CN107124183B - Double-channel TIADC system mismatch error blind correction method - Google Patents
Double-channel TIADC system mismatch error blind correction method Download PDFInfo
- Publication number
- CN107124183B CN107124183B CN201710302679.3A CN201710302679A CN107124183B CN 107124183 B CN107124183 B CN 107124183B CN 201710302679 A CN201710302679 A CN 201710302679A CN 107124183 B CN107124183 B CN 107124183B
- Authority
- CN
- China
- Prior art keywords
- channel
- data
- fractional delay
- error
- mismatch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Filters That Use Time-Delay Elements (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明公开了一种双通道TIADC系统失配误差盲校正方法,包括获取各通道的采样数据、校准通道1的数据、计算通道0采样数据和通道1的第一次校准数据的互相关函数、计算通道0的采样数据与各分数延迟滤波器输出数据的互相关函数、建立函数关系、估计失配时间、滤波失配时间步骤。本发明采用无需使用闭环回路的方式对系统的三个失配误差进行估计,既无需额外的硬件来实现对误差参数的校准,也不需要额外的校准信号。
The invention discloses a blind correction method for mismatch error of a dual-channel TIADC system, which includes acquiring the sampling data of each channel, calibrating the data of channel 1, calculating the cross-correlation function of the sampling data of channel 0 and the first calibration data of channel 1, Calculate the cross-correlation function between the sampled data of channel 0 and the output data of each fractional delay filter, establish the functional relationship, estimate the mismatch time, and filter the mismatch time steps. The present invention estimates the three mismatch errors of the system without using a closed-loop loop, and neither additional hardware is needed to calibrate the error parameters nor additional calibration signals.
Description
技术领域technical field
本发明涉及一种TIADC系统失配误差盲校正方法,尤其涉及一种双通道TIADC系统失配误差盲校正方法,属于通信技术领域。The invention relates to a blind correction method for mismatch errors of a TIADC system, in particular to a blind correction method for mismatch errors of a dual-channel TIADC system, and belongs to the technical field of communications.
背景技术Background technique
TIADC(并行采样系统)会由于器件的非理想特性,而产生偏置误差、增益误差、时间相位误差。对TIADC(并行采样系统)中三个主要误差的校正技术集中在两个大的方向,即失配误差的非盲估计及校正算法和盲估计及校正算法。失配误差的非盲估计校正算法需要定期对采集系统注入激励信号以获取系统的误差参数,非盲估计及校正算法会影响采集系统工作的实时性。盲估计及校正算法不需要定期对采集系统注入激励信号,在采集系统对被测信号测量的同时完成对系统误差参数的估计及校正。TIADC (parallel sampling system) will generate offset error, gain error, time phase error due to the non-ideal characteristics of the device. Correction techniques for the three main errors in TIADC (parallel sampling system) focus on two major directions, namely, non-blind estimation and correction algorithms and blind estimation and correction algorithms for mismatch errors. The non-blind estimation and correction algorithm of mismatch error needs to inject excitation signal into the acquisition system regularly to obtain the error parameters of the system. The non-blind estimation and correction algorithm will affect the real-time performance of the acquisition system. The blind estimation and correction algorithm does not need to inject excitation signals into the acquisition system regularly, and completes the estimation and correction of the system error parameters while the acquisition system measures the measured signal.
如图1所示,双通道TIADC中参数g0,o0,Δt0分别为通道0的增益误差、偏置误差、和时间相位误差,参数g1,o1,Δt1分别为通道1的增益误差、偏置误差、和时间相位误差。实际工作中以通道0作为参考通道,需要对通道1的增益误差、偏置误差、和时间相位误差g1,o1,Δt1进行估计并校正,最终使其与通道0的对应参数相等,即g1=g0,o1=o0,及Δt1=Δt0,从而完成对整个系统的失配误差校正。As shown in Figure 1, the parameters g 0 , o 0 , Δt 0 in the dual-channel TIADC are the gain error, offset error, and time phase error of channel 0, respectively, and the parameters g 1 , o 1 , Δt 1 are the
现有的双通道TIADC盲估及校正方法在三个主要误差的估计过程中大多采取闭环回路的方式进行参数估计。有些失配误差估计及校正方法需要增加额外的硬件以完成对失配误差参数的校正。Most of the existing dual-channel TIADC blind estimation and correction methods use a closed-loop method to estimate parameters in the estimation process of the three main errors. Some mismatch error estimation and correction methods require additional hardware to complete the correction of mismatch error parameters.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是提供一种双通道TIADC系统失配误差盲校正方法。The technical problem to be solved by the present invention is to provide a blind correction method for mismatch errors of a dual-channel TIADC system.
为解决上述技术问题,本发明采用的技术方案是:In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is:
一种双通道TIADC系统失配误差盲校正方法,包括以下步骤:A blind correction method for mismatch error of a dual-channel TIADC system, comprising the following steps:
步骤1:获取各通道的采样数据:分别获取通道0和通道1的采样数据X0(k)和X1(k),并求通道0和通道1的采样数据的均值和均方值E[X0(k)]、E[X1(k)]、通道0和通道1的采样数据X0(k)和X1(k)表示为:Step 1: Obtain the sampling data of each channel: Obtain the sampling data X 0 (k) and X 1 (k) of channel 0 and
其中,Δt1为所述系统的失配时间,|Δt1|≤0.1;g1为通道1的增益误差,o1为通道1的偏置误差;计算方法为:Among them, Δt 1 is the mismatch time of the system, |Δt 1 |≤0.1; g 1 is the gain error of
步骤2:校准通道1的数据:用通道1的增益误差g1和偏置误差o1校准通道1的采样数据,获得通道1的第一次校准数据 Step 2: Calibrate the data of channel 1: Use the gain error g 1 of
步骤3:计算通道0采样数据X0(k)和通道1的第一次校准数据的互相关函数 Step 3: Calculate the sampling data X 0 (k) of channel 0 and the first calibration data of
步骤4:计算通道0的采样数据与各分数延迟滤波器输出数据的互相关函数:将通道0的采样数据X0(k)送入具有n个分数延迟滤波器的分数延迟滤波器组,计算通道0各分数延迟滤波器输出数据和通道0的采样数据的互相关函数Rx0(Δxi),i∈[1,n];第i个分数延迟滤波器的延迟Δxi为:Step 4: Calculate the cross-correlation function between the sampled data of channel 0 and the output data of each fractional delay filter: send the sampled data of channel 0 X 0 (k) into the fractional delay filter bank with n fractional delay filters, and calculate The cross-correlation function R x0 (Δx i ),i∈[1,n] of the output data of each fractional delay filter of channel 0 and the sampled data of channel 0; the delay Δx i of the ith fractional delay filter is:
步骤5:建立函数关系:以通道0各分数延迟滤波器输出数据和通道0的采样数据的互相关函数Rx0(Δxi)为自变量x,以各分数延迟滤波器的延迟Δxi为因变量y,建立函数关系;Step 5: Establish a functional relationship: take the cross-correlation function R x0 (Δx i ) of the output data of each fractional delay filter of channel 0 and the sampled data of channel 0 as the independent variable x, and take the delay Δx i of each fractional delay filter as the factor The variable y, establishes a functional relationship;
步骤6:估计失配时间:使用步骤5中建立的函数关系估计所述系统的失配时间Δt1;Step 6: Estimate mismatch time: use the functional relationship established in step 5 to estimate the mismatch time Δt 1 of the system;
步骤7:滤波失配时间:使用分数延时滤波器对步骤6中估计的时间相位误差进行Δt1延时滤波处理,所用公式如下:Step 7: Filter mismatch time: Use a fractional delay filter to perform Δt 1 delay filtering on the time-phase error estimated in Step 6. The formula used is as follows:
其中:in:
公式(6)中*代表卷积运算,Δt1由步骤(6)计算得到。In formula (6), * represents the convolution operation, and Δt 1 is calculated by step (6).
步骤5中使用多项式回归法建立所述函数关系:In step 5, the polynomial regression method is used to establish the functional relationship:
y=a0+a1x+a2x2. (8)y=a 0 +a 1 x+a 2 x 2 . (8)
其中的系数a0,a1,a2的计算方法为:The calculation method of the coefficients a 0 , a 1 , and a 2 is:
其中xi=Rx0(Δxi),yi=Δxi,n为分数延时滤波器的个数。Where x i =R x0 (Δx i ), y i =Δx i , and n is the number of fractional delay filters.
采用上述技术方案所取得的技术效果在于:本发明采用无需使用闭环回路的方式对系统的三个失配误差进行估计,既无需额外的硬件来实现对误差参数的校准,也不需要额外的校准信号。The technical effect obtained by adopting the above technical solution is that the present invention estimates the three mismatch errors of the system without using a closed-loop loop, and neither additional hardware is needed to calibrate the error parameters nor additional calibration. Signal.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明作进一步详细的说明。The present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
图1是双通道TIADC的原理框图;Figure 1 is a schematic block diagram of a dual-channel TIADC;
图2是本发明的流程图;Fig. 2 is the flow chart of the present invention;
图3是实施例1的分数延迟滤波器组的原理框图。FIG. 3 is a functional block diagram of the fractional delay filter bank of
具体实施方式Detailed ways
实施例1:Example 1:
一种双通道TIADC系统失配误差盲校正方法,包括以下步骤:A blind correction method for mismatch error of a dual-channel TIADC system, comprising the following steps:
步骤1:分别获取通道0和通道1的采样数据X0(k)和X1(k),并求通道0和通道1的采样数据的均值和均方值E[X0(k)]、E[X1(k)]、通道0和通道1的采样数据X0(k)和X1(k)表示为:Step 1: Obtain the sampling data X 0 (k) and X 1 (k) of channel 0 and
其中,Δt1为所述系统的失配时间,|Δt1|≤0.1;g1为通道1的增益误差,o1为通道1的偏置误差;步骤2:估计通道1的增益误差g1和偏置误差o1,计算方法为:Among them, Δt 1 is the mismatch time of the system, |Δt 1 |≤0.1; g 1 is the gain error of
步骤2:用通道1的增益误差g1和偏置误差o1校准通道1的采样数据,获得通道1的第一次校准数据 Step 2: Use the gain error g 1 of
步骤3:计算通道0采样数据X0(k)和通道1的第一次校准数据的互相关函数 Step 3: Calculate the sampling data X 0 (k) of channel 0 and the first calibration data of
步骤4:将通道0的采样数据X0(k)送入具有n个分数延迟滤波器的分数延迟滤波器组。实际使用过程中一个硬件设计良好的TIADC系统时间相位误差的偏差的绝对值不会超过0.1,根据步骤3中的公式4易知,在系统不存在时间失配误差的情况下通道0的采样数据和第一次校准数据之间的互相关计算值为这意味着公式(4)的取值范围为 Step 4: Send the sampled data X 0 (k) of channel 0 into a fractional delay filter bank with n fractional delay filters. In the actual use process, the absolute value of the deviation of the time phase error of a TIADC system with good hardware design will not exceed 0.1. According to the formula 4 in step 3, it is easy to know that the sampling data of channel 0 does not exist in the system when there is no time mismatch error. and the first calibration data The calculated cross-correlation between This means that the value range of formula (4) is
将通道0的采样数据X0(k)送入具有n个分数延迟滤波器的分数延迟滤波器组,第i个分数延迟滤波器的延迟为:The sampled data X 0 (k) of channel 0 is fed into a fractional delay filter bank with n fractional delay filters, and the delay of the ith fractional delay filter is:
计算通道0各分数延迟滤波器输出数据和通道0的采样数据的互相关函数Rx0(Δxi),i∈[1,n];Calculate the cross-correlation function R x0 (Δx i ),i∈[1,n] between the output data of each fractional delay filter of channel 0 and the sampled data of channel 0;
步骤5:以通道0各分数延迟滤波器输出数据和通道0的采样数据的互相关函数Rx0(Δxi)为自变量x,以各分数延迟滤波器的延迟Δxi为因变量y,建立函数关系;Step 5: Take the cross-correlation function R x0 (Δx i ) of the output data of each fractional delay filter of channel 0 and the sampled data of channel 0 as the independent variable x, and take the delay Δx i of each fractional delay filter as the dependent variable y, establish Functional relationship;
步骤5中使用多项式回归法建立所述函数关系:In step 5, the polynomial regression method is used to establish the functional relationship:
y=a0+a1x+a2x2. (6)y=a 0 +a 1 x+a 2 x 2 . (6)
其中的系数a0,a1,a2的计算方法为:The calculation method of the coefficients a 0 , a 1 , and a 2 is:
其中xi=Rx0(Δxi),yi=Δxi,n为分数延时滤波器的个数。Where x i =R x0 (Δx i ), y i =Δx i , and n is the number of fractional delay filters.
经由公式(7)确定系数a0,a1,a2后TIADC系统的时间相位误差可由下式计算:The time phase error of the TIADC system after the coefficients a 0 , a 1 , and a 2 are determined through formula (7) can be calculated by the following formula:
步骤6:使用步骤5中建立的函数关系估计所述系统的失配时间Δt1。Step 6: Use the functional relationship established in Step 5 to estimate the mismatch time Δt 1 of the system.
步骤7:使用分数延时滤波器对步骤6中估计的时间相位误差进行滤波Δt1处理。Step 7: Use a fractional delay filter to filter the time phase error estimated in Step 6 by Δt 1 .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710302679.3A CN107124183B (en) | 2017-05-03 | 2017-05-03 | Double-channel TIADC system mismatch error blind correction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710302679.3A CN107124183B (en) | 2017-05-03 | 2017-05-03 | Double-channel TIADC system mismatch error blind correction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107124183A CN107124183A (en) | 2017-09-01 |
CN107124183B true CN107124183B (en) | 2020-07-03 |
Family
ID=59726595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710302679.3A Active CN107124183B (en) | 2017-05-03 | 2017-05-03 | Double-channel TIADC system mismatch error blind correction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107124183B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108279404B (en) * | 2018-01-22 | 2021-06-08 | 西安电子科技大学 | A Phase Error Correction Method for Dual-Channel SAR Based on Spatial Spectrum Estimation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1859009A (en) * | 2005-05-03 | 2006-11-08 | 安捷伦科技有限公司 | System and method for timing calibration of time-interleaved data converters |
CN101136633A (en) * | 2006-08-28 | 2008-03-05 | 瑞昱半导体股份有限公司 | Correcting device for time-interleaved analog-digital converter |
CN102857225A (en) * | 2012-09-13 | 2013-01-02 | 电子科技大学 | Mismatch error calibration method for multi-channel high-speed parallel alternate sampling system |
CN105811980A (en) * | 2016-03-06 | 2016-07-27 | 北京工业大学 | TIADC time error mismatch self-adaption blind correction method based on differentiator and average time error |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7839323B2 (en) * | 2008-12-29 | 2010-11-23 | Intersil Americas, Inc. | Error estimation and correction in a two-channel time-interleaved analog-to-digital converter |
US8144040B2 (en) * | 2009-07-01 | 2012-03-27 | Intersil Americas, Inc. | Randomization of sample window in calibration of time-interleaved analog to digital converter |
-
2017
- 2017-05-03 CN CN201710302679.3A patent/CN107124183B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1859009A (en) * | 2005-05-03 | 2006-11-08 | 安捷伦科技有限公司 | System and method for timing calibration of time-interleaved data converters |
CN101136633A (en) * | 2006-08-28 | 2008-03-05 | 瑞昱半导体股份有限公司 | Correcting device for time-interleaved analog-digital converter |
CN102857225A (en) * | 2012-09-13 | 2013-01-02 | 电子科技大学 | Mismatch error calibration method for multi-channel high-speed parallel alternate sampling system |
CN105811980A (en) * | 2016-03-06 | 2016-07-27 | 北京工业大学 | TIADC time error mismatch self-adaption blind correction method based on differentiator and average time error |
Also Published As
Publication number | Publication date |
---|---|
CN107124183A (en) | 2017-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107147392A (en) | TIADC Mismatch Error Calibration Method Based on Adaptive Filtering and Taylor Series | |
KR101557399B1 (en) | Apparatus and method for time alignment of an envelope tracking power amplifier | |
CN108809272B (en) | Polynomial Kalman filtering method and filter | |
CN108809308B (en) | A Time Error Estimation and Correction Method of TIADC Acquisition System | |
CN113204038A (en) | Kalman smoothing filtering method and smoothing filter based on time domain and frequency domain | |
CN105224811A (en) | PMU dynamic data processing method based on feedback iterative frequency tracking | |
CN107425853B (en) | FFT-based blind correction method for mismatch error of dual-channel TIADC system | |
CN107294534A (en) | The binary channels TIADC frequency response mismatch real-time correction methods sampled for narrow band signal | |
CN107124183B (en) | Double-channel TIADC system mismatch error blind correction method | |
CN109001672B (en) | Time difference and frequency difference parameter estimation method and device | |
KR100722832B1 (en) | Adaptive Notch Filtering Method Using Robust Vibration Frequency Estimation | |
CN105571666A (en) | Flow compensation method, compensation device and flow sensor | |
CN114710252B (en) | Filtering method and system for precise clock synchronization | |
CN106101039B (en) | A Data-Aided Frequency Offset Estimation Method with Adjustable Precision | |
CN109557365B (en) | Grid voltage frequency and phase angle detection method and system, single-phase grid detection system | |
CN104266732B (en) | Dual stage bit stream gauge calibrating installation step-by-step counting precision compensation method | |
CN107276591B (en) | A Method and System for Estimating Mismatch Errors in Parallel Sampling Systems | |
CN103401533A (en) | Digital filtering method based on HMM/KF (Hidden Markova Model/Kalman Filter) steady-state feedback | |
CN106053936B (en) | A kind of method and system obtaining electrical signal instantaneous frequency | |
CN103746699B (en) | Signal reconstruction method based on rotation matrix error estimation for alternative sampling system | |
CN103780261B (en) | A kind of time-interleaved sampling system error estimation based on spin matrix | |
CN204314376U (en) | A kind of little phase compensation device based on power | |
CN112867908B (en) | Method, system, computer program for offset calibration of a rotational speed sensor signal of a rotational speed sensor | |
JP2003014462A (en) | Attitude detection device of artificial satellite | |
CN105490764B (en) | A kind of channel model bearing calibration and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |