[go: up one dir, main page]

CN107154047A - Multi-mode brain tumor image blend dividing method and device - Google Patents

Multi-mode brain tumor image blend dividing method and device Download PDF

Info

Publication number
CN107154047A
CN107154047A CN201710270990.4A CN201710270990A CN107154047A CN 107154047 A CN107154047 A CN 107154047A CN 201710270990 A CN201710270990 A CN 201710270990A CN 107154047 A CN107154047 A CN 107154047A
Authority
CN
China
Prior art keywords
mrow
msub
image
segmentation
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710270990.4A
Other languages
Chinese (zh)
Inventor
童云飞
李锵
关欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710270990.4A priority Critical patent/CN107154047A/en
Publication of CN107154047A publication Critical patent/CN107154047A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30096Tumor; Lesion

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及医疗器械、医学影像,为提出一种改进的多模式脑肿瘤图像混合分割算法,采用FFCM提取脑肿瘤区域,使用混合水平集算法进行修正肿瘤区域存在的边界问题。从而使FFCM算法和水平集算法能够更加有效地应用到MRI脑肿瘤图像中。本发明采用的技术方案是,多模式脑肿瘤图像混合分割方法,首先输入三种模式包括T1C、T2和FLAIR的MRI图像,采用中值滤波对图像进行滤波处理和初始分割得到预处理图像,之后采用线性融合;再对融合图像进行FFCM聚类分割,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域进行混合水平集分割。本发明主要应用于医学影像的获取与处理。

The invention relates to medical equipment and medical imaging. In order to propose an improved multi-mode brain tumor image hybrid segmentation algorithm, FFCM is used to extract the brain tumor area, and a mixed level set algorithm is used to correct the boundary problem existing in the tumor area. Therefore, the FFCM algorithm and the level set algorithm can be more effectively applied to MRI brain tumor images. The technical solution adopted by the present invention is, the multi-mode brain tumor image hybrid segmentation method, first input the MRI images of three modes including T1C, T2 and FLAIR, and use median filtering to filter the image and perform initial segmentation to obtain the pre-processed image, and then Linear fusion is adopted; then FFCM clustering is performed on the fused image, and the regions with larger gray values are automatically extracted, and the obtained under-segmented tumor regions are subjected to mixed level set segmentation. The invention is mainly applied to the acquisition and processing of medical images.

Description

多模式脑肿瘤图像混合分割方法和装置Method and device for hybrid segmentation of multi-mode brain tumor images

技术领域technical field

本发明涉及医疗器械,是医学影像领域中的一个重要方面。它在脑肿瘤切割、脑肿瘤分类、脑肿瘤识别等领域具有重要作用。具体讲,涉及改进的多模式脑肿瘤图像混合分割方法和装置。The invention relates to medical equipment, which is an important aspect in the field of medical imaging. It plays an important role in the fields of brain tumor cutting, brain tumor classification, and brain tumor identification. Specifically, it relates to an improved multi-mode brain tumor image hybrid segmentation method and device.

背景技术Background technique

近年来,脑肿瘤发病率呈上升趋势,约占全身肿瘤的5%,占儿童肿瘤的70%。2015年,仅在美国确诊的新发脑肿瘤病例大约23000例。细胞的不可控和无限生长导致脑肿瘤的发生。若不对脑肿瘤进行早期诊断和治疗,可能会导致永久性脑损伤,甚至死亡。核磁共振成像(Magnetic Resonance Imaging,MRI)可用于检测身体组织的异常变化,是确定脑肿瘤治疗方案的必要手段,在所有治疗方法中,任何有关肿瘤位置和大小的信息都是非常重要的,但是由于脑肿瘤形状复杂,大小和位置具有随机性,类型差异大等因素,导致目前还没有一种分割算法能够满足临床的需要,实时性也无法达到要求,不同专家手动分割脑肿瘤图像的结果也有很大差异,而且人工成本较高。因此,研究准确的全自动脑肿瘤分割算法是非常重要的。In recent years, the incidence of brain tumors has been on the rise, accounting for about 5% of systemic tumors and 70% of childhood tumors. In 2015, approximately 23,000 new cases of brain tumors were diagnosed in the United States alone. The uncontrolled and unlimited growth of cells leads to the development of brain tumors. Brain tumors, if not diagnosed and treated early, can cause permanent brain damage and even death. Magnetic Resonance Imaging (MRI) can be used to detect abnormal changes in body tissue and is necessary to determine treatment options for brain tumors. In all treatments, any information about the location and size of the tumor is very important, but Due to the complex shape of brain tumors, randomness in size and location, and large differences in types, there is currently no segmentation algorithm that can meet clinical needs, and the real-time performance cannot meet the requirements. Different experts manually segment brain tumor images. There is a big difference, and the labor cost is high. Therefore, it is very important to study accurate automatic brain tumor segmentation algorithms.

脑肿瘤自动分割技术一直以来都是研究热门方向,脑肿瘤图像的分割方法分为手动分割、半自动分割和全自动分割,具体分割算法中又分为阈值算法、聚类算法和形变模型算法等。阈值算法最早用于图像分割,针对脑肿瘤图像的问题,OTSU算法是一种自动适应阈值算法,能够有效避免固定阈值带来的误差;一种用于多区域图像分割的局部模糊阈值(Fuzzy threshold,FTH)算法针对于脑肿瘤这种复杂的图像也有一定的效果,由于脑肿瘤图像的复杂性和阈值算法对像素空域信息考虑不足,导致阈值类算法分割不能有效的解决脑肿瘤分割问题。Brain tumor automatic segmentation technology has always been a hot research direction. Brain tumor image segmentation methods are divided into manual segmentation, semi-automatic segmentation and fully automatic segmentation. Specific segmentation algorithms are divided into threshold algorithm, clustering algorithm and deformation model algorithm. The threshold algorithm was first used in image segmentation. For the problem of brain tumor images, the OTSU algorithm is an automatic adaptive threshold algorithm that can effectively avoid errors caused by fixed thresholds; a local fuzzy threshold (Fuzzy threshold) for multi-region image segmentation , FTH) algorithm also has a certain effect on complex images such as brain tumors. Due to the complexity of brain tumor images and the insufficient consideration of pixel spatial information by threshold algorithms, threshold algorithm segmentation cannot effectively solve the problem of brain tumor segmentation.

模糊聚类是适合脑肿瘤图像分割的一类算法,尤其是模糊C均值(Fuzzy C-mean,FCM)算法,具有方法实现简单的优势,但由于医学图像信息复杂,边缘不清晰,因此,种子点选取对聚类结果影响很大,且FCM算法方法难以利用图像的空域信息,本身计算复杂。于是提出快速FCM(Fast FCM,FFCM)算法改进计算速度的问题;针对空间信息不足的问题,使用空间FCM(Spatial FCM,SFCM)算法分割图像,有效利用空间信息之间的相关性,但是SFCM算法计算速度无法满足医学图像要求的实时性;水平集算法可以有效的处理各种轮廓问题,将模糊聚类与水平集方法相结合(Fuzzy Clustering with Level Set Methods,FCLSM)算法有效解决了水平集边缘问题,但是FCLSM算法存在实时性和容易陷入局部最优的问题。Fuzzy clustering is a kind of algorithm suitable for brain tumor image segmentation, especially the fuzzy C-mean (FCM) algorithm, which has the advantage of simple method implementation, but due to the complexity of medical image information and unclear edges, therefore, the seed Point selection has a great influence on the clustering results, and the FCM algorithm method is difficult to use the spatial information of the image, and the calculation itself is complicated. Therefore, the fast FCM (Fast FCM, FFCM) algorithm is proposed to improve the calculation speed; for the problem of insufficient spatial information, the spatial FCM (Spatial FCM, SFCM) algorithm is used to segment images, and the correlation between spatial information is effectively used, but the SFCM algorithm The calculation speed cannot meet the real-time requirements of medical images; the level set algorithm can effectively deal with various contour problems, and the combination of fuzzy clustering and level set methods (Fuzzy Clustering with Level Set Methods, FCLSM) algorithm can effectively solve the level set edge problem, but the FCLSM algorithm has the problem of real-time and easy to fall into local optimum.

水平集算法是属于形变模型算法的一类,基于水平集分割算法也广泛应用于脑肿瘤分割,但是由于脑肿瘤组织灰度不均匀,并且脑肿瘤组织之间经常没有明显的边界,采用这类算法容易出现边缘泄露的问题。距离正则化水平集算法(Distance RegularizedLevel Set Evolution,DRLSE)是一个有效的算法,该算法中的距离正则化效应消除了对重新初始化的需要,从而避免其引起的局部误差;其他方法还有混合水平集算法。该方法使用对象边界和区域信息来实现鲁棒和准确的分割。边界信息可帮助检测目标对象的精确位置,且区域信息可防止边界泄漏,但是水平集算法无法解决容易陷入局部最优和对初始值强烈依赖的问题。The level set algorithm is a kind of deformation model algorithm. The segmentation algorithm based on the level set is also widely used in the segmentation of brain tumors. However, due to the uneven gray level of brain tumor tissues and the lack of obvious boundaries between brain tumor tissues, this method is used to The algorithm is prone to the problem of edge leakage. The distance regularized level set algorithm (Distance Regularized Level Set Evolution, DRLSE) is an effective algorithm. The distance regularization effect in this algorithm eliminates the need for reinitialization, thereby avoiding the local error caused by it; other methods have mixed levels set algorithm. The method uses object boundaries and region information to achieve robust and accurate segmentation. Boundary information can help detect the precise location of the target object, and region information can prevent boundary leakage, but the level set algorithm cannot solve the problem of being easily trapped in local optimum and strongly dependent on the initial value.

发明内容Contents of the invention

为克服现有技术的不足,本发明旨在提出一种改进的多模式脑肿瘤图像混合分割算法,采用FFCM提取脑肿瘤区域,使用混合水平集算法进行修正肿瘤区域存在的边界问题。从而使FFCM算法和水平集算法能够更加有效地应用到MRI脑肿瘤图像中。本发明采用的技术方案是,多模式脑肿瘤图像混合分割方法,首先输入三种模式包括T1C、T2和FLAIR的MRI图像,采用中值滤波对图像进行滤波处理和初始分割得到预处理图像,之后采用线性融合;再对融合图像进行FFCM聚类分割,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域进行混合水平集分割。In order to overcome the deficiencies of the prior art, the present invention aims to propose an improved mixed segmentation algorithm for multi-mode brain tumor images, which uses FFCM to extract brain tumor regions, and uses a mixed level set algorithm to correct the boundary problems existing in the tumor regions. Therefore, the FFCM algorithm and the level set algorithm can be more effectively applied to MRI brain tumor images. The technical solution adopted by the present invention is, the multi-mode brain tumor image hybrid segmentation method, first input the MRI images of three modes including T1C, T2 and FLAIR, and use median filtering to filter the image and perform initial segmentation to obtain the pre-processed image, and then Linear fusion is adopted; then FFCM clustering is performed on the fused image, and the regions with larger gray values are automatically extracted, and the obtained under-segmented tumor regions are subjected to mixed level set segmentation.

FFCM聚类分割具体步骤是,将数据通过模糊C均值理论分为c类,对于一幅M×N图像,设{hi,i=1,2,…,n},n=M×N,hi是图像直方图中的像素强度值构成的集合,其中M和N是图像的长和宽,{vj,j=1,2,…,c}是聚类中心构成的集合,且μj(hi)是hi隶属于j类的隶属函数,||·||代表2范数,b是一个大于1常数,则:The specific steps of FFCM clustering and segmentation are to divide the data into c categories through the fuzzy C-means theory. For an M×N image, set {h i ,i=1,2,…,n}, n=M×N, h i is a set of pixel intensity values in the image histogram, where M and N are the length and width of the image, {v j ,j=1,2,…,c} is a set of cluster centers, and μ j (h i ) is the membership function that h i belongs to class j, ||·|| represents the 2 norm, b is a constant greater than 1, then:

迭代式(3)(4)若满足迭代终止条件,t>T或则停止,其中t表示迭代次数,ε是停止条件,T代表最大迭代次数,算法结束后,按最大隶属度对像素进行分类,若μj(hi)>μj(hk),则将hi归为第j类区域,k=1,2,...,c;i≠k。If iterative formula (3) (4) satisfies the iteration termination condition, t>T or Then stop, where t represents the number of iterations, ε is the stop condition, and T represents the maximum number of iterations. After the algorithm ends, the pixels are classified according to the maximum degree of membership. If μ j (h i )>μ j (h k ), then h i is classified as the jth type of area, k=1,2,...,c; i≠k.

混合水平集分割具体步骤是,嵌入函数φ的零集用于表示活动轮廓C={X|φ(X)=0},轮廓内/外的点具有正/负φ值,所提出的需要最小化的函数定义:The specific steps of hybrid level set segmentation are that the zero set of embedding function φ is used to represent the active contour C={X|φ(X)=0}, the points inside/outside the contour have positive/negative φ values, and the proposed minimum The simplified function definition:

式(5)中I是待分割的图像,是与图像梯度相关的边界特征图,是梯度算子,H(φ)为赫维赛德函数,Ω为图像域,α和β是预定义权重以平衡两项,μ是指示目标对象的灰度级的下限的预定义参数;In formula (5), I is the image to be segmented, is the boundary feature map associated with the image gradient, is the gradient operator, H(φ) is the Heaviside function, Ω is the image domain, α and β are predefined weights to balance the two items, μ is a predefined parameter indicating the lower limit of the gray level of the target object;

其中,为指向曲线外部的法向量,因此活动轮廓的显性曲线进化偏微分方程为in, is the normal vector pointing to the outside of the curve, so the dominant curve evolution partial differential equation of the active contour is

式中和曲率<·,·>为内积;由于只有曲线的几何变化在分割中是感兴趣的,所以从式(6)可以注意到曲线上的所有点都在法线方向上移动,式(6)第一项是描述目标对象内部的曲线部分的扩展运动和外部部分的收缩运动的传播项,第二项是平流项,描述由g的梯度引起的向量场中的曲线移动,以将曲线吸引到目标对象的边界,第三项描述由梯度特征映射g加权的曲率流,作用是平滑边界支持弱的部分的曲线;In the formula and curvature <·,·> is the inner product; since only the geometric change of the curve is of interest in the segmentation, it can be noticed from equation (6) that all points on the curve move in the normal direction, equation (6) the first One term is a propagation term describing the expanding motion of the curved part inside the target object and the contracting motion of the outer part, and the second term is an advective term describing the movement of the curve in the vector field caused by the gradient of g to attract the curve to the target The boundary of the object, the third item describes the curvature flow weighted by the gradient feature map g, which is used to smooth the curve of the weak part of the boundary support;

在水平集中,描述相同的曲线变化,若φ是有符号距离函数,即水平集嵌入函数随时间变化的导数为In horizontal concentration, with Describe the same curve change, if φ is a signed distance function, that is The time-varying derivative of the level set embedding function is

g是递减函数,式中c为控制斜率。g is a decreasing function, where c is the control slope.

多模式脑肿瘤图像混合分割装置,设置有计算机,用于处理T1C、T2和FLAIR的MRI图像,计算机包括如下模块:采用中值滤波对图像进行滤波处理和初始分割模块,得到预处理图像;之后预处理图像输入线性融合模块;融合后图像输入FFCM聚类分割模块,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域;再输入进行混合水平集分割模块处理,得到最终结果。The multi-mode brain tumor image hybrid segmentation device is equipped with a computer for processing T1C, T2 and FLAIR MRI images. The computer includes the following modules: using median filtering to perform filtering processing on the images and an initial segmentation module to obtain pre-processed images; The preprocessed image is input into the linear fusion module; the fused image is input into the FFCM clustering and segmentation module, and the area with a large gray value is automatically extracted to obtain the tumor under-segmented area; then input to the mixed level set segmentation module to obtain the final result.

本发明的特点及有益效果是:Features and beneficial effects of the present invention are:

本发明通过改进的多模式脑肿瘤图像混合分割算法来分割带有脑肿瘤的MRI图像,与一些经典的方法相比较,其优势主要体现在:The present invention uses an improved multi-mode brain tumor image hybrid segmentation algorithm to segment MRI images with brain tumors. Compared with some classic methods, its advantages are mainly reflected in:

1)新颖性:首次使用FFCM算法和混合水平集算法来分割带有脑肿瘤的MRI图像,根据MRI脑肿瘤图像的特性,结合FFCM算法和混合水平集的优势,达到对脑肿瘤图像快速分割的目的。1) Novelty: For the first time, the FFCM algorithm and mixed level set algorithm are used to segment MRI images with brain tumors. According to the characteristics of MRI brain tumor images, combined with the advantages of FFCM algorithm and mixed level set, the rapid segmentation of brain tumor images is achieved. Purpose.

2)有效性:使用FFCM可以快速有效的得到欠分割的区域,欠分割区域输入到混合水平集中能够加快收敛边界,从而有效地克服算法的缺陷,同时提高了准确性。2) Effectiveness: Using FFCM can quickly and effectively obtain under-segmented regions, and inputting under-segmented regions into the mixed level set can speed up the convergence boundary, thereby effectively overcoming the defects of the algorithm and improving accuracy.

3)实用性:现在的分割算法由于都难以达到实用性和实时性的要求,本发明结合混合水平集算法和FFCM算法之间的合理部分,从而克服一些算法的缺陷,一定程度上增加量算法的实用性。并且为自动分割脑肿瘤技术做了进一步的探讨。3) Practicability: the current segmentation algorithm is difficult to meet the requirements of practicability and real-time performance. The present invention combines the reasonable part between the mixed level set algorithm and the FFCM algorithm, thereby overcoming the defects of some algorithms and increasing the amount of algorithm to a certain extent. practicality. And further discussion is made for the automatic segmentation of brain tumors.

附图说明:Description of drawings:

图1是本发明改进的多模式脑肿瘤图像混合分割算法分割MRI脑肿瘤的流程图。Fig. 1 is a flow chart of the improved multi-mode brain tumor image hybrid segmentation algorithm of the present invention to segment MRI brain tumors.

图2是本发明算法在10个脑肿瘤图像的相似系数(Dice)。Fig. 2 is the similarity coefficient (Dice) of the algorithm of the present invention in 10 brain tumor images.

具体实施方式detailed description

1基于直方图的快速FCM理论1 Fast FCM theory based on histogram

FFCM的核心思想是像素强度值寻求合适的隶属度和聚类中心,使得聚类内耗费函数的方差和迭代误差最小,耗费函数的值是像素到聚类中心2范数测度的加权累积和。FFCM聚类分割算法是将数据通过模糊C均值理论分为c类,对于一幅M×N图像,假设{hi,i=1,2,…,n},n=M×N,hi是图像直方图中的像素强度值构成的集合。{vj,j=1,2,…,c}是聚类中心构成的集合,且μj(hi)是hi隶属于j类的隶属函数,所以FFCM的目标函数为The core idea of FFCM is to find the appropriate membership degree and cluster center for the pixel intensity value, so that the variance and iteration error of the cost function within the cluster are minimized. The value of the cost function is the weighted cumulative sum of the 2-norm measure from the pixel to the cluster center. The FFCM clustering and segmentation algorithm is to divide the data into c categories through the fuzzy C-means theory. For an M×N image, suppose {h i ,i=1,2,…,n}, n=M×N, h i is a collection of pixel intensity values in the image histogram. {v j ,j=1,2,…,c} is a set of cluster centers, and μ j (h i ) is the membership function of h i belonging to class j, so the objective function of FFCM is

and

式中,||·||代表2范数,b是一个大于1常数,控制聚类结果的模糊度。为计算Jf的最小值,使得In the formula, ||·|| represents the 2-norm, and b is a constant greater than 1, which controls the ambiguity of the clustering results. To calculate the minimum value of J f such that

从式(1)(2)可推导出It can be deduced from formula (1) (2)

迭代式(3)(4)若满足迭代终止条件,t>T或则停止,其中t表示迭代次数,ε是停止条件,T代表最大迭代次数。算法结束后,按最大隶属度对像素进行分类,若μj(hi)>μj(hk),则将hi归为第j类区域,k=1,2,...,c;i≠k。If iterative formula (3) (4) satisfies the iteration termination condition, t>T or Then stop, where t represents the number of iterations, ε is the stopping condition, and T represents the maximum number of iterations. After the algorithm ends, classify the pixels according to the maximum degree of membership, if μ j (h i )>μ j (h k ), then h i will be classified as the jth type of area, k=1,2,...,c ; i≠k.

2混合模型水平集原理2 Mixed model level set principle

Osher和Sethian提出水平集方法,将低维曲线表示为高维曲面的零水平集。任意时刻,只要知道φ就可求出其零水平集曲线,其中φ(X)为水平集函数。若要处理曲面的变化,则只要将曲面表示为更高一维空间的零水平集即可实现。与粒子模型和参数模型相比,水平集模型具有显著的优点,概念和数值实现适应于解决任何尺寸问题;可以容易地确定活动轮廓内部和外部的区域。Osher and Sethian proposed a level set method to represent low-dimensional curves as zero-level sets of high-dimensional surfaces. At any time, as long as φ is known, its zero level set curve can be obtained, where φ(X) is the level set function. To deal with the variation of the surface, it is only necessary to represent the surface as a zero-level set in a higher one-dimensional space. Level set models have significant advantages over particle and parametric models, and the concept and numerical implementation are adaptable to solve problems of any size; regions inside and outside active contours can be easily determined.

由于脑肿瘤的MRI图像极为复杂,本发明使用一种基于水平集的分割方法来整合边界问题和区域信息,同时弥补FFCM算法遗留的边界问题。在描述模型之前,需要说明几个参数,嵌入函数φ的零集用于表示活动轮廓C={X|φ(X)=0},轮廓内/外的点具有正/负φ值。所提出的需要最小化的函数定义Since the MRI images of brain tumors are extremely complex, the present invention uses a segmentation method based on a level set to integrate boundary problems and region information, and at the same time make up for the boundary problems left by the FFCM algorithm. Before describing the model, several parameters need to be explained. The zero set of the embedding function φ is used to represent the active contour C={X|φ(X)=0}, and points inside/outside the contour have positive/negative φ values. The proposed function definition that needs to be minimized

式(5)中I是待分割的图像,是与图像梯度相关的边界特征图,其中g是递减函数,式中a为控制斜率,H(φ)为赫维赛德函数,Ω为图像域,α和β是预定义权重以平衡两项。μ是指示目标对象的灰度级的下限的预定义参数。是梯度算子。In formula (5), I is the image to be segmented, is the boundary feature map associated with the image gradient, where g is a decreasing function, where a is the control slope, H(φ) is the Heaviside function, Ω is the image domain, and α and β are predefined weights to balance the two terms. μ is a predefined parameter indicating the lower limit of the gray level of the target object. is the gradient operator.

其中,为指向曲线外部的法向量。因此活动轮廓的显性曲线进化偏微分方程为in, is the normal vector pointing outside the curve. Thus the partial differential equation for the dominant curve evolution of the activity profile is

式中和曲率<·,·>为内积。由于只有曲线的几何变化在分割中是感兴趣的,所以从式(6)可以注意到曲线上的所有点都在法线方向上移动。式(6)第一项是描述目标对象内部的曲线部分的扩展运动和外部部分的收缩运动的传播项,第二项是平流项,描述由g的梯度引起的向量场中的曲线移动,以将曲线吸引到目标对象的边界,第三项描述由梯度特征映射g加权的曲率流,作用是平滑边界支持弱的部分的曲线。In the formula and curvature <·,·> is the inner product. Since only the geometric changes of the curve are of interest in segmentation, it can be noticed from Equation (6) that all points on the curve are shifted in the normal direction. The first term of Equation (6) is the propagation term describing the extension motion of the curve part inside the target object and the contraction motion of the outer part, and the second term is the advection term, which describes the curve movement in the vector field caused by the gradient of g, with Attracts the curve to the boundary of the target object, and the third term describes the curvature flow weighted by the gradient feature map g, which acts to smooth the curve in the part where the boundary support is weak.

在水平集中,描述相同的曲线变化,若φ是有符号距离函数,即水平集嵌入函数随时间变化的导数为In horizontal concentration, with Describe the same curve change, if φ is a signed distance function, that is The time-varying derivative of the level set embedding function is

表1Table 1

表1是本发明算法对47幅脑肿瘤图像处理的结果,其中Jaccard系数、相似系数(Dice)和recall是最常用的评价标准。Table 1 shows the results of processing 47 brain tumor images by the algorithm of the present invention, among which Jaccard coefficient, similarity coefficient (Dice) and recall are the most commonly used evaluation criteria.

由于MRI脑肿瘤图像本身质量不高,不能用于直接分割,所以本发明首先采用图1所示混合分割算法框架,由于三种模态图像可以为肿瘤分割提供部分不相关且互补的信息,本发明首先输入三种模式的MRI图像包括T1C、T2和FLAIR。由于图像本身存在一定的噪声,采用中值滤波对图像进行滤波处理和初始分割得到预处理图像,之后采用线性融合;融合图像进行FFCM聚类算法分割,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域进行混合水平集分割,最后评价分割结果。FFCM聚类算法与混合模型水平集算法结合,一方面加快了水平集本身算法的速度,同时也改进了混合模型水平集算法对初始值依赖的不足。为测试出合适的融合比例,本发明通过多种比例测试对比,最后得出较合适的比例为FLAIR:T2:T1C=5:4:1。Since the MRI brain tumor image itself is not of high quality and cannot be used for direct segmentation, the present invention first uses the hybrid segmentation algorithm framework shown in Figure 1. Since the three modal images can provide partially irrelevant and complementary information for tumor segmentation, this paper The invention first inputs three modes of MRI images including T1C, T2 and FLAIR. Due to the presence of certain noise in the image itself, the median filter is used to filter the image and the initial segmentation to obtain the preprocessed image, and then linear fusion is used; the fused image is segmented by the FFCM clustering algorithm, and the area with a large gray value is automatically extracted. The obtained tumor under-segmented regions are segmented by mixed level set, and finally the segmentation results are evaluated. The combination of the FFCM clustering algorithm and the mixed model level set algorithm not only speeds up the speed of the level set algorithm itself, but also improves the lack of dependence of the mixed model level set algorithm on the initial value. In order to test a suitable fusion ratio, the present invention compares various ratios, and finally finds that the more suitable ratio is FLAIR:T2:T1C=5:4:1.

Claims (4)

1.一种多模式脑肿瘤图像混合分割方法,其特征是,首先输入三种模式包括T1C、T2和FLAIR的MRI图像,采用中值滤波对图像进行滤波处理和初始分割得到预处理图像,之后采用线性融合;再对融合图像进行FFCM聚类分割,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域进行混合水平集分割。1. A multi-mode brain tumor image hybrid segmentation method is characterized in that, at first three kinds of modes are input and comprise the MRI image of T1C, T2 and FLAIR, adopt median filtering to carry out filter processing and initial segmentation to image and obtain preprocessing image, afterwards Linear fusion is adopted; then FFCM clustering is performed on the fused image, and the regions with larger gray values are automatically extracted, and the obtained under-segmented tumor regions are subjected to mixed level set segmentation. 2.如权利要求1所述的多模式脑肿瘤图像混合分割方法,其特征是,FFCM聚类分割具体步骤是,将数据通过模糊C均值理论分为c类,对于一幅M×N图像,设{hi,i=1,2,…,n},n=M×N,hi是图像直方图中的像素强度值构成的集合,其中M和N是图像的长和宽,{vj,j=1,2,…,c}是聚类中心构成的集合,且μj(hi)是hi隶属于j类的隶属函数,||·||代表2范数,b是一个大于1常数,则:2. The multi-mode brain tumor image hybrid segmentation method as claimed in claim 1, wherein the specific step of FFCM clustering segmentation is to divide the data into c classes by fuzzy C-means theory, and for an M×N image, Let {h i ,i=1,2,...,n}, n=M×N, h i is a set of pixel intensity values in the image histogram, where M and N are the length and width of the image, {v j ,j=1,2,…,c} is a set of clustering centers, and μ j (h i ) is the membership function that hi belongs to class j, ||·|| represents the 2-norm, and b is A constant greater than 1, then: <mrow> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;mu;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>b</mi> </msup> <msub> <mi>h</mi> <mi>i</mi> </msub> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;mu;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>b</mi> </msup> </mrow> </mfrac> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>c</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;mu;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>b</mi> </msup> <msub> <mi>h</mi> <mi>i</mi> </msub> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>&amp;mu;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>b</mi> </msup> </mrow> </mfrac> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>c</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;mu;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mo>(</mo> <mi>b</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msup> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>c</mi> </munderover> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mo>(</mo> <mi>b</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msup> </mrow> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>c</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>&amp;mu;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>j</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mo>(</mo> <mi>b</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msup> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>c</mi> </munderover> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>v</mi> <mi>k</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mrow> <mo>(</mo> <mi>b</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msup> </mrow> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>n</mi> <mo>;</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>c</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> 迭代式(3)(4)若满足迭代终止条件,t>T或则停止,其中t表示迭代次数,ε是停止条件,T代表最大迭代次数,算法结束后,按最大隶属度对像素进行分类,若μj(hi)>μj(hk),则将hi归为第j类区域,k=1,2,...,c;i≠k。If iterative formula (3) (4) satisfies the iteration termination condition, t>T or Then stop, where t represents the number of iterations, ε is the stop condition, and T represents the maximum number of iterations. After the algorithm ends, the pixels are classified according to the maximum degree of membership. If μ j (h i )>μ j (h k ), then h i is classified as the jth type of area, k=1,2,...,c; i≠k. 混合水平集分割具体步骤是,嵌入函数φ的零集用于表示活动轮廓C={X|φ(X)=0},轮廓内/外的点具有正/负φ值,所提出的需要最小化的函数定义:The specific steps of hybrid level set segmentation are that the zero set of embedding function φ is used to represent the active contour C={X|φ(X)=0}, the points inside/outside the contour have positive/negative φ values, and the proposed minimum The simplified function definition: <mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;epsiv;</mi> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mi>&amp;alpha;</mi> <munder> <mo>&amp;Integral;</mo> <mi>&amp;Omega;</mi> </munder> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;Omega;</mi> <mo>+</mo> <mi>&amp;beta;</mi> <munder> <mo>&amp;Integral;</mo> <mi>&amp;Omega;</mi> </munder> <mi>g</mi> <mo>|</mo> <mo>&amp;dtri;</mo> <mi>H</mi> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>d</mi> <mi>&amp;Omega;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>M</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;epsiv;</mi> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mi>&amp;alpha;</mi> <munder> <mo>&amp;Integral;</mo> <mi>&amp;Omega;</mi> </munder> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;Omega;</mi> <mo>+</mo> <mi>&amp;beta;</mi> <munder> <mo>&amp;Integral;</mo> <mi>&amp;Omega;</mi> </munder> <mi>g</mi> <mo>|</mo> <mo>&amp;dtri;</mo> <mi>H</mi> <mrow> <mo>(</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>d</mi> <mi>&amp;Omega;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> 式(5)中I是待分割的图像,是与图像梯度相关的边界特征图,是梯度算子,H(φ)为赫维赛德函数,Ω为图像域,α和β是预定义权重以平衡两项,μ是指示目标对象的灰度级的下限的预定义参数;In formula (5), I is the image to be segmented, is the boundary feature map associated with the image gradient, is the gradient operator, H(φ) is the Heaviside function, Ω is the image domain, α and β are predefined weights to balance the two items, μ is a predefined parameter indicating the lower limit of the gray level of the target object; 其中,为指向曲线外部的法向量,因此活动轮廓的显性曲线进化偏微分方程为in, is the normal vector pointing to the outside of the curve, so the dominant curve evolution partial differential equation of the active contour is <mrow> <msub> <mi>C</mi> <mi>t</mi> </msub> <mo>=</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>-</mo> <mi>&amp;beta;</mi> <mo>&lt;</mo> <mo>&amp;dtri;</mo> <mi>g</mi> <mo>&amp;CenterDot;</mo> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>&gt;</mo> <mo>+</mo> <mi>&amp;beta;</mi> <mi>g</mi> <mi>&amp;kappa;</mi> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>C</mi> <mi>t</mi> </msub> <mo>=</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>-</mo> <mi>&amp;beta;</mi> <mo>&lt;</mo> <mo>&amp;dtri;</mo> <mi>g</mi> <mo>&amp;CenterDot;</mo> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>&gt;</mo> <mo>+</mo> <mi>&amp;beta;</mi> <mi>g</mi> <mi>&amp;kappa;</mi> <mover> <mi>N</mi> <mo>&amp;RightArrow;</mo> </mover> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> 式中和曲率<·,·>为内积;由于只有曲线的几何变化在分割中是感兴趣的,所以从式(6)可以注意到曲线上的所有点都在法线方向上移动,式(6)第一项是描述目标对象内部的曲线部分的扩展运动和外部部分的收缩运动的传播项,第二项是平流项,描述由g的梯度引起的向量场中的曲线移动,以将曲线吸引到目标对象的边界,第三项描述由梯度特征映射g加权的曲率流,作用是平滑边界支持弱的部分的曲线;In the formula and curvature <·,·> is the inner product; since only the geometric change of the curve is of interest in the segmentation, it can be noticed from equation (6) that all points on the curve move in the normal direction, equation (6) the first One term is a propagation term describing the expanding motion of the curved part inside the target object and the contracting motion of the outer part, and the second term is an advective term describing the movement of the curve in the vector field caused by the gradient of g to attract the curve to the target The boundary of the object, the third item describes the curvature flow weighted by the gradient feature map g, which is used to smooth the curve of the weak part of the boundary support; 在水平集中,描述相同的曲线变化,若φ是有符号距离函数,即水平集嵌入函数随时间变化的导数为In horizontal concentration, with Describe the same curve change, if φ is a signed distance function, that is The time-varying derivative of the level set embedding function is <mrow> <msub> <mi>&amp;phi;</mi> <mi>t</mi> </msub> <mo>=</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;beta;</mi> <mi>d</mi> <mi>i</mi> <mi>v</mi> <mrow> <mo>(</mo> <mi>g</mi> <mo>&amp;dtri;</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mo>(</mo> <mn>7</mn> <mo>)</mo> <mo>.</mo> </mrow> 1 <mrow> <msub> <mi>&amp;phi;</mi> <mi>t</mi> </msub> <mo>=</mo> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;beta;</mi> <mi>d</mi> <mi>i</mi> <mi>v</mi> <mrow> <mo>(</mo> <mi>g</mi> <mo>&amp;dtri;</mo> <mi>&amp;phi;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mo>(</mo> <mn>7</mn> <mo>)</mo> <mo>.</mo> </mrow> 1 3.如权利要求1所述的多模式脑肿瘤图像混合分割方法,其特征是,g是递减函数,式中c为控制斜率。3. The multi-mode brain tumor image hybrid segmentation method as claimed in claim 1, wherein g is a decreasing function, where c is the control slope. 4.一种多模式脑肿瘤图像混合分割装置,其特征是,设置有计算机,用于处理T1C、T2和FLAIR的MRI图像,计算机包括如下模块:采用中值滤波对图像进行滤波处理和初始分割模块,得到预处理图像;之后预处理图像输入线性融合模块;融合后图像输入FFCM聚类分割模块,自动提取其中灰度值较大的区域,得到的肿瘤欠分割区域;再输入进行混合水平集分割模块处理,得到最终结果。4. A multi-mode brain tumor image hybrid segmentation device is characterized in that it is provided with a computer for processing the MRI images of T1C, T2 and FLAIR, and the computer includes the following modules: Median filtering is used to carry out filter processing and initial segmentation of the image module to obtain the preprocessed image; then the preprocessed image is input into the linear fusion module; the fused image is input into the FFCM clustering and segmentation module, and the area with a larger gray value is automatically extracted to obtain the under-segmented tumor area; and then input into the mixed level set Split module processing to get the final result.
CN201710270990.4A 2017-04-24 2017-04-24 Multi-mode brain tumor image blend dividing method and device Pending CN107154047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710270990.4A CN107154047A (en) 2017-04-24 2017-04-24 Multi-mode brain tumor image blend dividing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710270990.4A CN107154047A (en) 2017-04-24 2017-04-24 Multi-mode brain tumor image blend dividing method and device

Publications (1)

Publication Number Publication Date
CN107154047A true CN107154047A (en) 2017-09-12

Family

ID=59793903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710270990.4A Pending CN107154047A (en) 2017-04-24 2017-04-24 Multi-mode brain tumor image blend dividing method and device

Country Status (1)

Country Link
CN (1) CN107154047A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107845098A (en) * 2017-11-14 2018-03-27 南京理工大学 Liver cancer image full-automatic partition method based on random forest and fuzzy clustering
CN107909577A (en) * 2017-10-18 2018-04-13 天津大学 Fuzzy C-mean algorithm continuous type max-flow min-cut brain tumor image partition method
CN108416792A (en) * 2018-01-16 2018-08-17 辽宁师范大学 Segmentation Method of Medical Computed Tomography Image Based on Active Contour Model
CN108961214A (en) * 2018-05-31 2018-12-07 天津大学 Brain tumor MRI three-dimensional dividing method based on improved continuous type maximum-flow algorithm
CN109671054A (en) * 2018-11-26 2019-04-23 西北工业大学 The non-formaldehyde finishing method of multi-modal brain tumor MRI
CN109685767A (en) * 2018-11-26 2019-04-26 西北工业大学 A kind of bimodal brain tumor MRI dividing method based on Cluster-Fusion algorithm
CN110309827A (en) * 2019-05-06 2019-10-08 上海海洋大学 A segmentation model of edema region based on OCT images
CN112634280A (en) * 2020-12-08 2021-04-09 辽宁师范大学 MRI image brain tumor segmentation method based on energy functional
CN112686916A (en) * 2020-12-28 2021-04-20 淮阴工学院 Curved surface reconstruction system based on heterogeneous multi-region CT scanning data processing
CN116363160A (en) * 2023-05-30 2023-06-30 杭州脉流科技有限公司 CT perfusion image brain tissue segmentation method and computer equipment based on level set

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106127794A (en) * 2016-07-29 2016-11-16 天津大学 Based on probability FCM algorithm MRI tumor image dividing method and system
CN106296699A (en) * 2016-08-16 2017-01-04 电子科技大学 Cerebral tumor dividing method based on deep neural network and multi-modal MRI image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106127794A (en) * 2016-07-29 2016-11-16 天津大学 Based on probability FCM algorithm MRI tumor image dividing method and system
CN106296699A (en) * 2016-08-16 2017-01-04 电子科技大学 Cerebral tumor dividing method based on deep neural network and multi-modal MRI image

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SHAHEEN AHMED,ET.AL: "Efficacy of Texture, Shape, and Intensity Feature Fusion for Posterior-Fossa Tumor Segmentation in MRI", 《IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE》 *
YAN ZHANG,ET.AL: "Medical Image Segmentation Using New Hybrid Level-Set Method", 《FIFTH INTERNATIONAL CONFERENCE BIOMEDICAL VISUALIZATION: INFORMATION VISUALIZATION IN MEDICAL AND BIOMEDICAL INFORMATICS》 *
张腾达: "基于模糊水平集的脑肿瘤MR图像分割方法", 《现代电子技术》 *
王黎明: "基于模糊C均值算法的医学图像分割研究", 《硕士学位论文全文数据库》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107909577A (en) * 2017-10-18 2018-04-13 天津大学 Fuzzy C-mean algorithm continuous type max-flow min-cut brain tumor image partition method
CN107845098A (en) * 2017-11-14 2018-03-27 南京理工大学 Liver cancer image full-automatic partition method based on random forest and fuzzy clustering
CN108416792B (en) * 2018-01-16 2021-07-06 辽宁师范大学 Medical computed tomography image segmentation method based on active contour model
CN108416792A (en) * 2018-01-16 2018-08-17 辽宁师范大学 Segmentation Method of Medical Computed Tomography Image Based on Active Contour Model
CN108961214A (en) * 2018-05-31 2018-12-07 天津大学 Brain tumor MRI three-dimensional dividing method based on improved continuous type maximum-flow algorithm
CN109685767A (en) * 2018-11-26 2019-04-26 西北工业大学 A kind of bimodal brain tumor MRI dividing method based on Cluster-Fusion algorithm
CN109671054A (en) * 2018-11-26 2019-04-23 西北工业大学 The non-formaldehyde finishing method of multi-modal brain tumor MRI
CN110309827A (en) * 2019-05-06 2019-10-08 上海海洋大学 A segmentation model of edema region based on OCT images
CN110309827B (en) * 2019-05-06 2022-10-14 上海海洋大学 Edema region segmentation model based on OCT image
CN112634280A (en) * 2020-12-08 2021-04-09 辽宁师范大学 MRI image brain tumor segmentation method based on energy functional
CN112634280B (en) * 2020-12-08 2023-06-16 辽宁师范大学 MRI image brain tumor segmentation method based on energy functional
CN112686916A (en) * 2020-12-28 2021-04-20 淮阴工学院 Curved surface reconstruction system based on heterogeneous multi-region CT scanning data processing
CN112686916B (en) * 2020-12-28 2024-04-05 淮阴工学院 A surface reconstruction system based on heterogeneous multi-region CT scanning data processing
CN116363160A (en) * 2023-05-30 2023-06-30 杭州脉流科技有限公司 CT perfusion image brain tissue segmentation method and computer equipment based on level set
CN116363160B (en) * 2023-05-30 2023-08-29 杭州脉流科技有限公司 CT perfusion image brain tissue segmentation method and computer equipment based on level set

Similar Documents

Publication Publication Date Title
CN107154047A (en) Multi-mode brain tumor image blend dividing method and device
CN107644420B (en) Vascular image segmentation method and MRI system based on centerline extraction
Gupta et al. A hybrid edge-based segmentation approach for ultrasound medical images
CN105741251B (en) A kind of blood vessel segmentation method of Hepatic CT A sequence images
Jayadevappa et al. Medical image segmentation algorithms using deformable models: a review
CN104599270B (en) A kind of Ultrasound Image of Breast Tumor dividing method based on improvement level set algorithm
CN103353986B (en) A kind of brain MR image segmentation based on super-pixel fuzzy clustering
CN115661467B (en) Cerebrovascular image segmentation method, device, electronic equipment and storage medium
CN110120048B (en) Three-dimensional brain tumor image segmentation method combining improved U-Net and CMF
Zhao et al. Segmentation of ultrasound images of thyroid nodule for assisting fine needle aspiration cytology
CN106504245A (en) A kind of damaging pathological tissues image partition method of multi-modal brain image
CN102324109A (en) Three-dimensional segmentation method of non-solid pulmonary nodules based on fuzzy membership degree model
CN107248155A (en) A kind of Cerebral venous dividing method based on SWI images
CN103345748B (en) A kind of locating segmentation method of human tissue cell two-photon micro-image
CN109886929B (en) A MRI Tumor Voxel Detection Method Based on Convolutional Neural Network
CN102737379A (en) A CT Image Segmentation Method Based on Adaptive Learning
CN103646398A (en) Demoscopy focus automatic segmentation method
CN103035009A (en) Pulmonary nodule edge rebuilding and partitioning method based on computed tomography (CT) image
Chen et al. A combined method for automatic identification of the breast boundary in mammograms
CN106485203A (en) Carotid ultrasound image Internal-media thickness measuring method and system
CN103996193A (en) Brain MR image segmentation method combining weighted neighborhood information and biased field restoration
Bnouni et al. Boosting CNN learning by ensemble image preprocessing methods for cervical cancer segmentation
Garg et al. Spinal cord MRI segmentation techniques and algorithms: A survey
CN118333952A (en) Automatic segmentation method of 3D coronary arteries based on local active contour model
CN106651875A (en) Multimode MRI longitudinal data-based brain tumor space-time coordinative segmentation method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170912

WD01 Invention patent application deemed withdrawn after publication