2 for the production of precursor acetoin:
通过分析发现工程菌株ECTMP1发酵的主要副产物为2,3-丁二醇、丁二酸、乳酸、乙酸,其合成途径的关键基因是gldA、frdABCD、ldhA和pta。利用大肠杆菌噬菌体来源的Red重组系统可在细菌内高效介导同源重组事件的原理,先用两侧带有FRT位点的抗生素抗性基因取代上述目标基因,再通过诱导外源性温敏质粒表达FLP重组酶删除抗生素抗性基因达到敲除目标基因的目的,具体步骤如下:Through analysis, it was found that the main by-products of the fermentation of the engineered strain ECTMP1 were 2,3-butanediol, succinic acid, lactic acid, and acetic acid, and the key genes of its synthetic pathway were gldA, frdABCD, ldhA and pta. Using the principle that the E. coli phage-derived Red recombination system can efficiently mediate homologous recombination events in bacteria, the above target genes were first replaced with antibiotic resistance genes with FRT sites on both sides, and then exogenous thermosensitive Plasmid expresses FLP recombinase to delete antibiotic resistance gene to achieve the purpose of knocking out the target gene. The specific steps are as follows:
将pKD46质粒转化入宿主细胞,制备电转化感受态细胞;利用引物进行PCR构建打靶序列(含氯霉素抗性基因),并将其直接转化入含pKD46的宿主细胞;氯霉素平板筛选发生同源重组的克隆;利用测序技术验证、挑选目标基因被氯霉素抗性基因取代的克隆,制备电转化感受态细胞;电转导入pCP20质粒删除氯霉素抗性基因;氯霉素抗性基因删除的克隆连续划线传代三次,制备甘油管-20℃保存。通过叠加敲除,可获得多基因缺失的突变株E.coli MG1655/ΔgldAΔfrdABCDΔldhAΔpta,制备电转化感受态细胞。将实施例1构建的多顺反子重组质粒pTrc99A-budB-budA-noxE电转导入多基因缺失突变株,获得工程菌株ECTMP2。The pKD46 plasmid was transformed into host cells to prepare electrotransformation competent cells; the target sequence (containing chloramphenicol resistance gene) was constructed by PCR using primers, and it was directly transformed into host cells containing pKD46; chloramphenicol plate screening occurred Cloning of homologous recombination; use sequencing technology to verify and select clones whose target gene is replaced by chloramphenicol resistance gene to prepare electrotransformation competent cells; electrotransform into pCP20 plasmid to delete chloramphenicol resistance gene; chloramphenicol resistance gene The deleted clones were serially streaked three times, and glycerol tubes were prepared and stored at -20°C. By stacking knockout, a mutant strain E.coli MG1655/ΔgldAΔfrdABCDΔldhAΔpta with deletion of multiple genes can be obtained, and electrotransformation competent cells are prepared. The polycistronic recombinant plasmid pTrc99A-budB-budA-noxE constructed in Example 1 was electroporated into a multi-gene deletion mutant strain to obtain an engineering strain ECTMP2.
表1 各引物的核苷酸序列表Table 1 Nucleotide sequence list of each primer
实施例3Example 3
生产前体物质乙偶姻基因工程菌株ECTMP3的构建:Construction of genetically engineered strain ECTMP3 to produce precursor substance acetoin:
本实施例与实施例1的不同之处是:α-乙酰乳酸合成酶基因和α-乙酰乳酸脱羧酶基因的来源菌株为Klebsiella pneumoniae,NADH氧化酶基因的来源菌株为Lactococcuslactis。The difference between this example and Example 1 is that the source strain of α-acetolactate synthase gene and α-acetolactate decarboxylase gene is Klebsiella pneumoniae, and the source strain of NADH oxidase gene is Lactococcuslactis.
实施例4Example 4
生产前体物质乙偶姻基因工程菌株ECTMP4的构建:Construction of the genetically engineered strain ECTMP4 to produce the precursor substance acetoin:
本实施例与实施例2的不同之处是:将实施例3构建的多顺反子重组质粒导入多基因缺失突变株,获得工程菌株ECTMP4。The difference between this example and Example 2 is that the polycistronic recombinant plasmid constructed in Example 3 was introduced into a multi-gene deletion mutant strain to obtain an engineering strain ECTMP4.
实施例5Example 5
生产前体物质乙偶姻基因工程菌株ECTMP5的构建:Construction of genetically engineered strain ECTMP5 producing precursor substance acetoin:
本实施例与实施例1的不同之处是:α-乙酰乳酸合成酶基因和α-乙酰乳酸脱羧酶基因的来源菌株为Serratia marcescens,NADH氧化酶基因的来源菌株为Streptococcuspyogenes。The difference between this example and Example 1 is that the source strain of α-acetolactate synthase gene and α-acetolactate decarboxylase gene is Serratia marcescens, and the source strain of NADH oxidase gene is Streptococcuspyogenes.
实施例6Example 6
生产前体物质乙偶姻基因工程菌株ECTMP6的构建:Construction of genetically engineered strain ECTMP6 to produce precursor substance acetoin:
本实施例与实施例2的不同之处是:将实施例5构建的多顺反子重组质粒导入多基因缺失突变株,获得工程菌株ECTMP6。The difference between this example and Example 2 is that the polycistronic recombinant plasmid constructed in Example 5 was introduced into a multi-gene deletion mutant strain to obtain an engineering strain ECTMP6.
实施例7Example 7
生产前体物质乙偶姻基因工程菌株ECTMP7的构建:Construction of the genetically engineered strain ECTMP7 that produces the precursor substance acetoin:
本实施例与实施例1的不同之处是:α-乙酰乳酸合成酶基因和α-乙酰乳酸脱羧酶基因的来源菌株为Enterobacter aerogenes,NADH氧化酶基因的来源菌株为Bacillussubtilis,宿主菌为E.coli BW25113。The difference between this example and Example 1 is: the source strain of α-acetolactate synthase gene and α-acetolactate decarboxylase gene is Enterobacter aerogenes, the source strain of NADH oxidase gene is Bacillus subtilis, and the host bacteria is E. coli BW25113.
实施例8Example 8
生产前体物质乙偶姻基因工程菌株ECTMP8的构建:Construction of the genetically engineered strain ECTMP8 to produce the precursor substance acetoin:
本实施例与实施例1的不同之处是:α-乙酰乳酸合成酶基因和α-乙酰乳酸脱羧酶基因的来源菌株为Klebsiella oxytoca,NADH氧化酶基因的来源菌株为Lactobacillusrhamnosus,宿主菌为E.coli BW25113。The difference between this example and Example 1 is: the source strain of α-acetolactate synthase gene and α-acetolactate decarboxylase gene is Klebsiella oxytoca, the source strain of NADH oxidase gene is Lactobacillus rhamnosus, and the host bacteria is E. coli BW25113.
实施例9Example 9
生产前体物质乙偶姻基因工程菌株ECTMP9的构建:Construction of genetically engineered strain ECTMP9 to produce precursor substance acetoin:
本实施例与实施例1的不同之处是:α-乙酰乳酸合成酶基因和α-乙酰乳酸脱羧酶基因的来源菌株为Bacillus licheniformis,NADH氧化酶基因的来源菌株为Clostridiumaminovalericum。The difference between this example and Example 1 is that the source strain of α-acetolactate synthase gene and α-acetolactate decarboxylase gene is Bacillus licheniformis, and the source strain of NADH oxidase gene is Clostridium aminovalericum.
实施例3-9合成基因簇的方法与实施例1相同,或为现有常规技术方法,本领域技术人员能够通过本申请公开的内容获悉该基因簇的核苷酸序列,对此不再累述实施例3-10对应合成的基因簇的核苷酸序列。The methods for synthesizing gene clusters in Examples 3-9 are the same as those in Example 1, or are conventional methods. Those skilled in the art can learn the nucleotide sequences of the gene clusters through the disclosure of the present application, and there is no need to worry about this. The above-mentioned Examples 3-10 correspond to the nucleotide sequences of the synthesized gene clusters.
二、工程菌株在生产前体物质乙偶姻的应用2. Application of engineered strains in the production of precursor substance acetoin
应用实施例1Application Example 1
工程菌株ECTMP1、ECTMP2、ECTMP3、ECTMP4、ECTMP5、ECTMP6、ECTMP7、ECTMP8、ECTMP9在生产前体物质乙偶姻的应用,包括以下步骤:The application of engineering strains ECTMP1, ECTMP2, ECTMP3, ECTMP4, ECTMP5, ECTMP6, ECTMP7, ECTMP8, and ECTMP9 in the production of precursor substance acetoin includes the following steps:
(1)将木薯去皮晒干后,粉碎至粒径为100目的木薯粉;称取木薯粉180g九份,分别加入烧杯中,每份再各补加入60g棉籽蛋白粉、1000mL自来水、0.5mL液化酶和0.2g氯化钙,充分摇匀后,95℃液化1.5h,静置冷却;温度降低至55℃以下时,加入0.5mL糖化酶和0.1g蛋白酶,在55℃糖化20h,调节pH 7.5,离心收集上清,用无菌自来水稀释上清液使还原糖浓度为100g/L,在115℃条件下灭菌15min,即得发酵培养基;(1) After the cassava is peeled and sun-dried, pulverized to a particle size of 100 mesh cassava flour; 9 parts of 180 g of cassava flour were weighed and added to the beaker respectively, and each part was added with 60 g of cottonseed protein powder, 1000 mL of tap water, 0.5 mL of Liquefaction enzyme and 0.2g calcium chloride, shake well, liquefy at 95°C for 1.5h, stand to cool; when the temperature drops below 55°C, add 0.5mL saccharification enzyme and 0.1g protease, saccharify at 55°C for 20h, adjust pH 7.5, collect the supernatant by centrifugation, dilute the supernatant with sterile tap water to make the reducing sugar concentration 100g/L, and sterilize at 115°C for 15min to obtain the fermentation medium;
(2)在发酵培养基中添加100μg/mL氨苄青霉素,分别取500mL转移至上海百仑六联发酵罐,在无菌条件下,取活化好的ECTMP1、ECTMP2、ECTMP3、ECTMP4、ECTMP5、ECTMP6、ECTMP7、ECTMP8、ECTMP9工程菌菌液分别以体积比为5%的接种量分别接种到上述发酵培养基中,然后在温度37℃、搅拌转速300rpm、通气量1vvm条件下发酵培养,发酵16h、28h分别补糖50g/L,至乙偶姻浓度不再增加时结束发酵,获得乙偶姻的发酵液。取样并利用气相色谱和液相色谱测定产物乙偶姻及副产物丁二醇、丁二酸、乳酸、乙酸的浓度,结果如表2所示。(2) Add 100 μg/mL ampicillin to the fermentation medium, and transfer 500 mL of them to Shanghai Bailun Liulian Fermentation Tank. Under sterile conditions, take the activated ECTMP1, ECTMP2, ECTMP3, ECTMP4, ECTMP5, ECTMP6, ECTMP7, ECTMP8, and ECTMP9 engineering bacteria were inoculated into the above fermentation medium with a volume ratio of 5%, respectively, and then fermented and cultured at a temperature of 37 ° C, a stirring speed of 300 rpm, and a ventilation volume of 1 vvm, and fermented for 16h and 28h. Supplementation with 50 g/L of sugar was carried out, and the fermentation was terminated when the concentration of acetoin no longer increased to obtain the fermentation broth of acetoin. The samples were taken and the concentrations of the product acetoin and the by-products butanediol, succinic acid, lactic acid and acetic acid were determined by gas chromatography and liquid chromatography. The results are shown in Table 2.
所述工程菌菌液的活化方法:将生产乙偶姻的ECTMP1、ECTMP2、ECTMP3、ECTMP4、ECTMP5、ECTMP6、ECTMP7、ECTMP8、ECTMP9工程菌株分别划线到含有质量体积比为1.8%琼脂的并含有100μg/mL氨苄青霉素的LB平板上,37℃培养12h;用牙签挑取LB平板上的一个单菌落,然后接种到含有100μg/mL氨苄青霉素的LB液体培养基中,37℃摇床震荡培养10h;所述的LB培养基配方为:10g/L蛋白胨,5g/L酵母粉,10g/L氯化钠。The activation method of the engineering bacteria liquid: the ECTMP1, ECTMP2, ECTMP3, ECTMP4, ECTMP5, ECTMP6, ECTMP7, ECTMP8, ECTMP9 engineering strains that produce acetoin are respectively streaked to those containing 1.8% agar in a mass-to-volume ratio and containing On the LB plate containing 100 μg/mL ampicillin, cultivate at 37°C for 12 hours; pick a single colony on the LB plate with a toothpick, then inoculate it into LB liquid medium containing 100 μg/mL ampicillin, and cultivate at 37°C with shaking for 10 hours. ; The LB culture medium formula is: 10g/L peptone, 5g/L yeast powder, 10g/L sodium chloride.
表2 不同工程菌株的发酵产物Table 2 Fermentation products of different engineered strains
从表2中可以得知,敲除副产物合成途径的关键基因gldA、frdABCD、ldhA和pta,工程菌株ECTMP2、ECTMP4、ECTMP6的前体物质乙偶姻产量,与未经过基因敲除的工程菌株(分别对应于ECTMP1、ECTMP3、ECTMP5)相比显著提高,乙偶姻的副产物2,3-丁二醇、丁二酸、乳酸和乙酸的浓度大大降低,因此敲除副产物合成途径的关键基因提高了前体物质乙偶姻产量,能够降低四甲基吡嗪的生产成本。As can be seen from Table 2, the key genes gldA, frdABCD, ldhA and pta of the by-product synthesis pathway were knocked out, and the production of acetoin, the precursor substance of the engineered strains ECTMP2, ECTMP4 and ECTMP6, was different from that of the engineered strains without gene knockout. (corresponding to ECTMP1, ECTMP3, and ECTMP5, respectively) were significantly increased, and the concentrations of the by-products of acetoin, 2,3-butanediol, succinic acid, lactic acid, and acetic acid, were greatly reduced, thus knocking out the key to the synthesis pathway of by-products The gene increases the production of the precursor substance acetoin, and can reduce the production cost of tetramethylpyrazine.
应用实施例2Application Example 2
工程菌株ECTMP2在生产乙偶姻的应用,包括以下步骤:The application of engineering strain ECTMP2 in the production of acetoin includes the following steps:
(1)将木薯去皮晒干后,粉碎至粒径为100目的木薯粉;称取木薯粉200g三份,分别加入烧杯中,再分别加入70g豆粕粉、70g豆饼粉、70g棉籽蛋白粉,再加入1000mL自来水、1.2mL液化酶和0.5g氯化钙,充分摇匀后,90℃液化2h,静置冷却;温度降低至50℃以下时,加入0.3mL糖化酶和0.2g蛋白酶,在55℃糖化24h,调节pH 6.5,离心收集上清,用无菌自来水稀释上清液使还原糖浓度为100g/L,在115℃条件下灭菌15min,即得发酵培养基;(1) after the cassava is peeled and dried, pulverized to a particle size of 100 purpose cassava flour; take three parts of 200 g of cassava flour, add in the beaker respectively, then add 70g soybean meal powder, 70g soybean meal powder, 70g cottonseed protein powder respectively, Then add 1000mL of tap water, 1.2mL of liquefaction enzyme and 0.5g of calcium chloride, shake well, liquefy at 90°C for 2h, and let stand to cool; when the temperature drops below 50°C, add 0.3mL of saccharification enzyme and 0.2g of protease, and at 55 Saccharification at ℃ for 24h, adjusting pH to 6.5, collecting the supernatant by centrifugation, diluting the supernatant with sterile tap water to make the reducing sugar concentration 100g/L, and sterilizing at 115 ℃ for 15min to obtain the fermentation medium;
(2)在发酵培养基中100μg/mL氨苄青霉素,分别取500mL添加至上海百仑六联发酵罐,在无菌条件下,取经活化的ECTMP2工程菌菌液以体积比为10%的接种量接种到上述发酵培养基中,在温度40℃、搅拌转速600rpm、通气量1.0vvm条件下发酵培养,发酵12h和24h分别补40g/L葡萄糖,发酵液中乙偶姻的浓度不再增加时发酵结束,获得含有乙偶姻的发酵液。测定豆粕粉、豆饼粉、棉籽蛋白粉对应的乙偶姻产量分别是59.3g/L、63.8g/L、73.3g/L。(2) In the fermentation medium, 100 μg/mL ampicillin was taken, and 500 mL was added to the Shanghai Bailun Liulian fermenter. Under aseptic conditions, the activated ECTMP2 engineering bacteria liquid was taken with a volume ratio of 10% of the inoculum. Inoculated into the above fermentation medium, fermented and cultured at a temperature of 40 ° C, a stirring speed of 600 rpm, and a ventilation volume of 1.0 vvm, fermented for 12 h and 24 h, respectively, supplemented with 40 g/L glucose, and fermented when the concentration of acetoin in the fermentation broth no longer increased. At the end, a fermentation broth containing acetoin was obtained. The yields of acetoin corresponding to soybean meal meal, soybean meal meal, and cottonseed protein meal were determined to be 59.3 g/L, 63.8 g/L, and 73.3 g/L, respectively.
所述ECTMP2工程菌菌液的活化方法:将ECTMP2工程菌株分别划线到含有质量体积比为1.8%琼脂的并含有100μg/mL氨苄青霉素的LB平板上,37℃培养15h;在无菌的条件下,用牙签挑取LB平板上的一个单菌落,然后接种到含有100μg/mL氨苄青霉素的LB液体培养基中,37℃摇床震荡培养12h;所述的LB培养基配方为:10g/L蛋白胨,5g/L酵母粉,10g/L氯化钠。The activation method of the ECTMP2 engineering bacteria solution: streak the ECTMP2 engineering strains on LB plates containing 1.8% agar in a mass-to-volume ratio and containing 100 μg/mL ampicillin, and cultivate at 37° C. for 15 hours; under sterile conditions Then, pick a single colony on the LB plate with a toothpick, then inoculate it into the LB liquid medium containing 100 μg/mL ampicillin, and cultivate at 37°C with shaking for 12 hours; the LB medium formula is: 10g/L Peptone, 5g/L yeast powder, 10g/L sodium chloride.
应用实施例3Application Example 3
工程菌株ECTMP4在生产乙偶姻的应用,包括以下步骤:The application of engineering strain ECTMP4 in the production of acetoin includes the following steps:
(1)将木薯去皮晒干后,粉碎至粒径为150目的木薯粉;称取木薯粉185g,加入烧杯中,再加入25g棉籽蛋白粉和15g豆饼粉,再加入1000mL自来水、0.8mL液化酶和0.3g氯化钙,充分摇匀后,95℃液化2h,静置冷却;温度降低至55℃以下时,加入0.8mL糖化酶和0.3g蛋白酶,在55℃糖化18h,调节pH 7.0,离心收集上清,用无菌自来水稀释上清液使还原糖浓度为100g/L,在115℃条件下灭菌15min,即得发酵培养基;(1) After peeling and drying the cassava, pulverize it to a particle size of 150 mesh cassava flour; weigh 185 g of cassava flour, add it to a beaker, add 25 g of cottonseed protein powder and 15 g of soybean meal powder, and then add 1000 mL of tap water, 0.8 mL of liquefied water Enzyme and 0.3g calcium chloride, shake well, liquefy at 95°C for 2h, let stand to cool; when the temperature drops below 55°C, add 0.8mL saccharification enzyme and 0.3g protease, saccharify at 55°C for 18h, adjust pH 7.0, The supernatant was collected by centrifugation, diluted with sterile tap water to make the reducing sugar concentration 100g/L, and sterilized at 115°C for 15min to obtain the fermentation medium;
(2)在发酵培养基中添加100μg/mL氨苄青霉素,取500mL转移至上海百仑六联发酵罐,在无菌条件下,取经活化的ECTMP4工程菌菌液以体积比为8%的接种量接种到上述发酵培养基中,在温度37℃、搅拌转速500rpm、通气量0.7vvm条件下进行发酵,15h和28h分别补50g/L的葡萄糖,发酵45h后,获得含有乙偶姻的发酵液。经过测定乙偶姻产量为67.2g/L。(2) Add 100 μg/mL ampicillin to the fermentation medium, take 500 mL and transfer it to Shanghai Bailun Liulian fermenter, under aseptic conditions, take the activated ECTMP4 engineering bacteria liquid with a volume ratio of 8% of the inoculum Inoculated into the above fermentation medium, fermented at a temperature of 37 °C, a stirring speed of 500 rpm, and a ventilation volume of 0.7 vvm, supplemented with 50 g/L of glucose for 15 h and 28 h, respectively, and fermented for 45 h to obtain a fermentation broth containing acetoin. The yield of acetoin was determined to be 67.2 g/L.
所述ECTMP4工程菌菌液的活化方法:将ECTMP4工程菌株分别划线到含有质量体积比为1.8%琼脂的并含有100μg/mL氨苄青霉素的LB平板上,37℃培养10h;在无菌的条件下,用牙签挑取LB平板上的一个单菌落,然后接种到含有100μg/mL氨苄青霉素的LB液体培养基中,37℃摇床震荡培养15h;所述的LB培养基配方为:10g/L蛋白胨,5g/L酵母粉,10g/L氯化钠。The activation method of the ECTMP4 engineering bacteria liquid: streak the ECTMP4 engineering strains on LB plates containing 1.8% agar with a mass-to-volume ratio and containing 100 μg/mL ampicillin, and cultivate at 37° C. for 10 hours; under sterile conditions Then, pick a single colony on the LB plate with a toothpick, then inoculate it into the LB liquid medium containing 100 μg/mL ampicillin, and cultivate at 37°C with shaking for 15 hours; the LB medium formula is: 10g/L Peptone, 5g/L yeast powder, 10g/L sodium chloride.
应用实施例4Application Example 4
工程菌株ECTMP5在生产乙偶姻的应用,包括以下步骤:The application of engineering strain ECTMP5 in the production of acetoin includes the following steps:
(1)将木薯去皮晒干后,粉碎至粒径为50目的木薯粉;称取木薯粉100g,加入烧杯中,加入30g棉籽蛋白粉和30g豆粕粉,再加入1000mL自来水、2.0mL液化酶和0.01g氯化钙,充分摇匀后,80℃液化5h,静置冷却;温度降低至55℃以下时,加入0.2mL糖化酶和0.05g蛋白酶,在60℃糖化5h,调节pH 7.0,离心收集上清,用无菌自来水稀释上清液使还原糖浓度为100g/L,在115℃条件下灭菌15min,即得发酵培养基;(1) After the cassava is peeled and sun-dried, pulverized to a particle size of 50 mesh cassava flour; weigh 100 g of cassava flour, add it to a beaker, add 30 g of cottonseed protein powder and 30 g of soybean meal powder, and then add 1000 mL of tap water and 2.0 mL of liquefaction enzyme and 0.01g calcium chloride, shake well, liquefy at 80°C for 5h, let stand to cool; when the temperature drops below 55°C, add 0.2mL saccharification enzyme and 0.05g protease, saccharify at 60°C for 5h, adjust pH 7.0, centrifuge Collect the supernatant, dilute the supernatant with sterile tap water to make the reducing sugar concentration 100g/L, and sterilize at 115°C for 15min to obtain the fermentation medium;
(2)在发酵培养基中添加50μg/mL氨苄青霉素,取500mL转移至上海百仑六联发酵罐,在无菌条件下,取经活化的ECTMP5工程菌菌液以体积比为1%的接种量接种到上述发酵培养基中,在温度42℃、搅拌转速300rpm、通气量1.3vvm条件下发酵培养16h后补糖40g/L,发酵32h后再次补加等量木薯还原糖母液,发酵48h后,获得含有乙偶姻的发酵液。经过测定乙偶姻产量为48.3g/L。(2) Add 50 μg/mL ampicillin to the fermentation medium, take 500 mL and transfer it to Shanghai Bailun Liulian fermenter, under aseptic conditions, take the activated ECTMP5 engineering bacteria liquid with a volume ratio of 1% of the inoculum Inoculated into the above fermentation medium, fermented and cultured for 16 hours at a temperature of 42°C, agitation speed of 300rpm, and aeration of 1.3vvm, and then supplemented with 40g/L of sugar. After 32h of fermentation, the same amount of tapioca reducing sugar mother liquor was added again. A fermentation broth containing acetoin was obtained. The yield of acetoin was determined to be 48.3 g/L.
所述ECTMP5工程菌菌液的活化方法:将ECTMP5工程菌株分别划线到含有质量体积比为1.8%琼脂的并含有100μg/mL氨苄青霉素的LB平板上,37℃培养12h;在无菌的条件下,用牙签挑取LB平板上的一个单菌落,然后接种到含有100μg/mL氨苄青霉素的LB液体培养基中,37℃摇床震荡培养12h;所述的LB培养基配方为:10g/L蛋白胨,5g/L酵母粉,10g/L氯化钠。The activation method of the ECTMP5 engineering bacteria liquid: streak the ECTMP5 engineering strains on LB plates containing 1.8% agar with a mass-to-volume ratio and containing 100 μg/mL ampicillin, and cultivate at 37° C. for 12 hours; under sterile conditions Then, pick a single colony on the LB plate with a toothpick, then inoculate it into the LB liquid medium containing 100 μg/mL ampicillin, and cultivate at 37°C with shaking for 12 hours; the LB medium formula is: 10g/L Peptone, 5g/L yeast powder, 10g/L sodium chloride.
应用实施例5Application Example 5
工程菌株ECTMP6在生产乙偶姻的应用,包括以下步骤:The application of engineering strain ECTMP6 in the production of acetoin includes the following steps:
(1)将木薯去皮晒干后,粉碎至粒径为200目的木薯粉;称取木薯粉155g,加入烧杯中,加入40g豆粕粉、20g棉籽蛋白粉和20g豆饼粉,再加入1000mL自来水、1.5mL液化酶和0.5g氯化钙,充分摇匀后,100℃液化1h,静置冷却;温度降低至55℃以下时,加入1mL糖化酶和0.5g蛋白酶,在50℃糖化20h,调节pH 7.0,离心收集上清,用无菌自来水稀释上清液使还原糖浓度为100g/L,在115℃条件下灭菌15min,即得发酵培养基;(1) after the cassava is peeled and dried, pulverized to a particle size of 200 mesh cassava flour; weigh 155 g of cassava flour, add it to a beaker, add 40 g of soybean meal powder, 20 g of cottonseed protein powder and 20 g of soybean meal powder, and then add 1000 mL of tap water, 1.5mL of liquefaction enzyme and 0.5g of calcium chloride, shake well, liquefy at 100°C for 1h, and let stand to cool; when the temperature drops below 55°C, add 1mL of saccharification enzyme and 0.5g of protease, saccharify at 50°C for 20h, and adjust the pH 7.0, collect the supernatant by centrifugation, dilute the supernatant with sterile tap water to make the reducing sugar concentration 100g/L, and sterilize at 115°C for 15min to obtain the fermentation medium;
(2)在发酵培养基中添加80μg/mL氨苄青霉素,取500mL转移至上海百仑六联发酵罐,在无菌条件下,取经活化的ECTMP7工程菌菌液以体积比为5%的接种量接种到上述发酵培养基中,在温度37℃、搅拌转速700rpm、通气量0.5vvm条件下发酵培养14h后补糖50g/L,发酵28h、45h后分别补加30g/L木薯还原糖母液,发酵60h后,获得含有乙偶姻的发酵液。经过测定乙偶姻产量为68.5g/L。(2) Add 80 μg/mL ampicillin to the fermentation medium, take 500 mL and transfer it to Shanghai Bailun Liulian fermenter, under aseptic conditions, take the activated ECTMP7 engineering bacteria liquid with a volume ratio of 5% of the inoculum Inoculated into the above fermentation medium, fermented and cultured for 14h under the conditions of temperature 37°C, stirring speed of 700rpm, and aeration of 0.5vvm, supplemented with 50g/L of sugar, and added 30g/L of cassava reducing sugar mother liquor after fermentation for 28h and 45h, respectively, and fermented. After 60h, the fermentation broth containing acetoin was obtained. The yield of acetoin was determined to be 68.5g/L.
所述ECTMP6工程菌菌液的活化方法:将ECTMP6工程菌株分别划线到含有质量体积比为1.8%琼脂的并含有100μg/mL氨苄青霉素的LB平板上,37℃培养10h;在无菌的条件下,用牙签挑取LB平板上的一个单菌落,然后接种到含有100μg/mL氨苄青霉素的LB液体培养基中,37℃摇床震荡培养15h;所述的LB培养基配方为:10g/L蛋白胨,5g/L酵母粉,10g/L氯化钠。The activation method of the ECTMP6 engineering bacteria liquid: streak the ECTMP6 engineering strains on LB plates containing 1.8% agar with a mass-to-volume ratio and containing 100 μg/mL ampicillin, and cultivate at 37° C. for 10 hours; under sterile conditions Then, pick a single colony on the LB plate with a toothpick, then inoculate it into the LB liquid medium containing 100 μg/mL ampicillin, and cultivate at 37°C with shaking for 15 hours; the LB medium formula is: 10g/L Peptone, 5g/L yeast powder, 10g/L sodium chloride.
应用实施例6Application Example 6
工程菌株ECTMP7在生产乙偶姻的应用,包括以下步骤:The application of engineering strain ECTMP7 in the production of acetoin includes the following steps:
(1)将木薯去皮晒干后,粉碎至粒径为100目的木薯粉;称取木薯粉150g,加入烧杯中,再加入40g棉籽蛋白粉和30g豆饼粉,再加入1000mL自来水、1.0mL液化酶和0.2g氯化钙,充分摇匀后,90℃液化3h,静置冷却;温度降低至55℃以下时,加入0.5mL糖化酶和0.25g蛋白酶,在55℃糖化12h,调节pH 7.0,离心收集上清,用无菌自来水稀释上清液使还原糖浓度为100g/L,在115℃条件下灭菌15min,即得发酵培养基;(1) After peeling and drying the cassava, pulverize it to a particle size of 100 mesh cassava flour; weigh 150 g of cassava flour, add it to a beaker, add 40 g of cottonseed protein powder and 30 g of soybean meal powder, and then add 1000 mL of tap water and 1.0 mL of liquefied Enzyme and 0.2g calcium chloride, shake well, liquefy at 90°C for 3h, and let stand to cool; when the temperature drops below 55°C, add 0.5mL saccharification enzyme and 0.25g protease, saccharify at 55°C for 12h, adjust pH 7.0, The supernatant was collected by centrifugation, diluted with sterile tap water to make the reducing sugar concentration 100g/L, and sterilized at 115°C for 15min to obtain the fermentation medium;
(2)在发酵培养基中添加100μg/mL氨苄青霉素,取500mL转移至上海百仑六联发酵罐,在无菌条件下,取经活化的ECTMP7工程菌菌液以体积比为8%的接种量接种到上述发酵培养基中,在温度38℃、搅拌转速500rpm、通气量1.2vvm条件下发酵培养16h后,发酵液中葡萄糖浓度下降为20.3g/L,补糖40g/L,发酵32h、46h后再次补加等量木薯还原糖母液,发酵60h后,获得含有乙偶姻的发酵液。经过测定乙偶姻产量为60.3g/L。(2) Add 100 μg/mL ampicillin to the fermentation medium, take 500 mL and transfer it to Shanghai Bailun Liulian Fermentation Tank, under aseptic conditions, take the activated ECTMP7 engineering bacteria liquid with a volume ratio of 8% of the inoculum Inoculated into the above fermentation medium, after fermenting and culturing for 16 hours at a temperature of 38 °C, a stirring speed of 500 rpm, and a ventilation volume of 1.2 vvm, the glucose concentration in the fermentation broth dropped to 20.3 g/L, and the sugar supplemented 40 g/L, and the fermentation was performed for 32 h and 46 h. Then, the same amount of cassava reducing sugar mother liquor was added again, and after 60h fermentation, the fermentation broth containing acetoin was obtained. The yield of acetoin was determined to be 60.3 g/L.
所述ECTMP7工程菌菌液的活化方法:将ECTMP7工程菌株分别划线到含有质量体积比为1.8%琼脂的并含有100μg/mL氨苄青霉素的LB平板上,37℃培养15h;在无菌的条件下,用牙签挑取LB平板上的一个单菌落,然后接种到含有100μg/mL氨苄青霉素的LB液体培养基中,37℃摇床震荡培养10h;所述的LB培养基配方为:10g/L蛋白胨,5g/L酵母粉,10g/L氯化钠。The activation method of the ECTMP7 engineering bacteria liquid: streak the ECTMP7 engineering strains on LB plates containing 1.8% agar in a mass-to-volume ratio and containing 100 μg/mL ampicillin, and cultivate at 37° C. for 15 hours; under sterile conditions Then, pick a single colony on the LB plate with a toothpick, then inoculate it into the LB liquid medium containing 100 μg/mL ampicillin, and cultivate at 37°C with shaking for 10 hours; the LB medium formula is: 10 g/L Peptone, 5g/L yeast powder, 10g/L sodium chloride.
三、前体物质乙偶姻与NH4 +反应合成四甲基吡嗪3. Synthesis of Tetramethylpyrazine by Reaction of Precursor Acetoin with NH 4 +
应用实施例7Application Example 7
磷酸氢二铵浓度对乙偶姻转化生产四甲基吡嗪的影响:The effect of diammonium hydrogen phosphate concentration on the conversion of acetoin to tetramethylpyrazine:
取应用实施例3含有乙偶姻的发酵液,以8000rpm离心10min,去除沉淀,取上清液测定乙偶姻的浓度为67.2g/L,分别取100mL加入3个烧杯中,然后分别加入乙偶姻1、2.0、2.5倍摩尔浓度的磷酸氢二铵,溶解后,调节pH至7.5,各取20mL加入100mL三角瓶中,在65℃、150rpm下水浴摇床中反应20h,乙偶姻与NH4 +反应合成四甲基吡嗪。经过测定不同浓度磷酸氢二铵对应的四甲基吡嗪的产量分别是12.9g/L、17.9g/L、18.3g/L。Get the fermentation broth containing acetoin in Application Example 3, centrifuge at 8000rpm for 10min, remove the precipitation, get the supernatant and measure the concentration of acetoin to be 67.2g/L, respectively take 100mL and add in 3 beakers, then add ethyl acetate respectively. Atoin 1, 2.0, and 2.5 times molar concentration of diammonium hydrogen phosphate, after dissolving, adjust the pH to 7.5, add 20 mL of each into a 100 mL conical flask, and react at 65 ° C and 150 rpm in a water bath shaker for 20 hours. NH 4 + reaction to synthesize tetramethylpyrazine. The yields of tetramethylpyrazine corresponding to different concentrations of diammonium hydrogen phosphate were determined to be 12.9 g/L, 17.9 g/L and 18.3 g/L, respectively.
应用实施例8Application Example 8
添加过氧化氢对乙偶姻转化生产四甲基吡嗪的影响:The effect of adding hydrogen peroxide on the conversion of acetoin to tetramethylpyrazine:
取应用实施例5含有乙偶姻的发酵液,以8000rpm离心10min,去除沉淀,取上清液测定乙偶姻的浓度为68.5g/L,取400mL加入烧杯中,然后加入乙偶姻2.0倍摩尔浓度的磷酸氢二铵,溶解后,调节pH至7.5,分别取六份20mL的溶液加入100mL三角瓶中,在90℃、100rpm下水浴摇床中反应,反应3h后分别加入为乙偶姻摩尔浓度0、0.1、0.5、1.0、1.5、2.0倍的过氧化氢,再反应3h,乙偶姻与NH4 +反应合成四甲基吡嗪。经过测定相对应的四甲基吡嗪产量为18.7、20.8、22.6、25.3、23.7、21.9g/L。Take the fermentation broth containing acetoin in Application Example 5, centrifuge at 8000rpm for 10min, remove the precipitation, take the supernatant to measure the concentration of acetoin to be 68.5g/L, get 400mL and add it to the beaker, then add 2.0 times of acetoin Molar concentration of diammonium hydrogen phosphate, after dissolving, adjust the pH to 7.5, respectively take six 20mL solutions into 100mL conical flasks, react in a water bath shaker at 90°C and 100rpm, and add acetoin after 3 hours of reaction. Molar concentration of 0, 0.1, 0.5, 1.0, 1.5, 2.0 times hydrogen peroxide, and then react for 3h, acetoin and NH 4 + react to synthesize tetramethylpyrazine. The corresponding tetramethylpyrazine yields were determined to be 18.7, 20.8, 22.6, 25.3, 23.7, and 21.9 g/L.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 南宁中诺生物工程有限责任公司,广西科学院<110> Nanning Zhongnuo Biological Engineering Co., Ltd., Guangxi Academy of Sciences
<120> 生产(R)-乙偶姻基因工程菌株的构建方法及其应用<120> Construction method and application of genetically engineered strain for producing (R)-acetoin
<130> 3849<130> 3849
<160> 1<160> 1
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 3849<211> 3849
<212> DNA<212> DNA
<213> 人工合成<213> Synthetic
<400> 1<400> 1
taaggaggat atacatatga actcggagaa acagtcgcgc caatgggcgc atggcgccga 60taaggaggat atacatatga actcggagaa acagtcgcgc caatgggcgc atggcgccga 60
catggttgtg ggccaactgg aagcccaggg cgtgaagcag gtgtttggca tcccgggcgc 120catggttgtg ggccaactgg aagcccaggg cgtgaagcag gtgtttggca tcccgggcgc 120
gaaaattgac aaggtgtttg actcgctgct ggatagcagc attgagatca ttcctgtgcg 180gaaaattgac aaggtgtttg actcgctgct ggatagcagc attgagatca ttcctgtgcg 180
ccatgaggcg aacgccgcct ttatggccgc cgcggttggt cgtctgaccg gtaaggccgg 240ccatgaggcg aacgccgcct ttatggccgc cgcggttggt cgtctgaccg gtaaggccgg 240
cgtggcctta gtgaccagcg gtcctggttg ttctaatctg attaccggca ttgcgaccgc 300cgtggcctta gtgaccagcg gtcctggttg ttctaatctg attaccggca ttgcgaccgc 300
gaactcggag ggcgatcctg tggtggcctt aggcggtgcg gttaagcgcg cggataaagc 360gaactcggag ggcgatcctg tggtggcctt aggcggtgcg gttaagcgcg cggataaagc 360
caaactggtg caccagagca tggataccgt ggcgatgttt agcccggtga cgaagtacgc 420caaactggtg caccagagca tggataccgt ggcgatgttt agcccggtga cgaagtacgc 420
cgttgaagtt agctcgccgg acgcgattgc ggaggtggtt agcaacgcgt ttcgtgccgc 480cgttgaagtt agctcgccgg acgcgattgc ggaggtggtt agcaacgcgt ttcgtgccgc 480
ggaacatggc cgtcctggtg gcgcgttcgt ttcgctgccg caggacattg ttgatcagcc 540ggaacatggc cgtcctggtg gcgcgttcgt ttcgctgccg caggacattg ttgatcagcc 540
tgcgaccggt gcgatcttac cggccagcgg tcctgccctg atgggtccgg cccctgaaag 600tgcgaccggt gcgatcttac cggccagcgg tcctgccctg atgggtccgg cccctgaaag 600
cgcgatcaat gatgttgcga aattaattga caatgcgaaa aacccggtga ttctgctggg 660cgcgatcaat gatgttgcga aattaattga caatgcgaaa aacccggtga ttctgctggg 660
cttaatggcc tcgcagcctg ccaatagcgc ggcgttacgc aaactgctgg agaagagccg 720cttaatggcc tcgcagcctg ccaatagcgc ggcgttacgc aaactgctgg agaagagccg 720
tattccggtg acttctactt accaagccgc cggcgcggtg aatcaggaac actttacccg 780tattccggtg acttctactt accaagccgc cggcgcggtg aatcaggaac actttacccg 780
ctttgccggt cgcgtgggtc tgttcaacaa tcaagcgggt gaccgcctgt tacacctggc 840ctttgccggt cgcgtgggtc tgttcaacaa tcaagcgggt gaccgcctgt tacacctggc 840
ggatctgatc atttgcattg gctacagccc ggttgaatac gaaccgagca tgtggaacag 900ggatctgatc atttgcattg gctacagccc ggttgaatac gaaccgagca tgtggaacag 900
cggcgatgcc acgctggtgc atatcgatgt tctgcctgcg tacgaggaac gcaattatgt 960cggcgatgcc acgctggtgc atatcgatgt tctgcctgcg tacgaggaac gcaattatgt 960
gccggatatc gagctggtgg gtgacattgc cgcgaccctg aatttactgg cctcgcgtat 1020gccggatatc gagctggtgg gtgacattgc cgcgaccctg aatttactgg cctcgcgtat 1020
tgaccacaag ctggaactga gccaacgcgc gtcggagatt ctggtggacc gccaacatca 1080tgaccacaag ctggaactga gccaacgcgc gtcggagatt ctggtggacc gccaacatca 1080
gcgcgattta ttagaccgcc gtggtgcgtc gctgaaccag tttgcgctgc atcctctgcg 1140gcgcgattta ttagaccgcc gtggtgcgtc gctgaaccag tttgcgctgc atcctctgcg 1140
cattgttcgc gcgatgcagg atatcgtgaa caacgatgtg accctgaccg tggacatggg 1200cattgttcgc gcgatgcagg atatcgtgaa caacgatgtg accctgaccg tggacatggg 1200
cagcttccat atctggatcg cgcgttatct gtacagcttc cgcgcccgtc aggtgatgat 1260cagcttccat atctggatcg cgcgttatct gtacagcttc cgcgcccgtc aggtgatgat 1260
cagcaacggc cagcagacta tgggtgttgc cttaccgtgg gcgatcggcg cgtggctggt 1320cagcaacggc cagcagacta tgggtgttgc cttaccgtgg gcgatcggcg cgtggctggt 1320
taacccgggt cgtaaggttg tgagcgtgtc gggcgatggc ggtttcttac agagcagcat 1380taacccgggt cgtaaggttg tgagcgtgtc gggcgatggc ggtttcttac agagcagcat 1380
ggagctggaa acggccgtgc gcctgaacgc caacgtgtta catattattt gggtggataa 1440ggagctggaa acggccgtgc gcctgaacgc caacgtgtta catattattt gggtggataa 1440
cggctataac atggtggcca tccaagagga gaagaagtat cagcgcctga gcggtgttgc 1500cggctataac atggtggcca tccaagagga gaagaagtat cagcgcctga gcggtgttgc 1500
gtttggcccg gtggatttca aggcctatgc ggatgccttt ggcgcccgtg gcttcgccgt 1560gtttggcccg gtggatttca aggcctatgc ggatgccttt ggcgcccgtg gcttcgccgt 1560
ggaaagcgcc gatgcgttag aaagcaccct gcgcgcggct atggatgtta atggtccggc 1620ggaaagcgcc gatgcgttag aaagcaccct gcgcgcggct atggatgtta atggtccggc 1620
ggttgttgcg attccggtgg attacagcga taacccgctg ctgatgggcc agctgcatct 1680ggttgttgcg attccggtgg attacagcga taacccgctg ctgatgggcc agctgcatct 1680
gtcgcagatt ctgtaataag gaggatatac atatgatgca cagctcggcg tgcgattgtg 1740gtcgcagatt ctgtaataag gaggatatac atatgatgca cagctcggcg tgcgattgtg 1740
aagcgtcgct gtgcgaaacc ctgcgcggct ttagcgccaa acatccggac agcgttatct 1800aagcgtcgct gtgcgaaacc ctgcgcggct ttagcgccaa acatccggac agcgttatct 1800
accagacctc gctgatgagc gcgctgctgt cgggcgttta cgaaggcgac accacgatcg 1860accagacctc gctgatgagc gcgctgctgt cgggcgttta cgaaggcgac accacgatcg 1860
ccgatctgct ggctcatggt gatttcggtc tgggcacctt caacgaactg gacggcgaaa 1920ccgatctgct ggctcatggt gatttcggtc tgggcacctt caacgaactg gacggcgaaa 1920
tgattgcctt ttcttctcag gtgtaccagt tacgcgccga cggcagcgcg cgcgcggcca 1980tgattgcctt ttcttctcag gtgtaccagt tacgcgccga cggcagcgcg cgcgcggcca 1980
aaccggaaca gaaaacgccg ttcgccgtga tgacgtggtt ccaaccgcag tatcgcaaaa 2040aaccggaaca gaaaacgccg ttcgccgtga tgacgtggtt ccaaccgcag tatcgcaaaa 2040
cgtttgatgc cccggtttcg cgtcagcaga ttcatgacgt gatcgatcag cagattccga 2100cgtttgatgc cccggtttcg cgtcagcaga ttcatgacgt gatcgatcag cagattccga 2100
gcgacaacct gttctgcgcg ctgcgcattg acggcaattt tcgccacgcc cacacccgca 2160gcgacaacct gttctgcgcg ctgcgcattg acggcaattt tcgccacgcc cacacccgca 2160
cggttcctcg ccaaacgccg ccgtaccgtg ccatgaccga tgtgctggac gaccagccgg 2220cggttcctcg ccaaacgccg ccgtaccgtg ccatgaccga tgtgctggac gaccagccgg 2220
tgtttcgttt taaccaacgc gaaggcgtgc tggttggctt ccgcacgccg cagcacatgc 2280tgtttcgttt taaccaacgc gaaggcgtgc tggttggctt ccgcacgccg cagcacatgc 2280
agggcattaa tgttgccggc taccatgagc actttattac cgacgatcgc cagggcggcg 2340agggcattaa tgttgccggc taccatgagc actttattac cgacgatcgc cagggcggcg 2340
gtcatttact ggattatcag ctggagagcg gtgtgctgac cttcggcgag attcacaaac 2400gtcatttact ggattatcag ctggagagcg gtgtgctgac cttcggcgag attcacaaac 2400
tgatgatcga cctgccggcc gacagcgcct tcttacaagc gaatctgcac ccgagcaacc 2460tgatgatcga cctgccggcc gacagcgcct tcttacaagc gaatctgcac ccgagcaacc 2460
tggacgccgc gattcgttcg gtggaaaatt aataaggagg atatacatat gaaaatcgtt 2520tggacgccgc gattcgttcg gtggaaaatt aataaggagg atatacatat gaaaatcgtt 2520
gttatcggta ccaaccacgc tggtatcgct accgctaaca ccctgctgga acagtacccg 2580gttatcggta ccaaccacgc tggtatcgct accgctaaca ccctgctgga acagtacccg 2580
ggtcacgaaa tcgttatgat cgaccgtaac tctaacatgt cttacctggg ttgcggtacc 2640ggtcacgaaa tcgttatgat cgaccgtaac tctaacatgt cttacctggg ttgcggtacc 2640
gctatctggg ttggtcgtca gatcgaaaaa ccggacgaac tgttctacgc taaagctgaa 2700gctatctggg ttggtcgtca gatcgaaaaa ccggacgaac tgttctacgc taaagctgaa 2700
gacttcgaag ctaaaggtgt taaaatcctg accgaaaccg aagtttctga aatcgacttc 2760gacttcgaag ctaaaggtgt taaaatcctg accgaaaccg aagtttctga aatcgacttc 2760
gctaacaaaa aagtttacgc taaaaccaaa tctgacgacg aaatcatcga agcttacgac 2820gctaacaaaa aagtttacgc taaaaccaaa tctgacgacg aaatcatcga agcttacgac 2820
aaactggttc tggctaccgg ttctcgtccg atcatcccga acctgccggg taaagacctg 2880aaactggttc tggctaccgg ttctcgtccg atcatcccga acctgccggg taaagacctg 2880
aaaggtatcc acttcctgaa actgttccag gaaggtcagg ctatcgacgc tgaattcgct 2940aaaggtatcc acttcctgaa actgttccag gaaggtcagg ctatcgacgc tgaattcgct 2940
aaagaaaaag ttaaacgtat cgctgttatc ggtgctggtt acatcggtac cgaaatcgct 3000aaagaaaaag ttaaacgtat cgctgttatc ggtgctggtt acatcggtac cgaaatcgct 3000
gaagctgcta aacgtcgtgg taaagaagtt ctgctgttcg acgctgaaaa cacctctctg 3060gaagctgcta aacgtcgtgg taaagaagtt ctgctgttcg acgctgaaaa cacctctctg 3060
gcttcttact acgacgaaga attcgctaaa ggtatggacg aaaacctggc tcagcacggt 3120gcttcttact acgacgaaga attcgctaaa ggtatggacg aaaacctggc tcagcacggt 3120
atcgaactgc acttcggtga actggctaaa gaattcaaag ctaacgaaga aggttacgtt 3180atcgaactgc acttcggtga actggctaaa gaattcaaag ctaacgaaga aggttacgtt 3180
tctcagatcg ttaccaacaa agctacctac gacgttgacc tggttatcaa ctgcatcggt 3240tctcagatcg ttaccaacaa agctacctac gacgttgacc tggttatcaa ctgcatcggt 3240
ttcaccgcta actctgctct ggcttctgac aaactggcta ccttcaaaaa cggtgctatc 3300ttcaccgcta actctgctct ggcttctgac aaactggcta ccttcaaaaa cggtgctatc 3300
aaagttgaca aacaccagca gtcttctgac ccggacgttt acgctgttgg tgacgttgct 3360aaagttgaca aacaccagca gtcttctgac ccggacgttt acgctgttgg tgacgttgct 3360
accatctact ctaacgctct gcaggacttc acctacatcg ctctggcttc taacgctgtt 3420accatctact ctaacgctct gcaggacttc acctacatcg ctctggcttc taacgctgtt 3420
cgttctggta tcgttgctgg tcacaacatc ggtggtaaag aactggaatc tgttggtgtt 3480cgttctggta tcgttgctgg tcacaacatc ggtggtaaag aactggaatc tgttggtgtt 3480
cagggttcta acggtatctc tatcttcggt tacaacatga cctctaccgg tctgtctgtt 3540cagggttcta acggtatctc tatcttcggt tacaacatga cctctaccgg tctgtctgtt 3540
aaagctgcta aaaaactggg tctggaagtt tctttctctg acttcgaaga caaacagaaa 3600aaagctgcta aaaaactggg tctggaagtt tctttctctg acttcgaaga caaacagaaa 3600
gcttggttcc tgcacgaaaa caacgactct gttaaaatcc gtatcgttta cgaaaccaaa 3660gcttggttcc tgcacgaaaa caacgactct gttaaaatcc gtatcgttta cgaaaccaaa 3660
tctcgtcgta tcatcggtgc tcagctggct tctaaatctg aaatcatcgc tggtaacatc 3720tctcgtcgta tcatcggtgc tcagctggct tctaaatctg aaatcatcgc tggtaacatc 3720
aacatgttct ctctggctat ccaggaaaaa aaaaccatcg acgaactggc tctgctggac 3780aacatgttct ctctggctat ccaggaaaaa aaaaccatcg acgaactggc tctgctggac 3780
ctgttcttcc tgccgcactt caactctccg tacaactaca tgaccgttgc tgctctgaac 3840ctgttcttcc tgccgcactt caactctccg tacaactaca tgaccgttgc tgctctgaac 3840
gctaaataa 3849gctaaataa 3849
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710509031.3A CN107177620B (en) | 2017-06-28 | 2017-06-28 | A kind of method utilizing cheap raw material to produce tetramethylpyrazine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710509031.3A CN107177620B (en) | 2017-06-28 | 2017-06-28 | A kind of method utilizing cheap raw material to produce tetramethylpyrazine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107177620A CN107177620A (en) | 2017-09-19 |
CN107177620B true CN107177620B (en) | 2020-12-18 |
Family
ID=59844512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710509031.3A Expired - Fee Related CN107177620B (en) | 2017-06-28 | 2017-06-28 | A kind of method utilizing cheap raw material to produce tetramethylpyrazine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107177620B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097412A (en) * | 2018-07-24 | 2018-12-28 | 江苏理工学院 | A kind of method of bioanalysis synthesis Ezetimibe intermediate |
CN116024150A (en) * | 2022-12-13 | 2023-04-28 | 广西科学院 | Genetic engineering strain for producing acetoin and construction method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101955980A (en) * | 2010-07-28 | 2011-01-26 | 江南大学 | Method and strain for producing tetramethylpyrazine |
CN104560848A (en) * | 2014-10-20 | 2015-04-29 | 南京工业大学 | Genetic engineering bacterium for realizing high-density fermentation and co-producing 2, 3-butanediol and construction method and application thereof |
CN104894171A (en) * | 2014-03-06 | 2015-09-09 | 广西科学院 | Method for producing (R,R)-2,3-butylene glycol by fermenting raw material cassava starch |
CN106715679A (en) * | 2014-07-25 | 2017-05-24 | 阿尔德里斯公司 | Method for producing acetoin |
-
2017
- 2017-06-28 CN CN201710509031.3A patent/CN107177620B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101955980A (en) * | 2010-07-28 | 2011-01-26 | 江南大学 | Method and strain for producing tetramethylpyrazine |
CN104894171A (en) * | 2014-03-06 | 2015-09-09 | 广西科学院 | Method for producing (R,R)-2,3-butylene glycol by fermenting raw material cassava starch |
CN106715679A (en) * | 2014-07-25 | 2017-05-24 | 阿尔德里斯公司 | Method for producing acetoin |
CN104560848A (en) * | 2014-10-20 | 2015-04-29 | 南京工业大学 | Genetic engineering bacterium for realizing high-density fermentation and co-producing 2, 3-butanediol and construction method and application thereof |
Non-Patent Citations (3)
Title |
---|
Increased 2,3-butanediol production by changing codon usages in Escherichia coli;SY Park等;《Biotechnology and Applied Biochemistry》;20140215;第61卷(第5期);535-540 * |
Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin;Quanming Xu等;《J Chem Technol Biotechnol》;20140120;摘要、第94页右栏第2段至第95页左栏第5段和图1A、第95页左栏和第97页右栏第2段 * |
利用发酵法生产四甲基吡嗪研究进展;侯孝元 等;《生物技术通报》;20160131;第32卷(第1期);第62页左栏第1段和参考文献33图4、第62页右栏第1段 * |
Also Published As
Publication number | Publication date |
---|---|
CN107177620A (en) | 2017-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103667371B (en) | A kind of biological production of Salvianic acidA | |
CN107129959B (en) | Construction method and application of genetic engineering strain for producing (R)-acetoin | |
CN103497911A (en) | Application of Chryseobacterium sp. and carbonyl reductase thereof in production of aprepitant chiral intermediate | |
CN101880696A (en) | Method for producing L-lactic acid by fermentation and strain used in the method | |
WO2017080111A1 (en) | Genetically-engineered bacteria for producing cadaverine and method thereof for preparing cadaverine | |
CN104946576A (en) | Escherichia coli gene engineering strain and construction method thereof, and application of strain in pyruvic acid production | |
CN107201374B (en) | Construction method and application of optically pure meso-2,3-butanediol high-yield engineering strain | |
CN104278003A (en) | Recombinant Escherichia coli for producing D-lactic acid and application of recombinant Escherichia coli | |
CN107177620B (en) | A kind of method utilizing cheap raw material to produce tetramethylpyrazine | |
CN104561076B (en) | A kind of high yield L serines recombinate the structure and its fermentation process of Corynebacterium glutamicum | |
CN116064352A (en) | Construction method and application of Klebsiella engineering bacteria with high yield of 1,3-propanediol | |
CN111662832B (en) | Construction method and application of a heat-resistant yeast engineering strain producing xylitol under high-temperature aerobic conditions | |
CN106867922A (en) | The method that Klebsiella pneumoniae produces KIV and isobutanol | |
CN111088177B (en) | Construction and application of heat-resistant yeast engineering bacteria for producing glycerol under high-temperature aerobic condition | |
CN107201375B (en) | Construction method and application of genetic engineering strain for producing (R, R) -2, 3-butanediol | |
CN104178442A (en) | Escherichia coli containing mutant lpdA gene and application thereof | |
CN103555647B (en) | Recombinant corynebacterium glutamicum capable of highly producing gamma-aminobutyric acid and construction method and application thereof | |
CN105820988A (en) | Bacillus and application thereof to production of acetoin and 2, 3- butanediol through high temperature fermentation | |
CN103436479B (en) | Genetically engineered bacterium for high yield of 3-hydroxy butanone and construction method and application thereof | |
CN111484942A (en) | Method for producing adipic acid by using saccharomyces cerevisiae | |
CN106148255A (en) | Engineering bacteria lacking organic acid production way and application thereof in co-production of 1, 3-propylene glycol, 2, 3-butanediol and ethanol | |
WO2023056700A1 (en) | Genetically engineered bacterial strain producing dl-alanine, construction method therefor and application thereof | |
CN111394396B (en) | Method for producing 1, 3-propylene glycol by using glycerol fermentation by microorganisms | |
CN108588108A (en) | Preparation method and application of a kind of bacillus that efficiently metabolizes glycerol | |
CN116024150A (en) | Genetic engineering strain for producing acetoin and construction method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201218 |