CN107154064A - Natural image compressed sensing method for reconstructing based on depth sparse coding - Google Patents
Natural image compressed sensing method for reconstructing based on depth sparse coding Download PDFInfo
- Publication number
- CN107154064A CN107154064A CN201710306725.7A CN201710306725A CN107154064A CN 107154064 A CN107154064 A CN 107154064A CN 201710306725 A CN201710306725 A CN 201710306725A CN 107154064 A CN107154064 A CN 107154064A
- Authority
- CN
- China
- Prior art keywords
- observation
- training
- transformation
- image
- iteration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000009466 transformation Effects 0.000 claims abstract description 56
- 238000012360 testing method Methods 0.000 claims abstract description 31
- 239000013598 vector Substances 0.000 claims abstract description 6
- 238000012549 training Methods 0.000 claims description 65
- 239000011159 matrix material Substances 0.000 claims description 25
- 230000008602 contraction Effects 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 238000011478 gradient descent method Methods 0.000 claims description 2
- 230000008447 perception Effects 0.000 abstract 1
- 238000004088 simulation Methods 0.000 description 11
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 238000000513 principal component analysis Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000005457 optimization Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000013526 transfer learning Methods 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于深度稀疏编码的自然图像压缩感知重建方法,主要解决现有方法难以快速、精确的用系数重建自然图像的问题。其实现方案是:1)对图像分块并在正交变换域上变换,计算变换系数的观测向量;2)用迭代阈值法求出观测向量的恢复变换系数,并更新计算参数;3)计算2)中变换系数的观测向量,求出其与1)中观测向量的残差量;4)重复步骤1)—3)得到训练好的模型,并保存模型参数;5)将测试观测数据与模型参数输入到训练好的模型,得到与测试观测数据对应的图像变换系数;6)对5)中的变换系数进行逆变换,得到最终重建的自然图像。本发明重建的自然图像清晰,且重构速度很快,可用于对自然图像的恢复。
The invention discloses a natural image compressive perception reconstruction method based on deep sparse coding, which mainly solves the problem that the existing method is difficult to quickly and accurately reconstruct the natural image with coefficients. The implementation plan is: 1) divide the image into blocks and transform in the orthogonal transform domain, and calculate the observation vector of the transformation coefficient; 2) use the iterative threshold method to find the restored transformation coefficient of the observation vector, and update the calculation parameters; 3) calculate 2) Observation vectors of transformation coefficients in 1) to obtain the residual amount of the observation vectors; 4) Repeat steps 1)-3) to obtain the trained model, and save the model parameters; 5) Combine the test observation data with Input the model parameters into the trained model to obtain the image transformation coefficients corresponding to the test observation data; 6) inversely transform the transformation coefficients in 5) to obtain the final reconstructed natural image. The natural image reconstructed by the invention is clear and the reconstruction speed is very fast, and can be used for restoring the natural image.
Description
技术领域technical field
本发明属于图像处理领域,具体涉及一种自然图像压缩感知重建方法,可用于采样的自然图像恢复。The invention belongs to the field of image processing, and in particular relates to a natural image compression sensing reconstruction method, which can be used for sampling natural image restoration.
背景技术Background technique
随着媒体技术的发展,海量图像数据在实时传输、存储方面都面临着巨大的挑战。压缩感知技术的提出使得这些问题在理论上开辟了新的思路,令问题得到了有效解决。压缩感知理论认为,若信号在某一种变换基下具有稀疏性,则可以对该信号进行随机投影观测,并以较少的观测值通过信号的先验信息对其进行精确重构,它的模型是在求解观测数据保真度约束下的范数最优化问题。With the development of media technology, massive image data is facing huge challenges in real-time transmission and storage. The introduction of compressed sensing technology has opened up new ideas for these problems in theory, and effectively solved the problems. Compressed sensing theory believes that if the signal has sparsity under a certain transformation base, the signal can be randomly projected and observed, and it can be accurately reconstructed through the prior information of the signal with fewer observations. The model is a norm optimization problem under the fidelity constraints of solving observed data.
针对上述的压缩感知模型,不同的范数约束代表了不同的重构算法和重构性能。若采用范数,通常采用正交匹配追踪OMP算法重构。尽管范数满足压缩感知模型最初的想法,即寻找具有最小稀疏度的优化问题的解,但由于其是一个NP-Hard问题,导致解的精度往往不高。因此有学者提出利用范数替代范数使其变为凸优化问题,并提出了一系列基于迭代的重构算法:迭代阈值收缩算法ISTA、快速迭代阈值收缩算法FISTA、近似信息传递算法AMP等。上述算法的提出虽然使问题得到进一步解决,但它们都是基于优化理论的解决算法,仍然存在着重构精度有限、迭代过程复杂、收敛速度慢等诸多问题。For the above-mentioned compressed sensing model, different norm constraints represent different reconstruction algorithms and reconstruction performance. If the norm is used, the orthogonal matching pursuit OMP algorithm is usually used for reconstruction. Although the norm satisfies the original idea of the compressed sensing model, which is to find the solution of the optimization problem with the minimum sparsity, but because it is an NP-Hard problem, the accuracy of the solution is often not high. Therefore, some scholars proposed to use norm instead of norm to make it a convex optimization problem, and proposed a series of iteration-based reconstruction algorithms: iterative threshold shrinkage algorithm ISTA, fast iterative threshold shrinkage algorithm FISTA, approximate information transfer algorithm AMP, etc. Although the above algorithms have further solved the problem, they are all based on optimization theory, and there are still many problems such as limited reconstruction accuracy, complex iterative process, and slow convergence speed.
近年来随着深度学习技术的发展,开始有学者提出基于卷积神经网络的压缩感知重构方法Recon-Net,这种方法虽然解决了迭代过程复杂的问题,但是仍存在两个问题:1)直接应用模型得到的重构图像噪声较大,必须经过去噪才能得到质量较好的重构图像;2)模型在训练时收敛速度较慢,即使在高性能计算机上,训练模型也需要一天的时间。In recent years, with the development of deep learning technology, some scholars began to propose Recon-Net, a compressed sensing reconstruction method based on convolutional neural network. Although this method solves the problem of complex iterative process, there are still two problems: 1) The reconstructed image obtained by directly applying the model is noisy, and the reconstructed image with better quality must be denoised; 2) The convergence speed of the model is slow during training. Even on a high-performance computer, it takes a day to train the model. time.
发明内容Contents of the invention
本发明的目的在于针对传统基于优化的重建方法和当前基于深度学习的重建方法存在的问题,提出一种基于深度稀疏编码的自然图像压缩感知重建方法,以简化模型复杂度,降低模型的训练时间,提高图像的重构速度和重构效果。The purpose of the present invention is to solve the problems existing in the traditional reconstruction method based on optimization and the current reconstruction method based on deep learning, and propose a natural image compression sensing reconstruction method based on deep sparse coding, so as to simplify the model complexity and reduce the training time of the model , to improve the reconstruction speed and reconstruction effect of the image.
本发明的技术方案是:通过利用自然图像在变换域上的稀疏先验信息对其进行压缩感知编码,再结合基于学习的近似信息传递算法LAMP和递归神经网络RNN模型,实现将图像编码信息的恢复重建,其实现步骤包括如下:The technical solution of the present invention is: by using the sparse prior information of the natural image in the transform domain to perform compressive sensing encoding on it, and then combining the learning-based approximate information transfer algorithm LAMP and the recurrent neural network RNN model, the image encoding information is realized. Restoration and reconstruction, its implementation steps include the following:
(1)模型训练步骤:(1) Model training steps:
(1a)输入多张图片,并从这些图片中取n个训练图像块X;(1a) Input multiple pictures, and take n training image blocks X from these pictures;
(1b)对(1a)中的n个训练图像块X进行压缩感知观测,得到n个观测系数Y,并用这些训练图像块与对应的观测系数组成n个训练样本对:{(X=x1,x2,...,xn-1,xn),(Y=y1,y2,...,yn-1,yn)};(1b) Perform compressed sensing observation on the n training image blocks X in (1a), obtain n observation coefficients Y, and use these training image blocks and corresponding observation coefficients to form n training sample pairs: {(X=x 1 ,x 2 ,...,x n-1 ,x n ),(Y=y 1 ,y 2 ,...,y n-1 ,y n )};
(1c)设置模型训练次数K=100,每次从Y、X中随机选取r个训练样本yr、xr,并采用梯度下降法进行训练,每次训练的截止条件flag为迭代50次模型误差值不衰减;(1c) Set the number of model training K=100, randomly select r training samples y r , x r from Y and X each time, and use the gradient descent method for training, the cut-off condition flag for each training is to iterate the model for 50 times The error value does not decay;
(1d)设置稀疏编码算法的参数,初始化迭代次数T=10,并令初始变换系观测数据残差vt=y,其中为第t次迭代计算的训练图像块变换系数,vt为第t次迭代的观测残差;(1d) Set the parameters of the sparse coding algorithm, initialize the number of iterations T=10, and make the initial transformation system Observed data residual v t =y, where is the training image block transformation coefficient calculated for the t-th iteration, v t is the observation residual of the t-th iteration;
(1e)计算第t+1次迭代的训练图像块变换系数:其中为第t次迭代的变换系数,ATCtvt为第t次迭代的观测残差的变换系数,AT是观测矩阵A的转置,Ct是第t次待优化的参数矩阵,为第t次迭代的阈值,αt是第t次更新的标量参数值,M是观测数据y的维度,||vt||2表示vt的二范数,ηst(·)是阈值收缩函数;(1e) Calculate the training image block transformation coefficient of the t+1 iteration: in is the transformation coefficient of the t-th iteration, A T C t v t is the transformation coefficient of the observation residual of the t-th iteration, AT is the transpose of the observation matrix A, C t is the parameter matrix to be optimized for the t-th time, is the threshold of the t-th iteration, α t is the scalar parameter value of the t-th update, M is the dimension of the observed data y, ||v t || 2 represents the two-norm of v t , and η st (·) is the threshold contraction function;
(1f)计算第t+1次迭代的观测残差:其中,bt+1vt是Onsagercorrection项;(1f) Calculate the observation residuals of the t+1th iteration: Among them, b t+1 v t is the Onsagercorrection item;
(1g)循环执行T次(1e)—(1f)得到变换系数 (1g) Loop execution T times (1e)—(1f) to get the transformation coefficient
(1h)当(1g)得到的变换系数满足迭代截止条件flag时,保存本次训练的模型参数;(1h) When (1g) obtained transformation coefficient When the iteration cut-off condition flag is met, save the model parameters of this training;
(1i)循环执行K次(1d)—(1h),完成模型训练;(1i) cyclically execute K times (1d)—(1h) to complete model training;
(2)测试步骤:(2) Test steps:
(2a)将观测数据ytest以及通过模型训练得到的T个参数矩阵和标量参数值输入到训练好的模型中,得到与输入观测数据ytest对应的测试图像变换系数 (2a) The observed data y test and T parameter matrices obtained through model training and scalar parameter values Input it into the trained model to get the test image transformation coefficient corresponding to the input observation data y test
(2b)对变换系数做PCA逆变换,得到与观测数据ytest对应的图像Img:其中,Ψ-1表示PCA逆变换矩阵;(2b) For transform coefficients Do PCA inverse transformation to get the image Img corresponding to the observed data y test : Among them, Ψ -1 represents the PCA inverse transformation matrix;
(2c)根据PCA变换具备正交性而存在的ΨΨ-1=ΨΨT关系,将与观测数据ytest对应的图像Img改写为:完成对观测数据ytest的自然图像重建,其中,ΨT表示PCA正变换矩阵Ψ的转置。(2c) According to the ΨΨ -1 = ΨΨ T relationship that exists due to the orthogonality of the PCA transformation, the image Img corresponding to the observed data y test is rewritten as: Complete the natural image reconstruction of the observed data y test , where Ψ T represents the transpose of the PCA forward transformation matrix Ψ.
本发明与其他现有技术相比具有以下优点:Compared with other prior art, the present invention has the following advantages:
第一、本发明引入自然图像的稀疏先验信息,结合深度神经网络与稀疏编码的优势,降低了模型复杂度,从而缩减了图像的重建时间,实现了压缩感知的快速重建,并且提高了自然图像的重建效果;First, the present invention introduces the sparse prior information of natural images, combines the advantages of deep neural network and sparse coding, reduces the complexity of the model, thereby reduces the reconstruction time of images, realizes the rapid reconstruction of compressed sensing, and improves the natural Image reconstruction effect;
第二、本发明采用迁移学习的模型训练方法,提高了模型训练速度,从而实现模型的快速训练。Second, the present invention adopts the model training method of transfer learning, which improves the speed of model training, thereby realizing fast training of the model.
附图说明Description of drawings
图1为本发明的实现总流程图;Fig. 1 is the realization overall flowchart of the present invention;
图2为本发明中的模型训练子流程图;Fig. 2 is the sub-flow chart of model training in the present invention;
图3为本发明中的图像重建子流程图;Fig. 3 is a sub-flow chart of image reconstruction in the present invention;
图4为本发明仿真实验所使用的Barbara原始自然图像;Fig. 4 is the original natural image of Barbara used in the simulation experiment of the present invention;
图5为用现有的TVAL3方法对Barbara图像在压缩率为0.25时的重建效果图;Fig. 5 is the reconstruction effect diagram when the compression rate is 0.25 to the Barbara image with the existing TVAL3 method;
图6为用现有的Recon-Net方法对Barbara图像在压缩率为0.25时的重建效果图;Fig. 6 is the reconstructed rendering of the Barbara image when the compression rate is 0.25 with the existing Recon-Net method;
图7为用本发明对Barbara图像在压缩率为0.25时的重建效果图。Fig. 7 is a reconstruction effect diagram of the Barbara image when the compression rate is 0.25 using the present invention.
具体实施方式:detailed description:
以下结合附图对本发明的实施例及效果作详细描述:Embodiment of the present invention and effect are described in detail below in conjunction with accompanying drawing:
参照图1,本发明基于深度稀疏编码的自然图像重建方法,包括模型训练和测试两部分。首先输入n个训练图像块X并构造训练样本对,然后进行模型训练得到训练好的模型,再将测试观测数据输入到训练好的模型中进行测试,得到重建的自然图像。Referring to Fig. 1, the natural image reconstruction method based on deep sparse coding of the present invention includes two parts of model training and testing. First, input n training image blocks X and construct training sample pairs, then perform model training to obtain a trained model, and then input test observation data into the trained model for testing to obtain reconstructed natural images.
以下对本发明的模型训练和测试这两部分进行详细描述:The following two parts of model training and testing of the present invention are described in detail:
一、模型训练部分1. Model training part
参照图2,本部分的实现步骤如下:Referring to Figure 2, the implementation steps of this part are as follows:
步骤1:输入n个训练图像块X,获得训练样本对,Step 1: Input n training image blocks X to obtain training sample pairs,
(1a)输入n个训练图像块X,对每个输入的训练图像块数据xi进行主成分分析PCA变换,得到变换系数其中,Ψ表示主成分分析PCA正变换矩阵,根据主成分分析PCA变换的正交性,得到ΨΨ-1=ΨΨT的关系式,根据关系式得出其中,Ψ-1和ΨT分别表示主成分分析PCA逆变换矩阵和正变换矩阵Ψ的转置;(1a) Input n training image blocks X, perform principal component analysis PCA transformation on each input training image block data x i , and obtain transformation coefficients Among them, Ψ represents the principal component analysis PCA forward transformation matrix, according to the orthogonality of the principal component analysis PCA transformation, the relational expression of ΨΨ -1 = ΨΨ T is obtained, according to the relational expression Among them, Ψ -1 and Ψ T denote the transposition of PCA inverse transformation matrix and forward transformation matrix Ψ respectively;
(1b)按照压缩感知观测模型对每个训练图像块进行观测,得到观测数据yi:其中,A=ΦΨT,Φ为欠采样高斯随机观测矩阵,向量w为具有零均值的高斯白噪声;(1b) Observe each training image block according to the compressed sensing observation model, and obtain the observation data y i : Among them, A=ΦΨ T , Φ is an undersampled Gaussian random observation matrix, and the vector w is Gaussian white noise with zero mean;
(1c)将n个训练图像块X与对应的n个观测系数Y组成n个训练样本对:{(X=x1,x2,...,xn-1,xn),(Y=y1,y2,...,yn-1,yn)}。(1c) Form n training sample pairs with n training image blocks X and corresponding n observation coefficients Y: {(X=x 1 , x 2 ,..., x n-1 , x n ),(Y =y 1 ,y 2 ,...,y n-1 ,y n )}.
步骤2:设置模型训练次数,随机选取r个训练样本对,Step 2: Set the number of model training times, randomly select r training sample pairs,
(2a)设置模型训练次数K=100;(2a) Set the number of times of model training K=100;
(2b)每次训练时从Y、X中随机选取r个训练样本对{xr,yr}。(2b) Randomly select r training sample pairs {x r , y r } from Y and X during each training.
步骤3:设置稀疏编码算法的参数,初始化算法中的相关变量。Step 3: Set the parameters of the sparse coding algorithm and initialize the relevant variables in the algorithm.
(3a)初始化迭代次数T=10;(3a) The number of initialization iterations T=10;
(3b)令初始变换系数观测数据残差vt=y,其中为第t次迭代计算的图像块变换系数,vt为第t次迭代的观测残差。(3b) Let the initial transformation coefficient Observed data residual v t =y, where is the image block transformation coefficient calculated by the t-th iteration, v t is the observation residual of the t-th iteration.
步骤4:计算第t+1次迭代的训练图像块变换系数 Step 4: Calculate the training image block transformation coefficient of the t+1th iteration
(4a)计算第t次迭代的观测残差vt的稀疏系数ATCtvt,其中AT是观测矩阵A的转置,Ct是第t次待优化的参数矩阵且初始化为单位矩阵;(4a) Calculate the sparse coefficient A T C t v t of the observation residual v t of the t-th iteration, where A T is the transpose of the observation matrix A, and C t is the parameter matrix to be optimized for the t-th iteration and is initialized to unit matrix;
(4b)计算第t+1次迭代的训练图像块稀疏系数,其中,为第t次迭代的变换系数,为第t次迭代的阈值,αt是第t次更新的标量参数值,M是观测数据y的维度,||vt||2表示vt的二范数;(4b) Calculate the training image block sparse coefficient of the t+1th iteration, in, is the transformation coefficient of the t-th iteration, is the threshold of the t-th iteration, α t is the scalar parameter value updated at the t-th time, M is the dimension of the observed data y, and ||v t || 2 represents the second norm of v t ;
(4c)计算第t+1次迭代的训练图像块变换系数,(4c) Calculate the training image block transformation coefficient of the t+1 iteration,
其中,ηst(·)是阈值收缩函数,用于将阈值λt与稀疏系数μt+1进行比较,具体方法是将小于阈值λt的稀疏系数μt+1置零,将大于阈值λt的稀疏系数μt+1置为μt+1与阈值λt差值的绝对值。Among them, η st (·) is the threshold contraction function, which is used to compare the threshold λ t with the sparse coefficient μ t+1 . The specific method is to set the sparse coefficient μ t+1 smaller than the threshold λ t to zero, and set The sparse coefficient μ t +1 of t is set as the absolute value of the difference between μ t+1 and the threshold λ t .
步骤5:计算第t+1次迭代的观测残差vt+1。Step 5: Calculate the observation residual v t+1 of the t+1th iteration.
(5a)先将步骤4得到的中大于零的系数置为1,再对其按列求平均值,得到的零范数再计算权重bt+1:(5a) first obtain the step 4 The coefficients greater than zero are set to 1, and then averaged by column to get The zero norm of Then calculate the weight b t+1 :
其中N是变换系数的维度,M是观测残差vt的维度;where N is the transform coefficient The dimension, M is the dimension of the observation residual v t ;
(5b)将权重bt+1与观测残差vt进行点乘,得到Onsager correction项的矩阵bt+1vt;(5b) Dot product the weight b t+1 with the observation residual v t to obtain the matrix b t+1 v t of the Onsager correction item;
(5c)将(5b)中得到的矩阵bt+1vt代入公式计算第t+1次迭代的观测残差vt+1,其中y为训练图像块观测数据,A为观测矩阵。(5c) Substitute the matrix b t+1 v t obtained in (5b) into the formula Calculate the observation residual v t+1 of the t+1th iteration, where y is the observation data of the training image block, and A is the observation matrix.
步骤6:将步骤4—步骤5循环执行T=10次,得到变换系数 Step 6: Perform step 4-step 5 cyclically T=10 times to obtain the transformation coefficient
步骤7:保存本次训练的模型参数。Step 7: Save the model parameters of this training.
当步骤6得到的变换系数满足迭代截止条件flag时,保存本次训练的模型参数,其中,每次训练的截止条件flag为迭代50次模型误差值不衰减。When the transformation coefficient obtained in step 6 When the iteration cut-off condition flag is met, the model parameters of this training are saved. The cut-off condition flag of each training is that the model error value does not decay after 50 iterations.
步骤8:循环执行K次步骤3—步骤7,完成模型训练。Step 8: Perform step 3-step 7 cyclically K times to complete the model training.
二、测试部分2. Test part
参照图3,本部分的实现步骤如下:Referring to Figure 3, the implementation steps of this part are as follows:
步骤9:输入测试观测数据及模型训练部分保存的参数,得到输入观测数据ytest对应的图像变换系数 Step 9: Input the test observation data and the parameters saved in the model training part to obtain the image transformation coefficient corresponding to the input observation data y test
从模型训练部分取出其保存的T个矩阵Ct和标量αt分别记为和并将这两个参数和现实场景里采集到的测试观测数据ytest作为输入,输入到训练好的模型中,输出与观测数据ytest对应的图像变换系数 Take out the saved T matrix C t and scalar α t from the model training part and write them as with And these two parameters and the test observation data y test collected in the real scene are input into the trained model, and the image transformation coefficient corresponding to the observation data y test is output
步骤10:通过主成分分析PCA逆变换获得观测数据ytest对应的自然图像Img。Step 10: Obtain the natural image Img corresponding to the observation data y test through principal component analysis PCA inverse transformation.
(10a)对变换系数做主成分分析PCA逆变换,得到与观测数据ytest对应的自然图像:其中,Ψ-1表示主成分分析PCA逆变换矩阵;(10a) for transform coefficients Perform principal component analysis PCA inverse transformation to obtain the natural image corresponding to the observed data y test : Among them, Ψ -1 represents the principal component analysis PCA inverse transformation matrix;
(10b)根据主成分分析PCA变换的ΨΨ-1=ΨΨT关系式,将与观测数据ytest对应的自然图像Img改写为:完成对观测数据ytest的自然图像重建,其中,ΨT表示主成分分析PCA正变换矩阵Ψ的转置。(10b) According to the relational expression of ΨΨ -1 = ΨΨ T of principal component analysis PCA transformation, the natural image Img corresponding to the observed data y test is rewritten as: Complete the natural image reconstruction of the observed data y test , where Ψ T represents the transpose of the principal component analysis PCA forward transformation matrix Ψ.
本发明的效果可以通过如下仿真实验具体说明:Effect of the present invention can be specified by following simulation experiments:
1、仿真条件:1. Simulation conditions:
1)仿真实验所用的编程平台为Pycharm v2016;1) The programming platform used in the simulation experiment is Pycharm v2016;
2)仿真实验所用的自然图像数据来自标准训练、测试数据集;2) The natural image data used in the simulation experiment comes from the standard training and testing data sets;
3)仿真实验所用的训练图像块大小为25×25,训练样本数n为52650;3) The size of the training image block used in the simulation experiment is 25×25, and the number of training samples n is 52650;
4)仿真实验中,采用峰值信噪比PSNR指标来评价压缩感知实验结果,峰值信噪比PSNR定义为:4) In the simulation experiment, the peak signal-to-noise ratio PSNR index is used to evaluate the compressive sensing experiment results, and the peak signal-to-noise ratio PSNR is defined as:
其中,MAXi和MSEi为重建出来的高分辨率自然图像Img的最大像素值和均方误差,N为像素个数。Among them, MAX i and MSE i are the maximum pixel value and mean square error of the reconstructed high-resolution natural image Img, and N is the number of pixels.
2、仿真内容:2. Simulation content:
仿真1,采用TVAL3方法,对自然图像Barbara在压缩率为0.25时进行重建,其重建结果如图5所示。In simulation 1, the TVAL3 method is used to reconstruct the natural image Barbara when the compression rate is 0.25, and the reconstruction results are shown in Figure 5.
仿真2,采用Recon-Net方法,对自然图像Barbara在压缩率为0.25时进行重建,其重建结果如图6所示。In simulation 2, the Recon-Net method is used to reconstruct the natural image Barbara at a compression rate of 0.25, and the reconstruction results are shown in Figure 6.
仿真3,采用本发明方法,对自然图像Barbara在压缩率为0.25时进行重建,其重建结果如图7所示。In simulation 3, the method of the present invention is used to reconstruct the natural image Barbara when the compression ratio is 0.25, and the reconstruction result is shown in FIG. 7 .
从图5—图7所示的自然图像Barbara重建结果可以看出,本发明重建出来的图像比其他方法重建出来的图像更清晰,图像边缘更锐利,视觉效果更好。It can be seen from the reconstruction results of the natural image Barbara shown in Fig. 5-Fig. 7 that the image reconstructed by the present invention is clearer, the edges of the image are sharper, and the visual effect is better than those reconstructed by other methods.
将现有的TVAL3方法、NLR-CS方法、Recon-Net方法和本发明方法分别对自然图像Barbara进行重建仿真,得到的峰值信噪比PSNR,如表1.所示。The existing TVAL3 method, NLR-CS method, Recon-Net method and the method of the present invention are respectively used to reconstruct and simulate the natural image Barbara, and the obtained peak signal-to-noise ratio PSNR is shown in Table 1.
表1不同重建方法的PSNR值Table 1 PSNR values of different reconstruction methods
从表1可以看出,本发明的峰值信噪比PSNR比现有的TVAL3方法在压缩率为0.25的时候高3.73dB,比现有的Recon-Net要高出2.00dB。It can be seen from Table 1 that the PSNR of the present invention is 3.73dB higher than that of the existing TVAL3 method when the compression rate is 0.25, and 2.00dB higher than that of the existing Recon-Net.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710306725.7A CN107154064B (en) | 2017-05-04 | 2017-05-04 | Natural image compressed sensing method for reconstructing based on depth sparse coding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710306725.7A CN107154064B (en) | 2017-05-04 | 2017-05-04 | Natural image compressed sensing method for reconstructing based on depth sparse coding |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107154064A true CN107154064A (en) | 2017-09-12 |
CN107154064B CN107154064B (en) | 2019-07-23 |
Family
ID=59793689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710306725.7A Active CN107154064B (en) | 2017-05-04 | 2017-05-04 | Natural image compressed sensing method for reconstructing based on depth sparse coding |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107154064B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107610192A (en) * | 2017-09-30 | 2018-01-19 | 西安电子科技大学 | Adaptive observation compressed sensing image reconstructing method based on deep learning |
CN108629409A (en) * | 2018-04-28 | 2018-10-09 | 中国科学院计算技术研究所 | A kind of Processing with Neural Network system reducing IO expenses based on principal component analysis |
CN108629410A (en) * | 2018-04-28 | 2018-10-09 | 中国科学院计算技术研究所 | Based on principal component analysis dimensionality reduction and/or rise the Processing with Neural Network method tieed up |
CN110097497A (en) * | 2019-05-14 | 2019-08-06 | 电子科技大学 | Multi-scale image transformation and inverse transformation method based on residual multismoothlets |
CN110381313A (en) * | 2019-07-08 | 2019-10-25 | 东华大学 | Video compress sensing reconstructing method based on LSTM network Yu the blind assessment of image group quality |
CN110717949A (en) * | 2018-07-11 | 2020-01-21 | 天津工业大学 | Interference hyperspectral image sparse reconstruction based on TROMP |
CN113034414A (en) * | 2021-03-22 | 2021-06-25 | 上海交通大学 | Image reconstruction method, system, device and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080028474A1 (en) * | 1999-07-29 | 2008-01-31 | Intertrust Technologies Corp. | Systems and Methods for Watermarking Software and Other Media |
CN102722896A (en) * | 2012-05-22 | 2012-10-10 | 西安电子科技大学 | Adaptive compressed sensing-based non-local reconstruction method for natural image |
CN105430416A (en) * | 2015-12-04 | 2016-03-23 | 四川大学 | A Fingerprint Image Compression Method Based on Adaptive Sparse Field Coding |
CN106530321A (en) * | 2016-10-28 | 2017-03-22 | 南方医科大学 | Multi-graph image segmentation based on direction and scale descriptors |
-
2017
- 2017-05-04 CN CN201710306725.7A patent/CN107154064B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080028474A1 (en) * | 1999-07-29 | 2008-01-31 | Intertrust Technologies Corp. | Systems and Methods for Watermarking Software and Other Media |
CN102722896A (en) * | 2012-05-22 | 2012-10-10 | 西安电子科技大学 | Adaptive compressed sensing-based non-local reconstruction method for natural image |
CN105430416A (en) * | 2015-12-04 | 2016-03-23 | 四川大学 | A Fingerprint Image Compression Method Based on Adaptive Sparse Field Coding |
CN106530321A (en) * | 2016-10-28 | 2017-03-22 | 南方医科大学 | Multi-graph image segmentation based on direction and scale descriptors |
Non-Patent Citations (1)
Title |
---|
王良君等: "多稀疏空间下的压缩感知图像重构", 《西安电子科技大学学报》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107610192A (en) * | 2017-09-30 | 2018-01-19 | 西安电子科技大学 | Adaptive observation compressed sensing image reconstructing method based on deep learning |
CN107610192B (en) * | 2017-09-30 | 2021-02-12 | 西安电子科技大学 | Self-adaptive observation compressed sensing image reconstruction method based on deep learning |
CN108629409A (en) * | 2018-04-28 | 2018-10-09 | 中国科学院计算技术研究所 | A kind of Processing with Neural Network system reducing IO expenses based on principal component analysis |
CN108629410A (en) * | 2018-04-28 | 2018-10-09 | 中国科学院计算技术研究所 | Based on principal component analysis dimensionality reduction and/or rise the Processing with Neural Network method tieed up |
CN108629409B (en) * | 2018-04-28 | 2020-04-10 | 中国科学院计算技术研究所 | Neural network processing system for reducing IO overhead based on principal component analysis |
CN108629410B (en) * | 2018-04-28 | 2021-01-22 | 中国科学院计算技术研究所 | Neural network processing method based on principal component analysis dimension reduction and/or dimension increase |
CN110717949A (en) * | 2018-07-11 | 2020-01-21 | 天津工业大学 | Interference hyperspectral image sparse reconstruction based on TROMP |
CN110097497A (en) * | 2019-05-14 | 2019-08-06 | 电子科技大学 | Multi-scale image transformation and inverse transformation method based on residual multismoothlets |
CN110381313A (en) * | 2019-07-08 | 2019-10-25 | 东华大学 | Video compress sensing reconstructing method based on LSTM network Yu the blind assessment of image group quality |
CN110381313B (en) * | 2019-07-08 | 2021-08-31 | 东华大学 | Video Compressed Sensing Reconstruction Method Based on LSTM Network and Blind Evaluation of Image Group Quality |
CN113034414A (en) * | 2021-03-22 | 2021-06-25 | 上海交通大学 | Image reconstruction method, system, device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN107154064B (en) | 2019-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107154064B (en) | Natural image compressed sensing method for reconstructing based on depth sparse coding | |
CN101950365B (en) | Multi-task super-resolution image reconstruction method based on KSVD dictionary learning | |
CN103400402B (en) | Based on the sparse compressed sensing MRI image rebuilding method of low-rank structure | |
CN109697697B (en) | Reconstruction method of spectral imaging system based on optimization-inspired neural network | |
CN106952317B (en) | Hyperspectral image reconstruction method based on structure sparsity | |
CN102722866B (en) | Compressive sensing method based on principal component analysis | |
CN102156875A (en) | Image super-resolution reconstruction method based on multitask KSVD (K singular value decomposition) dictionary learning | |
CN105631807B (en) | The single-frame image super-resolution reconstruction method chosen based on sparse domain | |
CN103295198B (en) | Based on redundant dictionary and the sparse non-convex compressed sensing image reconstructing method of structure | |
CN103810755B (en) | Compressed sensing spectrum picture method for reconstructing based on documents structured Cluster rarefaction representation | |
CN108734675A (en) | Image recovery method based on mixing sparse prior model | |
CN109887050B (en) | Coded aperture spectral imaging method based on adaptive dictionary learning | |
CN106097278A (en) | The sparse model of a kind of multidimensional signal, method for reconstructing and dictionary training method | |
CN110490804A (en) | A method of based on the generation super resolution image for generating confrontation network | |
CN107784628A (en) | A kind of super-resolution implementation method based on reconstruction optimization and deep neural network | |
CN103136728B (en) | Based on the image super-resolution method of dictionary learning and non local total variance | |
CN115512073A (en) | 3D texture mesh reconstruction method based on multi-stage training under differentiable rendering | |
CN111127325A (en) | Satellite video super-resolution reconstruction method and system based on cyclic neural network | |
Geng et al. | HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction | |
CN106296583B (en) | A super-resolution reconstruction method for noisy hyperspectral images based on block group sparse coding and pairwise mapping | |
CN115660979A (en) | Attention mechanism-based double-discriminator image restoration method | |
CN117422620A (en) | Infrared image super-resolution reconstruction method oriented to real scene based on deep learning | |
CN114581539A (en) | A compressed sensing image reconstruction method, device, storage medium and system | |
Zeng et al. | Image reconstruction of IoT based on parallel CNN | |
Sun et al. | Two-stage deep single-image super-resolution with multiple blur kernels for Internet of Things |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |