[go: up one dir, main page]

CN107147121A - A Virtual Resistive Active Filter Control Strategy Based on Least Square Method - Google Patents

A Virtual Resistive Active Filter Control Strategy Based on Least Square Method Download PDF

Info

Publication number
CN107147121A
CN107147121A CN201710550528.XA CN201710550528A CN107147121A CN 107147121 A CN107147121 A CN 107147121A CN 201710550528 A CN201710550528 A CN 201710550528A CN 107147121 A CN107147121 A CN 107147121A
Authority
CN
China
Prior art keywords
mtd
mrow
msub
mtr
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710550528.XA
Other languages
Chinese (zh)
Other versions
CN107147121B (en
Inventor
黄骏翅
杨林
曾江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710550528.XA priority Critical patent/CN107147121B/en
Publication of CN107147121A publication Critical patent/CN107147121A/en
Application granted granted Critical
Publication of CN107147121B publication Critical patent/CN107147121B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

The invention discloses a kind of virtual resistance type active power filtering control strategy based on least square method, detailed process is as follows:Line voltage and grid-connected current first to sampling carry out Fast Fourier Transform (FFT) and obtain each harmonic component, then the equiva lent impedance of network system is obtained using least square method, control the harmonic current of inverter output, each Equivalent Harmonic resistance of inverter is set to be equal to the modulus value of system each harmonic impedance, so as to realize inverter each harmonic power maximum absorption.The control strategy can quick and precisely obtain the size of virtual harmonic wave resistance by least square method, solve traditional harmonic wave resistance based on linear search and automatically adjust the problem of method search speed is slow, avoid producing prolonged harmonic power fluctuation during regulation, influence the assimilation effect of harmonic power.

Description

一种基于最小二乘法的虚拟电阻型有源滤波控制策略A Virtual Resistive Active Filter Control Strategy Based on Least Square Method

技术领域technical field

本发明涉及电力滤波器控制技术领域,具体涉及一种基于最小二乘法的虚拟电阻型有源滤波控制策略。The invention relates to the technical field of power filter control, in particular to a virtual resistance active filter control strategy based on the least square method.

背景技术Background technique

虚拟电阻型有源电力滤波器在吸收各次谐波电流时,既增加用户成本,又难以量化其对电网谐波治理工作的贡献,相关部门也就无法对其作出补偿。因此,尽管可降低系统电压畸变率,但仍难以调动用户以虚拟电阻型APF这种方式治理谐波的积极性。针对此问题,本专利基于虚拟电阻型有源电力滤波器提出一种新的谐波治理策略,虚拟电阻型有源电力滤波器根据并网点各次谐波电压及APF输出的各次谐波电流,计算APF吸收的各次谐波功率,并采用一定算法,实时调节等效谐波电阻,使APF吸收的各次谐波功率均达到最大,并以谐波功率的排放或吸收来界定用户的污染者或治理者角色,对污染或治理行为进行惩罚或奖励。在此策略下,如果配合有效机制,则主动参与谐波治理的用户将依据其吸收的最大谐波功率可获得最大的激励。本专利把APF吸收的谐波功率为最大值相应的各次谐波电阻的阻值定义为“最佳阻值”。When the virtual resistance active power filter absorbs various harmonic currents, it not only increases the user cost, but also makes it difficult to quantify its contribution to the harmonic control work of the power grid, and the relevant departments cannot make compensation for it. Therefore, although the system voltage distortion rate can be reduced, it is still difficult to mobilize the enthusiasm of users to control harmonics in the way of virtual resistance APF. To solve this problem, this patent proposes a new harmonic control strategy based on the virtual resistive active power filter. , calculate the harmonic power absorbed by the APF, and use a certain algorithm to adjust the equivalent harmonic resistance in real time, so that the harmonic power absorbed by the APF reaches the maximum, and the emission or absorption of the harmonic power is used to define the user's The role of the polluter or regulator, who punishes or rewards pollution or governance behaviors. Under this strategy, if an effective mechanism is used, users who actively participate in harmonic governance will receive the greatest incentives based on the maximum harmonic power they absorb. In this patent, the resistance value of each harmonic resistance corresponding to the maximum harmonic power absorbed by the APF is defined as the "best resistance value".

发明内容Contents of the invention

本发明的目的是为了解决现有技术中的上述缺陷,提供一种基于最小二乘法的虚拟电阻型有源滤波控制策略,通过控制逆变器输出的谐波电流,实现一个等效的虚拟谐波电阻,其阻值等于系统的等效阻抗的模值,从而实现谐波的最大功率吸收。The purpose of the present invention is to solve the above defects in the prior art, to provide a virtual resistance active filter control strategy based on the least squares method, and to realize an equivalent virtual harmonic current by controlling the harmonic current output by the inverter Wave resistance, whose resistance value is equal to the modulus value of the equivalent impedance of the system, so as to realize the maximum power absorption of harmonics.

本发明的目的可以通过采取如下技术方案达到:The purpose of the present invention can be achieved by taking the following technical solutions:

一种基于最小二乘法的虚拟电阻型有源滤波控制策略,所述虚拟电阻型有源滤波控制策略包括下列步骤:A virtual resistance type active filter control strategy based on the least squares method, the virtual resistance type active filter control strategy includes the following steps:

基于谐波电压源与谐波电流源共同作用的简单电力系统,采用小扰动法对系统的等效阻抗进行观测,控制有源滤波器电流进行m次谐波小扰动,分别记录第k次谐波小扰动下,APF的网点第h次谐波电压向量的实部Uih(Re)k和虚部Uih(Im)k,第h次谐波电流向量的实部Iih(Re)k和虚部Iih(Im)k,其中k=1,2,……,m,形成超定方程组AX=b,Based on the simple power system with the joint action of harmonic voltage source and harmonic current source, the equivalent impedance of the system is observed by the small disturbance method, and the active filter current is controlled to perform m-order harmonic small disturbance, and the k-th harmonic is recorded respectively Under wave small disturbance, the real part U ih(Re)k and the imaginary part U ih(Im)k of the hth harmonic voltage vector of the network point of the APF, the real part Iih(Re) k of the hth harmonic current vector And imaginary part I ih (Im) k , wherein k=1,2,..., m, form overdetermined equation system AX=b,

其中:in:

式中,Eh(Re)为系统h次谐波等效电势向量的实部,Eh(Im)为系统h次谐波等效电势向量的虚部,Rh为系统h次谐波等效阻抗的实部,Xh为系统h次谐波等效阻抗的虚部;In the formula, E h(Re) is the real part of the equivalent electric potential vector of the system h order harmonic, E h(Im) is the imaginary part of the system h order harmonic equivalent electric potential vector, R h is the system h order harmonic, etc. The real part of the effective impedance, X h is the imaginary part of the equivalent impedance of the system h order harmonic;

求解超定方程AX=b的最小二乘解即正规方程组:(ATA)X=ATb的解,求得系统各次谐波阻抗:Zh=Rh+jXhSolving the least square solution of the overdetermined equation AX=b is the normal equation system: (A T A)X= AT b solution, and obtain the harmonic impedance of the system: Z h =R h +jX h ;

让逆变器虚拟谐波电阻Rih匹配系统谐波阻抗模值|Zh|,即根据系统谐波电压求出逆变器的输出谐波电流指令,控制逆变器输出相应的谐波电流,从而实现最大化谐波功率吸收。Let the virtual harmonic resistance R ih of the inverter match the system harmonic impedance modulus |Z h |, that is Calculate the output harmonic current command of the inverter according to the system harmonic voltage, and control the inverter to output the corresponding harmonic current, so as to realize the maximum absorption of harmonic power.

进一步地,所述的正规方程组(ATA)X=ATb用对称矩阵的三角分解法求解,其过程如下:Further, described normal system of equations (A T A) X=A T b solves with the triangular decomposition method of symmetric matrix, and its process is as follows:

记G=ATA,则G是对称矩阵,由三角分解G=LDLT,其中L是下三角矩阵,D是对角矩阵,正规方程可化为:LDLTX=ATb,正规方程的求解可分为以下三个步骤:Note G=A T A, then G is a symmetric matrix, by triangular decomposition G=LDL T , wherein L is a lower triangular matrix, D is a diagonal matrix, the normal equation can be reduced to: LDL T X= AT b, the normal equation The solution of can be divided into the following three steps:

1)解下三角方程组:LZ=ATb1) Solve the lower triangular equations: LZ=A T b

2)解对角方程组:DY=Z2) Solving diagonal equations: DY=Z

3)解上三角方程组:LTX=Y3) Solve upper triangular equations: L T X = Y

其中Z=DLTX,Y=LTX,where Z = DL T X, Y = L T X,

经过以上步骤,即可求解出 After the above steps, we can solve the

本发明相对于现有技术具有如下的优点及效果:Compared with the prior art, the present invention has the following advantages and effects:

本发明能快速确定各次虚拟谐波电阻的最佳阻值,从而减小调节虚拟谐波电阻过程中造成的谐波功率波动。传统的导纳调节法为基于一维搜索的自动调节法,但此方法搜索速度较慢,在调节过程中产生长时间的谐波功率波动,影响谐波功率的吸收效果。而采用本专利所提的最小二乘法计算系统等效阻抗则能解决上述问题。所述最小二乘法求系统等效阻抗,是指在确定虚拟谐波电导Gh时,在逆变器原谐波参考电流的基础上叠加不同幅值相位的若干次小扰动,再用不同小扰动下的频谱形成超定方程,从而得出最小二乘解下的系统等效阻抗Zh,Gh即为系统等效阻抗模值|Zh|的倒数。这样,就可以通过若干次的小扰动就能快速确定各次虚拟谐波电阻的最佳阻值。The invention can quickly determine the optimal resistance value of each virtual harmonic resistance, thereby reducing the harmonic power fluctuation caused in the process of adjusting the virtual harmonic resistance. The traditional admittance adjustment method is an automatic adjustment method based on one-dimensional search, but the search speed of this method is slow, and long-term harmonic power fluctuations are generated during the adjustment process, which affects the absorption effect of harmonic power. The above problem can be solved by using the least square method proposed in this patent to calculate the equivalent impedance of the system. The least squares method to find the equivalent impedance of the system refers to superimposing several small disturbances of different amplitude phases on the basis of the original harmonic reference current of the inverter when determining the virtual harmonic conductance Gh , and then using different small The frequency spectrum under the disturbance forms an overdetermined equation, so that the system equivalent impedance Z h under the least square solution is obtained, and G h is the reciprocal of the system equivalent impedance modulus |Z h |. In this way, the optimal resistance value of each virtual harmonic resistor can be quickly determined through several small disturbances.

附图说明Description of drawings

图1是谐波电压源与谐波电流源共同作用的简单电力系统;Figure 1 is a simple power system in which the harmonic voltage source and the harmonic current source act together;

图2是虚拟电阻型有源电力滤波器工作原理;Figure 2 is the working principle of the virtual resistance active power filter;

图3是虚拟电阻电流生成示意图;Fig. 3 is a schematic diagram of virtual resistance current generation;

图4是最小二乘法求虚拟电阻电流流程图;Fig. 4 is the least squares method to find the flow chart of virtual resistance current;

图5是等效负载电阻突然变大时的仿真波形。Figure 5 is the simulation waveform when the equivalent load resistance suddenly becomes larger.

具体实施方式detailed description

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

实施例Example

本实施例基于虚拟电阻型有源电力滤波器提出一种新的谐波治理策略,虚拟电阻型有源电力滤波器根据并网点各次谐波电压及APF输出的各次谐波电流,计算APF吸收的各次谐波功率,并采用一定算法,实时调节等效谐波电阻,使APF吸收的各次谐波功率均达到最大,并以谐波功率的排放或吸收来界定用户的污染者或治理者角色,对污染或治理行为进行惩罚或奖励。在此策略下,如果配合有效机制,则主动参与谐波治理的用户将依据其吸收的最大谐波功率可获得最大的激励。本发明实施例中把APF吸收的谐波功率为最大值相应的各次谐波电阻的阻值定义为“最佳阻值”。This embodiment proposes a new harmonic control strategy based on the virtual resistive active power filter. The virtual resistive active power filter calculates the APF according to the harmonic voltage of the grid-connected point and the harmonic current output by the APF The absorbed harmonic power, and adopt a certain algorithm to adjust the equivalent harmonic resistance in real time, so that the harmonic power absorbed by the APF reaches the maximum, and the user's polluter or user is defined by the emission or absorption of harmonic power The role of the governor, punishing or rewarding pollution or governance behavior. Under this strategy, if an effective mechanism is used, users who actively participate in harmonic governance will receive the greatest incentives based on the maximum harmonic power they absorb. In the embodiment of the present invention, the resistance value of each harmonic resistance corresponding to the maximum value of the harmonic power absorbed by the APF is defined as "optimum resistance value".

虚拟电阻型APF同时采集并网点电压和输出电流,并对其进行谐波检测,然后分别计算各相所吸收的各次谐波功率,并对三相同次谐波功率求平均值,作为APF吸收的第h次谐波功率Ph。根据Ph对各次电导值Gh作出调节。虚拟电阻型APF在运行过程中,不要求像一般补偿电流型的APF那样对负荷电流快速的响应,而且电力系统对于每一次Gh的变化需要一定的响应时间,因此,各次谐波功率计算环节和各次导纳调节环节可按设定的时间间隔进行,在各次谐波功率更新之前,Gh保留原来的值不变。The virtual resistance type APF collects the grid-connected point voltage and output current at the same time, and performs harmonic detection on it, and then calculates the harmonic power absorbed by each phase separately, and averages the harmonic power of the three phases, as APF absorption The hth harmonic power Ph h . Adjust each conductance value G h according to Ph . During the operation of the virtual resistance type APF, it does not require a quick response to the load current like the general compensation current type APF, and the power system needs a certain response time for each change of G h . Therefore, the calculation of each harmonic power The link and each admittance adjustment link can be carried out according to the set time interval. Before each harmonic power is updated, the original value of G h remains unchanged.

传统的导纳调节法为基于一维搜索的自动调节法,但此方法搜索速度较慢,在调节过程中产生长时间的谐波功率波动,影响谐波功率的吸收效果。而采用本专利所提的最小二乘法计算系统等效阻抗则能解决上述问题。所述最小二乘法求系统等效阻抗,是指在确定虚拟谐波电导Gh时,在逆变器原谐波参考电流的基础上叠加不同幅值相位的若干次小扰动,再用不同小扰动下的频谱形成超定方程,从而得出最小二乘解下的系统等效阻抗Zh,Gh即为系统等效阻抗模值|Zh|的倒数。这样,就可以通过若干次的小扰动就能快速确定各次谐波电阻的最佳阻值。The traditional admittance adjustment method is an automatic adjustment method based on one-dimensional search, but the search speed of this method is slow, and long-term harmonic power fluctuations are generated during the adjustment process, which affects the absorption effect of harmonic power. The above problem can be solved by using the least square method proposed in this patent to calculate the equivalent impedance of the system. The least squares method to find the equivalent impedance of the system refers to superimposing several small disturbances of different amplitude phases on the basis of the original harmonic reference current of the inverter when determining the virtual harmonic conductance Gh , and then using different small The frequency spectrum under the disturbance forms an overdetermined equation, so that the system equivalent impedance Z h under the least square solution is obtained, and G h is the reciprocal of the system equivalent impedance modulus |Z h |. In this way, the optimal resistance value of each harmonic resistor can be quickly determined through several small disturbances.

一、图1是谐波电压源与谐波电流源共同作用的简单电力系统,采用小扰动对系统的等效阻抗进行观测,可列出下列方程:1. Figure 1 is a simple power system in which the harmonic voltage source and the harmonic current source act together. The equivalent impedance of the system is observed with a small disturbance, and the following equations can be listed:

Zh=Rh+jXh (5)Z h =R h +jX h (5)

Uih(Re)=Iih(Re)Rh-Iih(Im)Xh+Eh(Re) (6)U ih(Re) =I ih(Re) R h -I ih(Im) X h +E h(Re) (6)

Uih(Im)=Iih(Im)Rh+Iih(Re)Xh+Eh(Im) (7)U ih(Im) =I ih(Im) R h +I ih(Re) X h +E h(Im) (7)

在上述方程中,为APF的网点h次谐波电压向量,Uih(Re)为APF的网点h次谐波电压向量的实部,Uih(Im)为APF的网点h次谐波电压向量的虚部,为系统h次谐波等效电势向量,Eh(Re)为系统h次谐波等效电势向量的实部,Eh(Im)为系统h次谐波等效电势向量的虚部,为APF入网h次谐波电流向量,Iih(Re)为APF入网h次谐波电流向量的实部,Iih(Im)为APF入网h次谐波电流向量的虚部,Zh为系统h次谐波等效阻抗,Rh为系统h次谐波等效阻抗的实部,Xh为系统h次谐波等效阻抗的虚部。其中,Eh(Re),Eh(Im),Rh,Xh是待估计的恒定参数,Uih(Re),Uih(Im),Iih(Re),Iih(Im)是观测量。In the above equation, is the network point h harmonic voltage vector of APF, U ih (Re) is the real part of the network point h harmonic voltage vector of APF, U ih (Im) is the imaginary part of the network point h harmonic voltage vector of APF, is the system h-order harmonic equivalent potential vector, E h(Re) is the real part of the system h-order harmonic equivalent potential vector, E h(Im) is the imaginary part of the system h-order harmonic equivalent potential vector, I ih (Re) is the real part of the h order harmonic current vector of APF entering the network, I ih (Im) is the imaginary part of the h order harmonic current vector of APF entering the network, Z h is the system The equivalent impedance of the hth harmonic, R h is the real part of the hth harmonic equivalent impedance of the system, and X h is the imaginary part of the hth harmonic equivalent impedance of the system. Among them, E h(Re) , E h(Im) , Rh , X h are constant parameters to be estimated, U ih(Re) , U ih(Im) , I ih(Re) , I ih(Im) are observations.

根据上述方程,可以得到关于m次小扰动时的矩阵方程:According to the above equation, the matrix equation for m small disturbances can be obtained:

AX=b (8)AX=b (8)

其中,in,

式中,Uih(Re)k为第k次小扰动时通过FFT得到的APF入网h次谐波电流向量的实部,Iih(Im)k为第k次小扰动时通过FFT得到的APF入网h次谐波电流向量的虚部,Uih(Re)k为第k次小扰动时APF的网点h次谐波电压向量的实部,Uih(Im)k为第k次小扰动时APF的网点h次谐波电压向量的虚部。In the formula, U ih(Re)k is the real part of the h-order harmonic current vector of the APF entering the grid obtained by FFT at the kth small disturbance, and Iih(Im)k is the APF obtained by FFT at the kth small disturbance The imaginary part of the h-th order harmonic current vector of the incoming grid, U ih(Re)k is the real part of the h-order harmonic voltage vector of the APF network point when the k-th small disturbance occurs, and U ih(Im)k is the k-th small disturbance The imaginary part of the network point h harmonic voltage vector of APF.

超定方程租AX=b的最小二乘解的为正规方程组:(ATA)X=ATb的解。用对称矩阵的三角分解法求解正规方程组(ATA)X=ATb,记G=ATA,则G是对称矩阵,由三角分解G=LDLT,其中L是下三角矩阵,D是对角矩阵,正规方程可化为:LDLTX=ATb。正规方程的求解可分为以下三个步骤:The least square solution of the overdetermined equation AX=b is a normal equation system: (A T A)X=A T b solution. Solve normal equation system (A T A) X=A T b with the triangular decomposition method of symmetric matrix, record G=A T A, then G is a symmetric matrix, by triangular decomposition G=LDL T , wherein L is a lower triangular matrix, D is a diagonal matrix, and the normal equation can be reduced to: LDL T X = A T b. The solution of the normal equation can be divided into the following three steps:

1)解下三角方程组:LZ=ATb1) Solve the lower triangular equations: LZ=A T b

2)解对角方程组:DY=Z2) Solving diagonal equations: DY=Z

3)解上三角方程组:LTX=Y3) Solve upper triangular equations: L T X = Y

其中Z=DLTX,Y=LTX。Where Z = DL T X, Y = L T X.

经过以上步骤,即可求解出 After the above steps, we can solve the

二、匹配虚拟电阻吸收最大谐波功率2. Match the virtual resistance to absorb the maximum harmonic power

由电路原理可知,当负载电阻时,电阻负载吸收的有功功率到达最大值。因此,通过控制逆变器的输出谐波电流来等效一个虚拟电阻,可达到最大化吸收谐波有功功率的功能。It can be seen from the circuit principle that when the load resistance When , the active power absorbed by the resistive load reaches the maximum value. Therefore, by controlling the output harmonic current of the inverter to be equivalent to a virtual resistance, the function of absorbing harmonic active power can be maximized.

三、有源滤波器控制算法3. Active filter control algorithm

图2是虚拟电阻型有源电力滤波器工作原理的示意图。图中,i* c1为虚拟电阻参考电流,i* c2为直流电压控制环输出的参考电流,i* c为总参考电流,ic为实际输出电流;Sa,Sb,Sc为开关管的驱动信号。从图中可以看出,虚拟电阻型有源电力滤波器与传统的谐波电流源型有源电力滤波器工作原理的主要区别在于,各自参考电流的生成方法不同。传统的有源电力滤波器的参考电流一般由直流侧的电压外环调节器输出值和负载的谐波、无功电流合成,而虚拟电阻型有源电力滤波器相当于一个谐波电阻,其参考电流应包含上述的直流电压外环调节输出值以及与公共耦合点各次谐波电压成比例的各次谐波电流,即图2中的虚拟电阻电流。因此,各次谐波电压与各次谐波电流的比值就是等效的各次谐波电阻。Fig. 2 is a schematic diagram of the working principle of a virtual resistive active power filter. In the figure, i * c1 is the virtual resistance reference current, i * c2 is the reference current output by the DC voltage control loop, i * c is the total reference current, ic is the actual output current; S a , S b , S c are switches Tube drive signal. It can be seen from the figure that the main difference between the virtual resistor type active power filter and the traditional harmonic current source type active power filter is that the generation methods of the respective reference currents are different. The reference current of the traditional active power filter is generally synthesized by the output value of the voltage outer loop regulator on the DC side and the harmonic and reactive current of the load, while the virtual resistor type active power filter is equivalent to a harmonic resistor. The reference current should include the output value of the above-mentioned DC voltage outer loop adjustment and the harmonic currents proportional to the harmonic voltages at the common coupling point, that is, the virtual resistance current in Figure 2. Therefore, the ratio of each harmonic voltage to each harmonic current is the equivalent each harmonic resistance.

图3是虚拟电阻电流的生成过程。图中,谐波检测环节用于提取公共耦合点的各次谐波电压,相位检测环节用于实时检测电压的相位信息,应用该相位信息把各次谐波电压转换为瞬时值,然后把各次谐波电压分别与各次谐波电导Gh相乘,得到各次参考电流,通过对各次电流进行求和得到虚拟电阻电流参考值。图中所示的谐波电导Gh为谐波电阻的倒数,通过调节各次谐波电导Gh,就可等效地调节各次谐波电阻。而Gh的计算是在逆变器输出谐波电流定期的小扰动下,用由谐波检测得到各次电压和电流谐波的实部、虚部求取最小二乘解所得。Figure 3 is the generation process of the virtual resistance current. In the figure, the harmonic detection link is used to extract the harmonic voltages of the common coupling point, the phase detection link is used to detect the phase information of the voltage in real time, and the phase information is used to convert each harmonic voltage into an instantaneous value, and then each The sub-harmonic voltage is multiplied by each sub-harmonic conductance G h to obtain each reference current, and the virtual resistance current reference value is obtained by summing each sub-current. The harmonic conductance G h shown in the figure is the reciprocal of the harmonic resistance. By adjusting the harmonic conductance G h of each order, the harmonic resistance of each order can be adjusted equivalently. The calculation of G h is obtained by obtaining the least squares solution by using the real and imaginary parts of the voltage and current harmonics obtained from the harmonic detection under the regular small disturbance of the inverter output harmonic current.

图4是最小二乘法求虚拟电阻电流流程图,其步骤为:Fig. 4 is the flow chart of calculating the virtual resistance current by least square method, and its steps are:

(1)初始化, (1) initialization,

(2)令k=1(2) Let k=1

(3)在原参考谐波电流的基础上叠加不同幅值和相位小扰动 (3) In the original reference harmonic current On the basis of superimposing different amplitude and phase small perturbations

(4)用FFT计算出逆变器的网点电压和入网电流的频谱 (4) Use FFT to calculate the frequency spectrum of the grid point voltage and grid current of the inverter

(5)令k=k+1;如果k大于m则进入(6),否则返回(3);(5) Make k=k+1; Enter (6) if k is greater than m, otherwise return (3);

(6)用Uih(Re)k、Uih(Im)kIih(Re)k、Iih(Im)k形成超定方程组AX=b,并用对称矩阵的三角分解法求解正规方程组,得出系统的等效谐波阻抗Zh=Rh+jXh(6) Use U ih(Re)k , U ih(Im)k , Iih(Re)k , Iih( Im)k to form an overdetermined equation system AX=b, and use the triangular decomposition method of a symmetric matrix to solve the normal equation system , to obtain the equivalent harmonic impedance of the system Z h =R h +jX h ;

(7)用FFT计算电压频谱根据得到谐波参考电流频谱,再把频域参考电流转换为时域值;(7) Calculate the voltage spectrum with FFT according to Obtain the harmonic reference current spectrum, and then convert the frequency domain reference current into a time domain value;

(8)计算并存储功率最优值;(8) Calculate and store the optimal power value;

(9)计算实时功率PHrt(9) Calculate the real-time power P Hrt ;

(10)计算Abs(Ph-PhRT),若大于阈值δ,则返回(2),否则返回(7)。四、为了验证上文所述的最佳阻值自动调节方法和更具普遍性,本专利基于PSCAD/EMTDC对图2进行仿真,其中,Rs为0.00001Ω,系统电感Ls为0.00637H,即对于5次谐波相应的Xs为10Ω,等效负荷分别取R1为20Ω,R2为10Ω,假设三相平衡,取5次谐波为讨论对象,其中A相谐波电流为A相系统谐波电压为可以计算得到,当等效负载为R1时,理论最佳阻值为R* F01=8.945Ω,相应电导值为G* 01=0.112S;当等效负载为R2,理论最佳阻值为R* F02=7.0714Ω,相应电导值为G* 02=0.141S。(10) Calculate Abs(P h -P hRT ), if it is greater than the threshold δ, return to (2), otherwise return to (7). 4. In order to verify the optimal resistance automatic adjustment method described above and to be more universal, this patent simulates Figure 2 based on PSCAD/EMTDC, where R s is 0.00001Ω, system inductance L s is 0.00637H, That is, for the 5th harmonic, the corresponding X s is 10Ω, and the equivalent load is respectively set as 20Ω for R1 and 10Ω for R2. Assuming three - phase balance, the 5th harmonic is taken as the object of discussion, and the harmonic current of phase A is The harmonic voltage of phase A system is It can be calculated that when the equivalent load is R 1 , the theoretical optimal resistance value is R * F01 = 8.945Ω, and the corresponding conductance value is G * 01 = 0.112S; when the equivalent load is R 2 , the theoretical optimal resistance value It is R * F02 = 7.0714Ω, and the corresponding conductance value is G * 02 = 0.141S.

图5为等效负载从R2突变为R1时谐波功率变化曲线。在第一阶段0-1s,最小二乘法求得Gh的值为0.1426,PFh稳定在1.141kW附近,在1s处,等效负载电阻突变后,最小二乘法求得Gh的值为0.1187S,PFh最终稳定在1.62kW附近。Figure 5 is the harmonic power change curve when the equivalent load changes suddenly from R2 to R1. In the first stage 0-1s, the value of G h obtained by the least square method is 0.1426, and P Fh is stable at around 1.141kW. At 1s, after the equivalent load resistance changes suddenly, the value of G h obtained by the least square method is 0.1187 S, P Fh finally stabilized around 1.62kW.

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.

Claims (2)

1. A virtual resistance type active filtering control strategy based on a least square method is characterized by comprising the following steps:
a simple power system based on combined action of a harmonic voltage source and a harmonic current source observes equivalent impedance of the system by a small disturbance method, controls current of an active filter to carry out m-order harmonic small disturbance, and respectively records a real part U of a voltage vector of an h-order harmonic of a grid-connected point of an APF (active power filter) under the k-th harmonic small disturbanceih(Re)kAnd imaginary part Uih(Im)kCurrent direction of h-th harmonicReal part of quantity Iih(Re)kAnd imaginary part Iih(Im)kWhere k is 1,2, … …, m, forming an overdetermined system of equations AX b,
wherein:
<mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mn>1</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mn>2</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mi>m</mi> </mrow> </msub> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mi>m</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mi>m</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>X</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>E</mi> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>E</mi> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mi>h</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>X</mi> <mi>h</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Re</mi> <mo>)</mo> </mrow> <mi>m</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>h</mi> <mrow> <mo>(</mo> <mi>Im</mi> <mo>)</mo> </mrow> <mi>m</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
in the formula, Eh(Re)Is the real part of the equivalent potential vector of the h harmonic of the system, Eh(Im)For the imaginary part, R, of the equivalent potential vector of the h harmonic of the systemhIs the real part, X, of the equivalent impedance of the h harmonic of the systemhThe imaginary part of the h harmonic equivalent impedance of the system;
solving a least squares solution, i.e., a normal system of equations, of the overdetermined equation AX ═ b: (A)TA)X=ATb solution, finding each systemSub-harmonic impedance: zh=Rh+jXh
Let inverter virtual harmonic resistance RihHarmonic impedance modulus | Z of matching systemhI.e. thatAnd solving an output harmonic current instruction of the inverter according to the harmonic voltage of the system, and controlling the inverter to output corresponding harmonic current, thereby realizing maximum harmonic power absorption.
2. The least squares based virtual resistance type active filtering control strategy of claim 1, wherein the normal equation set (A)TA)X=ATb, solving by using a triangular decomposition method of the symmetric matrix, wherein the process is as follows:
let G be ATA, G is a symmetric matrix, and G is decomposed into LDL by triangleTWhere L is a lower triangular matrix and D is a diagonal matrix, the normal equation can be: LDLTX=ATb, solving the normal equation can be divided into the following three steps:
1) solving the following set of trigonometric equations: LZ ═ ATb
2) Solving a system of diagonal equations: DY ═ Z
3) Solving the upper set of trigonometric equations: l isTX=Y
Wherein Z is DLTX,Y=LTX,
Through the steps, the solution can be solvedZh=Rh+jXh
CN201710550528.XA 2017-07-07 2017-07-07 Virtual resistance type active filtering control strategy based on least square method Active CN107147121B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710550528.XA CN107147121B (en) 2017-07-07 2017-07-07 Virtual resistance type active filtering control strategy based on least square method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710550528.XA CN107147121B (en) 2017-07-07 2017-07-07 Virtual resistance type active filtering control strategy based on least square method

Publications (2)

Publication Number Publication Date
CN107147121A true CN107147121A (en) 2017-09-08
CN107147121B CN107147121B (en) 2020-01-14

Family

ID=59785027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710550528.XA Active CN107147121B (en) 2017-07-07 2017-07-07 Virtual resistance type active filtering control strategy based on least square method

Country Status (1)

Country Link
CN (1) CN107147121B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108173288A (en) * 2018-02-09 2018-06-15 合肥工业大学 Control method of voltage-type impedance adapter for suppressing resonance of multi-inverter grid-connected system
CN109672180A (en) * 2018-12-29 2019-04-23 西安交通大学 Local power net harmonic synthesis administering method based on least square method
CN111769592A (en) * 2020-05-26 2020-10-13 国网江苏省电力有限公司盐城供电分公司 Virtual harmonic resistance control method of grid-connected inverter based on parabolic method
CN114895104A (en) * 2022-05-19 2022-08-12 西南交通大学 Method for identifying parallel harmonic resonance frequency of traction power supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024406A (en) * 2015-08-06 2015-11-04 合肥工业大学 Composite virtual harmonic impedance control method for grid-connected inverter
CN106253283A (en) * 2016-09-18 2016-12-21 中国科学院合肥物质科学研究院 A kind of control strategy based on second harmonic mixing active filter
CN106329527A (en) * 2016-10-27 2017-01-11 沈阳建筑大学 Active power filter control method for self-adaptive parameters

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024406A (en) * 2015-08-06 2015-11-04 合肥工业大学 Composite virtual harmonic impedance control method for grid-connected inverter
CN106253283A (en) * 2016-09-18 2016-12-21 中国科学院合肥物质科学研究院 A kind of control strategy based on second harmonic mixing active filter
CN106329527A (en) * 2016-10-27 2017-01-11 沈阳建筑大学 Active power filter control method for self-adaptive parameters

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. CHUDAMANI ET AL.: "Non-linear least-squares-based harmonic estimation algorithm for a shunt active power filter", 《IET POWER ELECTRONICS》 *
张翠玲等: "基于虚拟阻抗方法的无电压传感器APF控制策略", 《电气传动》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108173288A (en) * 2018-02-09 2018-06-15 合肥工业大学 Control method of voltage-type impedance adapter for suppressing resonance of multi-inverter grid-connected system
CN108173288B (en) * 2018-02-09 2020-01-31 合肥工业大学 A voltage-based impedance adapter control method for suppressing resonance in a multi-inverter grid-connected system
CN109672180A (en) * 2018-12-29 2019-04-23 西安交通大学 Local power net harmonic synthesis administering method based on least square method
CN109672180B (en) * 2018-12-29 2020-08-28 西安交通大学 Local area power grid harmonic wave comprehensive treatment method based on least square method
CN111769592A (en) * 2020-05-26 2020-10-13 国网江苏省电力有限公司盐城供电分公司 Virtual harmonic resistance control method of grid-connected inverter based on parabolic method
CN114895104A (en) * 2022-05-19 2022-08-12 西南交通大学 Method for identifying parallel harmonic resonance frequency of traction power supply system
CN114895104B (en) * 2022-05-19 2023-07-07 西南交通大学 A Method for Identifying Parallel Harmonic Resonance Frequency of Traction Power Supply System

Also Published As

Publication number Publication date
CN107147121B (en) 2020-01-14

Similar Documents

Publication Publication Date Title
CN109120001B (en) Subsynchronous oscillation suppression method for grid-connected system of doubly-fed wind farm based on virtual resistance
CN107147121B (en) Virtual resistance type active filtering control strategy based on least square method
CN106532770B (en) Inverter Control Method Based on Fuzzy PCI and PR Parallel Composite Control
CN104104110A (en) Control method of single-phase photovoltaic grid-connected inverter with power quality adjustment function
CN109617121B (en) A method and system for safe operation of wind power grid-connected system aiming at subsynchronous oscillation
CN106532749B (en) A kind of micro-capacitance sensor imbalance power and harmonic voltage compensation system and its application
CN110581560B (en) A calculation method of transient reactive power characteristics of direct-drive wind power system under grid voltage fault
CN110676874B (en) Direct-drive fan subsynchronous oscillation electrical quantity analysis method considering frequency coupling effect
CN105977996B (en) Control System for SVG based on DSP and control method
CN108446515A (en) A kind of wind power plant equivalence method based on double-fed wind power generator group short circuit current signature analysis
CN105281350A (en) Micro power grid frequency control method and system
CN107834559B (en) A transformer integrated power quality intelligent adjustment system and its control method
CN107069800A (en) A kind of method for building up of double-fed fan motor short circuit current flow model
CN108429277A (en) Control method of high-voltage direct-current transmission system of two-end voltage source type converter based on fuzzy active disturbance rejection control
CN108448586A (en) A microgrid power supply quality assessment and its simulated load balancing control system and method
CN108649560A (en) High permeability distributed photovoltaic power generation cluster real-time simulation modeling method
CN109100600B (en) Magnetic control type shunt reactor fault determination method and system
CN112366752B (en) Voltage real-time regulation and control method and system based on photovoltaic inverter control
CN108321831B (en) An Uncertain Control Method for Filtering Inductance Parameters of Railway Power Regulators
CN101710710A (en) Wind-power-station power output counterbalance system and working method thereof
CN108462213B (en) Multifunctional grid-connected inverter control method and system based on conservation power theory
CN109193711A (en) A kind of imbalance compensation system and method for resisting voltage distortion
CN110429835B (en) A passive control system and method for RBFNN segmented online optimization based on LCL filtering
CN103023027B (en) Method for establishing equivalent model of external characteristics of wind power plant of doubly fed induction generator (DFIG)
CN105515004B (en) A kind of APF harmonic detection and instruction modification method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant