CN107167805A - Based on the common sparse ISAR high-resolution imaging method of multilayer - Google Patents
Based on the common sparse ISAR high-resolution imaging method of multilayer Download PDFInfo
- Publication number
- CN107167805A CN107167805A CN201710255643.4A CN201710255643A CN107167805A CN 107167805 A CN107167805 A CN 107167805A CN 201710255643 A CN201710255643 A CN 201710255643A CN 107167805 A CN107167805 A CN 107167805A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- mover
- msubsup
- synthetic aperture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 41
- 230000006835 compression Effects 0.000 claims abstract description 3
- 238000007906 compression Methods 0.000 claims abstract description 3
- 238000005457 optimization Methods 0.000 claims description 7
- 230000009977 dual effect Effects 0.000 claims description 6
- 238000007405 data analysis Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 2
- 230000011664 signaling Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000010207 Bayesian analysis Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002592 echocardiography Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
- G01S13/9064—Inverse SAR [ISAR]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/904—SAR modes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/023—Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
一种基于多层共稀疏的逆合成孔径雷达高分辨成像方法,其成像过程为:输入经过运动补偿和距离压缩后的回波数据;对回波信号的每一个距离单元的解析算子进行学习,再对回波数据进行去噪;在得到最优的解析算子和去噪的回波信号后,本发明采用修改的OMP算法来恢复ISAR图像;整个成像过程中,本发明的成像过程分为多个阶段,将上一个阶段得到的低分辨率的ISAR图像通过逆傅里叶变化转换到数据域并作为下一个阶段的输入。本发明可以保证每一个阶段的方位向分辨率较上一个阶段都有所提高。本发明用于稀疏场景的ISAR目标成像,对噪声具有很强的鲁棒性。
A high-resolution imaging method based on multi-layer co-sparse inverse synthetic aperture radar, the imaging process is: input the echo data after motion compensation and range compression; learn the analytical operator of each range unit of the echo signal , and then denoise the echo data; after obtaining the optimal analytical operator and the denoised echo signal, the present invention adopts the modified OMP algorithm to restore the ISAR image; in the whole imaging process, the imaging process of the present invention is divided into For multiple stages, the low-resolution ISAR image obtained in the previous stage is transformed into the data domain through inverse Fourier transform and used as the input of the next stage. The invention can ensure that the azimuth resolution of each stage is improved compared with the previous stage. The invention is used for ISAR target imaging in sparse scenes and has strong robustness to noise.
Description
技术领域technical field
本发明属于通信技术领域,更进一步涉及雷达信号处理技术领域中的基于多层共稀疏的逆合成孔径雷达高分辨成像方法。本发明针对短CPI内对稀疏ISAR目标进行高分辨成像方法,采用多层共稀疏解析模型实现高分辨逆合成孔径雷达成像,以解决传统ISAR成像方法对噪声鲁棒性不强的问题,可应用于后期的目标分类和识别工作。The invention belongs to the technical field of communication, and further relates to a multi-layer co-sparse based inverse synthetic aperture radar high-resolution imaging method in the technical field of radar signal processing. The present invention is aimed at the high-resolution imaging method of sparse ISAR targets within a short CPI, and adopts a multi-layer co-sparse analytical model to realize high-resolution inverse synthetic aperture radar imaging, so as to solve the problem that the traditional ISAR imaging method is not robust to noise, and can be applied In the later target classification and recognition work.
背景技术Background technique
在实际军事运用中,高分辨的逆合成孔径雷达ISAR图像可以为后续的目标识别和分类工作提供很大的便利,因此高分辨率的逆合成孔径雷达ISAR图像有很大的实际意义。雷达图像的分辨率由两个方位的分辨率组成:距离向分辨率和方位向分辨率。雷达系统发射信号的带宽决定者距离向分辨率,只要雷达系统固定那么距离向分辨率就是固定的,一般情况下,发射信号带宽越宽距离向分辨率就越好。方位向分辨率与雷达和目标的相干积累时间有关。一般来说,相干积累时间越长,获得的目标信息就越多,所以方位向分辨率就会越好。通常想获得高方位向分辨率,需要较长的相干累计时间(CPI)。但是由于逆合成孔径雷达ISAR目标的强机动性和非合作性使其运动状态很复杂,给运动补偿带来很大困难并且雷达系统在长时间实现对目标的精确跟踪有一定困难。所以,在短观测时间内实现逆合成孔径雷达ISAR高分辨成像具有极其重要的实际意义。In actual military applications, high-resolution inverse synthetic aperture radar ISAR images can provide great convenience for subsequent target recognition and classification work, so high-resolution inverse synthetic aperture radar ISAR images have great practical significance. The resolution of a radar image consists of two azimuth resolutions: range resolution and azimuth resolution. The bandwidth of the transmitted signal of the radar system determines the range resolution. As long as the radar system is fixed, the range resolution is fixed. In general, the wider the transmit signal bandwidth, the better the range resolution. Azimuth resolution is related to the coherent accumulation time of radar and target. Generally speaking, the longer the coherent accumulation time is, the more target information can be obtained, so the azimuth resolution will be better. Generally, if you want to obtain high azimuth resolution, you need a long coherent integration time (CPI). However, due to the strong maneuverability and non-cooperation of the inverse synthetic aperture radar ISAR target, its motion state is very complicated, which brings great difficulties to motion compensation, and it is difficult for the radar system to achieve accurate tracking of the target for a long time. Therefore, it is of great practical significance to realize high-resolution imaging of inverse synthetic aperture radar (ISAR) in a short observation time.
Liu,H.C.,Jiu,B.,Liu,H.W.and Bao,Z.四位作者在其发表的论文“Superresolution ISAR imaging based on sparse Bayesian learning.”(IEEETransactions on Geoscience and Remote Sensing,52,8(2014)5005-5013)中提出了一种基于稀疏贝叶斯的高分辨逆合成孔径雷达ISAR成像方法。该方法首先对原始回波进行距离对齐,然后再自聚焦,随后为了执行贝叶斯分析,稀疏贝叶斯学习采用层次的先验结构,通过置信最大化的程序得到相应的所有参数,不用人为干预,最后输出最终的逆合成孔径雷达ISAR图像。该方法存在的不足之处是:该方法没有对回波数据中的噪声没有进行处理,导致目标聚焦效果不是很好,尤其是在信噪比很低时,该方法对噪声的鲁棒性并不是很好。Liu, H.C., Jiu, B., Liu, H.W. and Bao, Z. Four authors published the paper "Superresolution ISAR imaging based on sparse Bayesian learning." (IEEETransactions on Geoscience and Remote Sensing,52,8(2014) 5005-5013) proposed a high-resolution inverse synthetic aperture radar ISAR imaging method based on sparse Bayesian. This method first performs distance alignment on the original echoes, and then self-focusses. Then, in order to perform Bayesian analysis, sparse Bayesian learning adopts a hierarchical prior structure, and obtains all corresponding parameters through a confidence-maximization program without artificial Intervention, and finally output the final inverse synthetic aperture radar ISAR image. The disadvantage of this method is that this method does not deal with the noise in the echo data, which leads to poor target focusing effect, especially when the signal-to-noise ratio is very low, the robustness of this method to noise is not good. Not very good.
西安电子科技大学提出的专利申请“基于稀疏孔径的机动目标逆合成孔径雷达方法”(申请号:2014101401235,公开号:CN103901429A)中公开了一种基于稀疏孔径的机动目标逆合成孔径雷达成像方法。该方法通过改进的特征向量自聚焦方法来实现精确的相位矫正,对相位补偿的回波信号构建目标函数,并将精确的运动补偿后的稀疏孔径信号采用正交匹配追踪算法重构为全孔径信号,最后通过对稀疏孔径的回波信号进行快速傅里叶变换来实现高分辨的逆合成孔径雷达ISAR成像。该方法存在的不足之处是:该方法的相位补偿不够彻底,方位向分辨率不高。而且直接对全孔径信号进行快速傅里叶变换只能使背景信号的噪声幅度降低而不能全为零。The patent application "Inverse SAR method for maneuvering targets based on sparse aperture" (application number: 2014101401235, publication number: CN103901429A) filed by Xidian University discloses a method for inverse synthetic aperture radar imaging for maneuvering targets based on sparse apertures. The method uses an improved eigenvector self-focusing method to achieve accurate phase correction, constructs an objective function for the phase-compensated echo signal, and reconstructs the precise motion-compensated sparse aperture signal into a full aperture using an orthogonal matching pursuit algorithm. Finally, the high-resolution inverse synthetic aperture radar (ISAR) imaging is realized by performing fast Fourier transform on the echo signal of the sparse aperture. The shortcomings of this method are: the phase compensation of this method is not thorough enough, and the azimuth resolution is not high. Moreover, performing fast Fourier transform directly on the full-aperture signal can only reduce the noise amplitude of the background signal and cannot be all zero.
发明内容Contents of the invention
本发明针对上述现有技术中逆合成孔径雷达成像分辨率不高的问题,提出了一种基于多层共稀疏的逆合成孔径雷达高分辨成像方法,通过解析算子学习和信号去噪,使得逆合成孔径雷达成像的分辨率和鲁棒性得以提高。Aiming at the problem of low imaging resolution of inverse synthetic aperture radar in the above prior art, the present invention proposes a high-resolution imaging method of inverse synthetic aperture radar based on multi-layer co-sparseness, through analytic operator learning and signal denoising, so that Improved resolution and robustness of inverse synthetic aperture radar imaging.
本发明包括如下步骤:The present invention comprises the steps:
(1)输入回波数据:(1) Input echo data:
输入经过运动补偿和距离压缩逆合成孔径雷达回波数据;Input the inverse synthetic aperture radar echo data after motion compensation and range compression;
(2)解析算子学习:(2) Analytical operator learning:
(2a)将解析算子学习的迭代次数h初始化为1,h的取值范围为h∈[1,Hmax],其中,∈表示属于符号,Hmax表示最大迭代次数;(2a) Initialize the number of iterations h of analytical operator learning to 1, and the value range of h is h∈[1,H max ], where ∈ means belonging to a symbol, and H max means the maximum number of iterations;
(2b)对解析算子学习的当前迭代次数所对应的雷达回波数据的解析算子进行学习;(2b) Learning the analytical operator of the radar echo data corresponding to the current iteration number of analytical operator learning;
(2c)判断是否满足解析算子学习过程终止条件,若是,则执行步骤(3),否则,将解析算子学习的迭代次数加1后执行步骤(2b);(2c) Judging whether the termination condition of the analytic operator learning process is satisfied, if so, execute step (3), otherwise, execute step (2b) after adding 1 to the number of iterations of analytic operator learning;
(3)信号去噪:(3) Signal denoising:
(3a)将信号去噪的迭代次数q初始化为1,q的取值范围为q∈[1,Qmax],Qmax表示最大迭代次数;(3a) Initialize the number of iterations q of signal denoising to 1, the value range of q is q∈[1, Q max ], and Q max represents the maximum number of iterations;
(3b)对信号去噪的当前迭代次数所对应的雷达回波数据进行信号去噪;(3b) performing signal denoising on the radar echo data corresponding to the current iteration number of signal denoising;
(3c)判断是否满足信号去噪的终止条件,若是,则执行步骤(4),否则,将信号去噪的迭代次数加1执行步骤(3b);(3c) judging whether the termination condition of signal denoising is satisfied, if so, then perform step (4), otherwise, add 1 to the number of iterations of signal denoising and perform step (3b);
(4)获得最优的解析算子和回波数据:(4) Obtain the optimal analytical operator and echo data:
(4a)将解析算子学习和信号去噪联合过程的迭代次数k初始化为1,k的取值范围为k∈[1,Kmax],Kmax表示最大迭代次数;(4a) Initialize the number of iterations k of the joint process of analytic operator learning and signal denoising to 1, the value range of k is k∈[1,K max ], and K max represents the maximum number of iterations;
(4b)按照下式,计算解析算子学习和信号去噪当前迭代的联合收敛值:(4b) According to the following formula, calculate the joint convergence value of the current iteration of analytic operator learning and signal denoising:
其中,Val1k表示解析算子学习和信号去噪的第k次迭代联合收敛值,||·||1表示1范数操作,Fm表示逆合成孔径雷达回波数据中第m列的解析算子,sm表示逆合成孔径雷达回波数据中第m列的数据,表示对逆合成孔径雷达回波数据中第m列的数据去噪后的数据,λ表示拉格朗日乘子,||·||F表示Frobenius范数操作;Among them, Val1k represents the joint convergence value of the k -th iteration of analytic operator learning and signal denoising, |||| , s m represents the data of the mth column in the inverse synthetic aperture radar echo data, Indicates the denoised data of the data in the mth column in the inverse synthetic aperture radar echo data, λ indicates the Lagrangian multiplier, and ||·|| F indicates the Frobenius norm operation;
(4c)判断是否满足最优的解析算子和回波数据的条件,若是,则执行步骤(5),否则,将解析算子学习和信号去噪联合过程的迭代次数加1后执行步骤(2);(4c) Judging whether the conditions of the optimal analytical operator and echo data are satisfied, if so, execute step (5), otherwise, increase the number of iterations of the joint process of analytical operator learning and signal denoising and then execute step ( 2);
(5)恢复低分辨率的图像:(5) Restoring low-resolution images:
根据学习得到解析算子和去噪后的逆合成孔径雷达数据,利用修改的正交匹配追踪OMP算法,重构低分辨率的逆合成孔径雷达ISAR图像;According to the learned analytic operator and the denoised inverse synthetic aperture radar data, the modified orthogonal matching pursuit OMP algorithm is used to reconstruct the low-resolution inverse synthetic aperture radar ISAR image;
(6)判断当前的成像层数是否为最大层数P,若是,则执行步骤(8),否则,执行步骤(7);(6) Judging whether the current imaging layer number is the maximum number of layers P, if so, then perform step (8), otherwise, perform step (7);
(7)将低分辨率的ISAR图像通过逆傅里叶变换转换到数据域,执行步骤(2);(7) Convert the low-resolution ISAR image to the data domain by inverse Fourier transform, and perform step (2);
(8)输出最终高分辨的逆合成孔径雷达ISAR图像。(8) Output the final high-resolution inverse synthetic aperture radar ISAR image.
本发明与现有的技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
第一,本发明通过对雷达回波数据中的每一列数据的解析算子进行学习,克服了现有技术中对回波数据相位补偿不精确,导致方位向分辨率不高的问题,使得本发明提高了逆合成孔径雷达成像中的方位向分辨率。First, the present invention overcomes the problem of inaccurate phase compensation of echo data in the prior art, resulting in low azimuth resolution, by learning the analytical operator of each column of data in the radar echo data, making the present invention The invention improves the azimuth resolution in inverse synthetic aperture radar imaging.
第二,本发明中通过对雷达回波数据中的每一列数据进行信号去噪,克服了现有技术中利用低信噪比回波数据进行逆合成孔径雷达成像背景噪声大的问题,使得本发明提高了逆合成孔径雷达成像对噪声的鲁棒性。Second, in the present invention, by performing signal denoising on each column of data in the radar echo data, the problem of large background noise in inverse synthetic aperture radar imaging using echo data with a low signal-to-noise ratio in the prior art is overcome, making the present invention The invention improves the robustness of inverse synthetic aperture radar imaging to noise.
附图说明Description of drawings
图1为本发明的流程图;Fig. 1 is a flowchart of the present invention;
图2为本发明解析算子迭代学习中解析算子收敛的曲线图;Fig. 2 is a graph of the convergence of the analytical operator in the iterative learning of the analytical operator of the present invention;
图3为本发明信号去噪迭代学习中信号去噪收敛的曲线图;Fig. 3 is a graph of signal denoising convergence in signal denoising iterative learning of the present invention;
图4为本发明解析算子学习和信号去噪联合优化收敛的曲线图;Fig. 4 is a graph of the joint optimization convergence of analytical operator learning and signal denoising in the present invention;
图5为本发明与现有的逆合成孔径雷达成像方法对信噪比为-4dB,32个脉冲的实测数据的成像图。FIG. 5 is an imaging diagram of actual measurement data with a signal-to-noise ratio of -4dB and 32 pulses by the present invention and the existing inverse synthetic aperture radar imaging method.
图6为本发明与现有的逆合成孔径雷达成像方法对信噪比为-4dB,64个脉冲的实测数据的成像图。FIG. 6 is an imaging diagram of actual measurement data of 64 pulses with a signal-to-noise ratio of -4 dB in the present invention and the existing inverse synthetic aperture radar imaging method.
具体实施方式detailed description
下面结合附图对本发明作进一步的详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
参照附图1,本发明的具体步骤描述如下。With reference to accompanying drawing 1, the specific steps of the present invention are described as follows.
步骤1,输入回波数据。Step 1, input echo data.
输入经过运动补偿和距离压缩逆合成孔径雷达回波数据。Input motion compensated and range compressed inverse synthetic aperture radar echo data.
步骤2,解析算子学习。Step 2, analytical operator learning.
将解析算子学习的迭代次数h初始化为1,h的取值范围为h∈[1,Hmax],其中,∈表示属于符号,Hmax表示最大迭代次数。Initialize the number of iterations h of analytical operator learning to 1, and the value range of h is h∈[1,H max ], where ∈ means belonging to a symbol, and H max means the maximum number of iterations.
对解析算子学习的当前迭代次数所对应的雷达回波数据的解析算子进行学习,所述的雷达回波数据的解析算子进行学习过程的步骤如下:The analytical operator of the radar echo data corresponding to the current iteration number of the analytical operator learning is learned, and the steps of the learning process of the analytical operator of the radar echo data are as follows:
第1步,将逆合成孔径雷达当前列的解析算子初始化为部分傅里叶矩阵F;Step 1, the analytical operator of the current column of inverse synthetic aperture radar Initialized as a partial Fourier matrix F;
第2步,按照下式,计算逆合成孔径雷达回波数据中当前列数据在图像域的数据:Step 2, according to the following formula, calculate the data in the image domain of the current column data in the inverse synthetic aperture radar echo data:
其中,表示逆合成孔径雷达ISAR图像的第m列的第h次迭代后的图像域数据,表示逆合成孔径雷达ISAR回波数据的第m列第h次迭代得到的解析算子;in, represents the image domain data after the hth iteration of the mth column of the inverse synthetic aperture radar ISAR image, Represents the analytic operator obtained in the hth iteration of the mth column of the inverse synthetic aperture radar ISAR echo data;
第3步,按照下式,对逆合成孔径雷达ISAR图像当前列的图像域数据进行更新:Step 3, according to the following formula, update the image domain data of the current column of the inverse synthetic aperture radar ISAR image:
其中,表示更新的逆合成孔径雷达ISAR图像第m列第n行的值,表示不属于符号,Λ表示中前最小值的下标集合;in, Indicates the value of column m and row n of the updated inverse synthetic aperture radar ISAR image, means not belonging to the symbol, Λ means middle front The subscript set of the minimum value;
第4步,按照下式,计算逆合成孔径雷达ISAR回波数据当前列数据的解析算子的梯度:Step 4, according to the following formula, calculate the analytical operator of the current column data of the inverse synthetic aperture radar ISAR echo data The gradient of:
其中,Fg表示逆合成孔径雷达ISAR回波数据第m列数据的解析算子的梯度,e表示逆合成孔径雷达图像第m列图像域数据与更新后逆合成孔径雷达图像第m列图像域数据之间的误差,T表示转置操作;Among them, Fg represents the analytical operator of the mth column data of the inverse synthetic aperture radar ISAR echo data The gradient of , e represents the image domain data of the mth column of the inverse synthetic aperture radar image and the image domain data of the mth column of the updated inverse SAR image The error between, T represents the transpose operation;
第5步,按照下式,更新逆合成孔径雷达ISAR回波数据当前列数据的解析算子:Step 5, according to the following formula, update the analytical operator of the current column data of the inverse synthetic aperture radar ISAR echo data:
其中,表示更新后的逆合成孔径雷达ISAR回波数据第m列数据的解析算子,η表示逆合成孔径雷达ISAR回波数据第m列数据的解析算子的学习率,η的取值范围为η∈(0,1);in, Indicates the analytical operator of the updated inverse synthetic aperture radar ISAR echo data column m data, η indicates the learning rate of the analytical operator of the inverse synthetic aperture radar ISAR echo data column m data, the value range of η is η ∈(0,1);
第6步,按照下式,计算逆合成孔径雷达ISAR回波数据当前列中数据解析算子当前的收敛值:Step 6: Calculate the current convergence value of the data analysis operator in the current column of inverse synthetic aperture radar ISAR echo data according to the following formula:
其中,Val2h表示逆合成孔径雷达ISAR回波数据第m列数据解析算子当前的收敛值。Among them, Val2 h represents the current convergence value of the data analysis operator in the mth column of the inverse synthetic aperture radar ISAR echo data.
判断是否满足解析算子学习过程终止条件,若是,则执行步骤(3),否则,将解析算子学习的迭代次数加1后执行步骤(2b),所述的解析算子学习的终止条件是指下述条件中的一种情形:Judging whether the termination condition of the analytic operator learning process is satisfied, if so, then execute step (3), otherwise, perform step (2b) after adding 1 to the number of iterations of the analytic operator learning, the termination condition of the analytic operator learning is means one of the following conditions:
第一种情形,联合收敛值小于0.01;In the first case, the joint convergence value is less than 0.01;
第二种情形,解析算子学习过程的迭代次数达到20次。In the second case, the number of iterations of the analytic operator learning process reaches 20 times.
参照附图2,对本发明解析算子优化过程的效果作进一步的描述。图2(a)为第一次迭代的解析算子收敛的曲线图,图2(a)的横坐标表示迭代次数,纵坐标表示解析算子收敛值。图2(b)为第二次迭代的解析算子收敛的曲线图,图2(b)的横坐标表示迭代次数,纵坐标表示解析算子收敛值。图2(c)为第三次迭代的解析算子收敛的曲线图,图2(c)的横坐标表示迭代次数,纵坐标表示解析算子收敛值。图2(d)为第四次迭代的解析算子收敛的曲线图,图2(d)的横坐标表示迭代次数,纵坐标表示解析算子收敛值。通过图2(a)可以看出,解析算子在第一次迭代的过程中解析算子收敛值Val2h是逐渐减小的,这说明本发明解析算子优化过程是有效果的。图2(b)、(c)、(d)曲线中的解析算子收敛值Val2h有同样下降的趋势。每幅图中的解析算子收敛值Val2h在迭代相同次数后的变化量也是减少的,这说明我们解析算子收敛值Val2h最终会收敛。Referring to accompanying drawing 2, the effect of the analysis operator optimization process of the present invention will be further described. Fig. 2(a) is a graph of the convergence of the analytical operator for the first iteration. The abscissa in Fig. 2(a) represents the number of iterations, and the ordinate represents the convergence value of the analytical operator. Fig. 2(b) is a graph showing the convergence of the analytical operator in the second iteration. The abscissa in Fig. 2(b) represents the number of iterations, and the ordinate represents the convergence value of the analytical operator. Fig. 2(c) is a graph showing the convergence of the analytical operator in the third iteration. The abscissa in Fig. 2(c) represents the number of iterations, and the ordinate represents the convergence value of the analytical operator. Fig. 2(d) is a graph showing the convergence of the analytical operator in the fourth iteration. The abscissa in Fig. 2(d) represents the number of iterations, and the ordinate represents the convergence value of the analytical operator. It can be seen from Fig. 2(a) that the analytic operator convergence value Val2 h gradually decreases during the first iteration of the analytic operator, which shows that the analytic operator optimization process of the present invention is effective. The analytical operator convergence value Val2 h in the curves of Fig. 2 (b), (c) and (d) has the same downward trend. The variation of the analytical operator convergence value Val2 h in each figure also decreases after the same number of iterations, which shows that our analytical operator convergence value Val2 h will eventually converge.
步骤3,信号去噪。Step 3, signal denoising.
将信号去噪的迭代次数q初始化为1,q的取值范围为q∈[1,Qmax],Qmax表示最大迭代次数。Initialize the number of iterations q of signal denoising to 1, the value range of q is q∈[1,Q max ], and Q max represents the maximum number of iterations.
对信号去噪的当前迭代次数所对应的雷达回波数据进行信号去噪,所述的对雷达回波数据进行信号去噪过程的步骤如下:Performing signal denoising on the radar echo data corresponding to the current iteration number of signal denoising, the steps of performing the signal denoising process on the radar echo data are as follows:
第1步,按照下式建立逆合成孔径雷达ISAR回波数据的每一列数据信号去噪的优化模型:In the first step, an optimization model for denoising the data signal of each column of inverse synthetic aperture radar ISAR echo data is established according to the following formula:
其中,min(·)表示求最小值操作,s.t.表示条件约束符号;Among them, min( ) represents the minimum value operation, and s.t. represents the conditional constraint symbol;
第2步,按照下式,建立逆合成孔径雷达ISAR回波数据的每一列数据的信号去噪求解模型:In the second step, according to the following formula, the signal denoising solution model of each column of inverse synthetic aperture radar ISAR echo data is established:
其中,ψ表示求解的值,b表示一个对偶参数,其取值范围为b∈(0,1),表示一个常数,其取值范围为 Among them, ψ represents the value to be solved, and b represents a dual parameter whose value range is b∈(0,1), representing a constant whose value range is
第3步,按照下式,计算软阈值操作的值:Step 3, calculate the value of the soft threshold operation according to the following formula:
其中,α表示的值,β表示的值,≥表示大于小于符号Among them, α means The value of , β means The value of ≥ means greater than less than the sign
第4步,按照下面三个式子,对逆合成孔径雷达ISAR回波数据第m列回波数据逆合成孔径雷达ISAR图像第m列图像域数据对偶参数bq进行更新:Step 4, according to the following three formulas, the echo data of the mth column of the inverse synthetic aperture radar ISAR echo data Inverse synthetic aperture radar ISAR image column m image domain data Update the dual parameter b q :
其中,表示更新后的逆合成孔径雷达ISAR回波数据的第m列数据,表示更新后的逆合成孔径雷达ISAR图像域数据的第m列数据,bq+1表示更新后的对偶参数;in, Indicates the mth column data of the updated inverse synthetic aperture radar ISAR echo data, Represents the mth column data of the updated inverse synthetic aperture radar ISAR image domain data, and b q+1 represents the updated dual parameter;
第5步,按照下式,计算逆合成孔径雷达ISAR回波数据每一列中数据信号去噪当前的收敛值:Step 5, according to the following formula, calculate the current convergence value of data signal denoising in each column of inverse synthetic aperture radar ISAR echo data:
其中,Val3q表示逆合成孔径雷达ISAR回波数据每一列中数据信号去噪的收敛值。Among them, Val3 q represents the convergence value of data signal denoising in each column of inverse synthetic aperture radar ISAR echo data.
判断是否满足信号去噪的终止条件,若是,则执行步骤(4),否则,将信号去噪的迭代次数加1执行步骤(3b),所述的信号去噪的终止条件是指下述条件中的一种情形:Judging whether the termination condition of signal denoising is satisfied, if so, then perform step (4), otherwise, add 1 to the number of iterations of signal denoising and perform step (3b), and the termination condition of signal denoising refers to the following conditions One of the cases:
第一种情形,联合收敛值小于0.01;In the first case, the joint convergence value is less than 0.01;
第二种情形,信号过程的迭代次数达到30次。In the second case, the number of iterations of the signaling process reaches 30.
参照附图3,对本发明信号去噪优化过程的效果作进一步的描述。图3(a)为第一次迭代的信号去噪收敛的曲线图,图3(a)的横坐标表示迭代次数,纵坐标表示信号去噪的收敛值。图3(b)为第二次迭代的信号去噪收敛的曲线图,图3(b)的横坐标表示迭代次数,纵坐标表示信号去噪收敛值。图3(c)为第三次迭代的信号去噪收敛的曲线图,图3(c)的横坐标表示迭代次数,纵坐标表示信号去噪的收敛值。图3(d)为第四次迭代的信号去噪收敛的曲线图,图3(d)的横坐标表示迭代次数,纵坐标表示信号去噪的收敛值。通过图3的每一幅图可以看出,信号去噪的收敛值Val3q都是先增加然后收敛到一个值,我们把这些图放在一起看,可以发现信号去噪的收敛值Val3q是逐渐减小的,这说明本发明的信号去噪方法是有效的。Referring to Fig. 3, the effect of the signal denoising optimization process of the present invention will be further described. Fig. 3(a) is a graph showing the signal denoising convergence of the first iteration, the abscissa in Fig. 3(a) represents the number of iterations, and the ordinate represents the convergence value of the signal denoising. Fig. 3(b) is a graph showing the signal denoising convergence of the second iteration, the abscissa in Fig. 3(b) represents the number of iterations, and the ordinate represents the signal denoising convergence value. Fig. 3(c) is a graph showing the convergence of the signal denoising in the third iteration, the abscissa in Fig. 3(c) represents the number of iterations, and the ordinate represents the convergence value of the signal denoising. FIG. 3( d ) is a graph showing the convergence of the signal denoising in the fourth iteration. The abscissa in FIG. 3( d ) represents the number of iterations, and the ordinate represents the convergence value of the signal denoising. It can be seen from each picture in Figure 3 that the convergence value Val3 q of signal denoising is increased first and then converges to a value. We put these figures together and we can find that the convergence value Val3 q of signal denoising is gradually decreases, which shows that the signal denoising method of the present invention is effective.
步骤4,获得最优的解析算子和回波数据。Step 4, obtaining the optimal analytical operator and echo data.
将解析算子学习和信号去噪联合过程的迭代次数k初始化为1,k的取值范围为k∈[1,Kmax],Kmax表示最大迭代次数。Initialize the number of iterations k of the joint process of analytic operator learning and signal denoising to 1, and the value range of k is k∈[1,K max ], where K max represents the maximum number of iterations.
按照下式,计算解析算子学习和信号去噪当前迭代的联合收敛值:Calculate the joint convergence value of the current iteration of analytic operator learning and signal denoising according to the following formula:
其中,Val1k表示解析算子学习和信号去噪的第k次迭代联合收敛值,||·||1表示1范数操作,Fm表示逆合成孔径雷达回波数据中第m列的解析算子,sm表示逆合成孔径雷达回波数据中第m列的数据,表示对逆合成孔径雷达回波数据中第m列的数据去噪后的数据,λ表示拉格朗日乘子,||·||F表示Frobenius范数操作。Among them, Val1k represents the joint convergence value of the k -th iteration of analytic operator learning and signal denoising, |||| , s m represents the data of the mth column in the inverse synthetic aperture radar echo data, Indicates the denoised data of the mth column in the inverse SAR echo data, λ indicates the Lagrangian multiplier, and ||·|| F indicates the Frobenius norm operation.
判断是否满足最优的解析算子和回波数据的条件,若是,则执行步骤(5),否则,将解析算子学习和信号去噪联合过程的迭代次数加1后执行步骤(2),所述的最优的解析算子和回波数据的条件是指下述条件中的一种情形:Judging whether the conditions of the optimal analytical operator and echo data are satisfied, if so, execute step (5), otherwise, perform step (2) after adding 1 to the iteration number of the joint process of analytical operator learning and signal denoising, The conditions for the optimal analytical operator and echo data refer to one of the following conditions:
第一种情形,联合收敛值小于0.01;In the first case, the joint convergence value is less than 0.01;
第二种情形,解析算子学习和信号去噪联合过程的迭代次数达到50次。In the second case, the number of iterations of the joint process of analytic operator learning and signal denoising reaches 50.
参照附图4,对本发明解析算子学习和信号去噪联合优化过程的效果作进一步的描述。图4的横坐标表示迭代次数,纵坐标表示析算子学习和信号去噪的联合收敛值。从图4可以看出解析算子学习和信号去噪联合收敛值随着迭代次数的增加是逐渐较少,这说明本发明解析算子学习和信号去噪过程是有效的。Referring to Fig. 4, the effect of the joint optimization process of analytic operator learning and signal denoising in the present invention will be further described. The abscissa in Figure 4 represents the number of iterations, and the ordinate represents the joint convergence value of the analysis operator learning and signal denoising. It can be seen from Fig. 4 that the joint convergence value of the analytic operator learning and signal denoising is gradually reduced as the number of iterations increases, which shows that the process of analytic operator learning and signal denoising in the present invention is effective.
步骤5,恢复低分辨率的图像。Step 5, restore the low-resolution image.
根据学习得到解析算子和去噪后的逆合成孔径雷达数据,利用修改的正交匹配追踪OMP算法,重构低分辨率的逆合成孔径雷达ISAR图像,所述的利用修改的正交匹配追踪OMP算法重构出低分辨率的逆合成孔径雷达ISAR图像的步骤如下:According to the obtained analytic operator and the denoised inverse synthetic aperture radar data, the modified orthogonal matching pursuit OMP algorithm is used to reconstruct the low-resolution inverse synthetic aperture radar ISAR image. The modified orthogonal matching pursuit The steps of OMP algorithm to reconstruct the low-resolution inverse synthetic aperture radar ISAR image are as follows:
第1步,将图像恢复的迭代次数t初始化为1,t的取值范围为t∈[1,Tmax],其中Tmax表示图像恢复的最大迭代次数,其中,N表示高分辨图像方位向的离散点个数,表示共稀疏度。In the first step, the number of iterations t of image restoration is initialized to 1, and the value range of t is t∈[1,T max ], where T max represents the maximum number of iterations of image restoration, Among them, N represents the number of discrete points in the azimuth direction of the high-resolution image, Indicates the co-sparsity.
第2步,按如下公式计算图像域的数据:In the second step, the data in the image domain is calculated according to the following formula:
at=Fmrt a t = F m r t
其中,Fm表示解析算子,rt表示第t次迭代回波数据的差值,其初始化为 Among them, F m represents the analytical operator, r t represents the difference value of the echo data of the tth iteration, which is initialized as
第3步,按照下式找到|at|最大值的位置λt:Step 3, find the position λ t of the maximum value of |a t | according to the following formula:
第4步,按照下式更新位置集合Θt,解析算子Φt和图像域数据临时解aps:Step 4: Update the position set Θ t , the analytical operator Φ t and the image domain data temporary solution a ps according to the following formula:
Θt=Θt-1∪{λt}Θ t = Θ t-1 ∪{λ t }
其中,Θt表示更新后的位置集合,其初始化为 示空集符号,∪表示并集符号,表示Fm的第λt行,aps表示图像域数据的临时解。Among them, Θ t represents the updated position set, which is initialized as represents the empty set symbol, ∪ represents the union symbol, denote the λt -th row of F m , and a ps denote the temporary solution of the image domain data.
第5步,按照下式更新差值:Step 5, update the difference according to the following formula:
rt+1表示更新后的回波数据的差值,(·)-1表示求逆操作。r t+1 represents the difference between the updated echo data, and (·) -1 represents the inverse operation.
第6步,按照下式得到最终的图像域数据:Step 6, get the final image domain data according to the following formula:
其中,am表示最终图像的第m列数据。Among them, a m represents the mth column data of the final image.
步骤6,判断当前的成像层数是否为最大层数P,若是,则执行步骤(8),否则,执行步骤(7),所述的最大层数P的取值为大于1的正整数。Step 6, judging whether the current number of imaging layers is the maximum number of layers P, if so, execute step (8), otherwise, execute step (7), the value of the maximum number of layers P is a positive integer greater than 1.
步骤7,将低分辨率的逆合成孔径雷达ISAR图像通过逆傅里叶变换转换到数据域,执行步骤(2)。Step 7: Transform the low-resolution inverse synthetic aperture radar ISAR image into the data domain through inverse Fourier transform, and perform step (2).
步骤8,输出最终高分辨的逆合成孔径雷达ISAR图像。Step 8, outputting the final high-resolution inverse synthetic aperture radar ISAR image.
下面结合仿真实验对本发明的效果做进一步的说明。The effects of the present invention will be further described below in combination with simulation experiments.
1.仿真条件:1. Simulation conditions:
本发明的仿真的操作系统是Windows7旗舰版64位SP1操作系统,CPU是Intel(R)Core(TM)i5-2410M@2.30GHz,仿真软件是在MATLAB R2014a。The emulated operating system of the present invention is Windows7 ultimate edition 64-bit SP1 operating system, CPU is Intel (R) Core (TM) i5-2410M@2.30GHz, emulation software is in MATLAB R2014a.
2.仿真内容:2. Simulation content:
本发明的仿真实验是,采用本发明和现有技术的稀疏贝叶斯逆合成孔径雷达成像方法,分别对信噪比为-4dB,脉冲个数为32个舰船数据和信噪比为-4dB,脉冲个数为64个的舰船数据进行仿真。本发明所使用数据的雷达系统的参数为:载波频率为为9.25GHz,信号带宽为500MHz,脉冲重复频率为200Hz,总的脉冲数目为256个。The emulation experiment of the present invention is, adopt the sparse Bayesian inverse synthetic aperture radar imaging method of the present invention and prior art, be respectively to signal-to-noise ratio be-4dB, pulse number be that 32 ship data and signal-to-noise ratio are- 4dB, the number of pulses is 64 ship data for simulation. The parameters of the radar system used in the present invention are as follows: the carrier frequency is 9.25GHz, the signal bandwidth is 500MHz, the pulse repetition frequency is 200Hz, and the total number of pulses is 256.
3.仿真结果分析:3. Simulation result analysis:
参照附图5,对本发明与现有的逆合成孔径雷达成像技术的成像图做进一步描述。图5给出了本发明与现有的逆合成孔径雷达成像技术在信噪比为-4dB,脉冲个数为32个的逆合成孔径雷达ISAR成像图。图5中的横坐标表示距离单元个数,纵坐标表示多普勒单元个数,其中图5(a)为现有技术的逆合成孔径雷达技术处理得到的逆合成孔径雷达ISAR成像图,图5(b)为本发明所述方法处理得到的逆合成孔径雷达ISAR成像图。由图5可见,在脉冲数很低的情况下,本发明得到的逆合成孔径雷达ISAR图像的分辨率依旧很高,目标不会因为脉冲数的减少而变形,因此本发明与现有技术相比具有较好的分辨率。Referring to FIG. 5 , the present invention and the imaging diagram of the existing inverse synthetic aperture radar imaging technology will be further described. FIG. 5 shows the ISAR imaging diagram of the present invention and the existing inverse synthetic aperture radar imaging technology with a signal-to-noise ratio of -4dB and a pulse number of 32. The abscissa in Fig. 5 represents the number of range units, and the ordinate represents the number of Doppler units. Fig. 5(a) is an ISAR image obtained by processing the prior art inverse SAR technology. Fig. 5(b) is the inverse synthetic aperture radar ISAR imaging image processed by the method of the present invention. As can be seen from Fig. 5, when the number of pulses is very low, the resolution of the inverse synthetic aperture radar ISAR image obtained by the present invention is still very high, and the target will not be deformed due to the reduction of the number of pulses, so the present invention is comparable to the prior art. than has better resolution.
参照附图6,对本发明与现有的逆合成孔径雷达成像技术的成像图做进一步描述。图6给出了本发明与现有技术在信噪比为-4dB,脉冲个数为64个的逆合成孔径雷达ISAR成像图。图6的横坐标表示距离单元个数,纵坐标表示多普勒单元个数,其中图6(a)为现有技术的逆合成孔径雷达技术处理得到的逆合成孔径雷达ISAR成像图,图6(b)为本发明所述方法处理得到的逆合成孔径雷达ISAR成像图。由图6可见,本发明得到的逆合成孔径雷达ISAR图像在信噪比很低的时候,背景中的噪声仍然很少,而现有技术的处理结果的逆合成孔径雷达ISAR图像中存在大量的噪声,因此本发明与现有技术相比具有较强的鲁棒性。Referring to FIG. 6 , the imaging diagrams of the present invention and the existing inverse synthetic aperture radar imaging technology are further described. FIG. 6 shows the ISAR imaging diagrams of the present invention and the prior art when the signal-to-noise ratio is -4dB and the number of pulses is 64. The abscissa of Fig. 6 represents the number of range units, and the ordinate represents the number of Doppler units, wherein Fig. 6 (a) is an inverse synthetic aperture radar (ISAR) imaging map obtained by processing the prior art inverse synthetic aperture radar technology, Fig. 6 (b) is the inverse synthetic aperture radar (ISAR) imaging image processed by the method of the present invention. It can be seen from Fig. 6 that when the SNR of the ISAR image obtained by the present invention is very low, there is still little noise in the background, while there are a large number of noises in the ISAR image of the processing result of the prior art. Noise, so the present invention has stronger robustness compared with the prior art.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710255643.4A CN107167805A (en) | 2017-04-19 | 2017-04-19 | Based on the common sparse ISAR high-resolution imaging method of multilayer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710255643.4A CN107167805A (en) | 2017-04-19 | 2017-04-19 | Based on the common sparse ISAR high-resolution imaging method of multilayer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107167805A true CN107167805A (en) | 2017-09-15 |
Family
ID=59813231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710255643.4A Pending CN107167805A (en) | 2017-04-19 | 2017-04-19 | Based on the common sparse ISAR high-resolution imaging method of multilayer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107167805A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107817493A (en) * | 2017-10-25 | 2018-03-20 | 电子科技大学 | A kind of 2D near fields diameter radar image method for reconstructing based on compressed sensing |
CN108008385A (en) * | 2017-11-20 | 2018-05-08 | 西安电子科技大学 | Interference environment ISAR high-resolution imaging methods based on management loading |
CN108961177A (en) * | 2018-06-15 | 2018-12-07 | 杭州富扬科技有限公司 | A kind of suppressing method of OCT image shot noise |
CN109085589A (en) * | 2018-10-16 | 2018-12-25 | 中国人民解放军国防科技大学 | Phase self-focusing method for sparse aperture ISAR imaging based on image quality guidance |
CN112114313A (en) * | 2020-09-24 | 2020-12-22 | 哈尔滨工程大学 | ISAR Sparse Sampling Imaging Method Combined with Orthogonal Matching Pursuit Algorithm |
CN114488054A (en) * | 2021-12-15 | 2022-05-13 | 重庆大学 | Method for efficiently focusing ground moving target of synthetic aperture radar |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1769925A (en) * | 2004-11-05 | 2006-05-10 | 清华大学 | Synthetic aperture radar moving target imaging method |
US8193967B2 (en) * | 2008-12-10 | 2012-06-05 | The United States Of America As Represented By The Secretary Of The Army | Method and system for forming very low noise imagery using pixel classification |
CN103293527A (en) * | 2013-05-15 | 2013-09-11 | 西安电子科技大学 | Self-adaption ISAR (information storage and retrieval) imaging method based on confidence frame |
CN103901429A (en) * | 2014-04-09 | 2014-07-02 | 西安电子科技大学 | Inverse synthetic aperture radar imaging method for maneuvering targets on basis of sparse aperture |
CN104730520A (en) * | 2015-03-27 | 2015-06-24 | 电子科技大学 | Circumference SAR back projection self-focusing method based on subaperture synthesis |
CN105738894A (en) * | 2016-03-03 | 2016-07-06 | 西安电子科技大学 | Inching group object high resolution imaging method based on augmented Laplace operator |
-
2017
- 2017-04-19 CN CN201710255643.4A patent/CN107167805A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1769925A (en) * | 2004-11-05 | 2006-05-10 | 清华大学 | Synthetic aperture radar moving target imaging method |
US8193967B2 (en) * | 2008-12-10 | 2012-06-05 | The United States Of America As Represented By The Secretary Of The Army | Method and system for forming very low noise imagery using pixel classification |
CN103293527A (en) * | 2013-05-15 | 2013-09-11 | 西安电子科技大学 | Self-adaption ISAR (information storage and retrieval) imaging method based on confidence frame |
CN103901429A (en) * | 2014-04-09 | 2014-07-02 | 西安电子科技大学 | Inverse synthetic aperture radar imaging method for maneuvering targets on basis of sparse aperture |
CN104730520A (en) * | 2015-03-27 | 2015-06-24 | 电子科技大学 | Circumference SAR back projection self-focusing method based on subaperture synthesis |
CN105738894A (en) * | 2016-03-03 | 2016-07-06 | 西安电子科技大学 | Inching group object high resolution imaging method based on augmented Laplace operator |
Non-Patent Citations (1)
Title |
---|
李振炜: "高分辨ISAR稀疏目标成像", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107817493A (en) * | 2017-10-25 | 2018-03-20 | 电子科技大学 | A kind of 2D near fields diameter radar image method for reconstructing based on compressed sensing |
CN107817493B (en) * | 2017-10-25 | 2021-05-14 | 电子科技大学 | 2D near-field synthetic aperture radar image reconstruction method based on compressed sensing |
CN108008385A (en) * | 2017-11-20 | 2018-05-08 | 西安电子科技大学 | Interference environment ISAR high-resolution imaging methods based on management loading |
CN108008385B (en) * | 2017-11-20 | 2019-07-30 | 西安电子科技大学 | Interference environment ISAR high-resolution imaging method based on management loading |
CN108961177A (en) * | 2018-06-15 | 2018-12-07 | 杭州富扬科技有限公司 | A kind of suppressing method of OCT image shot noise |
CN108961177B (en) * | 2018-06-15 | 2021-08-06 | 杭州富扬科技有限公司 | OCT image scatter noise suppression method |
CN109085589A (en) * | 2018-10-16 | 2018-12-25 | 中国人民解放军国防科技大学 | Phase self-focusing method for sparse aperture ISAR imaging based on image quality guidance |
CN109085589B (en) * | 2018-10-16 | 2019-04-30 | 中国人民解放军国防科技大学 | Sparse aperture ISAR imaging phase self-focusing method based on image quality guidance |
CN112114313A (en) * | 2020-09-24 | 2020-12-22 | 哈尔滨工程大学 | ISAR Sparse Sampling Imaging Method Combined with Orthogonal Matching Pursuit Algorithm |
CN114488054A (en) * | 2021-12-15 | 2022-05-13 | 重庆大学 | Method for efficiently focusing ground moving target of synthetic aperture radar |
CN114488054B (en) * | 2021-12-15 | 2024-05-21 | 重庆大学 | Computationally efficient synthetic aperture radar ground moving target focusing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107167805A (en) | Based on the common sparse ISAR high-resolution imaging method of multilayer | |
CN110244303B (en) | SBL-ADMM-based sparse aperture ISAR imaging method | |
CN107229048B (en) | A high-resolution wide-range SAR moving target velocity estimation and imaging method | |
CN105699969B (en) | MAP estimation angle super-resolution imaging method based on Generalized Gaussian constraint | |
CN113030972B (en) | Maneuvering target ISAR imaging method based on rapid sparse Bayesian learning | |
CN107462887A (en) | Wide cut satellite-borne synthetic aperture radar imaging method based on compressed sensing | |
CN104316923B (en) | Self-focusing method aiming at synthetic aperture radar (Back Projection) imaging | |
CN107271993A (en) | A kind of scanning radar angle super-resolution imaging method based on maximum a posteriori | |
CN110109114B (en) | Scanning radar super-resolution imaging detection integrated method | |
CN113065433B (en) | A SAR target recognition method based on sparse complex images | |
CN108196251A (en) | Accelerated iteration regularization super-resolution imaging method based on vector extrapolation | |
CN108279404A (en) | A kind of Dual-Channel SAR phase error correction approach based on Estimation of Spatial Spectrum | |
CN112946644A (en) | Based on minimizing the convolution weight l1Norm sparse aperture ISAR imaging method | |
Smith et al. | A vision transformer approach for efficient near-field SAR super-resolution under array perturbation | |
CN113900099A (en) | Sparse Aperture ISAR Maneuvering Target Imaging and Calibration Method | |
CN104181528A (en) | Compression perception multilayer ISAR imaging method based on BP optimization | |
CN117192548A (en) | Sparse ISAR high-resolution imaging method based on depth expansion | |
CN113723483A (en) | Image fusion method and system based on robust principal component analysis | |
CN116597077A (en) | Scanning radar scene reconstruction method based on depth expansion network | |
CN106168665A (en) | A kind of scanning radar self adaptation angle based on regularization ultra-resolution method | |
CN114624646B (en) | DOA estimation method based on model driven complex neural network | |
CN114895305A (en) | Based on L 1 Norm regularized sparse SAR self-focusing imaging method and device | |
CN105068071B (en) | A kind of fast imaging method based on backprojection operator | |
Zhang et al. | PnP-MFAMP-Net: A novel plug-and-play sparse reconstruction network for SAR imaging | |
CN115453532A (en) | Moving multi-target joint radar imaging method based on Kalman filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170915 |
|
WD01 | Invention patent application deemed withdrawn after publication |