[go: up one dir, main page]

CN107124183B - Double-channel TIADC system mismatch error blind correction method - Google Patents

Double-channel TIADC system mismatch error blind correction method Download PDF

Info

Publication number
CN107124183B
CN107124183B CN201710302679.3A CN201710302679A CN107124183B CN 107124183 B CN107124183 B CN 107124183B CN 201710302679 A CN201710302679 A CN 201710302679A CN 107124183 B CN107124183 B CN 107124183B
Authority
CN
China
Prior art keywords
channel
data
fractional delay
error
mismatch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710302679.3A
Other languages
Chinese (zh)
Other versions
CN107124183A (en
Inventor
白旭
胡辉
李万军
张兴强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Institute of Aerospace Engineering
Original Assignee
North China Institute of Aerospace Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Institute of Aerospace Engineering filed Critical North China Institute of Aerospace Engineering
Priority to CN201710302679.3A priority Critical patent/CN107124183B/en
Publication of CN107124183A publication Critical patent/CN107124183A/en
Application granted granted Critical
Publication of CN107124183B publication Critical patent/CN107124183B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1009Calibration

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种双通道TIADC系统失配误差盲校正方法,包括获取各通道的采样数据、校准通道1的数据、计算通道0采样数据和通道1的第一次校准数据的互相关函数、计算通道0的采样数据与各分数延迟滤波器输出数据的互相关函数、建立函数关系、估计失配时间、滤波失配时间步骤。本发明采用无需使用闭环回路的方式对系统的三个失配误差进行估计,既无需额外的硬件来实现对误差参数的校准,也不需要额外的校准信号。

Figure 201710302679

The invention discloses a blind correction method for mismatch error of a dual-channel TIADC system, which includes acquiring the sampling data of each channel, calibrating the data of channel 1, calculating the cross-correlation function of the sampling data of channel 0 and the first calibration data of channel 1, Calculate the cross-correlation function between the sampled data of channel 0 and the output data of each fractional delay filter, establish the functional relationship, estimate the mismatch time, and filter the mismatch time steps. The present invention estimates the three mismatch errors of the system without using a closed-loop loop, and neither additional hardware is needed to calibrate the error parameters nor additional calibration signals.

Figure 201710302679

Description

双通道TIADC系统失配误差盲校正方法Blind Correction Method of Mismatch Error in Dual-Channel TIADC System

技术领域technical field

本发明涉及一种TIADC系统失配误差盲校正方法,尤其涉及一种双通道TIADC系统失配误差盲校正方法,属于通信技术领域。The invention relates to a blind correction method for mismatch errors of a TIADC system, in particular to a blind correction method for mismatch errors of a dual-channel TIADC system, and belongs to the technical field of communications.

背景技术Background technique

TIADC(并行采样系统)会由于器件的非理想特性,而产生偏置误差、增益误差、时间相位误差。对TIADC(并行采样系统)中三个主要误差的校正技术集中在两个大的方向,即失配误差的非盲估计及校正算法和盲估计及校正算法。失配误差的非盲估计校正算法需要定期对采集系统注入激励信号以获取系统的误差参数,非盲估计及校正算法会影响采集系统工作的实时性。盲估计及校正算法不需要定期对采集系统注入激励信号,在采集系统对被测信号测量的同时完成对系统误差参数的估计及校正。TIADC (parallel sampling system) will generate offset error, gain error, time phase error due to the non-ideal characteristics of the device. Correction techniques for the three main errors in TIADC (parallel sampling system) focus on two major directions, namely, non-blind estimation and correction algorithms and blind estimation and correction algorithms for mismatch errors. The non-blind estimation and correction algorithm of mismatch error needs to inject excitation signal into the acquisition system regularly to obtain the error parameters of the system. The non-blind estimation and correction algorithm will affect the real-time performance of the acquisition system. The blind estimation and correction algorithm does not need to inject excitation signals into the acquisition system regularly, and completes the estimation and correction of the system error parameters while the acquisition system measures the measured signal.

如图1所示,双通道TIADC中参数g0,o0,Δt0分别为通道0的增益误差、偏置误差、和时间相位误差,参数g1,o1,Δt1分别为通道1的增益误差、偏置误差、和时间相位误差。实际工作中以通道0作为参考通道,需要对通道1的增益误差、偏置误差、和时间相位误差g1,o1,Δt1进行估计并校正,最终使其与通道0的对应参数相等,即g1=g0,o1=o0,及Δt1=Δt0,从而完成对整个系统的失配误差校正。As shown in Figure 1, the parameters g 0 , o 0 , Δt 0 in the dual-channel TIADC are the gain error, offset error, and time phase error of channel 0, respectively, and the parameters g 1 , o 1 , Δt 1 are the channel 1 Gain error, offset error, and time phase error. In actual work, channel 0 is used as the reference channel, and the gain error, offset error, and time phase error g 1 , o 1 , Δt 1 of channel 1 need to be estimated and corrected, and finally make them equal to the corresponding parameters of channel 0, That is, g 1 =g 0 , o 1 =o 0 , and Δt 1 =Δt 0 , thereby completing the mismatch error correction for the entire system.

现有的双通道TIADC盲估及校正方法在三个主要误差的估计过程中大多采取闭环回路的方式进行参数估计。有些失配误差估计及校正方法需要增加额外的硬件以完成对失配误差参数的校正。Most of the existing dual-channel TIADC blind estimation and correction methods use a closed-loop method to estimate parameters in the estimation process of the three main errors. Some mismatch error estimation and correction methods require additional hardware to complete the correction of mismatch error parameters.

发明内容SUMMARY OF THE INVENTION

本发明要解决的技术问题是提供一种双通道TIADC系统失配误差盲校正方法。The technical problem to be solved by the present invention is to provide a blind correction method for mismatch errors of a dual-channel TIADC system.

为解决上述技术问题,本发明采用的技术方案是:In order to solve the above-mentioned technical problems, the technical scheme adopted in the present invention is:

一种双通道TIADC系统失配误差盲校正方法,包括以下步骤:A blind correction method for mismatch error of a dual-channel TIADC system, comprising the following steps:

步骤1:获取各通道的采样数据:分别获取通道0和通道1的采样数据X0(k)和X1(k),并求通道0和通道1的采样数据的均值和均方值E[X0(k)]、E[X1(k)]、

Figure GDA0002473199100000011
通道0和通道1的采样数据X0(k)和X1(k)表示为:Step 1: Obtain the sampling data of each channel: Obtain the sampling data X 0 (k) and X 1 (k) of channel 0 and channel 1 respectively, and find the mean and mean square value of the sampling data of channel 0 and channel 1 E[ X 0 (k)], E[X 1 (k)],
Figure GDA0002473199100000011
The sampled data X 0 (k) and X 1 (k) of channel 0 and channel 1 are expressed as:

Figure GDA0002473199100000021
Figure GDA0002473199100000021

其中,Δt1为所述系统的失配时间,|Δt1|≤0.1;g1为通道1的增益误差,o1为通道1的偏置误差;计算方法为:Among them, Δt 1 is the mismatch time of the system, |Δt 1 |≤0.1; g 1 is the gain error of channel 1, and o 1 is the offset error of channel 1; the calculation method is:

Figure GDA0002473199100000022
Figure GDA0002473199100000022

步骤2:校准通道1的数据:用通道1的增益误差g1和偏置误差o1校准通道1的采样数据,获得通道1的第一次校准数据

Figure GDA0002473199100000023
Step 2: Calibrate the data of channel 1: Use the gain error g 1 of channel 1 and the offset error o 1 to calibrate the sampled data of channel 1 to obtain the first calibration data of channel 1
Figure GDA0002473199100000023

Figure GDA0002473199100000024
Figure GDA0002473199100000024

步骤3:计算通道0采样数据X0(k)和通道1的第一次校准数据

Figure GDA0002473199100000025
的互相关函数
Figure GDA0002473199100000026
Step 3: Calculate the sampling data X 0 (k) of channel 0 and the first calibration data of channel 1
Figure GDA0002473199100000025
The cross-correlation function of
Figure GDA0002473199100000026

Figure GDA0002473199100000027
Figure GDA0002473199100000027

步骤4:计算通道0的采样数据与各分数延迟滤波器输出数据的互相关函数:将通道0的采样数据X0(k)送入具有n个分数延迟滤波器的分数延迟滤波器组,计算通道0各分数延迟滤波器输出数据和通道0的采样数据的互相关函数Rx0(Δxi),i∈[1,n];第i个分数延迟滤波器的延迟Δxi为:Step 4: Calculate the cross-correlation function between the sampled data of channel 0 and the output data of each fractional delay filter: send the sampled data of channel 0 X 0 (k) into the fractional delay filter bank with n fractional delay filters, and calculate The cross-correlation function R x0 (Δx i ),i∈[1,n] of the output data of each fractional delay filter of channel 0 and the sampled data of channel 0; the delay Δx i of the ith fractional delay filter is:

Figure GDA0002473199100000028
Figure GDA0002473199100000028

步骤5:建立函数关系:以通道0各分数延迟滤波器输出数据和通道0的采样数据的互相关函数Rx0(Δxi)为自变量x,以各分数延迟滤波器的延迟Δxi为因变量y,建立函数关系;Step 5: Establish a functional relationship: take the cross-correlation function R x0 (Δx i ) of the output data of each fractional delay filter of channel 0 and the sampled data of channel 0 as the independent variable x, and take the delay Δx i of each fractional delay filter as the factor The variable y, establishes a functional relationship;

步骤6:估计失配时间:使用步骤5中建立的函数关系估计所述系统的失配时间Δt1Step 6: Estimate mismatch time: use the functional relationship established in step 5 to estimate the mismatch time Δt 1 of the system;

步骤7:滤波失配时间:使用分数延时滤波器对步骤6中估计的时间相位误差进行Δt1延时滤波处理,所用公式如下:Step 7: Filter mismatch time: Use a fractional delay filter to perform Δt 1 delay filtering on the time-phase error estimated in Step 6. The formula used is as follows:

Figure GDA0002473199100000031
Figure GDA0002473199100000031

其中:in:

Figure GDA0002473199100000032
Figure GDA0002473199100000032

公式(6)中*代表卷积运算,Δt1由步骤(6)计算得到。In formula (6), * represents the convolution operation, and Δt 1 is calculated by step (6).

步骤5中使用多项式回归法建立所述函数关系:In step 5, the polynomial regression method is used to establish the functional relationship:

y=a0+a1x+a2x2. (8)y=a 0 +a 1 x+a 2 x 2 . (8)

其中的系数a0,a1,a2的计算方法为:The calculation method of the coefficients a 0 , a 1 , and a 2 is:

Figure GDA0002473199100000033
Figure GDA0002473199100000033

其中xi=Rx0(Δxi),yi=Δxi,n为分数延时滤波器的个数。Where x i =R x0 (Δx i ), y i =Δx i , and n is the number of fractional delay filters.

采用上述技术方案所取得的技术效果在于:本发明采用无需使用闭环回路的方式对系统的三个失配误差进行估计,既无需额外的硬件来实现对误差参数的校准,也不需要额外的校准信号。The technical effect obtained by adopting the above technical solution is that the present invention estimates the three mismatch errors of the system without using a closed-loop loop, and neither additional hardware is needed to calibrate the error parameters nor additional calibration. Signal.

附图说明Description of drawings

下面结合附图和具体实施方式对本发明作进一步详细的说明。The present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

图1是双通道TIADC的原理框图;Figure 1 is a schematic block diagram of a dual-channel TIADC;

图2是本发明的流程图;Fig. 2 is the flow chart of the present invention;

图3是实施例1的分数延迟滤波器组的原理框图。FIG. 3 is a functional block diagram of the fractional delay filter bank of Embodiment 1. FIG.

具体实施方式Detailed ways

实施例1:Example 1:

一种双通道TIADC系统失配误差盲校正方法,包括以下步骤:A blind correction method for mismatch error of a dual-channel TIADC system, comprising the following steps:

步骤1:分别获取通道0和通道1的采样数据X0(k)和X1(k),并求通道0和通道1的采样数据的均值和均方值E[X0(k)]、E[X1(k)]、

Figure GDA0002473199100000034
通道0和通道1的采样数据X0(k)和X1(k)表示为:Step 1: Obtain the sampling data X 0 (k) and X 1 (k) of channel 0 and channel 1 respectively, and find the mean and mean square value of the sampling data of channel 0 and channel 1 E[X 0 (k)], E[X 1 (k)],
Figure GDA0002473199100000034
The sampled data X 0 (k) and X 1 (k) of channel 0 and channel 1 are expressed as:

Figure GDA0002473199100000041
Figure GDA0002473199100000041

其中,Δt1为所述系统的失配时间,|Δt1|≤0.1;g1为通道1的增益误差,o1为通道1的偏置误差;步骤2:估计通道1的增益误差g1和偏置误差o1,计算方法为:Among them, Δt 1 is the mismatch time of the system, |Δt 1 |≤0.1; g 1 is the gain error of channel 1, and o 1 is the bias error of channel 1; Step 2: Estimate the gain error g 1 of channel 1 and the bias error o 1 , calculated as:

Figure GDA0002473199100000042
Figure GDA0002473199100000042

步骤2:用通道1的增益误差g1和偏置误差o1校准通道1的采样数据,获得通道1的第一次校准数据

Figure GDA0002473199100000043
Step 2: Use the gain error g 1 of channel 1 and the offset error o 1 to calibrate the sampling data of channel 1 to obtain the first calibration data of channel 1
Figure GDA0002473199100000043

Figure GDA0002473199100000044
Figure GDA0002473199100000044

步骤3:计算通道0采样数据X0(k)和通道1的第一次校准数据

Figure GDA0002473199100000045
的互相关函数
Figure GDA0002473199100000046
Step 3: Calculate the sampling data X 0 (k) of channel 0 and the first calibration data of channel 1
Figure GDA0002473199100000045
The cross-correlation function of
Figure GDA0002473199100000046

Figure GDA0002473199100000047
Figure GDA0002473199100000047

步骤4:将通道0的采样数据X0(k)送入具有n个分数延迟滤波器的分数延迟滤波器组。实际使用过程中一个硬件设计良好的TIADC系统时间相位误差的偏差的绝对值不会超过0.1,根据步骤3中的公式4易知,在系统不存在时间失配误差的情况下通道0的采样数据和第一次校准数据

Figure GDA0002473199100000048
之间的互相关计算值为
Figure GDA0002473199100000049
这意味着公式(4)的取值范围为
Figure GDA00024731991000000410
Step 4: Send the sampled data X 0 (k) of channel 0 into a fractional delay filter bank with n fractional delay filters. In the actual use process, the absolute value of the deviation of the time phase error of a TIADC system with good hardware design will not exceed 0.1. According to the formula 4 in step 3, it is easy to know that the sampling data of channel 0 does not exist in the system when there is no time mismatch error. and the first calibration data
Figure GDA0002473199100000048
The calculated cross-correlation between
Figure GDA0002473199100000049
This means that the value range of formula (4) is
Figure GDA00024731991000000410

将通道0的采样数据X0(k)送入具有n个分数延迟滤波器的分数延迟滤波器组,第i个分数延迟滤波器的延迟为:The sampled data X 0 (k) of channel 0 is fed into a fractional delay filter bank with n fractional delay filters, and the delay of the ith fractional delay filter is:

Figure GDA00024731991000000411
Figure GDA00024731991000000411

计算通道0各分数延迟滤波器输出数据和通道0的采样数据的互相关函数Rx0(Δxi),i∈[1,n];Calculate the cross-correlation function R x0 (Δx i ),i∈[1,n] between the output data of each fractional delay filter of channel 0 and the sampled data of channel 0;

步骤5:以通道0各分数延迟滤波器输出数据和通道0的采样数据的互相关函数Rx0(Δxi)为自变量x,以各分数延迟滤波器的延迟Δxi为因变量y,建立函数关系;Step 5: Take the cross-correlation function R x0 (Δx i ) of the output data of each fractional delay filter of channel 0 and the sampled data of channel 0 as the independent variable x, and take the delay Δx i of each fractional delay filter as the dependent variable y, establish Functional relationship;

步骤5中使用多项式回归法建立所述函数关系:In step 5, the polynomial regression method is used to establish the functional relationship:

y=a0+a1x+a2x2. (6)y=a 0 +a 1 x+a 2 x 2 . (6)

其中的系数a0,a1,a2的计算方法为:The calculation method of the coefficients a 0 , a 1 , and a 2 is:

Figure GDA0002473199100000051
Figure GDA0002473199100000051

其中xi=Rx0(Δxi),yi=Δxi,n为分数延时滤波器的个数。Where x i =R x0 (Δx i ), y i =Δx i , and n is the number of fractional delay filters.

经由公式(7)确定系数a0,a1,a2后TIADC系统的时间相位误差可由下式计算:The time phase error of the TIADC system after the coefficients a 0 , a 1 , and a 2 are determined through formula (7) can be calculated by the following formula:

Figure GDA0002473199100000052
Figure GDA0002473199100000052

步骤6:使用步骤5中建立的函数关系估计所述系统的失配时间Δt1Step 6: Use the functional relationship established in Step 5 to estimate the mismatch time Δt 1 of the system.

步骤7:使用分数延时滤波器对步骤6中估计的时间相位误差进行滤波Δt1处理。Step 7: Use a fractional delay filter to filter the time phase error estimated in Step 6 by Δt 1 .

Claims (2)

1.一种双通道TIADC系统失配误差盲校正方法,其特征在于:所述双通道TIADC系统中通道0作为参考通道,通道1作为测量通道;所述双通道TIADC系统中输入的被测信号X(t)为宽平稳随机过程;包括以下步骤:1. a dual-channel TIADC system mismatch error blind correction method is characterized in that: in the dual-channel TIADC system, channel 0 is used as a reference channel, and channel 1 is used as a measurement channel; the signal under test input in the dual-channel TIADC system X(t) is a wide stationary stochastic process; it includes the following steps: 步骤1:获取各通道的采样数据:分别获取通道0和通道1的采样数据X0(k)和X1(k),并求通道0和通道1的采样数据的均值和均方值E[X0(k)]、E[X1(k)]、
Figure FDA0002473199090000011
通道0和通道1的采样数据X0(k)和X1(k)表示为:
Step 1: Obtain the sampling data of each channel: Obtain the sampling data X 0 (k) and X 1 (k) of channel 0 and channel 1 respectively, and find the mean and mean square value of the sampling data of channel 0 and channel 1 E[ X 0 (k)], E[X 1 (k)],
Figure FDA0002473199090000011
The sampled data X 0 (k) and X 1 (k) of channel 0 and channel 1 are expressed as:
Figure FDA0002473199090000012
Figure FDA0002473199090000012
其中,Δt1为所述系统的失配时间,|Δt1|≤0.1;g1为通道1的增益误差,o1为通道1的偏置误差;计算方法为:Among them, Δt 1 is the mismatch time of the system, |Δt 1 |≤0.1; g 1 is the gain error of channel 1, and o 1 is the offset error of channel 1; the calculation method is:
Figure FDA0002473199090000013
Figure FDA0002473199090000013
步骤2:校准通道1的数据:用通道1的增益误差g1和偏置误差o1校准通道1的采样数据,获得通道1的第一次校准数据
Figure FDA0002473199090000014
Step 2: Calibrate the data of channel 1: Use the gain error g 1 of channel 1 and the offset error o 1 to calibrate the sampled data of channel 1 to obtain the first calibration data of channel 1
Figure FDA0002473199090000014
Figure FDA0002473199090000015
Figure FDA0002473199090000015
步骤3:计算通道0采样数据X0(k)和通道1的第一次校准数据
Figure FDA0002473199090000016
的互相关函数
Figure FDA0002473199090000017
Step 3: Calculate the sampling data X 0 (k) of channel 0 and the first calibration data of channel 1
Figure FDA0002473199090000016
The cross-correlation function of
Figure FDA0002473199090000017
Figure FDA0002473199090000018
Figure FDA0002473199090000018
步骤4:计算通道0的采样数据与各分数延迟滤波器输出数据的互相关函数:将通道0的采样数据X0(k)送入具有n个分数延迟滤波器的分数延迟滤波器组,计算通道0各分数延迟滤波器输出数据和通道0的采样数据的互相关函数Rx0(Δxi),i∈[1,n];第i个分数延迟滤波器的延迟Δxi为:Step 4: Calculate the cross-correlation function between the sampled data of channel 0 and the output data of each fractional delay filter: send the sampled data of channel 0 X 0 (k) into the fractional delay filter bank with n fractional delay filters, and calculate The cross-correlation function R x0 (Δx i ),i∈[1,n] of the output data of each fractional delay filter of channel 0 and the sampled data of channel 0; the delay Δx i of the ith fractional delay filter is:
Figure FDA0002473199090000019
Figure FDA0002473199090000019
步骤5:建立函数关系:以通道0各分数延迟滤波器输出数据和通道0的采样数据的互相关函数Rx0(Δxi)为自变量x,以各分数延迟滤波器的延迟Δxi为因变量y,建立函数关系;Step 5: Establish a functional relationship: take the cross-correlation function R x0 (Δx i ) of the output data of each fractional delay filter of channel 0 and the sampled data of channel 0 as the independent variable x, and take the delay Δx i of each fractional delay filter as the factor The variable y, establishes a functional relationship; 步骤6:估计失配时间:使用步骤5中建立的函数关系估计所述系统的失配时间Δt1Step 6: Estimate mismatch time: use the functional relationship established in step 5 to estimate the mismatch time Δt 1 of the system; 步骤7:滤波失配时间:使用分数延时滤波器对步骤6中估计的时间相位误差进行Δt1延时滤波处理。Step 7: Filter mismatch time: use a fractional delay filter to perform Δt 1 delay filtering on the time phase error estimated in step 6.
2.根据权利要求1所述的双通道TIADC系统失配误差盲校正方法,其特征在于:步骤5中使用多项式回归法建立所述函数关系:2. dual-channel TIADC system mismatch error blind correction method according to claim 1, is characterized in that: in step 5, use polynomial regression method to establish described functional relationship: y=a0+a1x+a2x2. (6)y=a 0 +a 1 x+a 2 x 2 . (6) 其中的系数a0,a1,a2的计算方法为:The calculation method of the coefficients a 0 , a 1 , and a 2 is:
Figure FDA0002473199090000021
Figure FDA0002473199090000021
其中xi=Rx0(Δxi),yi=Δxi,n为分数延时滤波器的个数。Where x i =R x0 (Δx i ), y i =Δx i , and n is the number of fractional delay filters.
CN201710302679.3A 2017-05-03 2017-05-03 Double-channel TIADC system mismatch error blind correction method Active CN107124183B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710302679.3A CN107124183B (en) 2017-05-03 2017-05-03 Double-channel TIADC system mismatch error blind correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710302679.3A CN107124183B (en) 2017-05-03 2017-05-03 Double-channel TIADC system mismatch error blind correction method

Publications (2)

Publication Number Publication Date
CN107124183A CN107124183A (en) 2017-09-01
CN107124183B true CN107124183B (en) 2020-07-03

Family

ID=59726595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710302679.3A Active CN107124183B (en) 2017-05-03 2017-05-03 Double-channel TIADC system mismatch error blind correction method

Country Status (1)

Country Link
CN (1) CN107124183B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108279404B (en) * 2018-01-22 2021-06-08 西安电子科技大学 A Phase Error Correction Method for Dual-Channel SAR Based on Spatial Spectrum Estimation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859009A (en) * 2005-05-03 2006-11-08 安捷伦科技有限公司 System and method for timing calibration of time-interleaved data converters
CN101136633A (en) * 2006-08-28 2008-03-05 瑞昱半导体股份有限公司 Correcting device for time-interleaved analog-digital converter
CN102857225A (en) * 2012-09-13 2013-01-02 电子科技大学 Mismatch error calibration method for multi-channel high-speed parallel alternate sampling system
CN105811980A (en) * 2016-03-06 2016-07-27 北京工业大学 TIADC time error mismatch self-adaption blind correction method based on differentiator and average time error

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839323B2 (en) * 2008-12-29 2010-11-23 Intersil Americas, Inc. Error estimation and correction in a two-channel time-interleaved analog-to-digital converter
US8144040B2 (en) * 2009-07-01 2012-03-27 Intersil Americas, Inc. Randomization of sample window in calibration of time-interleaved analog to digital converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1859009A (en) * 2005-05-03 2006-11-08 安捷伦科技有限公司 System and method for timing calibration of time-interleaved data converters
CN101136633A (en) * 2006-08-28 2008-03-05 瑞昱半导体股份有限公司 Correcting device for time-interleaved analog-digital converter
CN102857225A (en) * 2012-09-13 2013-01-02 电子科技大学 Mismatch error calibration method for multi-channel high-speed parallel alternate sampling system
CN105811980A (en) * 2016-03-06 2016-07-27 北京工业大学 TIADC time error mismatch self-adaption blind correction method based on differentiator and average time error

Also Published As

Publication number Publication date
CN107124183A (en) 2017-09-01

Similar Documents

Publication Publication Date Title
CN107147392A (en) TIADC Mismatch Error Calibration Method Based on Adaptive Filtering and Taylor Series
KR101557399B1 (en) Apparatus and method for time alignment of an envelope tracking power amplifier
CN108809272B (en) Polynomial Kalman filtering method and filter
CN108809308B (en) A Time Error Estimation and Correction Method of TIADC Acquisition System
CN113204038A (en) Kalman smoothing filtering method and smoothing filter based on time domain and frequency domain
CN105224811A (en) PMU dynamic data processing method based on feedback iterative frequency tracking
CN107425853B (en) FFT-based blind correction method for mismatch error of dual-channel TIADC system
CN107294534A (en) The binary channels TIADC frequency response mismatch real-time correction methods sampled for narrow band signal
CN107124183B (en) Double-channel TIADC system mismatch error blind correction method
CN109001672B (en) Time difference and frequency difference parameter estimation method and device
KR100722832B1 (en) Adaptive Notch Filtering Method Using Robust Vibration Frequency Estimation
CN105571666A (en) Flow compensation method, compensation device and flow sensor
CN114710252B (en) Filtering method and system for precise clock synchronization
CN106101039B (en) A Data-Aided Frequency Offset Estimation Method with Adjustable Precision
CN109557365B (en) Grid voltage frequency and phase angle detection method and system, single-phase grid detection system
CN104266732B (en) Dual stage bit stream gauge calibrating installation step-by-step counting precision compensation method
CN107276591B (en) A Method and System for Estimating Mismatch Errors in Parallel Sampling Systems
CN103401533A (en) Digital filtering method based on HMM/KF (Hidden Markova Model/Kalman Filter) steady-state feedback
CN106053936B (en) A kind of method and system obtaining electrical signal instantaneous frequency
CN103746699B (en) Signal reconstruction method based on rotation matrix error estimation for alternative sampling system
CN103780261B (en) A kind of time-interleaved sampling system error estimation based on spin matrix
CN204314376U (en) A kind of little phase compensation device based on power
CN112867908B (en) Method, system, computer program for offset calibration of a rotational speed sensor signal of a rotational speed sensor
JP2003014462A (en) Attitude detection device of artificial satellite
CN105490764B (en) A kind of channel model bearing calibration and device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant