CN107177384B - A catalytic gasification device, system and method - Google Patents
A catalytic gasification device, system and method Download PDFInfo
- Publication number
- CN107177384B CN107177384B CN201710562971.9A CN201710562971A CN107177384B CN 107177384 B CN107177384 B CN 107177384B CN 201710562971 A CN201710562971 A CN 201710562971A CN 107177384 B CN107177384 B CN 107177384B
- Authority
- CN
- China
- Prior art keywords
- gas
- gasifier
- catalytic gasification
- gas injection
- distribution plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002309 gasification Methods 0.000 title claims abstract description 134
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000007789 gas Substances 0.000 claims abstract description 250
- 238000006243 chemical reaction Methods 0.000 claims abstract description 127
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 93
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 93
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 92
- 239000001257 hydrogen Substances 0.000 claims abstract description 92
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 81
- 238000009826 distribution Methods 0.000 claims abstract description 65
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 53
- 239000001301 oxygen Substances 0.000 claims abstract description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000002347 injection Methods 0.000 claims description 89
- 239000007924 injection Substances 0.000 claims description 89
- 238000000926 separation method Methods 0.000 claims description 54
- 239000004449 solid propellant Substances 0.000 claims description 44
- 239000003054 catalyst Substances 0.000 claims description 37
- 230000001154 acute effect Effects 0.000 claims description 23
- 239000007787 solid Substances 0.000 claims description 20
- 238000000746 purification Methods 0.000 claims description 14
- 230000007704 transition Effects 0.000 claims description 8
- 238000001179 sorption measurement Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 96
- 239000003795 chemical substances by application Substances 0.000 abstract description 17
- 230000008569 process Effects 0.000 abstract description 15
- 230000036284 oxygen consumption Effects 0.000 abstract description 14
- 238000005265 energy consumption Methods 0.000 abstract description 8
- 230000007547 defect Effects 0.000 abstract description 7
- 230000003321 amplification Effects 0.000 abstract description 4
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 4
- 238000013021 overheating Methods 0.000 abstract 1
- 239000003245 coal Substances 0.000 description 41
- 238000001816 cooling Methods 0.000 description 13
- 150000002431 hydrogen Chemical class 0.000 description 12
- 230000009286 beneficial effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004880 explosion Methods 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 238000009827 uniform distribution Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 239000003077 lignite Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000013341 scale-up Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 239000002802 bituminous coal Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011335 coal coke Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000004200 deflagration Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000003476 subbituminous coal Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/54—Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
- C10J3/56—Apparatus; Plants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2200/00—Details of gasification apparatus
- C10J2200/06—Catalysts as integral part of gasifiers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0973—Water
- C10J2300/0976—Water as steam
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Industrial Gases (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及催化气化技术领域,尤其涉及一种催化气化装置、系统及方法。The present invention relates to the technical field of catalytic gasification, in particular to a catalytic gasification device, system and method.
背景技术Background technique
煤催化气化技术是指煤在较低的温度下与气化剂(由水蒸气、氢气和一氧化碳组成)在催化剂的催化作用下进行气化反应,生成富含甲烷的粗煤气。与其他煤气化技术相比,由于同时引入了煤催化气化和甲烷化反应的催化剂,将吸热的煤气化反应和放热的甲烷化反应耦合在一起,能够提高系统能效。Coal catalytic gasification technology refers to the gasification reaction of coal with a gasification agent (composed of water vapor, hydrogen and carbon monoxide) under the catalytic action of a catalyst at a relatively low temperature to generate crude gas rich in methane. Compared with other coal gasification technologies, the coupling of the endothermic coal gasification reaction and the exothermic methanation reaction can improve the energy efficiency of the system due to the simultaneous introduction of catalysts for coal catalytic gasification and methanation reactions.
在现有的煤催化气化技术中,多采用无氧气化工艺,具体的,将水蒸气、氢气和一氧化碳组成的气化剂经气化炉底部的气体分布板通入气化炉中,使得煤与所述气化剂发生煤气化反应,并同时副产甲烷,气化炉中产生的富含甲烷的粗煤气经过净化分离后获得富含甲烷的净化气体,将富含甲烷的净化气体经深冷分离获得一氧化碳和氢气,将所获得的一氧化碳和氢气作为循环气与水蒸气混合一同通入气化炉中在催化剂的催化作用下进行甲烷化反应,以进一步提高甲烷产量,但是,在此过程中,由于气化炉内的总反应为微吸热反应,因此,需要将气化剂过热至800℃以上,以促进气化炉中反应的进行,使得能耗较大,工业放大困难。In the existing coal catalytic gasification technology, oxygen-free gasification technology is mostly used. Specifically, the gasification agent composed of water vapor, hydrogen and carbon monoxide is passed into the gasifier through the gas distribution plate at the bottom of the gasifier, so that Coal gasification reaction occurs between coal and the gasification agent, and methane is by-produced at the same time. The methane-rich crude gas generated in the gasifier is purified and separated to obtain methane-rich purified gas. Cryogenic separation obtains carbon monoxide and hydrogen, and the obtained carbon monoxide and hydrogen are mixed with steam as circulating gas and passed into the gasifier to carry out the methanation reaction under the catalytic action of the catalyst to further improve the methane production, but here During the process, since the overall reaction in the gasifier is a slightly endothermic reaction, it is necessary to overheat the gasification agent to above 800°C to promote the reaction in the gasifier, which results in high energy consumption and difficulty in industrial scale-up.
若采用有氧气化工艺,则需要在经气化炉底部的气体分布板通入的气化剂中加入部分氧气,通过氧气燃烧来补充气化炉内反应所需的能量,而在通氧的情况下,氧气与一氧化碳和氢气不能同时通入,容易引发爆炸、爆燃等事故,存在安全性问题;并且气化炉内强放热的甲烷化反应较少,所获得的粗煤气中甲烷的含量较低,耗氧量较高。If the oxygenated gasification process is adopted, it is necessary to add part of oxygen to the gasification agent passed through the gas distribution plate at the bottom of the gasifier, and the energy required for the reaction in the gasifier is supplemented by oxygen combustion. Under the circumstance, oxygen, carbon monoxide and hydrogen cannot be introduced at the same time, which is easy to cause explosion, deflagration and other accidents, and there is a safety problem; and the strong exothermic methanation reaction in the gasifier is less, and the content of methane in the obtained crude gas lower, the oxygen consumption is higher.
鉴于此,亟待开发一种能够同时通入氧气、一氧化碳和氢气的气化炉,能够在通过氧气燃烧补充气化炉内反应热所需的能量的同时,避免氧气与一氧化碳和氢气接触,提高甲烷含量的同时降低耗氧量。In view of this, it is urgent to develop a gasifier capable of feeding oxygen, carbon monoxide and hydrogen at the same time, which can supplement the energy required for the reaction heat in the gasifier through oxygen combustion, avoid the contact of oxygen with carbon monoxide and hydrogen, and increase methane content while reducing oxygen consumption.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于,提供一种催化气化装置、系统及方法,解决了现有技术中无氧气化工艺在将一氧化碳和氢气返炉制甲烷时能耗较大,需将气化剂过热至较高温度、工业放大难以及通氧工艺中甲烷含量低、安全性差、耗氧量高的缺陷。The main purpose of the present invention is to provide a catalytic gasification device, system and method, which solves the problem that the oxygen-free gasification process in the prior art consumes a lot of energy when returning carbon monoxide and hydrogen to the furnace to produce methane, and the gasification agent needs to be overheated. It has the defects of low methane content, poor safety and high oxygen consumption in the oxygen-passing process.
为达到上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一方面,本发明实施例提供一种催化气化装置,包括:On the one hand, an embodiment of the present invention provides a catalytic gasification device, comprising:
气化炉,所述气化炉包括气体分布板,所述气体分布板的上方为流化床反应区,所述气体分布板用于向所述流化床反应区靠近所述气体分布板的区域通入水蒸气和氧气;A gasifier, the gasifier includes a gas distribution plate, the upper part of the gas distribution plate is a fluidized bed reaction zone, and the gas distribution plate is used to approach the gas distribution plate to the fluidized bed reaction zone. The area is vented with water vapor and oxygen;
至少一个气体入射管,每一个所述气体入射管与所述流化床反应区远离所述气体分布板的区域连通,用于向所述流化床反应区远离所述气体分布板的区域通入一氧化碳和氢气。At least one gas injection pipe, each of the gas injection pipes communicates with the region of the fluidized bed reaction zone away from the gas distribution plate, and is used for communicating with the region of the fluidized bed reaction zone away from the gas distribution plate. Enter carbon monoxide and hydrogen.
可选的,所述流化床反应区从下到上依次包括密相区和稀相区,每一个所述气体入射管与所述密相区连通。Optionally, the fluidized bed reaction zone includes a dense phase zone and a dilute phase zone in sequence from bottom to top, and each of the gas injection pipes is communicated with the dense phase zone.
可选的,所述密相区从下到上依次包括有氧区和无氧区,其中,所述气体入射管的出口位于所述无氧区底部。Optionally, the dense phase zone includes an oxygen-containing zone and an oxygen-free zone in sequence from bottom to top, wherein the outlet of the gas injection pipe is located at the bottom of the oxygen-free zone.
可选的,所述密相区具有一床径从下到上渐扩的过渡区。Optionally, the dense phase zone has a transition zone whose bed diameter gradually expands from bottom to top.
可选的,所述气化炉对应所述过渡区的炉壁与垂直方向的夹角小于等于8度。Optionally, the included angle between the furnace wall of the gasifier corresponding to the transition zone and the vertical direction is less than or equal to 8 degrees.
可选的,所述气体入射管为至少两个,且分层穿设于所述气化炉侧壁的不同高度。Optionally, there are at least two gas injection pipes, and they are arranged in layers at different heights of the side wall of the gasifier.
可选的,每层所述气体入射管为至少两个,且沿所述气化炉的周向均匀分布。Optionally, there are at least two gas injection pipes in each layer, and they are evenly distributed along the circumferential direction of the gasifier.
可选的,每一个所述气体入射管的一端位于所述气化炉的外部,另一端与所述气化炉的内壁平齐。Optionally, one end of each of the gas injection pipes is located outside the gasifier, and the other end is flush with the inner wall of the gasifier.
可选的,所述气体入射管与水平面具有一第一锐角,所述气体入射管与所述气体入射管和所述气化炉的侧壁连接点的切线所在的平面之间具有一第二锐角。Optionally, the gas injection tube has a first acute angle with the horizontal plane, and there is a second angle between the gas injection tube and the plane where the tangent of the connection point between the gas injection tube and the side wall of the gasifier is located. acute angle.
可选的,当所述气体入射管向下倾斜设置于所述气化炉的侧壁上时,所述第一锐角的最大值为45度;当所述气体入射管向上倾斜设置于所述气化炉的侧壁上时,所述第一锐角的最大值为15度;Optionally, when the gas injection pipe is inclined downward on the side wall of the gasifier, the maximum value of the first acute angle is 45 degrees; When on the side wall of the gasifier, the maximum value of the first acute angle is 15 degrees;
所述第二锐角为25-45度。The second acute angle is 25-45 degrees.
可选的,所述气体入射管的管径设置为使通过所述气体入射管的气体流速为5-30m/s。Optionally, the diameter of the gas injection pipe is set so that the gas flow velocity through the gas injection pipe is 5-30 m/s.
可选的,每一个所述气体入射管的一端位于所述气化炉的外部,另一端伸入气化炉内,且伸入气化炉内的一端设有至少两个通孔。Optionally, one end of each of the gas injection pipes is located outside the gasifier, the other end extends into the gasifier, and the end extending into the gasifier is provided with at least two through holes.
可选的,每一个所述通孔的孔径为2-5mm,所述气体入射管的管径设置为使通过所述通孔的气体流速为10-30m/s。Optionally, the diameter of each of the through holes is 2-5 mm, and the diameter of the gas injection pipe is set so that the gas flow rate passing through the through holes is 10-30 m/s.
可选的,所述气体入射管以第三锐角倾斜设置或水平设置于所述气化炉的侧壁上,所述第三锐角是指所述气体入射管与所述气体入射管和所述气化炉的侧壁连接点的切线所在的平面之间所成的夹角。Optionally, the gas injection pipe is arranged obliquely or horizontally on the side wall of the gasifier at a third acute angle, and the third acute angle refers to the gas injection pipe and the gas injection pipe and the gas injection pipe and the gas injection pipe. The angle formed between the planes where the tangent to the connection point of the side wall of the gasifier is located.
可选的,所述气体分布板为倒锥形结构,且所述气体分布板上开设有气孔,所述气孔的孔径小于等于5mm。Optionally, the gas distribution plate has an inverted conical structure, and the gas distribution plate is provided with air holes, and the diameter of the air holes is less than or equal to 5 mm.
可选的,所述气孔的开孔数设置为使得所述气体分布板的压降为所述气化炉压降的1/3。Optionally, the number of openings of the gas holes is set so that the pressure drop of the gas distribution plate is 1/3 of the pressure drop of the gasifier.
另一方面,本发明实施例提供一种催化气化系统,包括:On the other hand, an embodiment of the present invention provides a catalytic gasification system, comprising:
如上所述的催化气化装置以及分别与所述催化气化装置的粗煤气出口和所述气体入射管的进口连通的净化分离系统;The above catalytic gasification device and a purification and separation system respectively communicated with the crude gas outlet of the catalytic gasification device and the inlet of the gas injection pipe;
所述净化分离系统用于将粗煤气中的一氧化碳和氢气分离出来,并将所分离的一氧化碳和氢气一同输送至气化炉中。The purification and separation system is used for separating carbon monoxide and hydrogen in the crude gas, and sending the separated carbon monoxide and hydrogen together to the gasifier.
可选的,所述净化分离系统包括与所述催化气化装置的粗煤气出口连通的气固分离系统,以及与所述气固分离系统的气体出口连通的气体分离系统,其中,所述气体分离系统为深冷分离系统或者物理化学吸附系统。Optionally, the purification and separation system includes a gas-solid separation system communicated with the crude gas outlet of the catalytic gasification device, and a gas-solid separation system communicated with the gas outlet of the gas-solid separation system, wherein the gas The separation system is a cryogenic separation system or a physicochemical adsorption system.
可选的,所述催化气化系统还包括提压系统,所述提压系统的进口与所述气体分离系统的一氧化碳出口和氢气出口连通,所述提压系统的出口与所述气体入射管的进口连通,所述提压系统用于将一氧化碳和氢气的压力提升至预设值,并将压力提升至预设值的一氧化碳和氢气输送入所述气化炉中。Optionally, the catalytic gasification system further includes a pressure boosting system, the inlet of the pressure boosting system is communicated with the carbon monoxide outlet and the hydrogen outlet of the gas separation system, and the outlet of the pressure boosting system is connected with the gas injection pipe. The inlet is communicated with, and the pressure boosting system is used for increasing the pressure of carbon monoxide and hydrogen to a preset value, and transporting the carbon monoxide and hydrogen whose pressure has been increased to the preset value into the gasifier.
再一方面,本发明实施例提供一种催化气化方法,应用于如上所述的催化气化系统,包括:In another aspect, an embodiment of the present invention provides a catalytic gasification method, which is applied to the catalytic gasification system as described above, including:
通过气体分布板向所述流化床反应区通入水蒸气和氧气,使负载有催化剂的固体燃料与所述水蒸气和氧气发生催化气化反应,生成粗煤气;Water vapor and oxygen are introduced into the fluidized-bed reaction zone through the gas distribution plate, so that the solid fuel loaded with the catalyst undergoes catalytic gasification reaction with the water vapor and oxygen to generate crude gas;
通过气体入射管向所述流化床反应区远离所述气体分布板的区域通入一氧化碳和氢气,使一氧化碳和氢气在固体燃料所携带的催化剂的催化作用下发生甲烷化反应。Carbon monoxide and hydrogen are introduced into the region of the fluidized bed reaction zone away from the gas distribution plate through a gas injection pipe, so that carbon monoxide and hydrogen undergo a methanation reaction under the catalytic action of the catalyst carried by the solid fuel.
本发明实施例提供一种催化气化装置,通过所述气体分布板向所述流化床反应区通入水蒸气和氧气,能够使进入所述气化炉内的固体燃料与所述水蒸气和氧气在所述流化床反应区靠近所述气体分布板的区域发生气化反应生成富含甲烷、一氧化碳和氢气的粗煤气,并且所述氧气的通入能够为气化反应提供所需的能量,适合于工业放大,同时,通过所述气体入射管向所述流化床反应区远离所述气体分布板的区域通入一氧化碳和氢气,能够与进入所述流化床反应区的固体燃料在固体燃料所携带的催化剂的催化作用下发生甲烷化反应,有利于一氧化碳和氢气返炉制甲烷,提高粗煤气中的甲烷含量,还能够避免氧气与一氧化碳和氢气同时通入发生爆炸,保证催化气化的安全性,同时,由于甲烷化反应为强放热反应,还能够有效降低耗氧量。解决了现有技术中无氧气化工艺在将一氧化碳和氢气返炉制甲烷时需将气化剂过热至较高温度,能耗较大、工业放大难以及通氧工艺中甲烷含量低、安全性差、耗氧量高的缺陷。An embodiment of the present invention provides a catalytic gasification device. Water vapor and oxygen are introduced into the fluidized bed reaction zone through the gas distribution plate, so that the solid fuel entering the gasifier can be mixed with the water vapor and oxygen. Oxygen gasification reaction occurs in the region of the fluidized bed reaction zone near the gas distribution plate to generate crude gas rich in methane, carbon monoxide and hydrogen, and the introduction of the oxygen can provide the required energy for the gasification reaction , suitable for industrial enlargement, and at the same time, carbon monoxide and hydrogen are introduced into the region of the fluidized bed reaction zone away from the gas distribution plate through the gas injection pipe, which can be mixed with the solid fuel entering the fluidized bed reaction zone. The methanation reaction occurs under the catalytic action of the catalyst carried by the solid fuel, which is beneficial for carbon monoxide and hydrogen to be returned to the furnace to produce methane, increases the methane content in the crude gas, and also avoids the simultaneous introduction of oxygen, carbon monoxide and hydrogen. At the same time, because the methanation reaction is a strong exothermic reaction, it can also effectively reduce the oxygen consumption. It solves the problem that in the prior art, the oxygen-free gasification process needs to overheat the gasification agent to a higher temperature when the carbon monoxide and hydrogen are returned to the furnace to produce methane, the energy consumption is large, the industrial scale is difficult, and the methane content in the oxygen-passing process is low and the safety is poor. , The defect of high oxygen consumption.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to illustrate the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only for the present invention. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明实施例提供的一种催化气化装置的结构示意图;1 is a schematic structural diagram of a catalytic gasification device provided in an embodiment of the present invention;
图2为本发明实施例提供的一种气体入射管与气化炉连接的结构示意图;2 is a schematic structural diagram of the connection between a gas injection tube and a gasifier provided by an embodiment of the present invention;
图3为本发明实施例提供的另一种催化气化装置的结构示意图;3 is a schematic structural diagram of another catalytic gasification device provided in an embodiment of the present invention;
图4为本发明实施例提供的另一种气体入射管与气化炉连接的结构示意图;4 is a schematic structural diagram of another gas injection pipe connected to a gasifier provided in an embodiment of the present invention;
图5为本发明实施例提供的一种催化气化系统的结构示意图;5 is a schematic structural diagram of a catalytic gasification system according to an embodiment of the present invention;
图6为本发明实施例提供的另一种催化气化系统的结构示意图;6 is a schematic structural diagram of another catalytic gasification system provided in an embodiment of the present invention;
图7为本发明实施例提供的另一种催化气化系统的结构示意图;7 is a schematic structural diagram of another catalytic gasification system provided by an embodiment of the present invention;
图8为本发明实施例提供的再一种催化气化系统的结构示意图;8 is a schematic structural diagram of yet another catalytic gasification system provided by an embodiment of the present invention;
气化炉-1;气体分布板-11;流化床反应区-A;气体入射管-2;密相区-B;稀相区-C;有氧区-B1;无氧区-B2;排渣管-12;中心射流管-13;过渡区-E;扩大段-F;固体燃料进口-14;粗煤气出口-15;第一锐角-θ1;第二锐角-θ2;第三锐角-θ3;催化气化装置-01;净化分离系统-02;气固分离系统-021;冷却分离系统-022;气体分离系统-023;酸性气体脱除系统-024;提压系统-03;一氧化碳和氢气的混合系统-025;固体燃料预处理系统-04;破碎筛分系统-041;催化剂负载系统-042;干燥系统-043;固体燃料输送系统-05。Gasification furnace-1; gas distribution plate-11; fluidized bed reaction zone-A; gas injection pipe-2; dense phase zone-B; dilute phase zone-C; aerobic zone-B1; oxygen-free zone-B2; Slag discharge pipe-12; central jet pipe-13; transition zone-E; expansion section-F; solid fuel inlet-14; crude gas outlet-15; first acute angle-θ1; second acute angle-θ2; third acute angle- θ3; catalytic gasification unit-01; purification separation system-02; gas-solid separation system-021; cooling separation system-022; gas separation system-023; acid gas removal system-024; pressure boosting system-03; carbon monoxide and Hydrogen mixing system-025; solid fuel pretreatment system-04; crushing and screening system-041; catalyst loading system-042; drying system-043; solid fuel delivery system-05.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。In the description of the present invention, it should be understood that the terms "center", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", The orientation or positional relationship indicated by "top", "bottom", "inner", "outer", etc. is based on the orientation or positional relationship shown in the drawings, and is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying The device or element referred to must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as limiting the invention. In the description of the present invention, unless otherwise specified, "plurality" means two or more.
一方面,本发明实施例提供一种催化气化装置,参见图1,包括:On the one hand, an embodiment of the present invention provides a catalytic gasification device, see FIG. 1 , including:
气化炉1,所述气化炉1包括气体分布板11,所述气体分布板11的上方为流化床反应区A,所述气体分布板11用于向所述流化床反应区A靠近所述气体分布板11的区域通入水蒸气和氧气;Gasification furnace 1, the gasification furnace 1 includes a gas distribution plate 11, above the gas distribution plate 11 is a fluidized bed reaction zone A, and the gas distribution plate 11 is used for the fluidized bed reaction zone A Water vapor and oxygen are introduced into the area close to the gas distribution plate 11;
至少一个气体入射管2,每一个所述气体入射管2与所述流化床反应区A远离所述气体分布板11的区域连通,用于向所述流化床反应区A远离所述气体分布板11的区域通入一氧化碳和氢气。At least one
其中,需要说明的是,气化炉1通常用于煤催化气化反应,在实际应用中,通常将煤从气化炉1中部的煤进口通入流化床反应区A,与进入流化床反应区A的气化剂发生煤催化气化反应。Among them, it should be noted that the gasifier 1 is usually used for coal catalytic gasification reaction. In practical applications, coal is usually passed from the coal inlet in the middle of the gasifier 1 into the fluidized bed reaction zone A, and the coal is fed into the fluidized bed reaction zone A. The gasification agent in the bed reaction zone A undergoes a coal catalytic gasification reaction.
这里,所述煤可以为任何能够气化产生能量以及甲烷的固体燃料。因此,所述流化床反应区A是指通入该气化炉1内的固体燃料和从所述气体分布板11和所述气体入射管2通入的气化剂(这里,将水蒸气、氧气、一氧化碳和氢气统称为气化剂)发生催化气化反应的区域,所述流化床反应区A的边界可以与所述气化炉1的内壁以及气体分布板11的上表面的重合,这里,如图中虚线所示,将所述气化炉1的内壁以及气体分布板11的上表面略微内移了一点,作为所述流化床反应区A的边界。Here, the coal can be any solid fuel that can be gasified to produce energy as well as methane. Therefore, the fluidized bed reaction zone A refers to the solid fuel passed into the gasifier 1 and the gasification agent passed from the gas distribution plate 11 and the gas injection pipe 2 (here, the water vapor , oxygen, carbon monoxide and hydrogen are collectively referred to as the gasification agent) in the region where catalytic gasification reaction occurs, and the boundary of the fluidized bed reaction zone A may coincide with the inner wall of the gasifier 1 and the upper surface of the gas distribution plate 11. , here, as shown by the dotted line in the figure, the inner wall of the gasification furnace 1 and the upper surface of the gas distribution plate 11 are slightly moved inward to serve as the boundary of the fluidized bed reaction zone A.
本发明实施例提供一种催化气化装置,通过所述气体分布板11向所述流化床反应区A通入水蒸气和氧气,能够使进入所述气化炉1内的固体燃料与所述水蒸气和氧气在所述流化床反应区A靠近所述气体分布板11的区域发生气化反应生成富含一氧化碳和氢气的粗煤气,并且所述氧气的通入能够为气化反应提供所需的能量,适合于工业放大,同时,通过所述气体入射管2向所述流化床反应区A远离所述气体分布板11的区域通入一氧化碳和氢气,能够与进入所述流化床反应区A的固体燃料在固体燃料所携带的催化剂的催化作用下发生甲烷化反应,有利于一氧化碳和氢气返炉制甲烷,提高粗煤气中的甲烷含量,还能够避免氧气与一氧化碳和氢气同时通入发生爆炸,保证催化气化的安全性,同时,由于甲烷化反应为强放热反应,还能够有效降低耗氧量。解决了现有技术中无氧气化工艺在将一氧化碳和氢气返炉制甲烷时需将气化剂过热至较高温度,能耗较大,工业放大难以及通氧工艺中甲烷含量低、安全性差、耗氧量高的缺陷。The embodiment of the present invention provides a catalytic gasification device, in which steam and oxygen are introduced into the fluidized bed reaction zone A through the gas distribution plate 11, so that the solid fuel entering the gasifier 1 can be mixed with the The gasification reaction of water vapor and oxygen occurs in the fluidized bed reaction zone A near the gas distribution plate 11 to generate crude gas rich in carbon monoxide and hydrogen, and the introduction of the oxygen can provide sufficient energy for the gasification reaction. The required energy is suitable for industrial enlargement. At the same time, carbon monoxide and hydrogen are introduced into the region of the fluidized bed reaction zone A away from the gas distribution plate 11 through the
在催化气化过程中,根据床层密度的不同,所述流化床反应区A从下到上依次包括密相区B和稀相区C,所述气体入射管2与所述流化床反应区A远离所述气体分布板11的密相区B连通。这样一来,通过所述气体入射管2通入流化床反应区A的一氧化碳和氢气能够与密相区B床料充分接触,并在催化作用下发生甲烷化反应,有利于生成甲烷的同时放出大量的热传递给床料,能够补充催化气化反应所需热量。In the catalytic gasification process, according to the different bed densities, the fluidized bed reaction zone A includes a dense phase zone B and a dilute phase zone C sequentially from bottom to top, and the
其中,所述密相区B和所述稀相区C之间并没有明显的界限,这里仅是为了说明本发明而所做的示例,并且,在实际应用中,所述密相区B和所述稀相区C的边界与所述气化炉1的炉壁重合。There is no obvious boundary between the dense phase region B and the dilute phase region C, which is only an example for illustrating the present invention, and, in practical applications, the dense phase region B and the dilute phase region C The boundary of the dilute phase region C coincides with the furnace wall of the gasifier 1 .
需要说明的是,通过所述气体分布板11向所述流化床反应区A内通入水蒸气和氧气,水蒸气和氧气在气化炉1内逐渐上升,与通入所述密相区B的负载有催化剂的固体燃料发生催化气化反应,生成富含甲烷、一氧化碳和氢气的粗煤气,具体反应式如下:It should be noted that water vapor and oxygen are introduced into the fluidized-bed reaction zone A through the gas distribution plate 11, and the water vapor and oxygen gradually rise in the gasifier 1, which is the same as the introduction into the dense-phase zone B. The catalyst-loaded solid fuel undergoes a catalytic gasification reaction to generate crude gas rich in methane, carbon monoxide and hydrogen. The specific reaction formula is as follows:
2C+2H2O→2H2+2CO (1)2C+2H 2 O→2H 2 +2CO (1)
CO+H2O→CO2+H2 (2)CO+H 2 O→CO 2 +H 2 (2)
3H2+CO→CH4+3H2O (3)3H 2 +CO→CH 4 +3H 2 O (3)
2C+O2→2CO (4)2C+O 2 →2CO (4)
C+O2→CO2 (5)C+O 2 →CO 2 (5)
随着床层的上升,氧气与流化床反应区A内的碳发生反应并逐渐消耗完全,这里,氧气未消耗完全的底部区域为有氧区B1,氧气消耗完全后的区域为无氧区B2。As the bed rises, the oxygen reacts with the carbon in the fluidized bed reaction zone A and is gradually consumed completely. Here, the bottom area where oxygen is not completely consumed is the aerobic zone B1, and the area after the oxygen is completely consumed is the oxygen-free zone B2.
基于此,本发明的一实施例中,继续参见图1,所述密相区B从下到上依次包括有氧区B1和无氧区B2,所述气体入射管2的出口位于所述无氧区B2的底部。这样一来,一方面,能够避免一氧化碳和氢气与氧气接触的风险,另一方面,能够最大程度上延长一氧化碳和氢气在流化床反应区A内的停留时间,促进甲烷化反应的进行。Based on this, in an embodiment of the present invention, continuing to refer to FIG. 1 , the dense phase region B includes an oxygen-containing region B1 and an oxygen-free region B2 in sequence from bottom to top, and the outlet of the
其中,需要说明的是,水蒸气和氧气除了作为气化剂与燃料进行催化气化反应之外,还具有流化作用,在实际应用中,所述气体分布板11的底部还连接有排渣管12,所述排渣管12的内侧设有与所述有氧区B1连通的中心射流管13,可以在所述气体分布板11上的气孔和所述中心射流管13通入不同浓度的水蒸气和氧气,在中心射流管13和排渣管12所形成的环隙通入水蒸气,以对流化床反应区A中的燃料进行流化。Among them, it should be noted that in addition to being used as a gasification agent for catalytic gasification reaction with fuel, water vapor and oxygen also have a fluidizing effect. In practical applications, the bottom of the gas distribution plate 11 is also connected with a slag discharger.
在此过程中,还可以对水蒸气和氧气的通入量,以及水蒸气和氧气的通入比例进行调节,以适当补充气化炉1内能量的同时,保证气化炉1内的流场分布。During this process, the introduction amount of water vapor and oxygen, and the introduction ratio of water vapor and oxygen can also be adjusted to properly supplement the energy in the gasifier 1 and at the same time ensure the flow field in the gasifier 1. distributed.
本发明的又一实施例中,所述催化气化装置还包括设置在所述无氧区B2或者所述稀相区C的固体燃料进口14。通过所述固体燃料进口14向气化炉内通入燃料,使得燃料在气化炉1内分布在流化床反应区A内,相反地,根据燃料在流化床反应区A内的密度,所述流化床反应区A从下到上分别为密相区B和稀相区C。In yet another embodiment of the present invention, the catalytic gasification device further includes a
本发明的一实施例中,所述气体分布板11为倒锥形结构,且所述气体分布板上11开设有气孔,所述气孔的孔径小于等于5mm。通过对气体分布板11的结构进行限定,能够实现气化剂的均匀分布、促进流化床气化炉流场稳定。In an embodiment of the present invention, the gas distribution plate 11 has an inverted conical structure, and the gas distribution plate 11 is provided with air holes, and the diameter of the air holes is less than or equal to 5 mm. By limiting the structure of the gas distribution plate 11 , the uniform distribution of the gasification agent can be achieved, and the stability of the flow field of the fluidized bed gasifier can be promoted.
其中,所述气孔的开孔数可以设置为使得所述气体分布板11的压降为所述气化炉1密相区床层压降的1/3。这样一来,避免气化剂短路,有利于气化炉分布均匀、提高流化质量。Wherein, the number of openings of the gas holes can be set so that the pressure drop of the gas distribution plate 11 is 1/3 of the pressure drop of the bed in the dense phase zone of the gasifier 1 . In this way, the short circuit of the gasification agent is avoided, which is beneficial to the uniform distribution of the gasifier and the improvement of the fluidization quality.
本发明的又一实施例中,所述密相区B具有一床径从下到上渐扩的过渡区E,避免床径突变引发流动死区出现,不利于床内反应场、温度场的均匀分布。In another embodiment of the present invention, the dense phase region B has a transition region E with a bed diameter gradually expanding from bottom to top, so as to avoid the occurrence of flow dead zone caused by sudden change of bed diameter, which is not conducive to the reaction field and temperature field in the bed. Evenly distributed.
其中,所述过渡区E可以位于所述密相区B的底部。Wherein, the transition zone E may be located at the bottom of the dense phase zone B.
本发明的又一实施例中,所述气化炉1对应所述过渡区E的炉壁与垂直方向的夹角小于等于8度,避免角度太大,直径变化幅度太大,引发床内流化质量下降、局部出现死区的现场。In another embodiment of the present invention, the included angle between the furnace wall of the gasifier 1 corresponding to the transition zone E and the vertical direction is less than or equal to 8 degrees, so as to avoid the angle being too large and the diameter changing too much, which may cause flow in the bed The site where the quality of the chemical is degraded and the dead zone appears locally.
本发明的一实施例中,所述气体入射管2为至少两个,且分层穿设于所述气化炉1侧壁的不同高度。这样,通过所述气体入射管2通入流化床反应区A的一氧化碳和氢气能够与不同高度的床料充分接触,并在催化作用下发生甲烷化反应,生成甲烷的同时放出大量的热传递给不同高度的床料,能够补充催化气化反应所需热量。In an embodiment of the present invention, there are at least two
本发明的一优选实施例中,每层气体入射管2为至少两个,且沿所述气化炉1的周向均匀分布。能够将一氧化碳和氢气均匀通入所述气化炉1内,使得一氧化碳和氢气与固体燃料接触更加密切,有利于气固反应及甲烷化反应的进行以及气化炉1内的流场分布。In a preferred embodiment of the present invention, there are at least two
本发明的第一种可能的实现方式中,参见图1所示,每一个所述气体入射管2的一端位于所述气化炉1的外部,另一端与所述气化炉1的内壁平齐。通过所述气体入射管2通入的一氧化碳和氢气可以沿所述气化炉1的内壁进行分布,与密相区B床料充分接触,在催化剂作用下发生甲烷化反应,生成甲烷同时放出大量热并传递给密相床料。In the first possible implementation manner of the present invention, as shown in FIG. 1 , one end of each of the
在这种可能的实现方式中,参见图2,每一个所述气体入射管2与水平面具有一第一锐角θ1,所述气体入射管2与所述气体入射管2和所述气化炉的侧壁连接点的切线所在的平面之间具有一第二锐角θ2。这样,在通过所述气体入射管2向所述气化炉1内通入一氧化碳和氢气时,一氧化碳和氢气可以在气化炉1内形成旋流作用,该旋流作用可以与气化炉1内的流场更好地融合,同时可以打碎气化炉内形成的气泡,实现气体二次分布。In this possible implementation, referring to FIG. 2 , each of the
优选的,当所述气体入射管2向下倾斜设置于所述气化炉1的侧壁上时,所述第一锐角θ1的最大值可以为45度;当所述气体入射管2向上倾斜设置于所述气化炉1的侧壁上时,所述第一锐角θ1的最大值可以为15度;所述第二锐角可以为25-45度。Preferably, when the
在这种可能的实现方式中,所述气体入射管2的管径设置为使通过所述气体入射管2的气体流速为5-30m/s。气体入射管2的管径大小与通过气体入射管2的气体流速直接相关,通常,在流量一定的情况下,气体入射管2的管径越大,气体流速越小,管径越小,气体流速越大。将气体入射管2的气体流速控制在该范围内,存在较大的切向分量,有利于一氧化碳和氢气的均匀分布,增加了一氧化碳和氢气在密相区的停留时间,使得一氧化碳和氢气与固体燃料接触更加密切,有利于气固反应及甲烷化反应的进行,同时,切向分量的存在,可打碎床层中心部位存在的气泡,实现了气相的再分布,强化了炉内湍动程度,加强了一氧化碳和氢气的返混及气固接触,避免了炉内形成节涌导致的失流化。In this possible implementation manner, the diameter of the
本发明的第二种可能的实现方式中,参见图3所示,每一个所述气体入射管2的一端位于所述气化炉1的外部,另一端伸入气化炉1内,且伸入气化炉1内的一端设有至少两个通孔。在通过该气体入射管通入一氧化碳和氢气时,所述一氧化碳和氢气可以通过所述通孔分布在气化炉内,同样能够增加一氧化碳和氢气在密相区的停留时间,使得一氧化碳和氢气与固体燃料接触更加密切,有利于气固反应及甲烷化反应的进行。In the second possible implementation manner of the present invention, as shown in FIG. 3 , one end of each of the
其中,所述气体入射管2可以为圆柱状结构,所述通孔可以均匀分布于所述圆柱状结构中下部的侧壁上。这样,有利于一氧化碳和氢气在气化炉1内均匀分布。Wherein, the
本发明的一优选实施例中,每一个所述通孔的孔径为2-5mm,所述气体入射管2的管径设置为使通过所述通孔的气体流速为10-30m/s。通过对所述气体入射管2的管径进行设置,使得通过所述通孔的气体流速在以上范围内,能够使通入的一氧化碳和氢气均匀分布,强化炉内湍动程度,加强一氧化碳和氢气的返混及气固接触,促进甲烷化反应的发生。In a preferred embodiment of the present invention, the diameter of each of the through holes is 2-5 mm, and the diameter of the
在这种可能的实现方式中,参见图4,所述气体入射管2以第三锐角θ3倾斜设置或水平设置于所述气化炉1的侧壁上,所述第三锐角θ3是指所述气体入射管2与所述气体入射管2和所述气化炉的侧壁连接点的切线所在的平面之间所成的夹角。这样,能够进一步优化气体分布及炉内流场,强化炉内湍动程度,加强一氧化碳和氢气的返混和气固接触,避免失流化。In this possible implementation, referring to FIG. 4 , the
其中,所述气体入射管2可以向上倾斜,也可以向下倾斜设置于所述气化炉1的侧壁上,在此不做限定。Wherein, the
进一步地,参见图1所示,所述气化炉1还可以包括设置在所述流化床反应区A上方的扩大段F,所述扩大段F的上方设有粗煤气出口15。这样一来,所述流化床反应区A发生催化气化反应以及甲烷化反应所产生的富含甲烷的粗煤气通过所述粗煤气出口15进入后续净化分离系统时,扩大段能够有效降低粗煤气的气速,从而能够减少粗煤气中半焦或者固体粉尘的夹带量,有利于后续净化分离处理。Further, as shown in FIG. 1 , the gasifier 1 may further include an enlarged section F disposed above the fluidized bed reaction zone A, and a
另一方面,本发明实施例提供一种催化气化系统,参见图5,包括:On the other hand, an embodiment of the present invention provides a catalytic gasification system, see FIG. 5 , including:
如上所述的催化气化装置01以及分别与所述催化气化装置01的粗煤气出口和所述气体入射管2的进口连通的净化分离系统02;The above
所述净化分离系统02用于将粗煤气中的一氧化碳和氢气分离出来,并将所分离的一氧化碳和氢气一同输送至气化炉1中。The purification and
本发明实施例提供一种催化气化系统,通过分别将以上所述的催化气化装置01的粗煤气出口和所述气体入射管2的进口与净化分离系统02连通,所述净化分离系统02对所述催化气化装置01所产生的富含甲烷粗煤气进行净化分离,将一氧化碳和氢气分离出来并通过所述气体入射管2通入气化炉1中,能够实现一氧化碳和氢气循环返炉制甲烷,提高甲烷含量,并且,能够通过不断通氧为气化炉内气化反应提供热量,避免额外供热的同时,避免一氧化碳和氢气与氧气接触发生爆炸,保证催化气化反应的安全性,有效降低耗氧量。解决了现有技术中无氧气化工艺在将一氧化碳和氢气返炉制甲烷时能耗较大,不适合工业放大以及通氧工艺中甲烷含量低、安全性差、耗氧量高的缺陷。The embodiment of the present invention provides a catalytic gasification system, by respectively connecting the crude gas outlet of the
本发明的一实施例中,所述净化分离系统02包括与所述催化气化装置01的粗煤气出口连通的气固分离系统021,以及与所述气固分离系统021的气体出口连通的冷却分离系统022以及与所述冷却分离系统022的气体出口连通的气体分离系统023,其中,所述气体分离系统023为深冷分离系统或者物理化学吸附系统。通过气固分离系统021,能够将粗煤气所携带的半焦或者固体粉尘分离出来,这时,粗煤气中含有大量的轻质油品和重质油品,通过冷却分离系统022将轻质油品和重质油品分离出来,这时,所获得的净化气体为富含甲烷、一氧化碳和氢气的气体,通过深冷分离系统能够将甲烷和一氧化碳和氢气分离开来,并容易实现,通过物理化学吸附系统能够快速分离甲烷、一氧化碳和氢气,实现一氧化碳和氢气的返炉。In an embodiment of the present invention, the purification and
其中,所述冷却分离系统022可以采用直接冷却或者间接冷却的形式,冷却介质优选为水,这样,在对粗煤气进行冷却的同时,能够吸收热量副产水蒸气,水蒸气可以通过所述气体分布板通入气化炉1中。Wherein, the cooling and
其中,需要说明的是,在催化气化反应中,根据固体燃料的种类不同,所含的硫份含量也不相同,所获得的粗煤气中酸性气体如二氧化硫、硫化氢的含量也不相同,工艺条件不同,而获得的二氧化碳的含量也有所差异,因此,优选的,本发明的一实施例中,参见图6,所述气体分离系统023与所述冷却分离系统022之间还设置有酸性气体脱除系统024,所述酸性气体脱除系统024用于将粗煤气中的酸性气体脱除。这样,有利于保护冷深分离系统或者物理化学吸附分离系统,避免酸性气体腐蚀。Among them, it should be noted that in the catalytic gasification reaction, according to the type of solid fuel, the content of sulfur content is also different, and the content of acid gas such as sulfur dioxide and hydrogen sulfide in the obtained crude gas is also different. The process conditions are different, and the content of carbon dioxide obtained is also different. Therefore, preferably, in an embodiment of the present invention, referring to FIG. 6 , an acid is also provided between the
本发明的又一实施例中,参见图7,所述催化气化系统还包括提压系统03,所述提压系统03的进口与所述气体分离系统02的一氧化碳出口和氢气出口连通,所述提压系统03的出口与每一个所述气体入射管2连通,所述提压系统03用于将一氧化碳和氢气的压力提升至预设值,并将压力提升至预设值的一氧化碳和氢气输送入所述气化炉1中。In yet another embodiment of the present invention, referring to FIG. 7 , the catalytic gasification system further includes a
由于气化炉1内为高压环境,通过提压系统03对一氧化碳和氢气进行提压,能够将一氧化碳和氢气顺利输送入气化炉1内。Since the inside of the gasifier 1 is in a high-pressure environment, the carbon monoxide and hydrogen are boosted by the boosting
其中,所述提压系统03可以为合成气压缩机或者高压蒸汽抽引泵。所述高压蒸汽抽引泵的驱动高压蒸汽可来自于冷却分离系统022副产的水蒸气。Wherein, the
其中,对所述预设值不做限定,由于气化炉内为高压环境,因此,需要所述预设值高于所述气化炉1内压力。The preset value is not limited. Since the gasifier is in a high-pressure environment, the preset value needs to be higher than the pressure in the gasifier 1 .
优选的,所述预设值与所述气化炉1内的压力之差大于等于0.5MPa。Preferably, the difference between the preset value and the pressure in the gasifier 1 is greater than or equal to 0.5 MPa.
本发明的一实施例中,参见图6,所述催化气化系统还可以包括一氧化碳和氢气的混合系统025,所述一氧化碳和氢气的混合系统025用于将一氧化碳和氢气混合均匀。In an embodiment of the present invention, referring to FIG. 6 , the catalytic gasification system may further include a carbon monoxide and
本发明的又一实施例中,参见图8,所述催化气化系统还包括固体燃料预处理系统04,所述固体燃料预处理系统04包括破碎筛分系统041、催化剂负载系统042以及干燥系统043,所述破碎筛分系统041用于将固体燃料破碎筛分为粉末状,所述催化剂负载系统042用于对固体燃料进行催化剂负载,所述干燥系统043用于对负载有催化剂的固体燃料进行干燥。In yet another embodiment of the present invention, referring to FIG. 8 , the catalytic gasification system further includes a solid
本发明的一优选实施例中,所述煤催化气化系统还包括固体燃料输送系统05,所述固体燃料输送系统05用于将固体燃料经所述固体燃料进口14输送入所述气化炉1中。In a preferred embodiment of the present invention, the coal catalytic gasification system further includes a solid
再一方面,本发明实施例提供一种催化气化方法,应用于如上所述的煤催化气化系统,包括:In yet another aspect, an embodiment of the present invention provides a catalytic gasification method, which is applied to the above-mentioned coal catalytic gasification system, including:
通过气体分布板向所述流化床反应区通入水蒸气和氧气,使负载有催化剂的固体燃料与所述水蒸气和氧气发生气化反应,生成粗煤气;Water vapor and oxygen are introduced into the fluidized bed reaction zone through the gas distribution plate, so that the solid fuel loaded with the catalyst undergoes gasification reaction with the water vapor and oxygen to generate crude gas;
通过气体入射管向所述流化床反应区远离所述气体分布板的区域通入一氧化碳和氢气,使一氧化碳和氢气在固体燃料所携带的催化剂的催化作用下发生甲烷化反应。Carbon monoxide and hydrogen are introduced into the region of the fluidized bed reaction zone away from the gas distribution plate through a gas injection pipe, so that carbon monoxide and hydrogen undergo a methanation reaction under the catalytic action of the catalyst carried by the solid fuel.
本发明实施例提供一种催化气化方法,通过将水蒸气和氧气与粗煤气中分离出的一氧化碳和氢气分区域通入气化炉中,能够避免氧气与一氧化碳和氢气接触发生爆炸,还能够通过氧气燃烧为气化炉内的气化反应提供热量,避免额外供热,适合工业放大,同时,能够实现一氧化碳和氢气的返炉制甲烷,提高催化气化所产生的粗煤气中的甲烷含量,甲烷化反应为强放热反应,能够有效降低耗氧量。The embodiment of the present invention provides a catalytic gasification method. By passing water vapor, oxygen, and carbon monoxide and hydrogen separated from crude coal gas into a gasifier in different regions, it is possible to avoid explosion caused by contact of oxygen with carbon monoxide and hydrogen. Oxygen combustion provides heat for the gasification reaction in the gasifier, avoids additional heating, and is suitable for industrial scale-up. At the same time, carbon monoxide and hydrogen can be returned to the furnace to produce methane, and the methane content in the crude gas produced by catalytic gasification can be increased. , the methanation reaction is a strong exothermic reaction, which can effectively reduce the oxygen consumption.
其中,对所述负载有催化剂的固体燃料的粒径、催化剂负载量以及固体燃料的含水量不做限定。Wherein, the particle size of the catalyst-loaded solid fuel, the catalyst loading amount and the water content of the solid fuel are not limited.
本发明的一实施例中,所述固体燃料的粒径小于等于5mm,所述固体燃料的催化剂负载量占所述固体燃料质量的5-15%,干燥后的负载有催化剂的固体燃料的含水量小于等于5%。含水量是指水分占所述干燥后的负载有催化剂的固体燃料的质量百分含量。有利于催化气化反应以及甲烷化反应的进行。In an embodiment of the present invention, the particle size of the solid fuel is less than or equal to 5 mm, the catalyst loading of the solid fuel accounts for 5-15% of the mass of the solid fuel, and the dried catalyst-loaded solid fuel contains The amount of water is less than or equal to 5%. The moisture content refers to the mass percentage content of moisture in the dried catalyst-loaded solid fuel. It is beneficial to the catalytic gasification reaction and the methanation reaction.
其中,对所述固体燃料的种类不做限定,所述固体燃料可以为褐煤、烟煤、次烟煤、无烟煤、生物质煤或者石油焦等。Wherein, the type of the solid fuel is not limited, and the solid fuel may be lignite, bituminous coal, sub-bituminous coal, anthracite, biomass coal or petroleum coke.
对所述催化剂的种类也不做限定,所述催化剂可以为碱金属催化剂、碱土金属催化剂和过渡金属催化剂中的一种或者几种组合物。The type of the catalyst is also not limited, and the catalyst can be one or several combinations of alkali metal catalysts, alkaline earth metal catalysts and transition metal catalysts.
优选的,所述催化剂为碱金属催化剂。Preferably, the catalyst is an alkali metal catalyst.
其中,对所述催化气化反应的温度和压力不做限定。优选的,所述催化气化反应的温度为650-750℃,压力为3-4.5MPa。The temperature and pressure of the catalytic gasification reaction are not limited. Preferably, the temperature of the catalytic gasification reaction is 650-750° C., and the pressure is 3-4.5 MPa.
以下,本发明实施例将通过实施例对本发明进行说明。这些实施例仅是为了具体说明本发明而提出的示例,本领域技术人员可以知道的是本发明的范围不受这些实施例的限制。Hereinafter, the embodiments of the present invention will illustrate the present invention through examples. These embodiments are only examples provided to specifically illustrate the present invention, and those skilled in the art will appreciate that the scope of the present invention is not limited by these embodiments.
需要说明的是,为了对本发明实施例的技术效果进行客观说明,以下实施例中进入气化炉中的固体燃料均采用相同的煤种经过相同的工艺制备获取。It should be noted that, in order to objectively illustrate the technical effects of the embodiments of the present invention, the solid fuels entering the gasifier in the following embodiments are all prepared and obtained from the same coal type through the same process.
具体的,将褐煤经破碎筛分处理得到5mm以下的煤粉,采用浸渍法对煤粉进行催化剂(该催化剂为碱金属催化剂)负载,使得催化剂的负载量占干基煤粉质量的5-15%;将负载有催化剂的煤粉干燥至含水量小于等于5%,获得煤催化气化用原料煤。Specifically, the lignite is crushed and screened to obtain pulverized coal with a size of less than 5 mm, and the pulverized coal is loaded with a catalyst (the catalyst is an alkali metal catalyst) by an impregnation method, so that the loading of the catalyst accounts for 5-15% of the mass of the dry coal pulverized coal. %; the pulverized coal loaded with the catalyst is dried to a moisture content of less than or equal to 5% to obtain raw coal for catalytic coal gasification.
实施例Example
将以上所获得的煤催化气化用原料煤分为至少三等份在如图8所示的气化炉中进行煤催化气化反应。每一等份的煤催化气化用原料煤的煤催化气化过程具体如下:The raw coal for catalytic coal gasification obtained above is divided into at least three equal parts and subjected to a coal catalytic gasification reaction in a gasifier as shown in FIG. 8 . The coal catalytic gasification process of each aliquot of the raw coal for catalytic coal gasification is as follows:
参见图8,将煤催化气化用原料煤通过进料系统05输送入气化炉1中,同时,将水蒸气和氧气经气化炉1底部的气体分布板11通入,使得水蒸气和氧气与煤粉在气化炉中在650-750℃、3-4.5MPa下发生煤催化气化反应,生成富含甲烷、一氧化碳和氢气的粗煤气,具体反应过程如下:Referring to FIG. 8 , the raw coal for coal catalytic gasification is transported into the gasifier 1 through the
2C+2H2O→2H2+2CO (1)2C+2H 2 O→2H 2 +2CO (1)
CO+H2O→CO2+H2 (2)CO+H 2 O→CO 2 +H 2 (2)
3H2+CO→CH4+3H2O (3)3H 2 +CO→CH 4 +3H 2 O (3)
2C+O2→2CO (4)2C+O 2 →2CO (4)
C+O2→CO2 (5)C+O 2 →CO 2 (5)
其中,所获得的粗煤气中甲烷含量约为干基煤粉的20%-26%,有效气体含量在50%-80%。Wherein, the methane content in the obtained crude gas is about 20%-26% of the dry coal powder, and the effective gas content is 50%-80%.
将所获得的粗煤气进行气固分离、冷却分离,并将冷却分离所获得的合成气通入酸性气体脱除系统脱除其中的二氧化碳和硫化氢气体,再将所获得的合成气通过深冷分离或者物理化学吸附分离将甲烷、一氧化碳和氢气分离开来,将分离所获得的一氧化碳和氢气通过混合系统进行混合,再通过提压系统将压力提升至与所述气化炉内压力之差大于等于0.5MPa,并将其通过气体入射管2输送入气化炉1内的无氧区,这时,一氧化碳和氢气在煤所携带的催化剂的催化作用下发生甲烷化反应转化为甲烷,如此不断循环,最终获得高甲烷含量的粗煤气。The obtained crude gas is subjected to gas-solid separation and cooling separation, and the synthesis gas obtained by cooling and separation is passed into the acid gas removal system to remove carbon dioxide and hydrogen sulfide gas therein, and then the obtained synthesis gas is passed through cryogenic cooling. Separation or physicochemical adsorption separation separates methane, carbon monoxide and hydrogen, and mixes the carbon monoxide and hydrogen obtained by separation through a mixing system, and then increases the pressure through a pressure boosting system to a degree greater than or equal to the pressure in the gasifier. It is equal to 0.5MPa, and it is transported into the oxygen-free zone in the gasifier 1 through the
采用本专利提供的煤催化气化装置与现有的煤催化气化装置进行煤的催化气化反应,指标对比如下表1所示,其中,本发明实施例提供煤催化气化装置参见图1所示的有氧循环气返炉气化炉,现有的煤催化气化装置分别为无氧循环气返炉气化炉和有氧无循环气返炉气化炉。The catalytic gasification reaction of coal is carried out by using the coal catalytic gasification device provided by this patent and the existing coal catalytic gasification device, and the index comparison is shown in Table 1 below. In the shown aerobic circulating gas returning gasifier, the existing coal catalytic gasification devices are respectively an oxygen-free circulating gas returning gasifier and an oxygen-free circulating gas returning gasifier.
表1Table 1
由表1可知,本发明实施例提供的催化气化装置通过将水蒸气和氧气通过气体分布板通入气化炉中,将一氧化碳和氢气作为循环气通过气体入射管通入气化炉中,与现有的无氧循环气返炉气化炉相比,所需要的气化剂温度较低,能够降低能耗,提高碳转化率,工业可实现性强,与现有的有氧无循环气返炉气化炉相比,由于甲烷化反应的强放热,能有效降低耗氧量,且最终所获得的甲烷含量较高,冷煤气效率较高,能源热效率也有一定的提升。As can be seen from Table 1, the catalytic gasification device provided by the embodiment of the present invention passes water vapor and oxygen into the gasifier through a gas distribution plate, and passes carbon monoxide and hydrogen as circulating gas into the gasifier through a gas injection pipe, Compared with the existing oxygen-free circulating gas return gasifier, the required temperature of the gasifying agent is lower, which can reduce energy consumption, improve carbon conversion rate, and has strong industrial realizability. Compared with the gas return gasifier, due to the strong exotherm of the methanation reaction, the oxygen consumption can be effectively reduced, and the final methane content is higher, the cold gas efficiency is higher, and the energy thermal efficiency is also improved to a certain extent.
综上所述,通过所述气体分布板向所述流化床反应区通入水蒸气和氧气,能够使进入所述气化炉内的固体燃料与所述水蒸气和氧气在所述流化床反应区靠近所述气体分布板的区域发生气化反应生成富含甲烷、一氧化碳和氢气的粗煤气,并且所述氧气的通入能够为气化反应提供所需的能量,节约能耗,适合于工业放大,同时,通过所述气体入射管向所述流化床反应区远离所述气体分布板的区域通入一氧化碳和氢气,能够避免氧气与一氧化碳和氢气同时通入发生爆炸,保证煤催化气化的安全性,并且,一氧化碳和氢气不断返炉与进入所述流化床反应区的固体燃料在固体燃料所携带的催化剂的催化作用下发生甲烷化反应,有利于提高粗煤气中的甲烷含量,降低甲烷成本;同时甲烷化强放热反应的发生为气化炉内提供热量,氧耗大大降低。解决了现有技术中无氧气化工艺在将一氧化碳和氢气返炉制甲烷时需将气化剂过热至较高温度,能耗较大,工业放大难以及通氧工艺中甲烷含量低、安全性差、耗氧量高的缺陷。To sum up, water vapor and oxygen are introduced into the fluidized bed reaction zone through the gas distribution plate, so that the solid fuel entering the gasifier can be mixed with the water vapor and oxygen in the fluidized bed. The gasification reaction occurs in the region of the reaction zone close to the gas distribution plate to generate crude gas rich in methane, carbon monoxide and hydrogen, and the introduction of the oxygen can provide the required energy for the gasification reaction, save energy consumption, and is suitable for At the same time, carbon monoxide and hydrogen are introduced into the area of the fluidized bed reaction zone away from the gas distribution plate through the gas injection pipe, which can avoid the explosion of oxygen, carbon monoxide and hydrogen when the gas is introduced at the same time, and ensure that the coal catalytic gas In addition, carbon monoxide and hydrogen are continuously returned to the furnace and the solid fuel entering the fluidized bed reaction zone undergoes a methanation reaction under the catalytic action of the catalyst carried by the solid fuel, which is beneficial to increase the methane content in the crude gas. , reduce the cost of methane; at the same time, the strong exothermic reaction of methanation provides heat for the gasifier, and the oxygen consumption is greatly reduced. It solves the problem that in the prior art, when carbon monoxide and hydrogen are returned to the furnace to produce methane, the gasification agent needs to be overheated to a higher temperature, the energy consumption is large, the industrial amplification is difficult, and the methane content in the oxygen-passing process is low and the safety is poor. , The defect of high oxygen consumption.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710562971.9A CN107177384B (en) | 2017-07-11 | 2017-07-11 | A catalytic gasification device, system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710562971.9A CN107177384B (en) | 2017-07-11 | 2017-07-11 | A catalytic gasification device, system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107177384A CN107177384A (en) | 2017-09-19 |
CN107177384B true CN107177384B (en) | 2020-06-19 |
Family
ID=59837818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710562971.9A Active CN107177384B (en) | 2017-07-11 | 2017-07-11 | A catalytic gasification device, system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107177384B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108219851B (en) * | 2018-01-09 | 2021-01-05 | 新奥科技发展有限公司 | Coal gasification method and system |
CN108179032A (en) * | 2018-01-09 | 2018-06-19 | 新奥科技发展有限公司 | A kind of fluidized-bed gasification furnace, gasification system and method |
CN108410506B (en) * | 2018-04-13 | 2020-04-21 | 新奥科技发展有限公司 | An oxygen-free catalytic gasifier, catalytic gasification system and coal methanation method |
CN109181771B (en) * | 2018-10-09 | 2020-10-23 | 新奥科技发展有限公司 | Coal catalytic gasification method and coal catalytic gasification device |
CN109628152B (en) * | 2019-01-23 | 2024-06-18 | 中化学装备科技(苏州)有限公司 | Method for strengthening bubbling internal circulation of fluidized bed gasifier and fluidized bed gasifier |
CN110713844A (en) * | 2019-10-17 | 2020-01-21 | 中国科学院山西煤炭化学研究所 | Method for co-producing methane and light liquid tar by catalytic hydro-gasification two-step method |
CN112480969B (en) * | 2020-11-12 | 2022-06-10 | 新奥科技发展有限公司 | A fluidized bed gasifier and gasification process |
CN112480968B (en) * | 2020-11-12 | 2022-07-19 | 新奥科技发展有限公司 | A fluidized bed gasifier and gasification process |
CN112920853B (en) * | 2021-02-04 | 2022-08-12 | 新奥科技发展有限公司 | Coal catalytic gasification reactor and coal catalytic gasification reaction system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104762108A (en) * | 2015-03-10 | 2015-07-08 | 新奥科技发展有限公司 | Fluidized bed gasification furnace and gasification system |
CN106398767A (en) * | 2016-09-07 | 2017-02-15 | 新奥科技发展有限公司 | Gasification furnace and coal gasification method |
CN106811236A (en) * | 2017-01-24 | 2017-06-09 | 新奥科技发展有限公司 | A kind of fluidized-bed gasification furnace and its construction method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4154581A (en) * | 1978-01-12 | 1979-05-15 | Battelle Development Corporation | Two-zone fluid bed combustion or gasification process |
CN103087778B (en) * | 2013-01-28 | 2014-11-05 | 新奥科技发展有限公司 | Jet pipe, fluidized bed reactor with jet pipe and coal catalyzing and gasifying method |
CN104673397B (en) * | 2015-01-26 | 2017-03-01 | 新奥科技发展有限公司 | A kind of gas distributor of fludized bed and gasification furnace |
-
2017
- 2017-07-11 CN CN201710562971.9A patent/CN107177384B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104762108A (en) * | 2015-03-10 | 2015-07-08 | 新奥科技发展有限公司 | Fluidized bed gasification furnace and gasification system |
CN106398767A (en) * | 2016-09-07 | 2017-02-15 | 新奥科技发展有限公司 | Gasification furnace and coal gasification method |
CN106811236A (en) * | 2017-01-24 | 2017-06-09 | 新奥科技发展有限公司 | A kind of fluidized-bed gasification furnace and its construction method |
Also Published As
Publication number | Publication date |
---|---|
CN107177384A (en) | 2017-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107177384B (en) | A catalytic gasification device, system and method | |
CN102585947B (en) | A kind of method and apparatus that is contained the gas of methane by coal preparation | |
CA3059403A1 (en) | Multi-purpose application of the second stage of a 2-stage bio-reforming reactor system for reforming bio-syngas, natural gas and process recycle streams | |
AU2018202371A1 (en) | A process for catalytic gasification of carbonaceous feedstock | |
US10995288B2 (en) | Integrated process plant having a biomass reforming reactor using a fluidized bed | |
CN101245264A (en) | Single-bed self-heating pyrolysis gasification combustion reactor and pyrolysis gasification combustion method | |
CN106590761B (en) | Fluidized bed reaction device and reaction method for preparing methane-rich synthesis gas through catalytic coal gasification | |
CN106221814B (en) | A kind of colm water cooling fireplace segmented couples gasification installation and gasification process | |
CN104178227B (en) | A kind of fluidized bed dry distillation method and device of coal dust | |
CN102010759A (en) | Method and device for producing hydrogen-rich gases by catalyzing and gasifying solid fuels | |
US10443004B2 (en) | First stage process configurations in a 2-stage bio-reforming reactor system | |
US10273422B2 (en) | Integrated biofuels process configurations, employing a 2-stage bio-reforming reactor system, in which renewable carbon content of gasoline and diesel are optimized for value | |
WO2010063207A1 (en) | High temperature gasifying process with biomass and system thereof | |
EP2937405B1 (en) | Integrated drying and gasification process for simultaneously producing synthetic gas and high rank coal | |
WO2010063205A1 (en) | High temperature gasifying process with biomass and system thereof | |
JP6637614B2 (en) | Two-stage gasifier and gasification process with raw material flexibility | |
CN109401794A (en) | The combined fluidized bed reaction unit of staged conversion and reaction method | |
US10273415B2 (en) | Flexible options for utilizing naphtha from a low temperature Fischer-Tropsch process in a plant converting biomass to syncrude or transportation fuels | |
US9499753B2 (en) | Gasification process and system using dryer integrated with water-gas shift catalyst | |
CN104673414B (en) | Device and method for carrying out catalysis, gasification and methanation enrichment on coal | |
CN206955963U (en) | A kind of catalytic gasification apparatus and system | |
CN106635171A (en) | Method and equipment for producing coal gas through biomass pressurized gasification | |
CN108410506B (en) | An oxygen-free catalytic gasifier, catalytic gasification system and coal methanation method | |
CN109735370A (en) | Device and method for preparing hydrogen-rich synthesis gas by pyrolysis and gasification zone | |
RU2628390C2 (en) | Advanced coal gasification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |