[go: up one dir, main page]

CN107164401A - A kind of method and application that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies - Google Patents

A kind of method and application that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies Download PDF

Info

Publication number
CN107164401A
CN107164401A CN201710380845.1A CN201710380845A CN107164401A CN 107164401 A CN107164401 A CN 107164401A CN 201710380845 A CN201710380845 A CN 201710380845A CN 107164401 A CN107164401 A CN 107164401A
Authority
CN
China
Prior art keywords
ala
rice
mutant
gly
ospil15
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710380845.1A
Other languages
Chinese (zh)
Inventor
杜彦修
季新
赵全志
晏云
孙红正
张静
李俊周
彭廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Agricultural University
Original Assignee
Henan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Agricultural University filed Critical Henan Agricultural University
Priority to CN201710380845.1A priority Critical patent/CN107164401A/en
Publication of CN107164401A publication Critical patent/CN107164401A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases [RNase]; Deoxyribonucleases [DNase]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention relates to a kind of method and application that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies, belong to field of plant genetic.The present invention is oriented editor according to CRISPR/Cas9 technical principles to paddy rice phytochrome interaction factor OsPIL15, design OsPIL15 mutation target spots, build CRISPR/Cas9 gRNA (pBUN411 gRNA) expression vector, japonica rice variety Nipponbare is imported using agrobacterium-mediated transformation, positive transgenic plant is obtained with herbicide resistance markers' screening, mutation individual plant is analyzed and identified using enzyme cutting method and PCR sequencing PCR.A set of paddy rice ospil15 mutant new germ plasms with significant application value are obtained, Mutant progeny seed grain length pole is dramatically increased, average amplification can be applied to rice high yield, stable yields breeding up to 4.79%.

Description

一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法及 应用A method for preparing rice OsPIL15 mutants based on CRISPR/Cas9 technology and application

技术领域technical field

本发明涉及一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法及应用,属于植物基因工程技术领域。The invention relates to a method and application for preparing a rice OsPIL15 mutant based on CRISPR/Cas9 technology, and belongs to the technical field of plant genetic engineering.

背景技术Background technique

基因编辑技术指能够对目标基因进行“编辑”,实现对特定DNA片段的敲除、插入等。近年来,一种名为CRISPR/Cas9(clustered regularly interspaced shortpalindromic repeats/CRISPR-associated nuclease 9,Cas9)的基因组定向编辑技术备受瞩目。2013年初,《Science》两篇文章首次报道了Cas9核酸酶用于人类和小鼠细胞基因组编辑(Mali et al.,2013;Cong et al.,2013),其作为第三代基因编辑技术受到人们广泛关注。CRISPR/Cas9技术是利用核酸酶Cas9蛋白与单导向RNA(Single guide RNA,sgRNA)形成复合体,sgRNA通过碱基互补配对决定靶序列特异性,Cas9蛋白作为核酸酶切割与sgRNA上的间隔序列(spacers)互补的基因组DNA,造成双链DNA损伤,随后通过体内的NHEJ(non-homologous end joining)修复机制引入基因突变(Wiedenheft et al.,2012)。随着CRISPR/Cas9系统在人类和动物细胞中建立与应用,CRISPR/Cas9系统在拟南芥、烟草、水稻、小麦、玉米、高粱、番茄和甜橙等植物中均实现了基因组的定向编辑(Belhaj et al.,2015;Doudna et al.,2014)。Gene editing technology refers to the ability to "edit" target genes to achieve knockout and insertion of specific DNA fragments. In recent years, a genome-directed editing technology called CRISPR/Cas9 (clustered regularly interspaced shortpalindromic repeats/CRISPR-associated nuclease 9, Cas9) has attracted much attention. In early 2013, two articles in "Science" reported for the first time that Cas9 nuclease was used for genome editing in human and mouse cells (Mali et al., 2013; Cong et al., 2013), which has been widely recognized as the third-generation gene editing technology. extensive attention. CRISPR/Cas9 technology uses nuclease Cas9 protein to form a complex with single guide RNA (Single guide RNA, sgRNA). The sgRNA determines the specificity of the target sequence through complementary base pairing. spacers) complementary genomic DNA, causing double-strand DNA damage, and then introducing gene mutations through the NHEJ (non-homologous end joining) repair mechanism in vivo (Wiedenheft et al., 2012). With the establishment and application of the CRISPR/Cas9 system in human and animal cells, the CRISPR/Cas9 system has achieved targeted genome editing in plants such as Arabidopsis thaliana, tobacco, rice, wheat, corn, sorghum, tomato, and sweet orange ( Belhaj et al., 2015; Doudna et al., 2014).

水稻是世界上最主要的粮食作物之一,为全球半数以上人口提供食物来源。水稻的稳产和增产对保障我国粮食安全具有重要的战略意义。水稻产量主要由产量构成三要素穗数、每穗粒数和千粒重所决定,而粒重是决定产量三要素中遗传力最高的因素。粒重主要由籽粒大小和籽粒充实度所决定,而籽粒大小又主要由粒长、粒宽和粒厚所控制(Xing etal.,2015)。目前,随着突变体研究加速以及图位克隆和QTL等生物技术手段的运用,许多粒长、粒宽和粒重相关性状基因(GS3、GS5、GW2、GW5、GW7和GW8)相继被克隆(Song et al.,2007;Jianfeng et al.,2008;Mao et al.,2010;Li et al.,2011;Wang et al.,2012;Wang et al.,2015)。其中GS3是控制水稻粒重和粒长的主效QTL,在调节籽粒和器官大小中发挥负调节子的功能;GS5编码一个丝氨酸羧肽酶,是一个控制水稻粒宽、充实度和千粒重的数量性状基因;GW2编码一个环型E3泛素连接酶,负调控籽粒粒宽和粒重;GW5可通过影响泛素化降解途径控制籽粒粒宽和粒重;GW7可通过改变细胞分裂模式控制水稻粒形和提升稻米品质;GW8是一个包含SBP结构域的转录因子,能够直接与GW7启动子结合并抑制其表达,从而控制籽粒大小和品质。对这些基因的研究为水稻育种提供了重要理论依据,部分产量相关基因已被广泛应用于水稻高产稳产品种培育中。Rice is one of the most important food crops in the world, providing food for more than half of the world's population. The stable and increased production of rice is of great strategic significance to ensure my country's food security. The yield of rice is mainly determined by the three factors of yield, the number of panicles, the number of grains per panicle and the weight of thousand grains, and the grain weight is the factor with the highest heritability among the three factors of yield. Grain weight is mainly determined by grain size and grain filling, and grain size is mainly controlled by grain length, grain width and grain thickness (Xing et al., 2015). At present, with the acceleration of mutant research and the application of biotechnology methods such as map-based cloning and QTL, many genes related to grain length, grain width and grain weight (GS3, GS5, GW2, GW5, GW7 and GW8) have been cloned one after another ( Song et al., 2007; Jianfeng et al., 2008; Mao et al., 2010; Li et al., 2011; Wang et al., 2012; Wang et al., 2015). Among them, GS3 is the main QTL controlling rice grain weight and grain length, and it functions as a negative regulator in regulating grain and organ size; GS5 encodes a serine carboxypeptidase, which is a quantity controlling rice grain width, filling degree and thousand-grain weight. Trait gene; GW2 encodes a circular E3 ubiquitin ligase, which negatively regulates grain width and grain weight; GW5 can control grain width and grain weight by affecting ubiquitination degradation pathway; GW7 can control rice grain by changing cell division pattern Shape and improve rice quality; GW8 is a transcription factor containing SBP domain, which can directly bind to the GW7 promoter and repress its expression, thereby controlling grain size and quality. The study of these genes provides an important theoretical basis for rice breeding, and some yield-related genes have been widely used in the breeding of high-yielding and stable-yielding rice varieties.

光敏色素互作因子PIFs(Phytochrome-Interacting Factors)或称PILs(Phytochrome Interacting Factor-Like)是bHLH转录因子家族中的一类转录因子,其主要特性是能与光敏色素互作直接或间接调控光响应基因。作为bHLH蛋白的一种,所有PIFs家族的蛋白都包含在N端与光敏色素互作的APB(Active Phytochrome B-binding)或APA(Active Phytochrome A-binding)结构域和C端bHLH-DNA结合结构域及核定位结构域(Shen et al.,2008;Khanna et al.,2004)。在水稻中,通过同源性分析在水稻基因组中鉴定了6个PIF转录因子(OsPIL11-OsPIL16)(Nakamura et al.,2007)。OsPIL13在水稻中超表达后能够促进水稻节间的伸长,反之低表达则抑制其节间伸长(Todaka et al.,2012),超表达OsPIL15的水稻种子在黑暗环境中的萌发受到抑制(Zhou et al.,2014),OsPIL16能够负调控PGL1进而调控籽粒大小(Heang et al.,2012)。因此,构建光敏色素互作因子OsPIL15突变体对于水稻种子增重、增产等育种领域具有重要的意义。PIFs (Phytochrome-Interacting Factors) or PILs (Phytochrome Interacting Factor-Like) are a type of transcription factor in the bHLH transcription factor family, and their main characteristic is that they can interact with phytochrome to directly or indirectly regulate light response Gene. As a type of bHLH protein, all PIFs family proteins contain an APB (Active Phytochrome B-binding) or APA (Active Phytochrome A-binding) domain that interacts with phytochrome at the N-terminus and a bHLH-DNA binding structure at the C-terminus domain and nuclear localization domain (Shen et al., 2008; Khanna et al., 2004). In rice, six PIF transcription factors (OsPIL11-OsPIL16) were identified in the rice genome by homology analysis (Nakamura et al., 2007). Overexpression of OsPIL13 in rice can promote the elongation of rice internodes, whereas low expression can inhibit its internode elongation (Todaka et al., 2012), and the germination of rice seeds overexpressing OsPIL15 in the dark environment is inhibited (Zhou et al., 2014), OsPIL16 can negatively regulate PGL1 to regulate grain size (Heang et al., 2012). Therefore, the construction of the phytochrome interaction factor OsPIL15 mutant is of great significance for rice breeding fields such as seed weight gain and yield increase.

发明内容Contents of the invention

本发明的目的在于提供一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法。The object of the present invention is to provide a method for preparing rice OsPIL15 mutants based on CRISPR/Cas9 technology.

本发明还提供了上述方法制得的突变体在水稻育种中的应用。The present invention also provides the application of the mutant prepared by the above method in rice breeding.

为了实现上述目的,本发明所采用的技术方案是:In order to achieve the above object, the technical solution adopted in the present invention is:

一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法,包括如下步骤:A method for preparing rice OsPIL15 mutants based on CRISPR/Cas9 technology, comprising the steps of:

1)gRNA靶点序列的选择:序列为5′-GACTTCTTCTCCGAGCTCCAGG-3′,所述序列3′端的PAM序列为AGG,限制性内切酶SacⅠ识别序列为5′-GAGCTC-3′;1) Selection of gRNA target sequence: the sequence is 5′-GACTTCTTCTCCGAGCTCCAGG-3′, the PAM sequence at the 3′ end of the sequence is AGG, and the restriction enzyme SacI recognition sequence is 5′-GAGCTC-3′;

2)gRNA寡核苷酸链上下游引物的设计:2) Design of upstream and downstream primers for the gRNA oligonucleotide chain:

上游引物为sgRNA-F:5′-GGCGGACTTCTTCTCCGAGCTCC-3′,The upstream primer is sgRNA-F: 5′-GGCGGACTTCTTCTCCGAGCTCC-3′,

下游引物为sgRNA-R:5′-AAACGGAGCTCGGAGAAGAAGTC-3′;The downstream primer is sgRNA-R: 5′-AAACGGAGCTCGGAGAAGAAGTC-3′;

3)gRNA表达载体构建:将所述上下游引物混合、退火,得寡核苷酸双链DNA;用内切酶BsaⅠ酶切pBUN411质粒,得线性质粒;用T4连接酶将所述线性质粒和寡核苷酸双链DNA连接,得连接产物;将连接产物转化、筛选、验证,即得pBUN411-gRNA表达载体;3) Construction of gRNA expression vector: Mix and anneal the upstream and downstream primers to obtain oligonucleotide double-stranded DNA; digest the pBUN411 plasmid with endonuclease BsaI to obtain a linear plasmid; use T4 ligase to combine the linear plasmid and Ligation of oligonucleotide double-stranded DNA to obtain the ligation product; transformation, screening, and verification of the ligation product to obtain the pBUN411-gRNA expression vector;

4)将pBUN411-gRNA表达载体导入农杆菌中,得CRISPR/Cas9-gRNA农杆菌;用CRISPR/Cas9-gRNA农杆菌侵染水稻愈伤组织;4) Introducing the pBUN411-gRNA expression vector into Agrobacterium to obtain CRISPR/Cas9-gRNA Agrobacterium; infecting rice callus with CRISPR/Cas9-gRNA Agrobacterium;

5)将步骤4)获得的愈伤组织诱导得到再生苗,筛选得到转基因阳性植株,鉴定即得水稻OsPIL15突变体。5) Inducing the callus obtained in step 4) to obtain regenerated shoots, screening to obtain transgene-positive plants, and identifying the rice OsPIL15 mutant.

步骤3)中所述退火为在65℃退火5min。The annealing in step 3) is annealing at 65° C. for 5 minutes.

步骤3)中所述酶切的体系为:pBUN411质粒2μg,10×CutSmart Buffer 5μL,Bsa Ⅰ10U,加ddH2O至50μL。The enzyme digestion system described in step 3) is: 2 μg of pBUN411 plasmid, 5 μL of 10×CutSmart Buffer, 10 U of Bsa I, and added ddH 2 O to 50 μL.

步骤3)中所述酶切的条件为:37℃酶切4h。The conditions for enzyme digestion in step 3) are: enzyme digestion at 37°C for 4 hours.

步骤3)中T4连接酶连接的体系为:线性质粒6μL,寡核苷酸双链DNA 2μL,10×Buffer 5μL,T4DNA连接酶1μL。The system for T4 ligase ligation in step 3) is: 6 μL of linearized plasmid, 2 μL of oligonucleotide double-stranded DNA, 5 μL of 10×Buffer, and 1 μL of T4 DNA ligase.

步骤3)中T4连接酶连接的条件为:4℃连接12h。The conditions for T4 ligase ligation in step 3) are: ligation at 4° C. for 12 hours.

步骤3)中将连接产物转化、筛选、验证的具体操作为:将连接产物用热激法转化大肠杆菌DH5α感受态细胞,菌液涂布于含50mg/L的卡那霉素LB培养基平板,过夜培养后挑取单克隆摇菌扩繁;使用引物pBUN411-VF和pBUN411-VR(引物序列见表1)进行菌落PCR验证,扩增片段为336bp的为正确的pBUN411-gRNA表达载体。In step 3), the specific operations of transforming, screening, and verifying the ligated product are as follows: transform the ligated product into Escherichia coli DH5α competent cells by the heat shock method, and spread the bacterial solution on a LB medium plate containing 50 mg/L of kanamycin After culturing overnight, single clones were picked and propagated by shaking; primers pBUN411-VF and pBUN411-VR (see Table 1 for primer sequences) were used for colony PCR verification, and the amplified fragment of 336bp was the correct pBUN411-gRNA expression vector.

所述LB培养基的配方为(1L):胰蛋白胨10g;酵母提取物5g;氯化钠10g;琼脂15g。The formula of the LB medium is (1L): tryptone 10g; yeast extract 5g; sodium chloride 10g; agar 15g.

步骤4)中采用热激法将pBUN411-gRNA表达载体导入土壤农杆菌EHA105。In step 4), the pBUN411-gRNA expression vector was introduced into Agrobacterium agrobacterium EHA105 by heat shock method.

步骤5)为在除草剂的条件下筛选得到再生苗。Step 5) is to obtain regenerated shoots by screening under the condition of herbicide.

步骤5)为采用抗除草剂基因引物进行筛选;Step 5) screening by using herbicide resistance gene primers;

所用引物为:Bar-F:AAGCACGGTCAACTTCCGTA;The primers used are: Bar-F: AAGCACGGTCAACTTCCGTA;

Bar-R:GAAGTCCAGCTGCCAGAAAC。Bar-R: GAAGTCCAGCTGCCAGAAAC.

步骤5)中筛选出Bar-F和Bar-R扩增产物为412bp的植株,进行进一步鉴定。In step 5), plants with 412bp amplified products of Bar-F and Bar-R were screened out for further identification.

步骤5)为采用gRNA靶点序列两侧引物进行鉴定;Step 5) identifying by using primers on both sides of the gRNA target sequence;

两侧引物为OsPIL15-test-F:5′-TGTTTTGTGTGTGCAGGTCC-3′;The primers on both sides are OsPIL15-test-F: 5′-TGTTTTGTGTGTGCAGGTCC-3′;

OsPIL15-test-R:5′-CGGGAGAAGAGCGAGAAGTT-3′。OsPIL15-test-R: 5'-CGGGAGAAGAGCGAGAAGTT-3'.

步骤5)中所述鉴定包括:Identification described in step 5) includes:

A:以转基因阳性植株DNA为模板,OsPIL15-test-F和OsPIL15-test-R为检测引物,进行PCR扩增;A: Using the DNA of the transgenic positive plant as a template, and OsPIL15-test-F and OsPIL15-test-R as detection primers, perform PCR amplification;

B:用SacⅠ酶酶切PCR扩增产物;B: Digest the PCR amplification product with SacⅠ enzyme;

C:用电泳分离酶切产物,若电泳结果仅为400bp和273bp两条带,为未突变株;否则,为突变株。C: Use electrophoresis to separate the digested products. If the electrophoresis results are only two bands of 400bp and 273bp, it is an unmutated strain; otherwise, it is a mutant strain.

步骤A中PCR扩增体系为:2×Taq MasterMix 25μL,OsPIL15-test-F 2μL,OsPIL15-test-R 2μL,DNA模板1μg,加ddH2O至50μL。The PCR amplification system in step A is: 2×Taq MasterMix 25 μL, OsPIL15-test-F 2 μL, OsPIL15-test-R 2 μL, DNA template 1 μg, add ddH 2 O to 50 μL.

步骤A中PCR扩增条件为:预变性94℃2min,变性94℃30s,退火55℃30s,延伸72℃30s,终延伸72℃10min,其中变性,退火和延伸为30个循环。The PCR amplification conditions in step A are: pre-denaturation at 94°C for 2min, denaturation at 94°C for 30s, annealing at 55°C for 30s, extension at 72°C for 30s, and final extension at 72°C for 10min, wherein denaturation, annealing and extension are 30 cycles.

步骤B中酶切体系为:PCR产物1μg,10×L Buffer 2μL,SacⅠ1U,加ddH2O至20μL。The digestion system in step B is: 1 μg of PCR product, 2 μL of 10×L Buffer, 1 U of SacⅠ, and add ddH 2 O to 20 μL.

步骤B中酶切条件为:37℃酶切过夜。The digestion conditions in step B are: digestion at 37°C overnight.

步骤C中采用2%琼脂糖凝胶进行电泳分离。In step C, 2% agarose gel is used for electrophoresis separation.

将所述转基因阳性植株的PCR扩增产物测序,确定是一条同源染色体突变的杂合体,或者两个等位基因发生不同突变的双等位突变体,亦或是两个等位基因发生相同突变的纯合突变体,亦或是未发生突变单株。Sequence the PCR amplification product of the transgene positive plant to determine whether it is a heterozygote with a homologous chromosome mutation, or a biallelic mutant in which two alleles have different mutations, or two alleles with the same mutation. Homozygous mutants for mutations, or single plants without mutations.

由上述制备水稻OsPIL15突变体的方法制得的水稻OsPIL15突变体在水稻育种中的应用。Application of the rice OsPIL15 mutant prepared by the method for preparing the rice OsPIL15 mutant in rice breeding.

具体的,选择所述水稻OsPIL15突变体的自交后代中的纯合突变体用于水稻种子粒长育种。例如,选择T0代双等位突变体自交得T1代,从T1代等后继世代中选择纯合突变体用于水稻育种。Specifically, the homozygous mutant among the selfed offspring of the rice OsPIL15 mutant is selected for breeding for rice seed length. For example, select the biallelic mutants of the T 0 generation to self-cross to obtain the T 1 generation, and select homozygous mutants from the T 1 generation and other subsequent generations for rice breeding.

本发明的有益效果是:本发明依据CRISPR/Cas9技术原理对水稻光敏色素互作因子OsPIL15进行定向编辑。设计OsPIL15突变靶点,构建CRISPR/Cas9-gRNA(pBUN411-gRNA)表达载体,利用农杆菌介导法导入粳稻品种日本晴,以除草剂抗性标记筛选获得阳性转基因植株,利用酶切法和测序法分析鉴定突变单株。通过该方法获得了一套具有重要应用价值的水稻ospil15突变体新种质,与野生型日本晴相比,制备的ospil15突变体新种质籽粒粒长极显著增加。The beneficial effects of the present invention are: the present invention performs directional editing on the rice phytochrome interaction factor OsPIL15 according to the technical principle of CRISPR/Cas9. Design the OsPIL15 mutation target, construct the CRISPR/Cas9-gRNA (pBUN411-gRNA) expression vector, use the Agrobacterium-mediated method to introduce the japonica rice variety Nipponbare, and obtain positive transgenic plants by screening with herbicide resistance markers, using enzyme digestion and sequencing methods Analysis and identification of mutant individual plants. A set of new rice ospil15 mutant germplasm with important application value was obtained by this method. Compared with wild-type Nipponbare, the grain length of the prepared new ospil15 mutant germplasm was significantly increased.

本发明针对当前人口不断增长和粮食需求不断增加的现状,探讨了光敏色素互作因子OsPIL15在水稻品种改良中的功能,为通过调控OsPIL15基因表达来控制水稻籽粒粒长提供了试验依据。本发明基于CRISPR/Cas9技术对水稻ospil15突变体创制的成功实施,为快速创建籽粒增大等生产上具有重要应用价值的水稻新品系提供一种简单有效的技术手段,在提高水稻籽粒大小和粒重以及增加作物产量上具有潜在的应用价值,对水稻高产和稳产育种具有重要的实践意义。Aiming at the present situation of continuous population growth and increasing food demand, the present invention discusses the function of phytochrome interaction factor OsPIL15 in rice variety improvement, and provides an experimental basis for controlling rice grain length by regulating OsPIL15 gene expression. The successful implementation of the invention based on the CRISPR/Cas9 technology for the creation of the rice ospil15 mutant provides a simple and effective technical means for the rapid establishment of new rice strains with important application value in production such as grain enlargement. It has potential application value in increasing crop weight and increasing crop yield, and has important practical significance for high-yield and stable-yield breeding of rice.

附图说明Description of drawings

图1为gRNA靶位点及CRISPR/Cas9-gRNA表达载体的组装示意图;Figure 1 is a schematic diagram of the assembly of the gRNA target site and the CRISPR/Cas9-gRNA expression vector;

图2为PCR产物和酶切PCR产物鉴定基因编辑植株的琼脂糖凝胶结果图;Figure 2 is an agarose gel result diagram of PCR products and enzyme-cleaved PCR products identifying gene-edited plants;

图3为不同ospil15突变体突变序列与野生型日本晴序列分析比对图;Figure 3 is a comparison chart of different ospil15 mutant mutant sequences and wild-type Nipponbare sequence analysis;

图4为ospil15突变体与野生型日本晴籽粒粒长比较图;Figure 4 is a comparison of the grain length of the ospil15 mutant and the wild type Nipponbare;

图5为ospil15突变体与野生型日本晴籽粒粒长差异分析图。Fig. 5 is an analysis diagram of the difference in grain length between the ospil15 mutant and the wild type Nipponbare.

具体实施方式detailed description

下面结合具体实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with specific embodiments.

以下实施例及对比例中的引物由生工生物工程(上海)股份有限公司合成。The primers in the following examples and comparative examples were synthesized by Sangon Bioengineering (Shanghai) Co., Ltd.

实施例1Example 1

1、OsPIL15基因gRNA靶点序列的选择及gRNA寡核苷酸链的上下游引物的设计1. Selection of OsPIL15 gene gRNA target sequence and design of upstream and downstream primers of gRNA oligonucleotide chain

根据水稻OsPIL15基因(GenBank登录号AK102252.1)的外显子序列设计gRNA靶点序列5′-GACTTCTTCTCCGAGCTCCAGG-3′,该序列3′端PAM序列为AGG,Cas9蛋白将在AGG序列上游第3-4bp处剪切DNA形成平滑末端,该剪切处有一段限制性内切酶SacⅠ识别序列(5′-GAGCTC-3′),靶位点、PAM序列及酶切位点如图1-A:sgRNA与Cas9蛋白靶向OsPIL15基因示意图所示。According to the exon sequence of the rice OsPIL15 gene (GenBank accession number AK102252.1), the gRNA target sequence 5'-GACTTCTTCTCCGAGCTCCAGG-3' was designed. The PAM sequence at the 3' end of the sequence is AGG, and the Cas9 protein will be 3-3' upstream of the AGG sequence. Cut the DNA at 4bp to form a smooth end. There is a restriction endonuclease SacI recognition sequence (5′-GAGCT C-3′) at the cut point. The target site, PAM sequence and restriction site are shown in Figure 1- A: The schematic diagram of sgRNA and Cas9 protein targeting OsPIL15 gene.

根据sgRNA序列设计gRNA寡核苷酸链的上下游引物,引物序列见表1中sgRNA-F和sgRNA-R;其中sgRNA-F和sgRNA-R中前四位碱基为BsaⅠ限制性内切酶的黏性末端接头。Design the upstream and downstream primers of the gRNA oligonucleotide chain according to the sgRNA sequence. The primer sequences are shown in Table 1 for sgRNA-F and sgRNA-R; the first four bases in sgRNA-F and sgRNA-R are BsaI restriction endonucleases sticky end adapters.

2、CRISPR/Cas9-gRNA(pBUN411-gRNA)表达载体的构建2. Construction of CRISPR/Cas9-gRNA (pBUN411-gRNA) expression vector

1)取等量的gRNA寡核苷酸链上下游引物(终浓度10μM)混合,经65℃退火5min后逐渐冷却至室温形成互补双链DNA,用于后续载体的构建;1) Take an equal amount of gRNA oligonucleotide chain upstream and downstream primers (final concentration 10 μM) and mix, anneal at 65°C for 5 minutes, then gradually cool to room temperature to form complementary double-stranded DNA, which will be used for subsequent vector construction;

2)使用限制性内切酶BsaⅠ酶切CRISPR/Cas9载体pBUN411,CRISPR/Cas9载体pBUN411由中国农业大学陈其军教授惠赠(Xing et al.,2014),使其线性化,50μL酶切体系如下:pBUN411质粒2μg,10×CutSmart Buffer 5μL,BsaⅠ10U(1μL),加ddH2O至50μL,37℃酶切4h后65℃热处理20min使酶失活;纯化后加入如下连接体系:线性质粒6μL,寡核苷酸双链2μL,10×Buffer 5μL,T4DNA连接酶1μL;连接的条件为:4℃连接12h。2) Digest the CRISPR/Cas9 vector pBUN411 with the restriction endonuclease BsaⅠ. The CRISPR/Cas9 vector pBUN411 was donated by Professor Chen Qijun of China Agricultural University (Xing et al., 2014) to linearize it. The 50 μL digestion system is as follows: pBUN411 Plasmid 2 μg, 10×CutSmart Buffer 5 μL, BsaⅠ10U (1 μL), add ddH 2 O to 50 μL, digest at 37°C for 4 hours, then heat-treat at 65°C for 20 minutes to inactivate the enzyme; after purification, add the following ligation system: linear plasmid 6 μL, oligonucleotide Acid duplex 2 μL, 10×Buffer 5 μL, T4 DNA ligase 1 μL; ligation conditions: 4°C for 12 hours.

3)连接产物用热激法转化大肠杆菌DH5α感受态细胞,菌液涂布于含50mg/L的卡那霉素LB培养基平板,过夜培养后挑取单克隆摇菌扩繁。使用引物pBUN411-VF和pBUN411-VR(引物序列见表1)进行菌落PCR验证。3) The ligation product was transformed into Escherichia coli DH5α competent cells by heat shock method, and the bacterial solution was spread on the LB medium plate containing 50 mg/L kanamycin, and after culturing overnight, single clones were picked and expanded by shaking. Colony PCR verification was performed using primers pBUN411-VF and pBUN411-VR (see Table 1 for primer sequences).

PCR体系为:2×Taq MasterMix 5μL;pBUN411-VF(10μM)0.4μL;pBUN411-VR(10μM)0.4μL;单克隆模板1μL;ddH2O 3.2μL。PCR条件为:预变性94℃2min,变性94℃30s,退火55℃30s,延伸72℃30s,终延伸72℃10min,其中变性,退火和延伸为35个循环。The PCR system is: 2×Taq MasterMix 5 μL; pBUN411-VF (10 μM) 0.4 μL; pBUN411-VR (10 μM) 0.4 μL; monoclonal template 1 μL; ddH 2 O 3.2 μL. The PCR conditions were: pre-denaturation at 94°C for 2 min, denaturation at 94°C for 30 s, annealing at 55°C for 30 s, extension at 72°C for 30 s, and final extension at 72°C for 10 min, in which denaturation, annealing and extension were 35 cycles.

pBUN411空载体扩增片段长度为1538bp,经BsaⅠ酶切后连接,靶序列插入扩增片段大小应为336bp(如SEQ ID NO.17所示),选取PCR片段大小正确的菌落,提取质粒,表明pBUN411-gRNA表达载体构建成功。该靶序列由OsU3基因启动子驱动,编码Cas9蛋白的基因由玉米泛素基因(Ubi)启动子驱动(如图1-B:CRISPR/Cas9-gRNA表达载体LB和RB之间线性结构所示)。The length of the pBUN411 empty vector amplified fragment is 1538bp, and it is ligated after digestion with BsaⅠ. The size of the target sequence inserted and amplified fragment should be 336bp (as shown in SEQ ID NO.17). Select the colony with the correct PCR fragment size and extract the plasmid, indicating that The pBUN411-gRNA expression vector was constructed successfully. The target sequence is driven by the promoter of the OsU3 gene, and the gene encoding the Cas9 protein is driven by the promoter of the maize ubiquitin gene (Ubi) (as shown in Figure 1-B: the linear structure between LB and RB of the CRISPR/Cas9-gRNA expression vector) .

实施例2Example 2

农杆菌介导水稻愈伤遗传转化和阳性转基因植株检测Agrobacterium-mediated genetic transformation of rice callus and detection of positive transgenic plants

采用热激法,参照Hood等报道方法(Hood et al.,1993)将pBUN411-gRNA表达载体导入土壤农杆菌EHA105,使用含有CRISPR/Cas9-gRNA质粒的农杆菌侵染水稻品种日本晴(Oryza sativa ssp.Japonica cv.Nipponbare)的愈伤组织,参照Nishimura等(Nishimuraet al.,2006)报道方法进行水稻转基因,用除草剂(Basta)筛选获得再生苗。采用SLS法提取转基因植株基因组DNA,使用抗除草剂基因(bar)引物Bar-F和Bar-R(引物序列见表1)进行转基因植株阳性筛选(该除草剂基因位于pBUN411-gRNA表达载体上)。Using the heat shock method, referring to the method reported by Hood et al. (Hood et al., 1993), the pBUN411-gRNA expression vector was introduced into Agrobacterium agrobacterium EHA105, and the rice variety Nipponbare (Oryza sativa ssp. .Japonica cv.Nipponbare) callus, transgenic rice was carried out with reference to the method reported by Nishimura et al. (Nishimura et al., 2006), and regenerated shoots were obtained by screening with herbicide (Basta). Genomic DNA of transgenic plants was extracted by SLS method, and positive screening of transgenic plants was carried out using herbicide-resistant gene (bar) primers Bar-F and Bar-R (see Table 1 for primer sequences) (the herbicide gene is located on the pBUN411-gRNA expression vector) .

PCR体系为:2×Taq MasterMix 5μL;Bar-F(10μM)0.4μL;Bar-R(10μM)0.4μL;DNA模板1μl;ddH2O 3.2μL。PCR条件为:预变性94℃2min,变性94℃30s,退火52℃30s,延伸72℃30s,终延伸72℃10min,其中变性,退火和延伸为35个循环。PCR扩增产物长度为412bp,即为阳性转基因植株。The PCR system is: 2×Taq MasterMix 5 μL; Bar-F (10 μM) 0.4 μL; Bar-R (10 μM) 0.4 μL; DNA template 1 μl; ddH 2 O 3.2 μL. The PCR conditions were: pre-denaturation at 94°C for 2min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 30s, and final extension at 72°C for 10min, in which denaturation, annealing and extension were 35 cycles. The length of the PCR amplification product is 412bp, which is the positive transgenic plant.

实施例3Example 3

OsPIL15基因T0代突变体筛选鉴定Screening and identification of T 0 generation mutant of OsPIL15 gene

1)为了检测获得T0代阳性转基因植株靶位点的突变情况,根据水稻光敏色素互作因子OsPIL15基因全长序列(如SEQ ID NO.18所示)在靶位点两侧设计引物OsPIL15-test-F和OsPIL15-test-R(引物序列见表1),以转基因阳性单株DNA为模板扩增靶位点序列,50μL扩增体系如下:2×Taq MasterMix 25μL,OsPIL15-test-F 2μL,OsPIL15-test-R 2μL,DNA模板1μg,加ddH2O至50μL;PCR条件:预变性94℃2min,变性94℃30s,退火55℃30s,延伸72℃30s,终延伸72℃10min,其中变性,退火和延伸为35个循环。1) In order to detect the mutation of the target site in the positive transgenic plants of the T 0 generation, design primers OsPIL15- test-F and OsPIL15-test-R (see Table 1 for the primer sequence), amplify the target site sequence with the DNA of a transgenic positive individual plant as a template, and the 50 μL amplification system is as follows: 2×Taq MasterMix 25 μL, OsPIL15-test-F 2 μL , OsPIL15-test-R 2μL, DNA template 1μg, add ddH 2 O to 50μL; PCR conditions: pre-denaturation at 94°C for 2min, denaturation at 94°C for 30s, annealing at 55°C for 30s, extension at 72°C for 30s, final extension at 72°C for 10min, where Denaturation, annealing and extension were 35 cycles.

将一部分扩增产物使用琼脂糖凝胶电泳分离,结果如图2-A所示,野生型扩增片段大小为673bp,单株1、2、23和24均扩增出片段明显小于野生型的条带,初步表明这4个单株可能发生较大片段缺失,其中单株1和24的PCR产物出现两条带,只有其中一条带明显小于野生型条带,因此二者可能只有一条同源染色体有较大片段缺失;单株2和23的PCR产物只有一条带且明显小于673bp,可初步判断二者两条同源染色体都发生较大片段缺失。A part of the amplified products were separated by agarose gel electrophoresis. As shown in Figure 2-A, the size of the wild-type amplified fragment was 673bp, and the amplified fragments of individual plants 1, 2, 23 and 24 were significantly smaller than the wild-type bands, preliminarily indicating that these four individual plants may have large fragment deletions, and the PCR products of individual plants 1 and 24 have two bands, only one of which is significantly smaller than the wild-type band, so the two may have only one homology Chromosomes had large fragment deletions; the PCR products of individual plants 2 and 23 had only one band and were obviously less than 673bp. It can be preliminarily judged that both homologous chromosomes had large fragment deletions.

将一部分扩增产物使用SacⅠ限制性内切酶进行酶切,20μL体系如下:PCR产物1μg,10×L Buffer 2μL,SacⅠ1U(1μL),加ddH2O至20μL,37℃酶切过夜。A part of the amplified product was digested with SacI restriction endonuclease, and the 20 μL system was as follows: 1 μg of PCR product, 2 μL of 10×L Buffer, SacI 1U (1 μL), added ddH 2 O to 20 μL, and digested overnight at 37°C.

使用2%琼脂糖凝胶电泳检测酶切结果,若PCR产物能被完全切开,仅得到400bp和273bp的两条带,表明靶位点未发生突变,为未突变单株;否则为突变植株。若PCR产物被部分切开,得到三条带,其中两条为400bp和273bp,另一条带在673bp附近,则表明一条同源染色体突变,为杂合体;若PCR产物完全不能切开,表明两条同源染色体均发生突变,则可能为两个等位基因发生不同突变的双等位突变体或两个等位基因发生相同突变的纯合体。Use 2% agarose gel electrophoresis to detect the enzyme digestion results. If the PCR product can be completely cut, only two bands of 400bp and 273bp are obtained, indicating that the target site has not been mutated, and it is an unmutated individual plant; otherwise, it is a mutant plant. . If the PCR product is partially cut and three bands are obtained, two of which are 400bp and 273bp, and the other is around 673bp, it indicates that a homologous chromosome has a mutation and is a heterozygote; if the PCR product cannot be cut at all, it indicates that two Mutations in both homologous chromosomes may be biallelic mutants with different mutations in the two alleles or homozygous for the same mutation in the two alleles.

检测结果如图2-B所示,结果表明单株4、5、6、7、10、12、15、16、18和25未发生突变;单株8、9、11和17的PCR产物被部分酶切,形成三条带,为一条同源染色体突变的杂合体;单株1、2、3、13、14、19、20、21、22、23和24的PCR产物完全不能切开,则可能为双等位突变或纯合突变体。The detection results are shown in Figure 2-B, and the results showed that no mutation occurred in individual plants 4, 5, 6, 7, 10, 12, 15, 16, 18 and 25; the PCR products of individual plants 8, 9, 11 and 17 were detected by Partial digestion, forming three bands, which is a heterozygous mutation of a homologous chromosome; the PCR products of individual plants 1, 2, 3, 13, 14, 19, 20, 21, 22, 23 and 24 cannot be cut at all, then May be biallelic or homozygous.

将突变单株1、2、3、8、9、11、13、14、17、19、20、21、22、23和24的PCR产物送出测序,测序结果与野生型序列比对分析突变株基因型。综合分析测序结果得到株系突变情况,如图3所示,共得到5株纯合突变(单株2、3、13、14和23)、6株双等位突变(单株1、19、20、21、22和24)和4株杂合突变体(单株8、9、11和17),包含10种不同突变基因型。The PCR products of mutants 1, 2, 3, 8, 9, 11, 13, 14, 17, 19, 20, 21, 22, 23 and 24 were sent for sequencing, and the sequencing results were compared with the wild-type sequence to analyze the mutants genotype. Comprehensive analysis of the sequencing results obtained the strain mutations, as shown in Figure 3, a total of 5 homozygous mutations (single plants 2, 3, 13, 14 and 23), 6 biallelic mutations (single plants 1, 19, 20, 21, 22 and 24) and 4 heterozygous mutants (single plants 8, 9, 11 and 17), including 10 different mutant genotypes.

实施例4Example 4

T1代ospil15纯合突变体籽粒表型分析Grain phenotype analysis of ospil15 homozygous mutant in T1 generation

水稻光敏色素互作因子OsPIL15氨基酸序列如SEQ ID NO.1所示,该蛋白编码序列如SEQ ID NO.2所示。The amino acid sequence of rice phytochrome interaction factor OsPIL15 is shown in SEQ ID NO.1, and the protein coding sequence is shown in SEQ ID NO.2.

将实施例3中获得T0代突变体经1代自交后选择得到T1代ospil15纯合突变体,选取突变株系1、21和22进行籽粒表型分析。The T 0 generation mutants obtained in Example 3 were self-crossed for 1 generation to obtain the T 1 generation ospil15 homozygous mutants, and the mutant lines 1, 21 and 22 were selected for grain phenotype analysis.

突变体ospil15-1中,突变的水稻光敏色素互作因子OsPIL15的编码序列如SEQ IDNO.3所示;突变的水稻光敏色素互作因子OsPIL15氨基酸序列如SEQ ID NO.4所示。In the mutant ospil15-1, the coding sequence of the mutated rice phytochrome-interacting factor OsPIL15 is shown in SEQ ID NO.3; the amino acid sequence of the mutated rice phytochrome-interacting factor OsPIL15 is shown in SEQ ID NO.4.

突变体ospil15-21中,突变的水稻光敏色素互作因子OsPIL15的编码序列如SEQID NO.5所示;突变的水稻光敏色素互作因子OsPIL15氨基酸序列如SEQ ID NO.6所示。In the mutant ospil15-21, the coding sequence of the mutated rice phytochrome-interacting factor OsPIL15 is shown in SEQ ID NO.5; the amino acid sequence of the mutated rice phytochrome-interacting factor OsPIL15 is shown in SEQ ID NO.6.

突变体ospil15-22中,突变的水稻光敏色素互作因子OsPIL15的编码序列如SEQID NO.7所示;突变的水稻光敏色素互作因子OsPIL15氨基酸序列如SEQ ID NO.8所示。In the mutant ospil15-22, the coding sequence of the mutated rice phytochrome-interacting factor OsPIL15 is shown in SEQ ID NO.7; the amino acid sequence of the mutated rice phytochrome-interacting factor OsPIL15 is shown in SEQ ID NO.8.

选取上述三个纯合突变株系,随机选取30粒成熟收获后的籽粒,使用大米外观品质检测仪(JMWT12,东孚久恒,北京)对籽粒粒长进行测定,5次重复取平均值。结果如图4和图5所示,三组ospil15突变体籽粒粒长极显著增加,其中突变体ospil15-22增加最高,增幅达5.69%,增幅最小的突变体ospil15-21也达3.88%。The above three homozygous mutant lines were selected, and 30 mature harvested grains were randomly selected, and the grain length was measured using a rice appearance quality detector (JMWT12, Dongfu Jiuheng, Beijing), and the average value was obtained after 5 repetitions. The results are shown in Figures 4 and 5, the grain length of the three groups of ospil15 mutants was significantly increased, among which the mutant ospil15-22 had the highest increase of 5.69%, and the smallest increase of the mutant ospil15-21 also reached 3.88%.

以上对本发明的具体实施例进行了描述,但本发明的实施方式不受上述特定实施例的限制。本领域技术人员在权利要求的范围内做所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The specific examples of the present invention have been described above, but the implementation of the present invention is not limited to the above specific examples. The changes, modifications, substitutions, combinations, and simplifications made by those skilled in the art within the scope of the claims shall all be equivalent replacements, and shall be included in the protection scope of the present invention.

表1引物序列表Table 1 Primer sequence list

引物名称Primer name 引物序列(5'-3')Primer sequence (5'-3') sgRNA-FsgRNA-F GGCGGACTTCTTCTCCGAGCTCC GGCG GACTTCTTCTCCGAGCTCC sgRNA-RsgRNA-R AAACGGAGCTCGGAGAAGAAGTC AAAC GGAGCTCGGAGAAGAAGTC pBUN411-VFpBUN411-VF CCATGAAGCCTTTCAGGACATGTACCATGAAGCCTTTCAGGACATGTA pBUN411-VRpBUN411-VR ACGCTGCAAACATGAGACGGAGAAACGCTGCAAACATGAGACGGAGAA Bar-FBar-F AAGCACGGTCAACTTCCGTAAAGCACGGTCAACTTCCGTA Bar-RBar-R GAAGTCCAGCTGCCAGAAACGAAGTCCAGCTGCCAGAAAC OsPIL15-test-FOsPIL15-test-F TGTTTTGTGTGTGCAGGTCCTGTTTTGTGTGTGCAGGTCC OsPIL15-test-ROsPIL15-test-R CGGGAGAAGAGCGAGAAGTTCGGGAGAAGAGCGAGAAGTT

<110> 河南农业大学<110> Henan Agricultural University

<120> 一种基于CRISPR/Cas9技术制备水稻OsPIL15突变体的方法及应用<120> A method and application for preparing rice OsPIL15 mutants based on CRISPR/Cas9 technology

<160> 18<160> 18

<170> PatentIn version 3.5<170> PatentIn version 3.5

<211> 637<211> 637

<212> PRT<212> PRT

<213> 序列<213> sequence

<221> 水稻光敏色素互作因子OsPIL15氨基酸序列<221> Amino acid sequence of rice phytochrome interaction factor OsPIL15

<400> 1<400> 1

Met Ser Asp Gly Asn Asp Phe Ala Glu Leu Leu Trp Glu Asn GlyMet Ser Asp Gly Asn Asp Phe Ala Glu Leu Leu Trp Glu Asn Gly

1 5 10 151 5 10 15

Gln Ala Val Val His Gly Arg Lys Lys His Pro Gln Pro Ala PheGln Ala Val Val His Gly Arg Lys Lys His Pro Gln Pro Ala Phe

20 25 30 20 25 30

Pro Pro Phe Gly Phe Phe Gly Gly Thr Gly Gly Gly Gly Gly GlyPro Pro Phe Gly Phe Phe Gly Gly Thr Gly Gly Gly Gly Gly Gly

35 40 45 35 40 45

Ser Ser Ser Arg Ala Gln Glu Arg Gln Pro Gly Gly Ile Asp AlaSer Ser Ser Arg Ala Gln Glu Arg Gln Pro Gly Gly Ile Asp Ala

50 55 60 50 55 60

Phe Ala Lys Val Gly Gly Gly Phe Gly Ala Leu Gly MET Ala ProPhe Ala Lys Val Gly Gly Gly Phe Gly Ala Leu Gly MET Ala Pro

65 70 75 65 70 75

Ala Val His Asp Phe Ala Ser Gly Phe Gly Ala Thr Thr Gln AspAla Val His Asp Phe Ala Ser Gly Phe Gly Ala Thr Thr Gln Asp

80 85 90 80 85 90

Asn Gly Asp Asp Asp Thr Val Pro Trp Ile His Tyr Pro Ile IleAsn Gly Asp Asp Asp Thr Val Pro Trp Ile His Tyr Pro Ile Ile

95 100 105 95 100 105

Asp Asp Glu Asp Ala Ala Ala Pro Ala Ala Leu Ala Ala Ala AspAsp Asp Glu Asp Ala Ala Ala Pro Ala Ala Leu Ala Ala Ala Asp

110 115 120 110 115 120

Tyr Gly Ser Asp Phe Phe Ser Glu Leu Gln Ala Ala Ala Ala AlaTyr Gly Ser Asp Phe Phe Ser Glu Leu Gln Ala Ala Ala Ala Ala

125 130 135 125 130 135

Ala Ala Ala Ala Ala Pro Pro Thr Asp Leu Ala Ser Leu Pro AlaAla Ala Ala Ala Ala Pro Pro Thr Asp Leu Ala Ser Leu Pro Ala

140 145 150 140 145 150

Ser Asn His Asn Gly Ala Thr Asn Asn Arg Asn Ala Pro Val AlaSer Asn His Asn Gly Ala Thr Asn Asn Arg Asn Ala Pro Val Ala

155 160 165 155 160 165

Thr Thr Thr Thr Arg Glu Pro Ser Lys Glu Ser His Gly Gly LeuThr Thr Thr Thr Arg Glu Pro Ser Lys Glu Ser His Gly Gly Leu

170 175 180 170 175 180

Ser Val Pro Thr Thr Arg Ala Glu Pro Gln Pro Gln Pro Gln LeuSer Val Pro Thr Thr Arg Ala Glu Pro Gln Pro Gln Pro Gln Leu

185 190 195 185 190 195

Ala Ala Ala Lys Leu Pro Arg Ser Ser Gly Ser Gly Gly Gly GluAla Ala Ala Lys Leu Pro Arg Ser Ser Gly Ser Gly Gly Gly Glu

200 205 210 200 205 210

Gly Val MET Asn Phe Ser Leu Phe Ser Arg Pro Ala Val Leu AlaGly Val MET Asn Phe Ser Leu Phe Ser Arg Pro Ala Val Leu Ala

215 220 225 215 220 225

Arg Ala Thr Leu Glu Ser Ala Gln Arg Thr Gln Gly Thr Asp AsnArg Ala Thr Leu Glu Ser Ala Gln Arg Thr Gln Gly Thr Asp Asn

230 235 240 230 235 240

Lys Ala Ser Asn Val Thr Ala Ser Asn Arg Val Glu Ser Thr ValLys Ala Ser Asn Val Thr Ala Ser Asn Arg Val Glu Ser Thr Val

245 250 255 245 250 255

Val Gln Thr Ala Ser Gly Pro Arg Ser Ala Pro Ala Phe Ala AspVal Gln Thr Ala Ser Gly Pro Arg Ser Ala Pro Ala Phe Ala Asp

260 265 270 260 265 270

Gln Arg Ala Ala Ala Trp Pro Pro Gln Pro Lys Glu MET Pro PheGln Arg Ala Ala Ala Trp Pro Pro Gln Pro Lys Glu MET Pro Phe

275 280 285 275 280 285

Ala Ser Thr Ala Ala Ala Pro MET Ala Pro Ala Val Asn Leu HisAla Ser Thr Ala Ala Ala Pro MET Ala Pro Ala Val Asn Leu His

290 295 300 290 295 300

His Glu MET Gly Arg Asp Arg Ala Gly Arg Thr MET Pro Val HisHis Glu MET Gly Arg Asp Arg Ala Gly Arg Thr MET Pro Val His

305 310 315 305 310 315

Lys Thr Glu Ala Arg Lys Ala Pro Glu Ala Thr Val Ala Thr SerLys Thr Glu Ala Arg Lys Ala Pro Glu Ala Thr Val Ala Thr Ser

320 325 330 320 325 330

Ser Val Cys Ser Gly Asn Gly Ala Gly Ser Asp Glu Leu Trp ArgSer Val Cys Ser Gly Asn Gly Ala Gly Ser Asp Glu Leu Trp Arg

335 340 345 335 340 345

Gln Gln Lys Arg Lys Cys Gln Ala Gln Ala Glu Cys Ser Ala SerGln Gln Lys Arg Lys Cys Gln Ala Gln Ala Glu Cys Ser Ala Ser

350 355 360 350 355 360

Gln Asp Asp Asp Leu Asp Asp Glu Pro Gly Val Leu Arg Lys SerGln Asp Asp Asp Leu Asp Asp Glu Pro Gly Val Leu Arg Lys Ser

365 370 375 365 370 375

Gly Thr Arg Ser Thr Lys Arg Ser Arg Thr Ala Glu Val His AsnGly Thr Arg Ser Thr Lys Arg Ser Arg Thr Ala Glu Val His Asn

380 385 390 380 385 390

Leu Ser Glu Arg Arg Arg Arg Asp Arg Ile Asn Glu Lys MET ArgLeu Ser Glu Arg Arg Arg Arg Arg Asp Arg Ile Asn Glu Lys MET Arg

395 400 405 395 400 405

Ala Leu Gln Glu Leu Ile Pro Asn Cys Asn Lys Ile Asp Lys AlaAla Leu Gln Glu Leu Ile Pro Asn Cys Asn Lys Ile Asp Lys Ala

410 415 420 410 415 420

Ser MET Leu Asp Glu Ala Ile Glu Tyr Leu Lys Thr Leu Gln LeuSer MET Leu Asp Glu Ala Ile Glu Tyr Leu Lys Thr Leu Gln Leu

425 430 435 425 430 435

Gln Val Gln MET MET Ser MET Gly Thr Gly Leu Cys Ile Pro ProGln Val Gln MET MET Ser MET Gly Thr Gly Leu Cys Ile Pro Pro

440 445 450 440 445 450

MET Leu Leu Pro Thr Ala MET Gln His Leu Gln Ile Pro Pro METMET Leu Leu Pro Thr Ala MET Gln His Leu Gln Ile Pro Pro MET

455 460 465 455 460 465

Ala His Phe Pro His Leu Gly MET Gly Leu Gly Tyr Gly MET GlyAla His Phe Pro His Leu Gly MET Gly Leu Gly Tyr Gly MET Gly

470 475 480 470 475 480

Val Phe Asp MET Ser Asn Thr Gly Ala Leu Gln MET Pro Pro METVal Phe Asp MET Ser Asn Thr Gly Ala Leu Gln MET Pro Pro MET

485 490 495 485 490 495

Pro Gly Ala His Phe Pro Cys Pro MET Ile Pro Gly Ala Ser ProPro Gly Ala His Phe Pro Cys Pro MET Ile Pro Gly Ala Ser Pro

500 505 510 500 505 510

Gln Gly Leu Gly Ile Pro Gly Thr Ser Thr MET Pro MET Phe GlyGln Gly Leu Gly Ile Pro Gly Thr Ser Thr MET Pro MET Phe Gly

515 520 525 515 520 525

Val Pro Gly Gln Thr Ile Pro Ser Ser Ala Ser Ser Val Pro ProVal Pro Gly Gln Thr Ile Pro Ser Ser Ala Ser Ser Ser Val Pro Pro

530 535 540 530 535 540

Phe Ala Ser Leu Ala Gly Leu Pro Val Arg Pro Ser Gly Val ProPhe Ala Ser Leu Ala Gly Leu Pro Val Arg Pro Ser Gly Val Pro

545 550 555 545 550 555

Gln Val Ser Gly Ala MET Ala Asn MET Val Gln Asp Gln Gln GlnGln Val Ser Gly Ala MET Ala Asn MET Val Gln Asp Gln Gln Gln

560 565 570 560 565 570

Gly Ile Ala Asn Gln Gln Gln Gln Cys Leu Asn Lys Glu Ala IleGly Ile Ala Asn Gln Gln Gln Gln Cys Leu Asn Lys Glu Ala Ile

575 580 585 575 580 585

Gln Gly Ala Asn Pro Gly Asp Ser Gln MET Gln Ile Ile MET GlnGln Gly Ala Asn Pro Gly Asp Ser Gln MET Gln Ile Ile MET Gln

590 595 600 590 595 600

Gly Asp Asn Glu Asn Phe Arg Ile Pro Ser Ser Ala Gln Thr LysGly Asp Asn Glu Asn Phe Arg Ile Pro Ser Ser Ala Gln Thr Lys

605 610 615 605 610 615

Ser Ser Gln Phe Ser Asp Gly Thr Gly Lys Gly Thr Asn Ala ArgSer Ser Gln Phe Ser Asp Gly Thr Gly Lys Gly Thr Asn Ala Arg

620 625 630 620 625 630

Glu Arg Asp Gly Ala Glu ThrGlu Arg Asp Gly Ala Glu Thr

635 637 635 637

<211> 1914<211> 1914

<212> DNA<212>DNA

<213> 序列<213> sequence

<221> 水稻光敏色素互作因子OsPIL15基因编码序列<221> Gene coding sequence of rice phytochrome interaction factor OsPIL15

<400> 2<400> 2

atgtccgacg gcaacgactt cgccgagctg ctgtgggaga acggccaggc ggtggtgcac 60atgtccgacg gcaacgactt cgccgagctg ctgtggggaga acggccaggc ggtggtgcac 60

gggaggaaga agcacccgca gccggccttc ccgccgttcg gcttcttcgg tggcaccggc 120gggaggaaga agcacccgca gccggccttc ccgccgttcg gcttcttcgg tggcaccggc 120

ggtggcggcg gcggcagcag tagtagagcc caggagaggc agcccggcgg catcgatgcg 180ggtggcggcg gcggcagcag tagtagagcc caggagaggc agcccggcgg catcgatgcg 180

ttcgccaagg tggggggcgg cttcggcgcc ttgggcatgg ctccggcggt gcacgacttc 240ttcgccaagg tggggggcgg cttcggcgcc ttgggcatgg ctccggcggt gcacgacttc 240

gcttctggct tcggcgccac cacgcaggac aacggtgatg atgacaccgt tccgtggatc 300gcttctggct tcggcgccac cacgcaggac aacggtgatg atgacaccgt tccgtggatc 300

cattacccca taattgacga tgaagacgcc gccgcccctg ctgctctcgc agcagcggac 360cattacccca taattgacga tgaagacgcc gccgcccctg ctgctctcgc agcagcggac 360

tatggctccg acttcttctc cgagctccag gcggcggcgg ctgccgcggc ggccgccgcg 420tatggctccg acttcttctc cgagctccag gcggcggcgg ctgccgcggc ggccgccgcg 420

ccgccgaccg atctcgcctc tctgccagcc tccaatcaca acggcgccac caataacaga 480ccgccgaccg atctcgcctc tctgccagcc tccaatcaca acggcgccac caataacaga 480

aatgctccgg ttgccaccac caccaccagg gaaccctcca aggaaagcca cggcggcctg 540aatgctccgg ttgccaccac caccaccagg gaaccctcca aggaaagcca cggcggcctg 540

tcggttccca ccacccgagc cgagccgcag ccgcagccac agctcgccgc agccaagctg 600tcggttccca ccacccgagc cgagccgcag ccgcagccac agctcgccgc agccaagctg 600

cctcggtcga gcggcagcgg cggcggcgag ggcgtgatga acttctcgct cttctcccgc 660cctcggtcga gcggcagcgg cggcggcgag ggcgtgatga acttctcgct cttctcccgc 660

ccggccgtcc tggcgagggc gacgctggag agcgcgcaga ggacgcaggg caccgacaat 720ccggccgtcc tggcgagggc gacgctggag agcgcgcaga ggacgcaggg caccgacaat 720

aaggcgtcca atgtcaccgc gagcaaccgc gtcgagtcga cggtcgtgca gacggcgagc 780aaggcgtcca atgtcaccgc gagcaaccgc gtcgagtcga cggtcgtgca gacggcgagc 780

gggccaagga gcgcaccggc gttcgccgat cagagggcgg cggcgtggcc gccgcagccg 840gggccaagga gcgcaccggc gttcgccgat cagagggcgg cggcgtggcc gccgcagccg 840

aaggagatgc cgttcgcgtc cacggcagcc gctcccatgg ccccggccgt taacctgcac 900aaggagatgc cgttcgcgtc cacggcagcc gctcccatgg ccccggccgt taacctgcac 900

cacgagatgg gccgtgacag ggcaggccga accatgcctg tccacaaaac cgaggcgagg 960cacgagatgg gccgtgacag ggcaggccga accatgcctg tccacaaaac cgaggcgagg 960

aaggcacctg aggccacggt cgcgacatcg tcggtgtgct ccggcaacgg agctgggagt 1020aaggcacctg aggccacggt cgcgacatcg tcggtgtgct ccggcaacgg agctgggagt 1020

gacgagctgt ggcgccagca gaagcggaag tgccaggccc aggcagagtg ctcagctagc 1080gacgagctgt ggcgccagca gaagcggaag tgccaggccc aggcagagtg ctcagctagc 1080

caagacgatg atcttgacga tgaacctgga gtattgagaa aatctggaac caggagcacg 1140caagacgatg atcttgacga tgaacctgga gtattgagaa aatctggaac caggagcacg 1140

aaacgcagcc gcacagctga ggttcacaat ttatcagaaa ggaggagaag ggacaggatc 1200aaacgcagcc gcacagctga ggttcacaat ttatcagaaa ggaggagaag gcacaggatc 1200

aatgaaaaga tgcgcgctct gcaagaactc attcccaact gcaacaagat tgataaagcc 1260aatgaaaaga tgcgcgctct gcaagaactc attcccaact gcaacaagat tgataaagcc 1260

tcgatgctgg atgaagctat agagtacctc aaaacccttc agcttcaagt acagatgatg 1320tcgatgctgg atgaagctat agagtacctc aaaacccttc agcttcaagt acagatgatg 1320

tccatgggaa ctgggctgtg cattcctcca atgctattac caacagccat gcagcacttg 1380tccatgggaa ctgggctgtg cattcctcca atgctattac caacagccat gcagcacttg 1380

caaattccac cgatggctca tttccctcat ctcggcatgg gattggggta cgggatgggc 1440caaattccac cgatggctca tttccctcat ctcggcatgg gattggggta cgggatgggc 1440

gtcttcgaca tgagcaacac tggagcactt cagatgccac ccatgcctgg tgctcacttt 1500gtcttcgaca tgagcaacac tggagcactt cagatgccac ccatgcctgg tgctcacttt 1500

ccctgcccaa tgatcccagg tgcgtcacca caaggtcttg ggatccctgg cacaagcacc 1560ccctgcccaa tgatcccagg tgcgtcacca caaggtcttg ggatccctgg cacaagcacc 1560

atgccaatgt ttggggttcc tgggcaaaca attccttcgt cagcgtctag tgtaccacca 1620atgccaatgt ttggggttcc tgggcaaaca attccttcgt cagcgtctag tgtacccacca 1620

tttgcatctt tggctggtct tcctgttagg ccaagcgggg tccctcaagt atcaggcgcc 1680tttgcatctt tggctggtct tcctgttagg ccaagcgggg tccctcaagt atcaggcgcc 1680

atggctaaca tggtgcaaga ccagcaacaa ggcatagcga atcaacagca gcaatgtctg 1740atggctaaca tggtgcaaga ccagcaacaa ggcatagcga atcaacagca gcaatgtctg 1740

aacaaggaag ctatacaggg agcaaatcca ggtgattcac aaatgcagat catcatgcag 1800aacaaggaag ctatacaggg agcaaatcca ggtgattcac aaatgcagat catcatgcag 1800

ggtgacaacg agaattttag gataccctct tcagcccaaa caaaaagcag tcaattttca 1860ggtgacaacg agaattttag gataccctct tcagcccaaa caaaaagcag tcaattttca 1860

gatggtaccg gcaaggggac caacgctaga gagagagatg gggctgaaac ataa 1914gatggtaccg gcaaggggac caacgctaga gagagagatg gggctgaaac ataa 1914

<211> 1848<211> 1848

<212> DNA<212>DNA

<213> 序列<213> sequence

<221> 突变体ospil15-1中水稻光敏色素互作因子OsPIL15基因编码序列<221> Gene coding sequence of rice phytochrome interaction factor OsPIL15 in mutant ospil15-1

<400> 3<400> 3

atgtccgacg gcaacgactt cgccgagctg ctgtgggaga acggccaggc ggtggtgcac 60atgtccgacg gcaacgactt cgccgagctg ctgtggggaga acggccaggc ggtggtgcac 60

gggaggaaga agcacccgca gccggccttc ccgccgttcg gcttcttcgg tggcaccggc 120gggaggaaga agcacccgca gccggccttc ccgccgttcg gcttcttcgg tggcaccggc 120

ggtggcggcg gcggcagcag tagtagagcc caggagaggc agcccggcgg catcgatgcg 180ggtggcggcg gcggcagcag tagtagagcc caggagaggc agcccggcgg catcgatgcg 180

ttcgccaagg tggggggcgg cttcggcgcc ttgggcatgg ctccggcggt gcacgacttc 240ttcgccaagg tggggggcgg cttcggcgcc ttgggcatgg ctccggcggt gcacgacttc 240

gcttctggct tcggcgccac cacgcaggac aacggtgatg atgacaccgt tccgtggatc 300gcttctggct tcggcgccac cacgcaggac aacggtgatg atgacaccgt tccgtggatc 300

cattacccca taattgacga tgaagacgcc gccgcccctg ctgctctcgc agcagcggac 360cattacccca taattgacga tgaagacgcc gccgcccctg ctgctctcgc agcagcggac 360

tatggctccg actctctgcc agcctccaat cacaacggcg ccaccaataa cagaaatgct 420tatggctccg actctctgcc agcctccaat cacaacggcg ccaccaataa cagaaatgct 420

ccggttgcca ccaccaccac cagggaaccc tccaaggaaa gccacggcgg cctgtcggtt 480ccggttgcca ccaccaccac cagggaaccc tccaaggaaa gccacggcgg cctgtcggtt 480

cccaccaccc gagccgagcc gcagccgcag ccacagctcg ccgcagccaa gctgcctcgg 540cccaccacccc gagccgagcc gcagccgcag ccacagctcg ccgcagccaa gctgcctcgg 540

tcgagcggca gcggcggcgg cgagggcgtg atgaacttct cgctcttctc ccgcccggcc 600tcgagcggca gcggcggcgg cgagggcgtg atgaacttct cgctcttctc ccgcccggcc 600

gtcctggcga gggcgacgct ggagagcgcg cagaggacgc agggcaccga caataaggcg 660gtcctggcga gggcgacgct ggagagcgcg cagaggacgc agggcaccga caataaggcg 660

tccaatgtca ccgcgagcaa ccgcgtcgag tcgacggtcg tgcagacggc gagcgggcca 720tccaatgtca ccgcgagcaa ccgcgtcgag tcgacggtcg tgcagacggc gagcgggcca 720

aggagcgcac cggcgttcgc cgatcagagg gcggcggcgt ggccgccgca gccgaaggag 780aggagcgcac cggcgttcgc cgatcagagg gcggcggcgt ggccgccgca gccgaaggag 780

atgccgttcg cgtccacggc agccgctccc atggccccgg ccgttaacct gcaccacgag 840atgccgttcg cgtccacggc agccgctccc atggccccgg ccgttaacct gcaccacgag 840

atgggccgtg acagggcagg ccgaaccatg cctgtccaca aaaccgaggc gaggaaggca 900atgggccgtg acagggcagg ccgaaccatg cctgtccaca aaaccgaggc gaggaaggca 900

cctgaggcca cggtcgcgac atcgtcggtg tgctccggca acggagctgg gagtgacgag 960cctgaggcca cggtcgcgac atcgtcggtg tgctccggca acggagctgg gagtgacgag 960

ctgtggcgcc agcagaagcg gaagtgccag gcccaggcag agtgctcagc tagccaagac 1020ctgtggcgcc agcagaagcg gaagtgccag gcccaggcag agtgctcagc tagccaagac 1020

gatgatcttg acgatgaacc tggagtattg agaaaatctg gaaccaggag cacgaaacgc 1080gatgatcttg acgatgaacc tggagtattg agaaaatctg gaaccaggag cacgaaacgc 1080

agccgcacag ctgaggttca caatttatca gaaaggagga gaagggacag gatcaatgaa 1140agccgcacag ctgaggttca caatttatca gaaaggagga gaagggacag gatcaatgaa 1140

aagatgcgcg ctctgcaaga actcattccc aactgcaaca agattgataa agcctcgatg 1200aagatgcgcg ctctgcaaga actcattccc aactgcaaca agattgataa agcctcgatg 1200

ctggatgaag ctatagagta cctcaaaacc cttcagcttc aagtacagat gatgtccatg 1260ctggatgaag ctatagagta cctcaaaacc cttcagcttc aagtacagat gatgtccatg 1260

ggaactgggc tgtgcattcc tccaatgcta ttaccaacag ccatgcagca cttgcaaatt 1320ggaactgggc tgtgcattcc tccaatgcta ttaccaacag ccatgcagca cttgcaaatt 1320

ccaccgatgg ctcatttccc tcatctcggc atgggattgg ggtacgggat gggcgtcttc 1380ccaccgatgg ctcatttccc tcatctcggc atgggattgg ggtacgggat gggcgtcttc 1380

gacatgagca acactggagc acttcagatg ccacccatgc ctggtgctca ctttccctgc 1440gacatgagca acactggagc acttcagatg ccacccatgc ctggtgctca ctttccctgc 1440

ccaatgatcc caggtgcgtc accacaaggt cttgggatcc ctggcacaag caccatgcca 1500ccaatgatcc caggtgcgtc accacaaggt cttgggatcc ctggcacaag caccatgcca 1500

atgtttgggg ttcctgggca aacaattcct tcgtcagcgt ctagtgtacc accatttgca 1560atgtttgggg ttcctgggca aacaattcct tcgtcagcgt ctagtgtacc accatttgca 1560

tctttggctg gtcttcctgt taggccaagc ggggtccctc aagtatcagg cgccatggct 1620tctttggctg gtcttcctgt taggccaagc ggggtccctc aagtatcagg cgccatggct 1620

aacatggtgc aagaccagca acaaggcata gcgaatcaac agcagcaatg tctgaacaag 1680aacatggtgc aagaccagca acaaggcata gcgaatcaac agcagcaatg tctgaacaag 1680

gaagctatac agggagcaaa tccaggtgat tcacaaatgc agatcatcat gcagggtgac 1740gaagctatac agggagcaaa tccaggtgat tcacaaatgc agatcatcat gcagggtgac 1740

aacgagaatt ttaggatacc ctcttcagcc caaacaaaaa gcagtcaatt ttcagatggt 1800aacgagaatt ttaggatacc ctcttcagcc caaacaaaaa gcagtcaatt ttcagatggt 1800

accggcaagg ggaccaacgc tagagagaga gatggggctg aaacataa 1848accggcaagg ggaccaacgc tagagagaga gatggggctg aaacataa 1848

<211> 615<211>615

<212> PRT<212> PRT

<213> 序列<213> sequence

<221> 突变体ospil15-1中水稻光敏色素互作因子OsPIL15氨基酸序列<221> Amino acid sequence of rice phytochrome interaction factor OsPIL15 in mutant ospil15-1

<400> 4<400> 4

Met Ser Asp Gly Asn Asp Phe Ala Glu Leu Leu Trp Glu Asn GlyMet Ser Asp Gly Asn Asp Phe Ala Glu Leu Leu Trp Glu Asn Gly

1 5 10 151 5 10 15

Gln Ala Val Val His Gly Arg Lys Lys His Pro Gln Pro Ala PheGln Ala Val Val His Gly Arg Lys Lys His Pro Gln Pro Ala Phe

20 25 30 20 25 30

Pro Pro Phe Gly Phe Phe Gly Gly Thr Gly Gly Gly Gly Gly GlyPro Pro Phe Gly Phe Phe Gly Gly Thr Gly Gly Gly Gly Gly Gly

35 40 45 35 40 45

Ser Ser Ser Arg Ala Gln Glu Arg Gln Pro Gly Gly Ile Asp AlaSer Ser Ser Arg Ala Gln Glu Arg Gln Pro Gly Gly Ile Asp Ala

50 55 60 50 55 60

Phe Ala Lys Val Gly Gly Gly Phe Gly Ala Leu Gly MET Ala ProPhe Ala Lys Val Gly Gly Gly Phe Gly Ala Leu Gly MET Ala Pro

65 70 75 65 70 75

Ala Val His Asp Phe Ala Ser Gly Phe Gly Ala Thr Thr Gln AspAla Val His Asp Phe Ala Ser Gly Phe Gly Ala Thr Thr Gln Asp

80 85 90 80 85 90

Asn Gly Asp Asp Asp Thr Val Pro Trp Ile His Tyr Pro Ile IleAsn Gly Asp Asp Asp Thr Val Pro Trp Ile His Tyr Pro Ile Ile

95 100 105 95 100 105

Asp Asp Glu Asp Ala Ala Ala Pro Ala Ala Leu Ala Ala Ala AspAsp Asp Glu Asp Ala Ala Ala Pro Ala Ala Leu Ala Ala Ala Asp

110 115 120 110 115 120

Tyr Gly Ser Asp Ser Leu Pro Ala Ser Asn His Asn Gly Ala ThrTyr Gly Ser Asp Ser Leu Pro Ala Ser Asn His Asn Gly Ala Thr

125 130 135 125 130 135

Asn Asn Arg Asn Ala Pro Val Ala Thr Thr Thr Thr Arg Glu ProAsn Asn Arg Asn Ala Pro Val Ala Thr Thr Thr Thr Thr Arg Glu Pro

140 145 150 140 145 150

Ser Lys Glu Ser His Gly Gly Leu Ser Val Pro Thr Thr Arg AlaSer Lys Glu Ser His Gly Gly Leu Ser Val Pro Thr Thr Arg Ala

155 160 165 155 160 165

Glu Pro Gln Pro Gln Pro Gln Leu Ala Ala Ala Lys Leu Pro ArgGlu Pro Gln Pro Gln Pro Gln Leu Ala Ala Ala Lys Leu Pro Arg

170 175 180 170 175 180

Ser Ser Gly Ser Gly Gly Gly Glu Gly Val MET Asn Phe Ser LeuSer Ser Gly Ser Gly Gly Gly Glu Gly Val MET Asn Phe Ser Leu

185 190 195 185 190 195

Phe Ser Arg Pro Ala Val Leu Ala Arg Ala Thr Leu Glu Ser AlaPhe Ser Arg Pro Ala Val Leu Ala Arg Ala Thr Leu Glu Ser Ala

200 205 210 200 205 210

Gln Arg Thr Gln Gly Thr Asp Asn Lys Ala Ser Asn Val Thr AlaGln Arg Thr Gln Gly Thr Asp Asn Lys Ala Ser Asn Val Thr Ala

215 220 225 215 220 225

Ser Asn Arg Val Glu Ser Thr Val Val Gln Thr Ala Ser Gly ProSer Asn Arg Val Glu Ser Thr Val Val Gln Thr Ala Ser Gly Pro

230 235 240 230 235 240

Arg Ser Ala Pro Ala Phe Ala Asp Gln Arg Ala Ala Ala Trp ProArg Ser Ala Pro Ala Phe Ala Asp Gln Arg Ala Ala Ala Trp Pro

245 250 255 245 250 255

Pro Gln Pro Lys Glu MET Pro Phe Ala Ser Thr Ala Ala Ala ProPro Gln Pro Lys Glu MET Pro Phe Ala Ser Thr Ala Ala Ala Pro

260 265 270 260 265 270

MET Ala Pro Ala Val Asn Leu His His Glu MET Gly Arg Asp ArgMET Ala Pro Ala Val Asn Leu His His Glu MET Gly Arg Asp Arg

275 280 285 275 280 285

Ala Gly Arg Thr MET Pro Val His Lys Thr Glu Ala Arg Lys AlaAla Gly Arg Thr MET Pro Val His Lys Thr Glu Ala Arg Lys Ala

290 295 300 290 295 300

Pro Glu Ala Thr Val Ala Thr Ser Ser Val Cys Ser Gly Asn GlyPro Glu Ala Thr Val Ala Thr Ser Ser Val Cys Ser Gly Asn Gly

305 310 315 305 310 315

Ala Gly Ser Asp Glu Leu Trp Arg Gln Gln Lys Arg Lys Cys GlnAla Gly Ser Asp Glu Leu Trp Arg Gln Gln Lys Arg Lys Cys Gln

320 325 330 320 325 330

Ala Gln Ala Glu Cys Ser Ala Ser Gln Asp Asp Asp Leu Asp AspAla Gln Ala Glu Cys Ser Ala Ser Gln Asp Asp Asp Leu Asp Asp

335 340 345 335 340 345

Glu Pro Gly Val Leu Arg Lys Ser Gly Thr Arg Ser Thr Lys ArgGlu Pro Gly Val Leu Arg Lys Ser Gly Thr Arg Ser Thr Lys Arg

350 355 360 350 355 360

Ser Arg Thr Ala Glu Val His Asn Leu Ser Glu Arg Arg Arg ArgSer Arg Thr Ala Glu Val His Asn Leu Ser Glu Arg Arg Arg Arg

365 370 375 365 370 375

Asp Arg Ile Asn Glu Lys MET Arg Ala Leu Gln Glu Leu Ile ProAsp Arg Ile Asn Glu Lys MET Arg Ala Leu Gln Glu Leu Ile Pro

380 385 390 380 385 390

Asn Cys Asn Lys Ile Asp Lys Ala Ser MET Leu Asp Glu Ala IleAsn Cys Asn Lys Ile Asp Lys Ala Ser MET Leu Asp Glu Ala Ile

395 400 405 395 400 405

Glu Tyr Leu Lys Thr Leu Gln Leu Gln Val Gln MET MET Ser METGlu Tyr Leu Lys Thr Leu Gln Leu Gln Val Gln MET MET Ser MET

410 415 420 410 415 420

Gly Thr Gly Leu Cys Ile Pro Pro MET Leu Leu Pro Thr Ala METGly Thr Gly Leu Cys Ile Pro Pro MET Leu Leu Pro Thr Ala MET

425 430 435 425 430 435

Gln His Leu Gln Ile Pro Pro MET Ala His Phe Pro His Leu GlyGln His Leu Gln Ile Pro Pro MET Ala His Phe Pro His Leu Gly

440 445 450 440 445 450

MET Gly Leu Gly Tyr Gly MET Gly Val Phe Asp MET Ser Asn ThrMET Gly Leu Gly Tyr Gly MET Gly Val Phe Asp MET Ser Asn Thr

455 460 465 455 460 465

Gly Ala Leu Gln MET Pro Pro MET Pro Gly Ala His Phe Pro CysGly Ala Leu Gln MET Pro Pro MET Pro Gly Ala His Phe Pro Cys

470 475 480 470 475 480

Pro MET Ile Pro Gly Ala Ser Pro Gln Gly Leu Gly Ile Pro GlyPro MET Ile Pro Gly Ala Ser Pro Gln Gly Leu Gly Ile Pro Gly

485 490 495 485 490 495

Thr Ser Thr MET Pro MET Phe Gly Val Pro Gly Gln Thr Ile ProThr Ser Thr MET Pro MET Phe Gly Val Pro Gly Gln Thr Ile Pro

500 505 510 500 505 510

Ser Ser Ala Ser Ser Val Pro Pro Phe Ala Ser Leu Ala Gly LeuSer Ser Ala Ser Ser Ser Val Pro Pro Phe Ala Ser Leu Ala Gly Leu

515 520 525 515 520 525

Pro Val Arg Pro Ser Gly Val Pro Gln Val Ser Gly Ala MET AlaPro Val Arg Pro Ser Gly Val Pro Gln Val Ser Gly Ala MET Ala

530 535 540 530 535 540

Asn MET Val Gln Asp Gln Gln Gln Gly Ile Ala Asn Gln Gln GlnAsn MET Val Gln Asp Gln Gln Gln Gly Ile Ala Asn Gln Gln Gln

545 550 555 545 550 555

Gln Cys Leu Asn Lys Glu Ala Ile Gln Gly Ala Asn Pro Gly AspGln Cys Leu Asn Lys Glu Ala Ile Gln Gly Ala Asn Pro Gly Asp

560 565 570 560 565 570

Ser Gln MET Gln Ile Ile MET Gln Gly Asp Asn Glu Asn Phe ArgSer Gln MET Gln Ile Ile MET Gln Gly Asp Asn Glu Asn Phe Arg

575 580 585 575 580 585

Ile Pro Ser Ser Ala Gln Thr Lys Ser Ser Gln Phe Ser Asp GlyIle Pro Ser Ser Ala Gln Thr Lys Ser Ser Gln Phe Ser Asp Gly

590 595 600 590 595 600

Thr Gly Lys Gly Thr Asn Ala Arg Glu Arg Asp Gly Ala Glu ThrThr Gly Lys Gly Thr Asn Ala Arg Glu Arg Asp Gly Ala Glu Thr

605 610 615 605 610 615

<211> 1915<211> 1915

<212> DNA<212>DNA

<213> 序列<213> sequence

<221> 突变体ospil15-21中水稻光敏色素互作因子OsPIL15基因编码序列<221> Gene coding sequence of rice phytochrome interaction factor OsPIL15 in mutant ospil15-21

<400> 5<400> 5

atgtccgacg gcaacgactt cgccgagctg ctgtgggaga acggccaggc ggtggtgcac 60atgtccgacg gcaacgactt cgccgagctg ctgtggggaga acggccaggc ggtggtgcac 60

gggaggaaga agcacccgca gccggccttc ccgccgttcg gcttcttcgg tggcaccggc 120gggaggaaga agcacccgca gccggccttc ccgccgttcg gcttcttcgg tggcaccggc 120

ggtggcggcg gcggcagcag tagtagagcc caggagaggc agcccggcgg catcgatgcg 180ggtggcggcg gcggcagcag tagtagagcc caggagaggc agcccggcgg catcgatgcg 180

ttcgccaagg tggggggcgg cttcggcgcc ttgggcatgg ctccggcggt gcacgacttc 240ttcgccaagg tggggggcgg cttcggcgcc ttgggcatgg ctccggcggt gcacgacttc 240

gcttctggct tcggcgccac cacgcaggac aacggtgatg atgacaccgt tccgtggatc 300gcttctggct tcggcgccac cacgcaggac aacggtgatg atgacaccgt tccgtggatc 300

cattacccca taattgacga tgaagacgcc gccgcccctg ctgctctcgc agcagcggac 360cattacccca taattgacga tgaagacgcc gccgcccctg ctgctctcgc agcagcggac 360

tatggctccg acttcttctc cgagcttcca ggcggcggcg gctgccgcgg cggccgccgc 420tatggctccg acttcttctc cgagcttcca ggcggcggcg gctgccgcgg cggccgccgc 420

gccgccgacc gatctcgcct ctctgccagc ctccaatcac aacggcgcca ccaataacag 480gccgccgacc gatctcgcct ctctgccagc ctccaatcac aacggcgcca ccaataacag 480

aaatgctccg gttgccacca ccaccaccag ggaaccctcc aaggaaagcc acggcggcct 540aaatgctccg gttgccacca ccaccaccag ggaaccctcc aaggaaagcc acggcggcct 540

gtcggttccc accacccgag ccgagccgca gccgcagcca cagctcgccg cagccaagct 600gtcggttccc accacccgag ccgagccgca gccgcagcca cagctcgccg cagccaagct 600

gcctcggtcg agcggcagcg gcggcggcga gggcgtgatg aacttctcgc tcttctcccg 660gcctcggtcg agcggcagcg gcggcggcga gggcgtgatg aacttctcgc tcttctcccg 660

cccggccgtc ctggcgaggg cgacgctgga gagcgcgcag aggacgcagg gcaccgacaa 720cccggccgtc ctggcgaggg cgacgctgga gagcgcgcag aggacgcagg gcaccgacaa 720

taaggcgtcc aatgtcaccg cgagcaaccg cgtcgagtcg acggtcgtgc agacggcgag 780taaggcgtcc aatgtcaccg cgagcaaccg cgtcgagtcg acggtcgtgc agacggcgag 780

cgggccaagg agcgcaccgg cgttcgccga tcagagggcg gcggcgtggc cgccgcagcc 840cgggccaagg agcgcaccgg cgttcgccga tcagagggcg gcggcgtggc cgccgcagcc 840

gaaggagatg ccgttcgcgt ccacggcagc cgctcccatg gccccggccg ttaacctgca 900gaaggagatg ccgttcgcgt ccacggcagc cgctcccatg gccccggccg ttaacctgca 900

ccacgagatg ggccgtgaca gggcaggccg aaccatgcct gtccacaaaa ccgaggcgag 960ccacgagatg ggccgtgaca gggcaggccg aaccatgcct gtccacaaaa ccgaggcgag 960

gaaggcacct gaggccacgg tcgcgacatc gtcggtgtgc tccggcaacg gagctgggag 1020gaaggcacct gaggccacgg tcgcgacatc gtcggtgtgc tccggcaacg gagctgggag 1020

tgacgagctg tggcgccagc agaagcggaa gtgccaggcc caggcagagt gctcagctag 1080tgacgagctg tggcgccagc agaagcggaa gtgccaggcc caggcagagt gctcagctag 1080

ccaagacgat gatcttgacg atgaacctgg agtattgaga aaatctggaa ccaggagcac 1140ccaagacgat gatcttgacg atgaacctgg agtattgaga aaatctggaa ccaggagcac 1140

gaaacgcagc cgcacagctg aggttcacaa tttatcagaa aggaggagaa gggacaggat 1200gaaacgcagc cgcacagctg aggttcacaa tttatcagaa aggaggagaa gggacaggat 1200

caatgaaaag atgcgcgctc tgcaagaact cattcccaac tgcaacaaga ttgataaagc 1260caatgaaaag atgcgcgctc tgcaagaact cattcccaac tgcaacaaga ttgataaagc 1260

ctcgatgctg gatgaagcta tagagtacct caaaaccctt cagcttcaag tacagatgat 1320ctcgatgctg gatgaagcta tagagtacct caaaaccctt cagcttcaag tacagatgat 1320

gtccatggga actgggctgt gcattcctcc aatgctatta ccaacagcca tgcagcactt 1380gtccatggga actgggctgt gcattcctcc aatgctatta ccaacagcca tgcagcactt 1380

gcaaattcca ccgatggctc atttccctca tctcggcatg ggattggggt acgggatggg 1440gcaaattcca ccgatggctc atttccctca tctcggcatg ggattggggt acgggatggg 1440

cgtcttcgac atgagcaaca ctggagcact tcagatgcca cccatgcctg gtgctcactt 1500cgtcttcgac atgagcaaca ctggagcact tcagatgcca cccatgcctg gtgctcactt 1500

tccctgccca atgatcccag gtgcgtcacc acaaggtctt gggatccctg gcacaagcac 1560tccctgccca atgatcccag gtgcgtcacc acaaggtctt gggatccctg gcacaagcac 1560

catgccaatg tttggggttc ctgggcaaac aattccttcg tcagcgtcta gtgtaccacc 1620catgccaatg tttggggttc ctgggcaaac aattccttcg tcagcgtcta gtgtacccacc 1620

atttgcatct ttggctggtc ttcctgttag gccaagcggg gtccctcaag tatcaggcgc 1680atttgcatct ttggctggtc ttcctgttag gccaagcggg gtccctcaag tatcaggcgc 1680

catggctaac atggtgcaag accagcaaca aggcatagcg aatcaacagc agcaatgtct 1740catggctaac atggtgcaag accagcaaca aggcatagcg aatcaacagc agcaatgtct 1740

gaacaaggaa gctatacagg gagcaaatcc aggtgattca caaatgcaga tcatcatgca 1800gaacaaggaa gctatacagg gagcaaatcc aggtgattca caaatgcaga tcatcatgca 1800

gggtgacaac gagaatttta ggataccctc ttcagcccaa acaaaaagca gtcaattttc 1860gggtgacaac gagaatttta ggataccctc ttcagcccaa acaaaaagca gtcaattttc 1860

agatggtacc ggcaagggga ccaacgctag agagagagat ggggctgaaa cataa 1915agatggtacc ggcaagggga ccaacgctag agagagagat ggggctgaaa cataa 1915

<211> 158<211> 158

<212> PRT<212> PRT

<213> 序列<213> sequence

<221> 突变体ospil15-21中水稻光敏色素互作因子OsPIL15氨基酸序列<221> Amino acid sequence of rice phytochrome interaction factor OsPIL15 in mutant ospil15-21

<400> 6<400> 6

MET Ser Asp Gly Asn Asp Phe Ala Glu Leu Leu Trp Glu Asn GlyMET Ser Asp Gly Asn Asp Phe Ala Glu Leu Leu Trp Glu Asn Gly

1 5 10 151 5 10 15

Gln Ala Val Val His Gly Arg Lys Lys His Pro Gln Pro Ala PheGln Ala Val Val His Gly Arg Lys Lys His Pro Gln Pro Ala Phe

20 25 30 20 25 30

Pro Pro Phe Gly Phe Phe Gly Gly Thr Gly Gly Gly Gly Gly GlyPro Pro Phe Gly Phe Phe Gly Gly Thr Gly Gly Gly Gly Gly Gly

35 40 45 35 40 45

Ser Ser Ser Arg Ala Gln Glu Arg Gln Pro Gly Gly Ile Asp AlaSer Ser Ser Arg Ala Gln Glu Arg Gln Pro Gly Gly Ile Asp Ala

50 55 60 50 55 60

Phe Ala Lys Val Gly Gly Gly Phe Gly Ala Leu Gly MET Ala ProPhe Ala Lys Val Gly Gly Gly Phe Gly Ala Leu Gly MET Ala Pro

65 70 75 65 70 75

Ala Val His Asp Phe Ala Ser Gly Phe Gly Ala Thr Thr Gln AspAla Val His Asp Phe Ala Ser Gly Phe Gly Ala Thr Thr Gln Asp

80 85 90 80 85 90

Asn Gly Asp Asp Asp Thr Val Pro Trp Ile His Tyr Pro Ile IleAsn Gly Asp Asp Asp Thr Val Pro Trp Ile His Tyr Pro Ile Ile

95 100 105 95 100 105

Asp Asp Glu Asp Ala Ala Ala Pro Ala Ala Leu Ala Ala Ala AspAsp Asp Glu Asp Ala Ala Ala Pro Ala Ala Leu Ala Ala Ala Asp

110 115 120 110 115 120

Tyr Gly Ser Asp Phe Phe Ser Glu Leu Pro Gly Gly Gly Gly CysTyr Gly Ser Asp Phe Phe Ser Glu Leu Pro Gly Gly Gly Gly Cys

125 130 135 125 130 135

Arg Gly Gly Arg Arg Ala Ala Asp Arg Ser Arg Leu Ser Ala SerArg Gly Gly Arg Arg Ala Ala Asp Arg Ser Arg Leu Ser Ala Ser

140 145 150 140 145 150

Leu Gln Ser Gln Arg Arg His GlnLeu Gln Ser Gln Arg Arg His Gln

155 158 155 158

<211> 1910<211> 1910

<212> DNA<212>DNA

<213> 序列<213> sequence

<221> 突变体ospil15-22中水稻光敏色素互作因子OsPIL15基因编码序列<221> Gene coding sequence of rice phytochrome interaction factor OsPIL15 in mutant ospil15-22

<400> 7<400> 7

atgtccgacg gcaacgactt cgccgagctg ctgtgggaga acggccaggc ggtggtgcac 60atgtccgacg gcaacgactt cgccgagctg ctgtggggaga acggccaggc ggtggtgcac 60

gggaggaaga agcacccgca gccggccttc ccgccgttcg gcttcttcgg tggcaccggc 120gggaggaaga agcacccgca gccggccttc ccgccgttcg gcttcttcgg tggcaccggc 120

ggtggcggcg gcggcagcag tagtagagcc caggagaggc agcccggcgg catcgatgcg 180ggtggcggcg gcggcagcag tagtagagcc caggagaggc agcccggcgg catcgatgcg 180

ttcgccaagg tggggggcgg cttcggcgcc ttgggcatgg ctccggcggt gcacgacttc 240ttcgccaagg tggggggcgg cttcggcgcc ttgggcatgg ctccggcggt gcacgacttc 240

gcttctggct tcggcgccac cacgcaggac aacggtgatg atgacaccgt tccgtggatc 300gcttctggct tcggcgccac cacgcaggac aacggtgatg atgacaccgt tccgtggatc 300

cattacccca taattgacga tgaagacgcc gccgcccctg ctgctctcgc agcagcggac 360cattacccca taattgacga tgaagacgcc gccgcccctg ctgctctcgc agcagcggac 360

tatggctccg acttcttctc ctccaggcgg cggcggctgc cgcggcggcc gccgcgccgc 420tatggctccg acttcttctc ctccaggcgg cggcggctgc cgcggcggcc gccgcgccgc 420

cgaccgatct cgcctctctg ccagcctcca atcacaacgg cgccaccaat aacagaaatg 480cgaccgatct cgcctctctg ccagcctcca atcacaacgg cgccaccaat aacagaaatg 480

ctccggttgc caccaccacc accagggaac cctccaagga aagccacggc ggcctgtcgg 540ctccggttgc caccaccacc accagggaac cctccaagga aagccacggc ggcctgtcgg 540

ttcccaccac ccgagccgag ccgcagccgc agccacagct cgccgcagcc aagctgcctc 600ttcccaccac ccgagccgag ccgcagccgc agccacagct cgccgcagcc aagctgcctc 600

ggtcgagcgg cagcggcggc ggcgagggcg tgatgaactt ctcgctcttc tcccgcccgg 660ggtcgagcgg cagcggcggc ggcgagggcg tgatgaactt ctcgctcttc tcccgcccgg 660

ccgtcctggc gagggcgacg ctggagagcg cgcagaggac gcagggcacc gacaataagg 720ccgtcctggc gagggcgacg ctggagagcg cgcagaggac gcagggcacc gacaataagg 720

cgtccaatgt caccgcgagc aaccgcgtcg agtcgacggt cgtgcagacg gcgagcgggc 780cgtccaatgt caccgcgagc aaccgcgtcg agtcgacggt cgtgcagacg gcgagcgggc 780

caaggagcgc accggcgttc gccgatcaga gggcggcggc gtggccgccg cagccgaagg 840caaggagcgc accggcgttc gccgatcaga gggcggcggc gtggccgccg cagccgaagg 840

agatgccgtt cgcgtccacg gcagccgctc ccatggcccc ggccgttaac ctgcaccacg 900agatgccgtt cgcgtccacg gcagccgctc ccatggcccc ggccgttaac ctgcaccacg 900

agatgggccg tgacagggca ggccgaacca tgcctgtcca caaaaccgag gcgaggaagg 960agatgggccg tgacagggca ggccgaacca tgcctgtcca caaaaccgag gcgaggaagg 960

cacctgaggc cacggtcgcg acatcgtcgg tgtgctccgg caacggagct gggagtgacg 1020cacctgaggc cacggtcgcg acatcgtcgg tgtgctccgg caacggagct gggagtgacg 1020

agctgtggcg ccagcagaag cggaagtgcc aggcccaggc agagtgctca gctagccaag 1080agctgtggcg ccagcagaag cggaagtgcc aggcccaggc agagtgctca gctagccaag 1080

acgatgatct tgacgatgaa cctggagtat tgagaaaatc tggaaccagg agcacgaaac 1140acgatgatct tgacgatgaa cctggagtat tgagaaaatc tggaaccagg agcacgaaac 1140

gcagccgcac agctgaggtt cacaatttat cagaaaggag gagaagggac aggatcaatg 1200gcagccgcac agctgaggtt cacaatttat cagaaaggag gagaagggac aggatcaatg 1200

aaaagatgcg cgctctgcaa gaactcattc ccaactgcaa caagattgat aaagcctcga 1260aaaagatgcg cgctctgcaa gaactcattc ccaactgcaa caagattgat aaagcctcga 1260

tgctggatga agctatagag tacctcaaaa cccttcagct tcaagtacag atgatgtcca 1320tgctggatga agctatagag tacctcaaaa cccttcagct tcaagtacag atgatgtcca 1320

tgggaactgg gctgtgcatt cctccaatgc tattaccaac agccatgcag cacttgcaaa 1380tgggaactgg gctgtgcatt cctccaatgc tattaccaac agccatgcag cacttgcaaa 1380

ttccaccgat ggctcatttc cctcatctcg gcatgggatt ggggtacggg atgggcgtct 1440ttccaccgat ggctcatttc cctcatctcg gcatggatt ggggtacggg atgggcgtct 1440

tcgacatgag caacactgga gcacttcaga tgccacccat gcctggtgct cactttccct 1500tcgacatgag caacactgga gcacttcaga tgccacccat gcctggtgct cactttccct 1500

gcccaatgat cccaggtgcg tcaccacaag gtcttgggat ccctggcaca agcaccatgc 1560gcccaatgat cccaggtgcg tcaccacaag gtcttgggat ccctggcaca agcaccatgc 1560

caatgtttgg ggttcctggg caaacaattc cttcgtcagc gtctagtgta ccaccatttg 1620caatgtttgg ggttcctggg caaacaattc cttcgtcagc gtctagtgta ccaccatttg 1620

catctttggc tggtcttcct gttaggccaa gcggggtccc tcaagtatca ggcgccatgg 1680catctttggc tggtcttcct gttaggccaa gcggggtccc tcaagtatca ggcgccatgg 1680

ctaacatggt gcaagaccag caacaaggca tagcgaatca acagcagcaa tgtctgaaca 1740ctaacatggt gcaagaccag caacaaggca tagcgaatca acagcagcaa tgtctgaaca 1740

aggaagctat acagggagca aatccaggtg attcacaaat gcagatcatc atgcagggtg 1800aggaagctat acaggggagca aatccaggtg attcacaaat gcagatcatc atgcagggtg 1800

acaacgagaa ttttaggata ccctcttcag cccaaacaaa aagcagtcaa ttttcagatg 1860acaacgagaa ttttaggata ccctcttcag cccaaacaaa aagcagtcaa ttttcagatg 1860

gtaccggcaa ggggaccaac gctagagaga gagatggggc tgaaacataa 1910gtaccggcaa ggggaccaac gctagagaga gagatggggc tgaaacataa 1910

<211> 210<211> 210

<212> PRT<212> PRT

<213> 序列<213> sequence

<221> 突变体ospil15-22中水稻光敏色素互作因子OsPIL15氨基酸序列<221> Amino acid sequence of rice phytochrome interaction factor OsPIL15 in mutant ospil15-22

<400> 8<400> 8

MET Ser Asp Gly Asn Asp Phe Ala Glu Leu Leu Trp Glu Asn GlyMET Ser Asp Gly Asn Asp Phe Ala Glu Leu Leu Trp Glu Asn Gly

1 5 10 151 5 10 15

Gln Ala Val Val His Gly Arg Lys Lys His Pro Gln Pro Ala PheGln Ala Val Val His Gly Arg Lys Lys His Pro Gln Pro Ala Phe

20 25 30 20 25 30

Pro Pro Phe Gly Phe Phe Gly Gly Thr Gly Gly Gly Gly Gly GlyPro Pro Phe Gly Phe Phe Gly Gly Thr Gly Gly Gly Gly Gly Gly

35 40 45 35 40 45

Ser Ser Ser Arg Ala Gln Glu Arg Gln Pro Gly Gly Ile Asp AlaSer Ser Ser Arg Ala Gln Glu Arg Gln Pro Gly Gly Ile Asp Ala

50 55 60 50 55 60

Phe Ala Lys Val Gly Gly Gly Phe Gly Ala Leu Gly MET Ala ProPhe Ala Lys Val Gly Gly Gly Phe Gly Ala Leu Gly MET Ala Pro

65 70 75 65 70 75

Ala Val His Asp Phe Ala Ser Gly Phe Gly Ala Thr Thr Gln AspAla Val His Asp Phe Ala Ser Gly Phe Gly Ala Thr Thr Gln Asp

80 85 90 80 85 90

Asn Gly Asp Asp Asp Thr Val Pro Trp Ile His Tyr Pro Ile IleAsn Gly Asp Asp Asp Thr Val Pro Trp Ile His Tyr Pro Ile Ile

95 100 105 95 100 105

Asp Asp Glu Asp Ala Ala Ala Pro Ala Ala Leu Ala Ala Ala AspAsp Asp Glu Asp Ala Ala Ala Pro Ala Ala Leu Ala Ala Ala Asp

110 115 120 110 115 120

Tyr Gly Ser Asp Phe Phe Ser Ser Arg Arg Arg Arg Leu Pro ArgTyr Gly Ser Asp Phe Phe Ser Ser Arg Arg Arg Arg Arg Leu Pro Arg

125 130 135 125 130 135

Arg Pro Pro Arg Arg Arg Pro Ile Ser Pro Leu Cys Gln Pro ProArg Pro Pro Arg Arg Arg Pro Ile Ser Pro Leu Cys Gln Pro Pro

140 145 150 140 145 150

Ile Thr Thr Ala Pro Pro Ile Thr Glu MET Leu Arg Leu Pro ProIle Thr Thr Ala Pro Pro Ile Thr Glu MET Leu Arg Leu Pro Pro

155 160 165 155 160 165

Pro Pro Pro Gly Asn Pro Pro Arg Lys Ala Thr Ala Ala Cys ArgPro Pro Pro Gly Asn Pro Pro Arg Lys Ala Thr Ala Ala Cys Arg

170 175 180 170 175 180

Phe Pro Pro Pro Glu Pro Ser Arg Ser Arg Ser His Ser Ser ProPhe Pro Pro Pro Glu Pro Ser Arg Ser Arg Ser His Ser Ser Pro

185 190 195 185 190 195

Gln Pro Ser Cys Leu Gly Arg Ala Ala Ala Ala Ala Ala Arg AlaGln Pro Ser Cys Leu Gly Arg Ala Ala Ala Ala Ala Ala Arg Ala

200 205 210 200 205 210

<211> 23<211> 23

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<221> sgRNA-F<221> sgRNA-F

<400> 9<400> 9

ggcggacttc ttctccgagc tcc 23ggcggacttc ttctccgagc tcc 23

<211> 23<211> 23

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<221> sgRNA-R<221> sgRNA-R

<400> 10<400> 10

aaacggagct cggagaagaa gtc 23aaacggagct cggagaagaa gtc 23

<211> 24<211> 24

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<221> pBUN411-VF<221> pBUN411-VF

<400> 11<400> 11

ccatgaagcc tttcaggaca tgta 24ccatgaagcc tttcaggaca tgta 24

<211> 24<211> 24

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<221> pBUN411-VR<221> pBUN411-VR

<400> 12<400> 12

acgctgcaaa catgagacgg agaa 24acgctgcaaa catgagacgg agaa 24

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<221> Bar-F<221> Bar-F

<400> 13<400> 13

aagcacggtc aacttccgta 20aagcacggtc aacttccgta 20

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<221> Bar-R<221> Bar-R

<400> 14<400> 14

gaagtccagc tgccagaaac 20gaagtccagc tgccagaaac 20

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<221> OsPIL15-test-F<221> OsPIL15-test-F

<400> 15<400> 15

tgttttgtgt gtgcaggtcc 20tgttttgtgtgtgcaggtcc 20

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<221> OsPIL15-test-R<221> OsPIL15-test-R

<400> 16<400> 16

cgggagaaga gcgagaagtt 20cgggagaaga gcgagaagtt 20

<211> 336<211> 336

<212> DNA<212>DNA

<213> 序列<213> sequence

<221> PCR扩增产物序列<221> PCR amplification product sequence

<400> 17<400> 17

ccatgaagcc tttcaggaca tgtattgcag tatgggccgg cccattacgc aattggacga 60ccatgaagcc tttcaggaca tgtattgcag tatgggccgg cccattacgc aattggacga 60

caacaaagac tagtattagt accacctcgg ctatccacat agatcaaagc tgatttaaaa 120caacaaagac tagtattagt accacctcgg ctatccacat agatcaaagc tgatttaaaa 120

gagttgtgca gatgatccgt ggcgtcctcc accgcatcga tgtgttttag agctagaaat 180gagttgtgca gatgatccgt ggcgtcctcc accgcatcga tgtgttttag agctagaaat 180

agcaagttaa aataaggcta gtccgttatc aacttgaaaa agtggcaccg agtcggtgct 240agcaagttaa aataaggcta gtccgttatc aacttgaaaa agtggcaccg agtcggtgct 240

tttttttttc gttttgcatt gagttttctc cgtcgcatgt ttgcagtttt attttccgtt 300tttttttttc gttttgcatt gagttttctc cgtcgcatgt ttgcagtttt attttccgtt 300

ttgcattgaa atttctccgt ctcatgtttg cagcgt 336ttgcattgaa atttctccgt ctcatgtttg cagcgt 336

<211> 3148<211> 3148

<212> DNA<212>DNA

<213> 序列<213> sequence

<221> 水稻光敏色素互作因子OsPIL15基因全长<221> Rice phytochrome interaction factor OsPIL15 gene full length

<400> 18<400> 18

aggtcccccc acgccacagc ctcttatccc acacgcggac caacagcgcc gccccgcccg 60aggtcccccc acgccacagc ctcttatccc aacacgcggac caacagcgcc gccccgcccg 60

tcccccgctt caccttcggc ttcgacttcg gcttcgtttc ctcttctctt cgtctctccc 120tcccccgctt caccttcggc ttcgacttcg gcttcgtttc ctcttctctt cgtctctccc 120

tccctccagc gaaagaaaga gagagctcac ctcgcgttgc ccggccggcc gcggaggaga 180tccctccagc gaaagaaaga gagagctcac ctcgcgttgc ccggccggcc gcggaggaga 180

gcacggcttc gcattcggct ggagctctcg tctctgcact cggagtacag ctgcaaactc 240gcacggcttc gcattcggct ggagctctcg tctctgcact cggagtacag ctgcaaactc 240

ctccttcctt gatttcttca ccctgtctcc acggactgca cagatgtggg tgcaacgcga 300ctccttcctt gatttcttca ccctgtctcc acggactgca cagatgtggg tgcaacgcga 300

tctttcgctg cctccggttt agctctccgg ttgattccga tcgaggaagc tgatgcatgt 360tctttcgctg cctccggttt agctctccgg ttgattccga tcgaggaagc tgatgcatgt 360

gtttgtatat ggctcggtgt tttgtgtgtg caggtccgac ggcaacgact tcgccgagct 420gtttgtatat ggctcggtgt tttgtgtgtgtg caggtccgac ggcaacgact tcgccgagct 420

gctgtgggag aacggccagg cggtggtgca cgggaggaag aagcacccgc agccggcctt 480gctgtgggag aacggccagg cggtggtgca cgggaggaag aagcacccgc agccggcctt 480

cccgccgttc ggcttcttcg gtggcaccgg cggtggcggc ggcggcagca gtagtagagc 540cccgccgttc ggcttcttcg gtggcaccgg cggtggcggc ggcggcagca gtagtagagc 540

ccaggagagg cagcccggcg gcatcgatgc gttcgccaag gtggggggcg gcttcggcgc 600ccaggagagg cagcccggcg gcatcgatgc gttcgccaag gtggggggcg gcttcggcgc 600

cttgggcatg gctccggcgg tgcacgactt cgcttctggc ttcggcgcca ccacgcagga 660cttgggcatg gctccggcgg tgcacgactt cgcttctggc ttcggcgcca ccacgcagga 660

caacggtgat gatgacaccg ttccgtggat ccattacccc ataattgacg atgaagacgc 720caacggtgat gatgacaccg ttccgtggat ccattacccc ataattgacg atgaagacgc 720

cgccgcccct gctgctctcg cagcagcgga ctatggctcc gacttcttct ccgagctcca 780cgccgcccct gctgctctcg cagcagcgga ctatggctcc gacttcttct ccgagctcca 780

ggcggcggcg gctgccgcgg cggccgccgc gccgccgacc gatctcgcct ctctgccagc 840ggcggcggcg gctgccgcgg cggccgccgc gccgccgacc gatctcgcct ctctgccagc 840

ctccaatcac aacggcgcca ccaataacag aaatgctccg gttgccacca ccaccaccag 900ctccaatcac aacggcgcca ccaataacag aaatgctccg gttgccacca ccaccaccag 900

ggaaccctcc aaggaaagcc acggcggcct gtcggttccc accacccgag ccgagccgca 960ggaaccctcc aaggaaagcc acggcggcct gtcggttccc accacccgag ccgagccgca 960

gccgcagcca cagctcgccg cagccaagct gcctcggtcg agcggcagcg gcggcggcga 1020gccgcagcca cagctcgccg cagccaagct gcctcggtcg agcggcagcg gcggcggcga 1020

gggcgtgatg aacttctcgc tcttctcccg cccggccgtc ctggcgaggg cgacgctgga 1080gggcgtgatg aacttctcgc tcttctcccg cccggccgtc ctggcgaggg cgacgctgga 1080

gagcgcgcag aggacgcagg gcaccgacaa taaggcgtcc aatgtcaccg cgagcaaccg 1140gagcgcgcag aggacgcagg gcaccgacaa taaggcgtcc aatgtcaccg cgagcaaccg 1140

cgtcgagtcg acggtcgtgc agacggcgag cgggccaagg agcgcaccgg cgttcgccga 1200cgtcgagtcg acggtcgtgc agacggcgag cgggccaagg agcgcaccgg cgttcgccga 1200

tcagagggcg gcggcgtggc cgccgcagcc gaaggagatg ccgttcgcgt ccacggcagc 1260tcagagggcg gcggcgtggc cgccgcagcc gaaggagatg ccgttcgcgt ccacggcagc 1260

cgctcccatg gccccggccg ttaacctgca ccacgagatg ggccgtgaca gggcaggccg 1320cgctcccatg gccccggccg ttaacctgca ccacgagatg ggccgtgaca gggcaggccg 1320

aaccatgcct gtccacaaaa ccgaggcgag gaaggcacct gaggccacgg tcgcgacatc 1380aaccatgcct gtccacaaaa ccgaggcgag gaaggcacct gaggccacgg tcgcgacatc 1380

gtcggtgtgc tccggcaacg gagctgggag tgacgagctg tggcgccagc agaagcggaa 1440gtcggtgtgc tccggcaacg gagctgggag tgacgagctg tggcgccagc agaagcggaa 1440

gtgccaggcc caggcagagt gctcagctag ccaagacgat gtaagtaaat ggtatgagat 1500gtgccaggcc caggcagagt gctcagctag ccaagacgat gtaagtaaat ggtatgagat 1500

agatatgcac tgcataacca gctgactata ccttcgctga ttctcatgat aaaaaactgg 1560agatatgcac tgcataacca gctgactata ccttcgctga ttctcatgat aaaaaactgg 1560

ttctattcag gatcttgacg atgaacctgg agtattgaga aaatctggaa ccaggagcac 1620ttctattcag gatcttgacg atgaacctgg agtattgaga aaatctggaa ccaggagcac 1620

gaaacgcagc cgcacagctg aggttcacaa tttatcagaa agggtgagta gctcacatct 1680gaaacgcagc cgcacagctg aggttcacaa tttatcagaa agggtgagta gctcacatct 1680

tcagtgcatg gatcatcctg catccatttg cttcaaagtt cacatgtcag tgcattgatc 1740tcagtgcatg gatcatcctg catccatttg cttcaaagtt cacatgtcag tgcattgatc 1740

atcctgcatc catttgcttc aatcccatga ctcgactcat gctgcaattt tattgactgt 1800atcctgcatc catttgcttc aatcccatga ctcgactcat gctgcaattt tattgactgt 1800

attgcaaccc aacaatcttt gcagaggaga agggacagga tcaatgaaaa gatgcgcgct 1860attgcaaccc aacaatcttt gcagaggaga agggacagga tcaatgaaaa gatgcgcgct 1860

ctgcaagaac tcattcccaa ctgcaacaag gtaaagataa gccattccat cgtcttgctc 1920ctgcaagaac tcattcccaa ctgcaacaag gtaaagataa gccattccat cgtcttgctc 1920

cctctgagat gcctctgaat gaacatttgg tcaattcagg catgctatgt tttgcagatt 1980cctctgagat gcctctgaat gaacatttgg tcaattcagg catgctatgt tttgcagatt 1980

gataaagcct cgatgctgga tgaagctata gagtacctca aaacccttca gcttcaagta 2040gataaagcct cgatgctgga tgaagctata gagtacctca aaacccttca gcttcaagta 2040

caggtacatt gaaactgcct tcgaacaaat gtaccatgat tgtcgggtga atatgtacat 2100caggtacatt gaaactgcct tcgaacaaat gtaccatgat tgtcgggtga atatgtacat 2100

agatgcattg acaaggtgca gttgtcattg acacagatga tgtccatggg aactgggctg 2160agatgcattg acaaggtgca gttgtcattg acacagatga tgtccatggg aactgggctg 2160

tgcattcctc caatgctatt accaacagcc atgcagcact tgcaaattcc accgatggct 2220tgcattcctc caatgctatt accaacagcc atgcagcact tgcaaattcc accgatggct 2220

catttccctc atctcggcat gggattgggg tacgggatgg gcgtcttcga catgagcaac 2280catttccctc atctcggcat gggattgggg tacgggatgg gcgtcttcga catgagcaac 2280

actggagcac ttcagatgcc acccatgcct ggtgctcact ttccctgccc aatgatccca 2340actggagcac ttcagatgcc acccatgcct ggtgctcact ttccctgccc aatgatccca 2340

ggtgcgtcac cacaaggtct tgggatccct ggcacaagca ccatgccaat gtttggggtt 2400ggtgcgtcac cacaaggtct tgggatccct ggcacaagca ccatgccaat gtttggggtt 2400

cctgggcaaa caattccttc gtcagcgtct agtgtaccac catttgcatc tttggctggt 2460cctgggcaaa caattccttc gtcagcgtct agtgtaccac catttgcatc tttggctggt 2460

cttcctgtta ggccaagcgg ggtccctcaa gtatcaggcg ccatggctaa catggtgcaa 2520cttcctgtta ggccaagcgg ggtccctcaa gtatcaggcg ccatggctaa catggtgcaa 2520

gaccagcaac aaggcatagc gaatcaacag cagcaatgtc tgaacaagga agctatacag 2580gaccagcaac aaggcatagc gaatcaacag cagcaatgtc tgaacaagga agctatacag 2580

ggagcaaatc caggtgattc acaaatgcag atcatcatgc aggtactaat taaaaattaa 2640ggagcaaatc caggtgattc acaaatgcag atcatcatgc aggtactaat taaaaattaa 2640

caaatgatgt caagcgaata gaagacattt gctagtactt aagtgcatta cttactccag 2700caaatgatgt caagcgaata gaagacattt gctagtactt aagtgcatta cttactccag 2700

tttattttaa tattccaggg tgacaacgag aattttagga taccctcttc agcccaaaca 2760tttattttaa tattccaggg tgacaacgag aattttagga taccctcttc agcccaaaca 2760

aaaagcagtc aattttcaga tggtaccggc aaggggacca acgctagaga gagagatggg 2820aaaagcagtc aattttcaga tggtaccggc aaggggacca acgctagaga gagagatggg 2820

gctgaaacat aaagaaaggc cagtaggtgt aacttgactt tcatgctaaa tttgagatct 2880gctgaaacat aaagaaaggc cagtaggtgt aacttgactt tcatgctaaa tttgagatct 2880

accactgaaa tctgcagaat gttcctgtcc taaaaagatc aatggctgag gaatttcatg 2940accactgaaa tctgcagaat gttcctgtcc taaaaagatc aatggctgag gaatttcatg 2940

tacgaccaac taacaacttc cagatatgaa agttagcaat tcatactggg agaacttact 3000tacgaccaac taacaacttc cagatatgaa agttagcaat tcatactggg agaacttact 3000

tgagtatcaa gatccacgag gcagatgtat cagccaagat gccccaaaat tttgtgtaaa 3060tgagtatcaa gatccacgag gcagatgtat cagccaagat gccccaaaat tttgtgtaaa 3060

atgtagatgg tagaagatgc taccaggtta caagctgtaa ttcttgactt ccagtgcagt 3120atgtagatgg tagaagatgc taccaggtta caagctgtaa ttcttgactt ccagtgcagt 3120

ttcctatgag tagtttttgc cctatctg 3148ttcctatgag tagtttttgc cctatctg 3148

Claims (9)

1. a kind of method that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies, it is characterised in that:Including as follows Step:
1) selection of gRNA target sequences:Sequence is 5 '-GACTTCTTCTCCGAGCTCCAGG-3 ', the PAM that the sequence 3 ' is held Sequence is AGG, and the recognition sequences of restriction enzyme Sac I are 5 '-GAGCTC-3 ';
2) design of gRNA oligonucleotide chains upstream and downstream primer:
Sense primer is sgRNA-F:5 '-GGCGGACTTCTTCTCCGAGCTCC-3 ',
Anti-sense primer is sgRNA-R:5′-AAACGGAGCTCGGAGAAGAAGTC-3′;
3) gRNA expression vector establishments:The upstream and downstream primer is mixed, annealed, oligonucleotides double-stranded DNA is obtained;Use restriction endonuclease The digestion pBUN411 plasmids of Bsa I, obtain linear plasmid;The linear plasmid and oligonucleotides double-stranded DNA are connected with T4 ligases, Obtain connection product;Connection product is converted, screen, verified, pBUN411-gRNA expression vectors are produced;
4) pBUN411-gRNA expression vectors are imported in Agrobacterium, obtains CRISPR/Cas9-gRNA Agrobacteriums;Use CRISPR/ Cas9-gRNA Agrobacteriums infect Rice Callus;
5) by step 4) callus induction that obtains obtains regrowth, and screening obtains transgenic positive plant, and identification produces water Rice OsPIL15 mutant.
2. the method according to claim 1 for preparing rice Os PIL15 mutant, it is characterised in that:Step 3) described in It is annealed into the 5min that annealed at 65 DEG C.
3. the method according to claim 1 for preparing rice Os PIL15 mutant, it is characterised in that:Step 5) be except Screening obtains regrowth under conditions of careless agent.
4. the method according to claim 3 for preparing rice Os PIL15 mutant, it is characterised in that:Step 5) it is to use Anti-herbicide gene primer is screened;
The primer is:Bar-F:5′-AAGCACGGTCAACTTCCGTA-3′;
Bar-R:5′-GAAGTCCAGCTGCCAGAAAC-3′.
5. the method according to claim 1 for preparing rice Os PIL15 mutant, it is characterised in that:Step 5) it is to use GRNA target sequences both sides primer is identified;
Both sides primer is OsPIL15-test-F:5′-TGTTTTGTGTGTGCAGGTCC-3′;
OsPIL15-test-R:5′-CGGGAGAAGAGCGAGAAGTT-3′.
6. the method according to claim 5 for preparing rice Os PIL15 mutant, it is characterised in that:The identification includes:
A:Using transgenic positive plant DNA as template, OsPIL15-test-F and OsPIL15-test-R are detection primer, are carried out PCR is expanded;
B:With the enzyme digestion pcr amplification products of Sac I;
C:It is unmutated strain if electrophoresis result is only 400bp and the bands of 273bp two with electrophoretic separation digestion products;Otherwise, it is Mutant strain.
7. the method according to claim 6 for preparing rice Os PIL15 mutant, it is characterised in that:By the transgenosis The pcr amplification product sequencing of positive plant, it is determined that being heterozygote, double allelic variant bodies, Mutants homozygous or list of not undergoing mutation Strain.
8. the application of the method for rice Os PIL15 mutant is prepared according to claim 1, it is characterised in that:The paddy rice Application of the OsPIL15 mutant in rice breeding.
9. application according to claim 8, it is characterised in that:Select the self progeny of the rice Os PIL15 mutant In Mutants homozygous be used for rice paddy seed grain length breeding.
CN201710380845.1A 2017-05-25 2017-05-25 A kind of method and application that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies Pending CN107164401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710380845.1A CN107164401A (en) 2017-05-25 2017-05-25 A kind of method and application that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710380845.1A CN107164401A (en) 2017-05-25 2017-05-25 A kind of method and application that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies

Publications (1)

Publication Number Publication Date
CN107164401A true CN107164401A (en) 2017-09-15

Family

ID=59822239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710380845.1A Pending CN107164401A (en) 2017-05-25 2017-05-25 A kind of method and application that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies

Country Status (1)

Country Link
CN (1) CN107164401A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220328A (en) * 2017-12-15 2018-06-29 中国烟草总公司郑州烟草研究院 A kind of method for identifying genome editor's Mutants homozygous
CN108913717A (en) * 2018-08-01 2018-11-30 河南农业大学 A method of using CRISPR/Cas9 system to rice PHYB site-directed point mutation
CN109456394A (en) * 2018-11-19 2019-03-12 浙江大学 Tomato SlPIF4 gene, albumen and its application in raising plant frigostabile
CN109652439A (en) * 2018-12-27 2019-04-19 宜春学院 Utilize the method for the CRISPR/Cas9 adenine base editing system improvement rice blast resistance of wide spectrum mediated
CN110777163A (en) * 2019-12-09 2020-02-11 新疆农业科学院园艺作物研究所 A method for creating tomato material with high lycopene content in fruit
CN110904109A (en) * 2019-12-16 2020-03-24 河南农业大学 miR1866 gene for controlling rice seed germination, overexpression vector, gRNA expression vector, preparation method and application thereof
CN112126652A (en) * 2020-09-18 2020-12-25 内蒙古大学 Application of rice OsAUX3 gene in regulating rice seed grain length
CN112626050A (en) * 2020-12-14 2021-04-09 安徽省农业科学院水稻研究所 SpCas9-NRCH mutant for recognizing specific sites in rice gene targeting and application thereof
CN112626049A (en) * 2020-12-14 2021-04-09 安徽省农业科学院水稻研究所 SpCas9-NRRH mutant for recognizing specific sites in rice gene targeting and application thereof
CN112941086A (en) * 2021-03-12 2021-06-11 信阳农林学院 Application of OsPIL15 gene in regulation and control of rice salt tolerance
CN113832182A (en) * 2021-09-13 2021-12-24 深圳大学 A kind of preparation method of rice Osspear2 mutant plant
CN114540369A (en) * 2022-02-28 2022-05-27 河南农业大学 Application of OsBEE1 gene in improving rice yield
CN115927445A (en) * 2022-07-13 2023-04-07 扬州大学 Application of OsPIL15 Gene in Regulating Water Saving and Drought Resistance in Rice

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120240292A1 (en) * 2009-08-24 2012-09-20 Xinjie Xia Proteins relating to grain shape and leaf shape of rice, coding genes and uses thereof
CN105820225A (en) * 2016-05-20 2016-08-03 河南农业大学 Rice grain form regulation protein OsPIL15, gene, vectors and application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120240292A1 (en) * 2009-08-24 2012-09-20 Xinjie Xia Proteins relating to grain shape and leaf shape of rice, coding genes and uses thereof
CN105820225A (en) * 2016-05-20 2016-08-03 河南农业大学 Rice grain form regulation protein OsPIL15, gene, vectors and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杜彦修等: "基于CRISPR/Cas9系统的OsbHLH116基因编辑及其脱靶效应分析", 《中国水稻科学》 *
王干诚等: "基于CRISPR/Cas9系统高通量筛选研究功能基因", 《遗传》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108220328A (en) * 2017-12-15 2018-06-29 中国烟草总公司郑州烟草研究院 A kind of method for identifying genome editor's Mutants homozygous
CN108913717A (en) * 2018-08-01 2018-11-30 河南农业大学 A method of using CRISPR/Cas9 system to rice PHYB site-directed point mutation
CN109456394A (en) * 2018-11-19 2019-03-12 浙江大学 Tomato SlPIF4 gene, albumen and its application in raising plant frigostabile
CN109456394B (en) * 2018-11-19 2020-07-07 浙江大学 Tomato SlPIF4 gene, protein and application thereof in improving low temperature resistance of plants
CN109652439A (en) * 2018-12-27 2019-04-19 宜春学院 Utilize the method for the CRISPR/Cas9 adenine base editing system improvement rice blast resistance of wide spectrum mediated
CN110777163A (en) * 2019-12-09 2020-02-11 新疆农业科学院园艺作物研究所 A method for creating tomato material with high lycopene content in fruit
CN110904109A (en) * 2019-12-16 2020-03-24 河南农业大学 miR1866 gene for controlling rice seed germination, overexpression vector, gRNA expression vector, preparation method and application thereof
CN110904109B (en) * 2019-12-16 2023-04-11 河南农业大学 miR1866 gene for controlling rice seed germination, overexpression vector, gRNA expression vector, preparation method and application thereof
CN112126652B (en) * 2020-09-18 2022-05-10 内蒙古大学 Application of rice OsAUX3 gene in regulation of rice seed grain length
CN112126652A (en) * 2020-09-18 2020-12-25 内蒙古大学 Application of rice OsAUX3 gene in regulating rice seed grain length
CN112626050A (en) * 2020-12-14 2021-04-09 安徽省农业科学院水稻研究所 SpCas9-NRCH mutant for recognizing specific sites in rice gene targeting and application thereof
CN112626049B (en) * 2020-12-14 2022-04-01 安徽省农业科学院水稻研究所 A SpCas9-NRRH mutant that recognizes specific sites in rice gene targeting and its application
CN112626050B (en) * 2020-12-14 2022-04-01 安徽省农业科学院水稻研究所 SpCas9-NRCH mutant for recognizing specific sites in rice gene targeting and application thereof
CN112626049A (en) * 2020-12-14 2021-04-09 安徽省农业科学院水稻研究所 SpCas9-NRRH mutant for recognizing specific sites in rice gene targeting and application thereof
CN112941086A (en) * 2021-03-12 2021-06-11 信阳农林学院 Application of OsPIL15 gene in regulation and control of rice salt tolerance
CN113832182A (en) * 2021-09-13 2021-12-24 深圳大学 A kind of preparation method of rice Osspear2 mutant plant
CN114540369A (en) * 2022-02-28 2022-05-27 河南农业大学 Application of OsBEE1 gene in improving rice yield
CN114540369B (en) * 2022-02-28 2023-07-14 河南农业大学 Application of OsBEE1 Gene in Improving Rice Yield
CN115927445A (en) * 2022-07-13 2023-04-07 扬州大学 Application of OsPIL15 Gene in Regulating Water Saving and Drought Resistance in Rice

Similar Documents

Publication Publication Date Title
CN107164401A (en) A kind of method and application that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies
Huang et al. Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system
US11708395B2 (en) Gene LBA5 for regulating lateral shoot angles, growth habits, and plant architecture of Arachis hypogaea L., and use thereof
CN106164272B (en) Modified plants
CN102352367B (en) Cloning and application of a semi-dominant gene qGL3 controlling grain length and grain weight in rice
CN108913717A (en) A method of using CRISPR/Cas9 system to rice PHYB site-directed point mutation
AU2019207409B2 (en) Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
CN110791525B (en) Method for knocking out rice tillering number regulation gene OsFW L4 to increase rice tillering number and yield
CN111620935B (en) Application of ZmCEP1 Gene in Regulating Maize Kernel Development
CN113265422A (en) Method for targeted knockout of rice grain type regulatory gene SLG7, rice grain type regulatory gene SLG7 mutant and application thereof
CN103555711A (en) Non-transgenic genome directed molecule improvement method and application of main crops
WO2017013409A2 (en) Modified plants
CN102618510A (en) Plant male fertility related protein and coded gene and application thereof
CN108642065B (en) Rice endosperm aleurone related gene OsSecY2 and encoding protein and application thereof
CN108864266A (en) One kind Protein S SH1 relevant to rice seed holding and grain shape and its encoding gene and application
CN114540369B (en) Application of OsBEE1 Gene in Improving Rice Yield
WO2015007241A1 (en) Molecular marker
CN107475266A (en) A kind of paddy endosperm silty related gene OscyMDH and its encoding proteins matter and application
CN106701820A (en) Method for improving and utilizing key genes of wild rice
KR102516522B1 (en) pPLAⅡη gene inducing haploid plant and uses thereof
CN105399804B (en) With the application of rice grain shape and the relevant albumen of Leaf angle and its encoding gene
CN112195187B (en) Rice tillering angle regulation gene and protein coded by same and application of gene
CN115697043A (en) Method for obtaining mutant plants by targeted mutagenesis
CN112980870A (en) Method for creating large-long-grain novel germplasm of rice and application thereof
CN113774068B (en) A rice endosperm farinity-related gene OsPDC-E1-α1 and its encoded protein and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170915

RJ01 Rejection of invention patent application after publication